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4 A M A R KO V- C H A I N M O D E L F O R
N U C L E O S O M E A F F I N I T Y

This chapter is based on:
Tompitak, Barkema and Schiessel 2017 BMC Bioinformatics 18 157 [78]

As we saw in Section 1.3, there are many models to be found in the lit-
erature that attempt to predict, for a given sequence, its affinity to nucleo-
somes. One approach is the biophysical one: sequence-dependent models
that directly address the mechanics of DNA, such as the Rigid Base Pair
Model [11] can be combined with a suitable model for the nucleosome to
access the energetics of nucleosome-bound DNA [1, 2, 24–26, 56, 131]. The
Eslami-Mossallam nucleosome model [1] described in Section 1.2, which
forms the basis for much of the work presented in this thesis, falls into
this category.

Another option is to use a bioinformatics model that defines a (Boltz-
mann) probability distribution on the space of all possible nucleotide se-
quences. The logarithm of such a probability distribution relates linearly
to the free energy of a sequence when wrapped into a nucleosome. One
such probability-based model has been put forward by Segal et al. [62],
and used successfully in follow-ups to that reference [63, 64]. In this chap-
ter we will see that this bioinformatical model can be appropriated be-
yond its original purpose, in that it can also be used in silico to provide
a computationally efficient approximation to biophysical models that are
themselves computationally too intensive, such as the Eslami-Mossallam
nucleosome model.

For the Eslami-Mossallam nucleosome model, the resulting approxima-
tion speeds up the calculation of the affinity of a sequence for the nucle-
osome by a factor of around 105 (in an unoptimized implementation). In
doing so, this approximative scheme makes it possible to use the biophys-
ical nucleosome model of Eslami-Mossallam et al. [1] to analyze far larger
sets of sequences. In Chapter 6 we will use it for genome-wide analyses
of nucleosome positioning signals, which would not be possible with the
pure biophysical model.

In this chapter we will describe the new model and perform a bench-
marking analysis of the approximation to the Eslami-Mossallam nucleo-
some model. We will examine to what accuracy the computationally ef-
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44 a markov-chain model for nucleosome affinity

ficient model approximates the predictions of the underlying model for
the first chromosome of S. cerevisiae, and how this accuracy depends on
several factors, such as the stringency of the assumptions that go into the
approximation, the size of the sequence ensemble from which the model
parameters are derived and the application of smoothing filters on those
parameters. In doing so, we may also indirectly draw some conclusions
as to the accuracy that may be expected of models such as that of Segal et
al. [62], which are trained on experimental sequence ensembles.

4.1 repurposing the model of segal et al.

Since a nucleosome wraps 147 base pairs worth of DNA, the space of
possible sequences contains 4147 or about 1088 possibilities. It is impossible
to enumerate all of these, so a simple function is needed for the probability
distribution.

Segal et al. do this by treating a DNA sequence as a Markov chain of or-
der 1, where the probability of a nucleotide at a certain position depends
only upon the preceding nucleotide. The probability of the sequence as a
whole is the product of the probabilities of all the nucleotides it is com-
posed of. More precisely, defining S as a sequence of length 147, consisting
of nucleotides Si with i from 1 to 147,

P(S) = P(
147⋂
i=1

Si) = P(S147|
146⋂
i=1

Si)P(
146⋂
i=1

Si) (4.1)

=
147

∏
n=1

P(Sn|
n−1⋂
i=1

Si), (4.2)

where we have applied the chain rule of probabilities. If we now introduce
the assumption we mentioned earlier, that the probability of a nucleotide
depends only on the preceding nucleotide, we find the expression given
by Segal et al., i.e.

P(S) = P(S1)
147

∏
n=2

P(Sn|Sn−1). (4.3)

We should stress that the value of quantities like P(Sn) depends not just
on the value of Sn (i.e. which nucleotide is represented) but also on the po-
sition along the nucleosome, n. These probability distributions for, in the
case of Segal et al., dinucleotides, can be obtained by analyzing a suitable
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ensemble of sequences that have high affinities for the nucleosome. Segal
et al. generate such an ensemble from the genome they are interested in
making predictions for, by mapping actual (in vitro) nucleosome positions
along the DNA. Although the original model did not perform very well
[75], this model has been applied with success – after a refinement of the
model and employing a better training data set – to predicting nucleosome
positions, by Field et al. [63] and Kaplan et al. [64].

These experimental probability distributions do not capture only the
intrinsic mechanical preferences of the DNA. They also capture inher-
ent biases in the sample (a genomic sequence necessarily contains only
a small subset of all 1088 possible sequences) and biases of the experimen-
tal method. This makes it difficult to evaluate the accuracy of the model,
since both the training of the model and its testing generally rely on the
same experimental methods, and there is the risk that agreement between
the model and reality is overestimated because the model correctly fits
experimental artifacts. Therefore it becomes of interest to study the model
in a theoretical framework, where we can isolate the purely mechanical
effects.

Ensembles to inform this type of bioinformatics model can also be gen-
erated from a theoretical nucleosome model using the Mutation Monte
Carlo (MMC) method (see Section 1.4, Fig. 1.5). This method adds muta-
tion moves to a standard Monte Carlo simulation of a nucleosome, thereby
sampling the Boltzmann probability distribution of pairs of sequences and
spatial configurations (S, θ),

P(S, θ) = e−βE(S,θ). (4.4)

By sampling the sequences during the MMC simulation, the spatial de-
grees of freedom of the nucleosome model are marginalized and one ob-
tains the probability distribution of the sequences

P(S) =
∫

dθe−βE(S,θ) (4.5)

and their free energy

F(S) = −kT log(P(S)). (4.6)

Note that in Eqs. 4.4–4.6 we have neglected the overall normalization of
the probability distributions by the partition function Z, and hence a con-
stant offset −kT log(Z) to the free energy. Because the probabilities we
derive are simply relative frequencies with respect to our sequence ensem-
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ble, they are inherently normalized (i.e. summing them over all possible
sequences gives unity) and we have no information on the partition func-
tion. This is not usually an impediment as we are mostly interested in
relative energy differences.

Also note that Eq. 4.6 gives us the free energy in units of kT, with T
the simulation temperature. The physical model is defined in units of kTr,
with Tr being room temperature, so what we will want to calculate is

F(S)
kTr

=
T
Tr

log(P(S)). (4.7)

Sampling the entire sequence space is not feasible, but making the same
assumption about long-range correlations in the sequence preferences as
Segal et al., we can assume that we may write our P(S) as in Eq. 4.3. It
turns out it is feasible to produce a sequence ensemble large enough that
the distributions P(Si|Si−1) may be determined.

4.2 generalization of the dinucleotide model

We used an MMC simulation of our nucleosome model at 1/6 of room
temperature to generate an ensemble of 107 sequences, from which the
oligonucleotide distributions were derived. At each position, we counted
the number of instances of every mono-, di- and trinucleotide and divided
these by the total number of sequences in order to obtain the probability
distributions.

This gives us the joint probability distribution P(Sn ∩ Sn−1) and not the
conditional probability P(Sn|Sn−1) that we need for Eq. 4.3. This is easily
remedied. We can rewrite Eq. 4.3 as

P(S) = P(S1)
147

∏
n=2

P(Sn ∩ Sn−1)

P(Sn−1)
=

∏147
n=2 P(Sn ∩ Sn−1)

∏146
n=2 P(Sn)

. (4.8)

We see that we can write this equation in terms of the probability dis-
tributions of mono- and dinucleotides that we can find from a sequence
ensemble. Analogously, if we want to expand the model to trinucleotides,
we insert the assumption that the probability of a nucleotide depends only
on the previous two (creating a Markov chain of order two) and we find

P(S) = ∏147
n=3 P(Sn ∩ Sn−1 ∩ Sn−2)

∏146
n=3 P(Sn ∩ Sn−1)

. (4.9)
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This model can thus be applied using probability distributions for di-
and trinucleotides, both to be obtained from a suitable sequence ensemble.
The result easily generalizes to tetranucleotides and beyond. For mononu-
cleotides, the model simplifies to

P(S) =
147

∏
i=1

P(Si). (4.10)

4.3 benchmarking methodology

Segal et al. test their model by predicting nucleosome positions along the
genome they are studying and comparing with reality and they find that
their model has some predictive power, even on genomes on which the
method was not trained. However, their study is inevitably hampered by
small statistics and their use of natural materials. The latter makes it diffi-
cult to judge the quality of their model.

The in silico methods allow us to test the model, as an approximation to
the full underlying model, much more rigorously. Because we can explic-
itly calculate the energy of a given sequence, we can directly measure the
correlation between the energy given by the theoretical nucleosome model
and the probability calculated by the bioinformatics model. Using a stan-
dard Monte Carlo simulation of the nucleosome with a given sequence,
we can measure the average energy

〈E〉S =
∫

dθE(S, θ)e−βE(S,θ) (4.11)

of the sequence. Unfortunately, calculating the free energy using the Eslami-
Mossallam nucleosome model is not straightforward, and we will be com-
paring 〈E〉S as predicted by the biophysical model with F(S) as predicted
by the approximative model. At finite temperature, these quantities are
not the same, differing by an entropic contribution. However, at low enough
temperatures they converge, and for nucleosomes the entropic contribu-
tion is not strongly sequence-dependent, as we will see in Chapter 5. We
will compare the predictions at 1/6th of room temperature, as some fi-
nite temperature is needed for the statistical simulations to function. In
performing this comparison, we thus provide an upper limit for the dis-
crepancy between the approximation and the real 〈E〉S.

In order to generate an energy landscape with which to compare the
results of the probability-based models, we take the first chromosome of
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S. cerevisiae (∼ 2× 105 base pairs) and perform a Monte Carlo simulation
of the nucleosome wrapped with each 147-base-pair subsequence of the
chromosome, using the Eslami-Mossallam nucleosome model. After let-
ting the simulation equilibrate, we sample the energy of the system and
take the average. In order to be able to compare this energy landscape with
a probability landscape, we calculate the (Boltzmann) probability distribu-
tion and normalize this over the set of sequences for which we calculated
the energy, and then take the logarithm to regain our (shifted) energy
landscape.

Analogously, we use the probability-based model to generate a proba-
bility landscape of the same sequence. This we normalize over the set of
sequences analyzed and convert to an energy using Eq. 4.6. We find that
this procedure is about five orders of magnitude faster than using the full
biophysical model.

We only know the free energy up to some constant offset, but by making
sure both the real energy landscape given by the energetic model and the
approximate energy landscape provided by our probability-based model
have the same normalization, we can readily compare the two.

In doing so, we may draw some conclusions about this kind of Markov-
chain model not only as it relates to the nucleosome model we consider
here, but about the assumptions that go into it in general, i.e. the ex-
plicit assumption of short-range correlations and the implicit assumption
that the sequence ensemble on which the model is being trained is large
enough. To test the first assumption, we extend the dinucleotide model
used by Segal et al. to mononucleotides (which assumes no correlations
at all) and trinucleotides (which relaxes the assumption of short-range
correlations) and compare their accuracy. For the second, we examine the
accuracy of these three models as a function of the ensemble size on which
they are trained.

4.4 comparison of the mono-, di- and trinucleo-
tide models

We tested and compared three different probability-based models, namely
the Segal et al. dinucleotide model, its simplification to mononucleotides
and its extension to trinucleotides. Following the methodology outlined in
the previous section, we arrive at correlation plots for the energy as given
by the energetic model and as predicted by the probability-based models.
The results are presented in Fig. 4.1A-C.
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Figure 4.1: Accuracy analyses of the various models, benchmarked on the first
chromosome of S. cerevisiae. A: Histogram of the energy prediction
pairs of the full model and mononucleotide approximative model for
the same sequences. The black diagonal indicates perfect agreement.
B, C: As A for the dinucleotide and trinucleotides approximations,
respectively. D: Comparison of the root mean square deviations of the
approximative predictions from those of the full model. The grey bars
indicate the RMSDs of ‘bad’ models, defined for the Full and Average
signals as a uniform landscape, and for the periodic signal as the
real landscape shifted out of phase. The other values, for the mono-,
di- and trinucleotide approximations are compared with these bad
models. Indicated above each bar is a percentage indicating the value
relative to the corresponding bad model.
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As we might expect, the longer the oligonucleotides we use, the better
the agreement becomes. An important cause of the deviation from per-
fect agreement, apart from the spread, is a clearly visible deviation in the
slope. The mononucleotide model significantly underestimates the spread
in energies. This means that the mononucleotide model is not capturing
effects that set sequences apart from each other. This effect is expected
and should be remedied by going to longer oligonucleotides. Indeed we
see this deviation greatly decreased for the dinucleotide model, and even
more so for the trinucleotide model.

For a more detailed grasp on the quality of the predictions, we separate
out two components of the energy landscape that are important on their
own. The first is the periodicity of the energy landscape. Due to the helical
nature of DNA, energy landscapes for the nucleosome show a roughly 10-
base-pair periodic signal. It is important that any model for nucleosome
affinity gets the frequency and phase of this periodicity right. The second
property, complementary to the periodicity, is the overall energy level of
the sequence. This aspect will show us how well the model captures long-
range effects.

For the purposes of benchmarking, we define the local average as the 11-
base-pair running average of the energy landscape, i.e. over about one pe-
riod. The pure periodicity of the signal we analyze by subtracting from the
signal its local average as just defined, making the signal oscillate around
zero. Our benchmarking results then consist of the root-mean-square de-
viation (RMSD) for the full signal (already presented in Fig. 4.1A-C), for
the locally averaged signal and for the pure periodicity signal.

To get a sense of what the RMSD values we find actually mean, we com-
pare them to the RMSD value we find when we use a bad model. For the
overall signal and the locally averaged signal, we define this bad model to
be one that contains no sequence information at all, i.e. a perfectly uniform
landscape. For the periodicity, this is not such an interesting comparison
because for a periodic signal, a uniform landscape is still right twice per
period. Instead we utilize as a bad model the same signal, but shifted by
half a period, to push it out of phase.

RMSD values gathered from such bad models tell us about the typical
size of the structures in the energy landscape that our models need to pre-
dict. We can then measure the RMSD from our benchmarked models rela-
tive to this scale. Fig. 4.1D displays the results. We see a decrease in RMSD
when going to longer oligonucleotides in each of the three cases. The dinu-
cleotide model, as used by Segal et al., already performs well, with an over-
all RMSD of 7%. Noteworthy, it is much more accurate than the mononu-
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cleotide model. However, we see that we could improve our results still
by going to trinucleotides. Especially the local average is predicted much
more accurately by the trinucleotide model, cutting the RMSD by about a
third.

4.5 the importance of sample size

Because we can produce large ensembles of sequences in silico with the
Mutation Monte Carlo method, we are now also in a position to get a
measure of how large an ensemble we need for our models to make accu-
rate predictions.

In their 2006 study, Segal et al. manage to build an ensemble of ∼102

sequences. Apart from the inherent biases that may be present in their
ensemble due to their use of nonrandom yeast DNA, this is not a very
large ensemble, and we should check what the effects of such limitations
are.

In a later study, Kaplan et al. perform a similar study, where they obtain
35,000,000 sequence reads. [64] The ensemble is again trained on the yeast
genome, which is some 12,000,000 base pairs long. The number 35,000,000

should therefore not be mistaken for the ensemble size. There must nec-
essarily be many duplicate and strongly overlapping sequences in their
ensemble, which arise artificially because only a small subset of sequence
space is available for sampling. Giving a meaningful number for the effec-
tive sample size of such an ensemble is difficult. However, a sequence of
∼107 base pairs can yield 104 − 105 completely non-overlapping nucleo-
some sequences, which we may employ as a conservative estimate.

Later similar work using the mouse [132] and human [133] genomes
has yielded larger ensembles. These genomes are two orders of magni-
tude larger than that of yeast, and so also provide that many more non-
overlapping sequences.

In our in silico simulations, we built an ensemble of 107 independent
sequences from which we derived our probability distributions. We took
subsets of these sequences to see what the effects of smaller sample sizes
are. The problem when statistics are small is not just that the probabil-
ity distributions are less accurate. We additionally run into the issue that
some rare dinucleotides simply do not appear in the ensemble at all. The
estimate of their probability then becomes zero. The problem is that if any
of the factors in Eq. 4.2 is zero, the entire product becomes zero, rendering
the model useless.
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Figure 4.2: Variation of the RMSDs of the various models with the size of the
sequence ensemble from which their parameters are calculated. Solid
lines: zero-probability issues are dealt with by assuming zero infor-
mation. Dashed lines: probability distributions are smoothed with a
3-bp running average. The performance when smoothing is strictly
worse.

For Segal et al. and Kaplan et al. this problem does not arise, because
they do not need to work at low temperatures, but also because they apply
a smoothing to their probability distributions. They estimate the probabil-
ity Pn(Sn ∩ Sn − 1) of a dinucleotide by averaging over not just position n,
but also n− 1 and n + 1. This is justified by the observation that their ex-
perimental method does not provide them with a sharp resolution down
to the base-pair to begin with. The effect of such smoothing is not a pri-
ori clear, however. In a landscape with 10-bp periodicity, taking a 3-bp
running average could have averse effects. Such smoothing may not be
necessary or beneficial when applied to higher-resolution data.

We therefore propose an alternative method, where instead we consider
a probability of zero, for any position, a failure of the ensemble. In such
a case we conclude that we simply do not have any information, i.e. we
artificially insert a flat conditional probability of 0.25.

In Fig. 4.2 are presented the RMSDs of the full landscape, as predicted
by our probability-based models, with probability distributions derived
from various ensemble sizes. We find that smoothing the distributions



4.6 conclusions 53

gives results that are strictly worse than simply assuming no information
when an issue arises.

We can conclude from this plot that the model of Kaplan et al., even with
a conservative estimate for their effective ensemble size, should perform
well. The dinucleotide model converges to its maximum accuracy at only
104 sequences. Of course, caveats surrounding the non-randomness of the
DNA being sampled remain.

For larger experimental ensembles (e.g. [132] and [133]) it is advisable
to move to a trinucleotide description. It requires a larger ensemble to be
accurately parameterized, but starting from 5× 105 sequences, this model
becomes more accurate than the dinucleotide model.

4.6 conclusions

With the methods available for the first time to produce sequence ensem-
bles for nucleosome affinity based on an energetic model of the nucleo-
some, we investigated the capacity of a class of probability-based models
to approximate real energetics. As an approximative scheme to the nucle-
osome model of Eslami-Mossallam et al. [1], we find errors on the order
of 1 kT. This is not an insignificant disagreement, but depending on the
application, this price may well be worth paying for the vast reduction in
computational complexity by a factor of 105 (using an unoptimized imple-
mentation). Vast increases in speed can also be expected for other complex
biophysical models.

Considering the assumption of short-range correlations, we find that
dinucleotide models such as those used by e.g. Field et al. and Kaplan et
al. already perform well, with a root mean square deviation of about 2 kT
(see Fig. 4.2). However, we also find that improvement could be achieved
by going to a trinucleotide model (for large enough ensemble size), and
by avoiding the smoothing of the probability distributions.

We also looked into the effects of small ensemble sizes, and we find
that an ensemble such as used by Field et al., although caveats must be
acknowledged as to likely inherent biases in their experiment, is sufficient
for the dinucleotide model to reach its fundamental accuracy. For larger
ensembles (106 or more sequences) such as provided by the mouse or
human genome, however, we recommend that the trinucleotide approxi-
mation be used for higher accuracy.

We hope, however, that our work will motivate the experimental com-
munity to look into mapping nucleosomal sequence preferences experi-
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mentally using more random DNA sequences than are provided by natu-
ral genomes. A starting point could be a very similar study done on DNA
rings [93]. This would allow us to better examine the intrinsic sequence
preferences of nucleosomes without biasing them towards a genomic con-
text.


