

The mechanical genome : inquiries into the mechanical function of genetic information

Tompitak, M.; Tompitak M.

Citation

Tompitak, M. (2017, October 11). *The mechanical genome : inquiries into the mechanical function of genetic information. Casimir PhD Series.* Retrieved from https://hdl.handle.net/1887/53236

Version:	Not Applicable (or Unknown)
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/53236

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/53236</u> holds various files of this Leiden University dissertation.

Author: Tompitak, M. Title: The mechanical genome : inquiries into the mechanical function of genetic information Issue Date: 2017-10-11

MARCO TOMPITAK

THE MECHANICAL GENOME

THE MECHANICAL GENOME

INQUIRIES INTO THE MECHANICAL FUNCTION OF GENETIC INFORMATION

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker,

volgens besluit van het College van Promoties,

te verdedigen op woensdag 11 oktober 2017

klokke 10:00 uur

door

Marco Tompitak

geboren te Bangkok (Thailand)

in 1989

Promotores:	Prof. dr. H. Schiessel
	Prof. dr. G. T. Barkema (Universiteit Utrecht)
Promotiecommissie:	Dr. C. Vaillant (ENS de Lyon, Frankrijk)
	Prof. dr. G. J. L. Wuite (Vrije Universiteit Amsterdam)
	Prof. dr. E. R. Eliel
	Dr. D. J. Kraft
	Prof. dr. T. Schmidt
	Prof. dr. V. Vitelli

Cover design: Amar van Leeuwaarde and Marco Tompitak.

Casimir PhD Series 2017-26 ISBN 978-90-8593-310-6

An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

Part of the work in this thesis was supported by the Netherlands Organisation for Scientific Research (NWO), as part of the Frontiers of Nanoscience program.

То ту тот

CONTENTS

1	INTE	RODUCTION	1
	1.1	Modeling DNA	2
	1.2	Modeling nucleosomes	6
	1.3	Accessing a sequence's affinity for nucleosomes	8
	1.4	Mutation Monte Carlo	11
	1.5	Modeling nucleosome unwrapping	14
	1.6	Outline of this thesis	17
2	FOR	CE RESPONSES OF DNA HELICES	19
	2.1	Introduction	19
	2.2	Designing sequences with interesting curvature	21
	2.3	Force responses	24
	2.4	Modeling superhelical DNA molecules	25
	2.5	Conclusions	28
3	DES	IGNING NUCLEOSOMAL FORCE SENSORS	31
	3.1	Introduction	32
	3.2	Modeling nucleosome unwrapping	34
	3.3	Designing special nucleosomes	36
	3.4	Properties of our designer nucleosomes	38
	3.5	Conclusions	41
4	A M/	ARKOV-CHAIN MODEL FOR NUCLEOSOME AFFINITY	43
	4.1	Repurposing the model of Segal <i>et al.</i>	44
	4.2	Generalization of the dinucleotide model	46
	4.3	Benchmarking methodology	47
	4.4	Comparison of the mono-, di- and trinucleotide models	48
	4.5	The importance of sample size	51
	4.6	Conclusions	53
5	PER	FORMING SELEX EXPERIMENTS IN SILICO	55
	5.1	Introduction	56
	5.2	SELEX and MMC	58
	5.3	An effective temperature for mutations	59
	5.4	Effective temperature and sequence preferences	61
	5.5	An in silico SELEX experiment for rings	65
	5.6	Ring sequence preferences in vitro and in silico	72
	5.7	SELEX simulation for small and overwound circles	73
	5.8	Conclusions	75

6	NUC	LEOSOME POSITIONING SIGNALS IN GENE PROMOTERS	79
	6.1	Introduction	79
	6.2	Methods	81
	6.3	Yeast and humans: opposing signals	82
	6.4	Unicellular and multicellular organisms	86
	6.5	Organism complexity	90
	6.6	Conclusions	91
C 0	NCLU	SIONS	95
Ap	penc	lices	97
Α	ΑΝΟ	TE ON MODEL PARAMETERIZATION	99
	A.1	Comparison of parameterizations	99
	A.2	Analysis of temperature effects	103
В	A LIS	ST OF SEQUENCES OF INTEREST	105
BII	3L10G	RAPHY	111
SU	MMAF	RY	129
SA	MENV	ATTING	133
CU	RRICI	JLUM VITAE	137
LIS	ST OF	PUBLICATIONS	139
AC	KNOW	LEDGEMENTS	141

LIST OF FIGURES

Figure 1.1	The worm-like chain model	3
Figure 1.2	Rigid base pairs: degrees of freedom	4
Figure 1.3	The RBP nucleosome	7
Figure 1.4	Constraints in the RBP nucleosome model	8
Figure 1.5	Nucleosomal sequence preferences	13
Figure 1.6	A nucleosome unwrapping	14
Figure 1.7	The 601 unwrapping landscape	16
Figure 2.1	Superhelical DNA structures	21
Figure 2.2	Simulated and predicted force-extension curves	23
Figure 2.3	Predictions with crossover	29
Figure 3.1	Cutting a trench into the nucleosome unwrapping	
	barrier	35
Figure 3.2	Barrier reductions using free and synonymous MMC	38
Figure 3.3	Dinucleotide distributions of sequences favouring	
	unwrapping	39
Figure 3.4	A check on the positioning of designer sequences .	40
Figure 3.5	Barrier reduction persists for a range of forces	42
Figure 4.1	Accuracy analyses of our approximative model	49
Figure 4.2	The effects of ensemble size on approximation ac-	
	curacy	52
Figure 5.1	Ring and nucleosome sequence preferences; depen-	
	dence on mutation and spatial temperatures	63
Figure 5.2	Rotational preferences of the Rosanio and artificial	
	locking sequences	66
Figure 5.3	Saturation behavior in a non-equilibrium SELEX	
	experiment	69
Figure 5.4	Ring sequence preferences, Boltzmann-distributed .	71
Figure 5.5	Ring sequence preferences, hard cut-off	71
Figure 5.6	Sequence preferences of three different rings	74
Figure 5.7	Sequence preferences of a teardrop-shaped DNA .	76
Figure 6.1	Nucleosomal wrapping energies in promoter regions	83
Figure 6.2	Nucleosome positioning signals in promoters, the-	
	ory and experiment	84
Figure 6.3	Promoter nucleosome positioning signals in vari-	
	ous organisms	87

Promoter signals in unicellular and multicellular life	89
GC content in unicellular and multicellular life	89
Promoter signal strength and organism complexity	90
Nucleosome occupancy in yeast promoters with dif-	
ferent model parameterizations	101
Dinucleotide distributions for the nucleosome, crys-	
tallography and reverse hybrid parameterizations .	102
Dinucleotide distributions for the nucleosome, MD	
and hybrid parameterizations	102
Promoter occupancy signal prediction at different	
temperatures	104
	Promoter signals in unicellular and multicellular life GC content in unicellular and multicellular life Promoter signal strength and organism complexity Nucleosome occupancy in yeast promoters with dif- ferent model parameterizations Dinucleotide distributions for the nucleosome, crys- tallography and reverse hybrid parameterizations . Dinucleotide distributions for the nucleosome, MD and hybrid parameterizations Promoter occupancy signal prediction at different temperatures

LIST OF TABLES

Table 2.1	Superhelical parameters for sequences of interest	•	27
Table 3.1	Adsorption energies of nucleosome binding sites		36

ACRONYMS

- **RBP** Rigid Base Pair
- WLC Worm-Like Chain
- MCMC Markov Chain Monte Carlo
- MMC Mutation Monte Carlo
- SELEX Systematic Evolution of Ligands by EXponential enrichment
- NDR Nucleosome-Depleted Region
- NAR Nucleosome-Attracting Region
- TSS Transcription Start Site