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PART I

Circadian rhythms in human studies:
implications for metabolic health






Chapter

A single night of sleep curtailment
increases plasma acylcarnitines: novel
insights in the relationship between
sleep and insulin resistance
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ABSTRACT

We have previously shown that acute sleep curtailment induces insulin resistance, both
in healthy individuals as well as in patients with type 1 diabetes, suggesting a causal role
for sleep disturbances in pathogenesis of insulin resistance, independent of endogenous
insulin production. However, the underlying mechanisms remain unclear. This study aimed
to explore the metabolic pathways affected by sleep loss using targeted metabolomics in
human fasting plasma samples. Healthy individuals (n = 9) and patients with type 1 diabetes
(n = 7) were studied after a single night of short sleep (4 hours) versus normal sleep (8
hours) in a cross-over design. Strikingly, one night of short sleep specifically increased
the plasma levels of acylcarnitines, essential intermediates in mitochondrial fatty acid
oxidation (FAQ). Specifically, short sleep increased plasma levels of tetradecenoyl-L-
carnitine (C14:1) (+32%, p=2.67*10"), octadecanoyl-L-carnitine (C18:1) (+22%, p=1.92*10"
4) and octadecadienyl-L-carnitine (C18:2) (+27%, p=1.32*10*). Since increased plasma
acylcarnitine levels could be a sign of disturbed FAQ, it is possible that sleep curtailment
acutely induces inefficient mitochondrial function. Our observations provide a basis for
further research into the role of acylcarnitines as a potential mechanistic pathway by which
sleep deprivation — even short term — causes adverse metabolic effects, such as insulin
resistance.



INTRODUCTION

Diabetes mellitus (DM) is characterized by either an absolute (type 1; DM1) or relative (type
2; DM2) deficiency of insulin. Both DM1 and DM?2 are associated by increased morbidity and
increased cardiovascular risk [1, 2]. Peripheral insulin resistance precedes the development
of DM2 and recently it has been recognized that a certain degree of insulin resistance is
also present in DM1 [3]. Therefore, uncovering modifiable risk factors in an early stage of
insulin resistance development is of crucial importance to reduce the number of patients
with DM2 and improve glycemic control in DM1. Interestingly, the DM2 epidemic coincides
with a reduction in the average sleep duration, which has gradually declined with ~1.5 hours
per night [4] over the past decades. In fact, large epidemiological cohorts have documented
an association between sleep duration and increased insulin resistance [5]. Furthermore,
short sleep has been associated with poor glycemic control in DM1 [6]. Both short and long
duration of sleep are associated with an increased risk for insulin resistance, implying that
there might be an optimal sleep duration of approximately 8 hours [7-10]. Several human
intervention studies showed that decreased sleep duration causes insulin resistance.
Repeated sleep curtailment during more than 6 nights increased insulin resistance in
healthy individuals [11-13]. Moreover, we previously published that even one single night
with partial sleep loss, i.e. 4 hours sleep allowed, a condition representative for incidental
daily life sleep habits, is sufficient to induce peripheral insulin resistance in both healthy
young individuals [14] as well as patients with DM1 [15].

The mechanism by which acute sleep curtailment induces insulin resistance has not
been fully elucidated. Plasma metabolomics is considered a valuable approach to assess
underlying biological processes, complementary to genomics and transcriptomics.
Strikingly, metabolite levels reflect biological activity of the encoded proteins and are
thus closer to the clinical endpoints [16]. Indeed, metabolomics has previously been
demonstrated to be a powerful tool in investigating insulin resistance and DM2 [17]. Thus
far, the effects of sleep loss on the human metabolome are poorly characterized. Prolonged
sleep deprivation during 5 days has been shown to induce metabolite changes in lipid,
carbohydrate, amino acid and protein pathways [18, 19]. In contrast, Davies et al. [20]
subjected healthy individuals to complete sleep restriction of 24 hours. This extreme sleep
deprivation resulted in increased plasma levels of glycerophospholipids, acylcarnitines,
sphingolipids and amino acids. However, the sleep intervention and control sleep occurred
on consecutive days in all individuals. Differences between metabolite levels were also
observed between the wake periods, suggesting that the study conditions were not fully
comparable. In addition, none of these previous studies included measurements of insulin
resistance. Therefore, the aim of the present study was to use metabolomics to explore
pathways involved in the relationship between sleep and insulin resistance in a cohort with
proven insulin resistance upon short sleep duration [14, 15]. To this end, we examined 163
metabolites in 16 individuals (healthy individuals and individuals with DM1) subjected to a
night of normal sleep duration (8 hours) and one night of short sleep duration (4 hours). Here,
we report that one night of sleep curtailment specifically increases the metabolic class of
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acylcarnitines in plasma, suggesting that increased acylcarnitines are associated with the
observed relationship between sleep curtailment and induction of insulin resistance.

MATERIALS AND METHODS

Protocol

Two studies were previously performed, to study the effect of one night of short sleep
duration (4 hours) compared to normal sleep duration (8 hours) on peripheral insulin
resistance [14, 15]. The studies applied the same study design in two different populations,
namely healthy individuals and patients [14] with type 1 diabetes (DM1) [15]. Healthy
individuals were studied to determine the effects of a single night of short sleep duration
on insulin resistance. The second study assessed the effects of short sleep duration on
insulin resistance in DM1 patients on stable insulin pump therapy. DM1 patients do not
have endogenous insulin production and therefore cannot compensate for fluctuations
in insulin resistance. We hypothesized that variations in sleep duration could contribute
the intra-individual variations in glucoregulation. In both healthy individuals and individuals
with DM1, decreased sleep duration induced insulin resistance. Therefore, we reasoned
that a single night of short sleep duration may increase peripheral insulin resistance via a
common metabolic pathway. To investigate which pathways could be involved, we analyzed
metabolites from both studies and pooled the data.

Subjects

The study was approved by the medical ethical committee of the Leiden University
Medical Center and all subjects gave written informed consent. We recruited a total of
18 individuals. Briefly, nine healthy individuals were recruited by advertisement and nine
individuals with DM1 with stable continuous subcutaneous insulin pump therapy were
included from our outpatient clinic. Exclusion criteria for all individuals were BMI>26 kg/m?,
history of sleep disorders, psychiatric disorders and use of sleep medication, B-blocking
drugs and prokinetic drugs. All individuals had a stable weight in the past 3 months and had
regular and non-extreme sleeping habits. Habitual sleep duration was assessed by 7 days
of actigraphy (Actiwatch AW7; Cambridge Neurotechnology, Cambridge, UK) prior to both
study days and sleep questionnaires (Epworth Sleepiness Scale, Pittsburg Sleep Quality
Index and Berlin Questionnaire). Subjects were instructed to maintain a regular dietary,
activity and sleep regiments 3 days prior to both study days, fitting their habits, which they
recorded in a diary. DM1 patients were instructed to keep a stable insulin pump setting. Of
the 18 recruited individuals, 2 individuals with DM1 were excluded from all analyses, one
due to previously undiagnosed sleep apnea and one due to nocturnal hypoglycemia.
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Experimental design

Subjects were subjected to in-hospital sleep registration for 3 days, of which study day 1
was for basal measurements and habituation to hospital conditions. Sleep duration and
quality (of parameters) was assessed by polysomnography as described previously [14, 15].
All subjects underwent both a normal sleep night of atleast 8 hours and one night of 4 hours
sleep, the order of which was determined by balanced assignment, in a cross-over design
with at least 3 weeks interval between measurements. In both sleep conditions, subjects
spent 8.5 hours (from 23:00to 7:30) in bed and were fasting from 22:00 onwards. During sleep
curtailment, subjects were allowed to sleep from 01:00 to 05:00, the remaining time they
were allowed to read or watch movies in upward position in dim light. Their wakefulness was
monitored. After the night of normal or short sleep, a fasting plasma sample was obtained
at 8:30 am, after which a hyperinsulinemic euglycemic clamp was performed as described
in detail previously [15] to establish peripheral insulin sensitivity, endogenous glucose
production and hepatic insulin sensitivity. Briefly, a primed (17.6 pmol*kg™') continuous (0.22
pumol*kg*min™) infusion of [6,6-?H,lglucose (Cambridge Isotope laboratory, Andover, MA)
was administered via a catheter. Infusion of insulin (Actrapid, Novo Nordisk, Alphen a/d Rijn)
occurred simultaneously according to DeFronzo [21]. Blood samples were obtained every
5 minutes from the contralateral arm for glucose measurements to adjust variable infusion
of 20% glucose with 3% [6,6-?H,]lglucose to maintain euglycemia (i.e. 5.0 mM), which was
started 4 min after start of insulin infusion. Free fatty acids were determined in basal fasting
plasma samples as by enzymatic colorimetric assay [14, 15].

Metabolomics

Metabolomics analysis was performed on fasting plasma samples in all individuals using
the Biocrates Absolute/DQ™ p150 kit (Biocrates, Life Science AG, Innsbruck, Austria)
in the Genome Analysis Center at the Helmholtz Zentrum, Munich, Germany. The assay
procedures of the Absolute/DQ™ p150 kit as well as the metabolite nomenclature have
been described in detail previously [22, 23]. Briefly, 10 yL of each plasma sample was
pipetted into a 96 well sandwich plate containing an inserted filter with previously applied
stable isotope labeled internal standards. The filters in the wells were dried using a stream
of nitrogen. Amino acids were derivatized with 5% phenylisothiocyanate reagent (PITC) and
the filters were dried again. Metabolites as well as internal standards were extracted with 5
mM ammonium acetate in methanol and the solutions were centrifuged through the filter
membrane into the lower deep well plate. The extracts were diluted with MS running solvent
and analyzed. Flow injection analysis (FIA) tandem mass spectrometry (MS/MS) method was
used to quantify 163 metabolites, including free carnitine, 40 acylcarnitines, 14 amino acids
(13 proteinogenic + ornithine), hexoses (sum of hexoses), 92 glycerophospholipids (15
lysophosphatidylcholines (lysoPC) and 77 phosphatidylcholines (PC), and 15 sphingolipids.
Internal standards served as reference for the calculation of metabolite concentrations
(uM). The complete list of analyzed metabolites grouped by metabolite class is presented in
supplementary material (Table S3).
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Statistical analysis

For all metabolites, differences between short and normal sleep were calculated by
subtracting plasma levels obtained after short sleep from those obtained after normal
sleep. Paired Students T-tests for were performed comparing normal and short sleep (SPSS
statistical package edition 20) with Bonferroni post-hoc correction for multiple testing. P<
3.07*10(=0.05/163; after correction) was considered statistically significant. Calculations
for hyperinsulinemic euglycemic clamp analysis were described previously [14, 15]. Since
we aimed to investigate the effect of short sleep on metabolite levels, individuals of both
groups (healthy individuals and individuals with DM1) were pooled to determine effects of
sleep duration. Two way repeated measure ANOVA was performed to analyze interaction
effects of subgroup (healthy vs. DM1) with sleep duration. Data are presented as means +
SD. Since baseline characteristics and insulin sensitivity data were published for healthy
individuals and individuals with DM1 separately, in this paper these data are shown for the
two groups together. To allow comparison between subgroups, the baseline characteristics,
sleep indices and insulin sensitivity data are included in the supplemental tables and were
compared using Student's t-test.

RESULTS

Basal clinical characteristics

Metabolites were measured in sixteen individuals after a night of short sleep (4 hours)
versus after a night of normal sleep (8 hours) duration. Subjects had a mean age of 44 +
14 years and included 8 women. Individuals were lean, with an average BMI of 23.7 + 2.2
kg/m?and a waist hip ratio of 0.85 + 0.08 (Table 1). The study population consisted of nine
healthy individuals (56%) and seven individuals with type 1 diabetes mellitus (DM1) (44%).
Sleep duration prior to the study days did not differ healthy individuals (mean recorded
sleep duration prior to study day 1 and 2: 420 + 20 min vs. 476 + 11 min; p=0.19) nor in
individuals with DM1 (mean recorded sleep duration prior to study day 1 and 2: 475 + 8
min vs. 490 + 7 min; p=0.12). Results of healthy individuals and individuals with DM1 were
reported previously separately [14, 15]. Age, sex distribution, BMI and waist-hip ratio were
comparable between these two subgroups (Table S1).

B . e g _
Subjects (n = 16) Table 1: Study population characteristics’. BMI = body

mass index. WHR = waist hip ratio. Data is presented as mean

Females (%) 8 (50%) i
(SD or percentage). 'Data are pooled from two previously
Age (years) 44x14 published studies [14;15].
BMI (kg/m?) 237422
WHR 0.85+0.08
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Subjects (n=16)

Sleep parameters Normal sleep Short sleep p
TST (min) 461+25 225+ 24 <0.001
Stage 1 (% of TST) 10+3 10+6 0.798
Stage 2 (% of TST) 43+7 37+9 0.002
Stage 3 (% of TST) (SWS) 24+7 34+10 <0.001
REM sleep (% of TST) 23+4 18+8 0.025
Sleep efficiency (%) 93+4 91+7 0.418

Plasma parameter

Free fatty acids (mmol/I) 0.65 +0.24 0.61+0.19 0.24

Insulin sensitivity parameters

EGP (umol * kg LBM~" * min~") 47+1.9 5517 0.087
GDR (umol * kg LBM™" * min™") 341 +138 27.9+9.8 0.001
GIR (umol * kg LBM~" * min~") 29.0+14.7 22.1+£10.7 0.001

Table 2: Effects of short sleep on sleep parameters and insulin sensitivity’. Insulin sensitivity parameters
were determined by hyperinsulinemic euglycemic clamp. EGP = endogenous glucose production, GDR =
glucose disposal rate (glucose Rd), GIR = glucose infusion rate. LBM = lean body mass. Sleep characteristics
were determined by polysomnography. TST = total sleep time. SWS = slow wave sleep. Data is presented
as means (SD). Effect of sleep intervention was tested with paired Students T-test, significant differences
shown in bold. " Data are pooled from two previously published studies [14;15].

Short sleep increases insulin resistance

Short sleep intervention was effective in reducing total sleep time (TST) by -51% (461
+ 25 vs 225 £ 26 min, p < 0.001). The reduction of sleep duration was due to decreased
sleep duration of both non-REM (stage 2 and stage 3) and REM sleep (Table 2). Fasting
plasma free fatty acids did not differ between sleep conditions (Table 2) or between
subgroups (Table S2). Next, the effect of short sleep on insulin resistance was investigated
by hyperinsulinemic euglycemic clamp studies. Interestingly, a single night of short sleep
increased peripheral insulin resistance, as indicated by a decreased glucose disposal rate
(GDR) (34.1 £ 13.8 vs 27.9 £ 9.8 ymol*kg LBM"*min~", p = 0.001) and decreased glucose
infusion rate (GIR) (29.0 + 14.7 vs 22.1 + 10.7 pmol*kg LBM""*min~', p=0.001). Short sleep
tended to increase endogenous glucose production (EGP) by the liver in all subjects (4.7
+ 1.9 vs 5.5 + 1.6 pmol*kg LBM"*min~', p=0.08; Table 2). This was mainly due to increased
endogenous glucose production in the subset of healthy individuals (Table S2; previously
published in [14]). Expectedly, individuals with DM1 displayed higher baseline insulin
resistance than in healthy individuals [3] (EGP 6.2 + 1.9 vs. 3.6 £ 0.6, p=0.003; GDR25.5+ 6.4
vs. 40.7 £ 14.3, p=0.028; GIR 19.0 £ 7.0 vs. 36.9 + 14.4, p=0.014, Table S2). Moreover, short
sleep increased peripheral insulin resistance irrespective of this difference in baseline
insulin sensitivity, suggesting a that short sleep may induce insulin resistance in healthy
individuals and individuals with DM1 via a common pathway. Therefore, the effect of short
sleep was investigated for healthy individuals and individuals with DM1 together.
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Table 3: (previous pages) Difference between short sleep and normal sleep duration in acylcarnitine
levels.

'Difference in metabolite levels (uM) as measured by BiocratesIDQTM p150 kit between short and normal
sleep duration. Positive mean difference indicates an increase after short sleep duration. Negative mean
difference indicates a decrease after short sleep duration.

2Change (%) represents percentage of change in metabolite level in short compared to normal sleep

(metabolite level (short sleep) — metabolite level (normal sleep)) / metabolite level (normal sleep).

DM1 = individuals with type 1 diabetes. P-values are based on paired Students t-tests. N= 16 (healthy: n=9,
DM1: n=7). Full results table is shown in Supplemental Table S2. Abbreviations of acylcarnitines are shown
in Supplemental Table S3.

$: Significant difference (p<0.05). #: Significant difference after Bonferroni correction (p<3.0*10*
(=0.05/163)). Significant differences metabolites in all subjects are displayed in bold.

Short sleep specifically increases plasma acylcarnitines

To investigate possible pathways which could be involved in the increased of insulin
resistance by short sleep duration, we performed metabolomics analysis on fasting
morning plasma samples. A total of 163 metabolites representing 5 different classes
were measured (Table S3). Short sleep increased thirteen metabolites (p<0.05) (Table 3).
Strikingly, all of these are acylcarnitines. After stringent post-hoc correction, short sleep
significantly increased plasma levels of tetradecenoyl-L-carnitine (C14:1) by +32% (plasma
level difference: +0.017 pM, p=2.67*10"%), octadecenoyl-L-carnitine (C18:1) by +22%
(plasma level difference: +0.015 pM, p=1.92*10%) and octadecadienyl-L-carnitine (C18:2)
by +27% (plasma level difference: +0.005 pM, p=1.32*10). Short sleep duration increased
acylcarnitines in both subgroups, indicating that the effect of short sleep on acylcarnitines
was not dependent on having DM1 or being healthy. There was no interaction effect of the
subgroup (healthy vs. DM1) with the sleep duration (short vs. normal) for the 13 increased
acylcarnitines. Baseline acylcarnitine levels (i.e. after normal sleep) did not differ between
healthy individuals and DM1, except for a higher level of C:12-DC in DM1 (0.087 + 0.005 vs
0.101 + 0.005 pM, p<0.0001) (Table S5). Acylcarnitines levels did not differ between healthy
individuals and DM1 after short sleep (Table S6). We therefore conclude that a single night
of short sleep specifically increased plasma acylcarnitines (Table 4).

DISCUSSION

The present study aimed to explore the metabolic pathways affected by sleep curtailment
using targeted plasma metabolomics in individuals (healthy individuals and individuals with
type 1 diabetes (DM 1)) subjected to both short sleep (4 hours) and normal sleep (8 hours). As
part of the same study, we previously reported that this short sleep intervention increased
peripheral insulin resistance in both study groups as determined by hyperinsulinemic
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Metabolite Interaction P-value Effect of sleep P-value Effect of DM1 status P-value

2 3.24*10-2 6.70 * 10-3$ 8.33*10-1
C7-DC 1.10%10-3 <1.0* 10-4# 4.53%10-1
ci12 4.48 *10-1 1.80 * 10-3# 2.35*10-1
c12:1 4.43*10-1 1.90 * 10-3# 2.25*10-1
C14 2.24*10-1 8.70* 10-3# 1.01*10-1
C141 4.05*10-1 3.00 * 10-4# 1.68 *10-1
C14:2 2.30*10-1 4.00 * 10-4# 4.22*10-1
c1e6 3.48*10-1 1.68 * 10-2$ 2.09*10-1
C16:1 8.94*10-1 1.25%10-2$ 3.82*10-1
C16:1-OH 1.42*10-1 3.30*10-3# 8.79%10-1
c16:2 8.34*10-2 4.30*10-3% 6.62*10-1
C18:1 5.97 *10-1 3.00 * 10-4# 7.64*10-1
C18:2 1.35%10-1 <1.00 * 10-4# 1.81*10-1

Table 4. Interaction effects of diabetes status and short sleep on increased acylcarnitine levels. DM1
= individuals with type 1 diabetes. Abbreviations of acylcarnitines are shown in Supplemental Table S3.
$p<0.05, #p<0.004 (0.05/13) (two way repeated measure ANOVA).

euglycemic clamp analysis [14, 15]. We now show that one night of short sleep specifically
increases plasma levels of acylcarnitines, in both healthy individuals and DM1 patients.

Our study is the first to show that short sleep duration increased plasma acylcarnitines
in concert with increased insulin resistance in both healthy individuals and individuals
with DM1. This indicates that short sleep duration affects metabolism irrespective of
pre-existing insulin producing capacity. The relationship between increased plasma
acylcarnitine levels and increased insulin resistance is supported by association studies.
Human studies showed increased plasma levels of acylcarnitines in individuals with
impaired fasting glucose and with type 2 diabetes (DM2), compared to healthy controls [24,
25]. The significance of this association is still a matter of debate, since human intervention
studies are lacking [26].

It is interesting to speculate about the biological relevance of increased plasma
levels of acylcarnitines. Acylcarnitines are vital to energy homeostasis. They are esters
of fatty acids and carnitine, which are transported over the outer and inner mitochondrial
membranes by carnitine palmitoyl transferases (CPTs). Thus, acylcarnitines are essential
to shuttle fatty acids from the cytoplasm into mitochondria were they can be oxidized and
enter the tricarboxylic acid (TCA) cycle to generate ATP. An excess of acylcarnitines is
generally viewed as a result from a mismatch between TCA flux and fatty acid oxidation
(FAO) [27]. Previously reported causes of this mismatch include prolonged fasting and
excessive muscle activity [28-30]. The present study, in which subjects participated in a
protocol that controlled for food intake and physical activity, adds sleep deprivation as a
provoking event. A mismatch between FAO and TCA flux has been related to mitochondrial
dysfunction. Patients with inborn errors of FAO have increased plasma levels of especially
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long chain acylcarnitines [31]. Interestingly, altered mitochondrial parameters have been
frequently linked to insulin resistance in the context of both DM1 and DM2 [32-38].
Moreover, mitochondrial dysfunction in mice induces skeletal muscle insulin resistance [27]
while TCA-FAO mismatch predisposes mice to diet-induced obesity and insulin resistance
[39]. It is therefore tempting to speculate that in our model of insulin resistance due to
short sleep deprivation, the increased plasma acylcarnitine levels are a sign of inefficient
mitochondrial function.

The tissue distribution of acylcarnitines coincides with important targets of insulin, i.e.
muscle and liver. The majority of the body's L-carnitine is stored in muscle (~ 97% of the
body’'s L-carnitine), followed by liver which contains 1% of the total L-carnitine pool [40].
Acylcarnitine results from the acylation of L-carnitine, and is therefore dependent on the
fatty acid pool of the tissue. Interestingly, animal studies demonstrate the distribution of
acylcarnitines is different between metabolic organs. In mice, the muscle tissue contains
relatively more long-chain acylcarnitines, including C14:1 and C18:1, while liver is richer
in free carnitines and short-chain carnitines [41]. Collectively, these data suggest that
plasma short-chain acyl- and free carnitines are mainly derived from the liver, as indeed
demonstrated in pigs [42], while plasma long-chain acylcarnitines in plasma presumably
originate from muscle tissue. These data thus suggest that the increase in long-chain
acylcarnitine that we observe after a single night of short sleep is likely derived from muscle.

Mechanistically, increased acylcarnitine levels after short sleep duration could be a
marker of altered metabolic processes: increased fatty acid oxidation (FAO), inefficient
mitochondrial function or a disturbed metabolism of the branched-chain amino acids
(BCAA) valine, isoleucine or leucine. Although disturbed BCAA metabolism has been
associated with insulin resistance in humans [43], our data do not support a role of BCAA
metabolism as short sleep duration did not increase BCAA plasma levels or short-chain
acylcarnitines. Increased acylcarnitine levels due to increased FAO can be caused by either
increased energy demand and/or prolonged fasting. In the present study, the length of
fasting was equal; however energy expenditure was not measured. Therefore, we cannot
exclude that the increased acylcarnitines after short sleep are due to increased FAO. Sleep
is accompanied by lower resting energy expenditure than wakefulness [44] and therefore
short sleep duration may increase energy demand. In fact, complete (24 h) sleep deprivation
increases energy demand by 7% [45]. However, the effects of short sleep duration on energy
expenditure are inconclusive [46]. A recent study shows that short sleep intervention for
five consecutive days increased long-chain plasma acylcarnitines [19]. Interestingly, after
one night of recovery sleep, plasma acylcarnitines did not normalize. Likely, the increased
acylcarnitines were not due to differences in overnight energy expenditure. Besides being
a marker of insulin resistance and/or mitochondrial processes, acylcarnitines could also
play a causal role in development of insulin resistance. In vitro studies have shown that
acylcarnitines have bioactive properties and indeed have pro-inflammatory effects [47, 48].
Of note, treatment of both rodent and human myotubes with acylcarnitines in a physiological
concentration caused decreased insulin signaling and glucose uptake in response to insulin
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[49]. Although this finding needs to be confirmed in vivo, it provides a putative causal link
between acylcarnitines and insulin resistance.

Taken all these data together, it is interesting to speculate on a mechanistic model
for the relationship between sleep curtailment and insulin resistance. Upon sleep
curtailment, the energy demands of peripheral tissues increases at a time conflicting with
the physiological circadian rhythm. The energy homeostasis is adapted to anticipate the
changing energy need and availability throughout the day. Indeed, muscle tissue is also
under circadian control [50]. These clock genes are also important in driving rhythmicity
in energy producing capacity of the mitochondria, as evidenced by mice studies [51]. We
hypothesize that the mismatch in energy producing capacity and demand could be the
cause of incomplete FAO, leading to accumulation of intermediates of FAO. Acylcarnitine
levels increase, which may increase insulin resistance either through direct interaction with
insulin signaling or through increased inflammatory pathways.

Our findings are supported by three studies which have investigated the effects of
sleep on the human metabolome. Davies et al. [20] subjected 12 healthy individuals to an
extreme sleep deprivation of 24 hours and reported nine increased short and medium-chain
acylcarnitines, including tetradecenoyl-L-carnitine. Bell et al. [18] reported a trend towards
increased acylcarnitines after prolonged mild sleep curtailment of 8 consecutive nights
of 5.5 hours sleep in 11 young individuals with family history of DM2. Weljie et al [19] also
reported increased C18:1, C10:0 and C12:0 acylcarnitines upon five consecutive nights of
4 hours sleep. Strikingly, despite the difference in study populations and sleep curtailment
protocols of the present and previous studies used, the acylcarnitines invariably increase
after sleep curtailment.

In conclusion, the present study shows that a single night of 4 hours short sleep,
which induces insulin resistance [14, 15], also increases plasma levels of acylcarnitines,
in particular tetradecenoyl-L-carnitine, octadecenoyl-L-carnitine and octadecadienyl-
L-carnitine. We propose that sleep curtailment impairs mitochondrial function, which
coincides with insulin resistance. Our findings provide a basis for mechanistic studies to
further elucidate the role of acylcarnitines in the complex relationship between short sleep
and increased insulin resistance.
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SUPPLEMENTARY APPENDIX

Healthy bm1 Table S1. General population characteristics
Females (%) 4 (44%) 4 (57%) of healthy individuals and patients with type 1
Age (years) 45+ 14 43+16 diabetes’. DM1 = individuals with type 1 diabetes.
BMI = body mass index. WHR = waist hip ratio. Healthy

BMI (kg/m?) 238+22 23522
individuals n= 9, DM n= 7. Data are represented as

WHR 0.88 £ 0.05 0.81 £0.09

mean + SD (percentage). 'Data previously published
separately [14;15].
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Table S3. (below and next pages) Metabolites determined by BiocratesIDQ™ p 150 Kit.

Metabolite Short name Biochemical Name
Class

co DL-Carnitine
2 Acetyl-L-carnitine
a3 Propionyl-L-carnitine
C3:1 Propenyl-L-carnitine
(C3-DC/ C4-OH Malonyl-L-carnitine / hydroxybutyryl-L-carnitine
C3-DC-M / C5-OH Methylmalonyl-L-carnitine / hydroxyvaleryl-L-carnitine
C3-OH Hydroxypropionyl-L-carnitine
Cc4 Butyryl-L-carnitine
C41 Butenyl-L-carnitine
C4:1-DC/C6 Fumaryl-L-carnitine/Hexanoyl-L-carnitine
(&) Valeryl-L-carnitine
C5:1 Tiglyl-L-carnitine
C5:1-DC Glutaconyl-L-carnitine
C5-DC/ C6-OH Glutaryl-L-carnitine/Hydroxyhexanoyl-L-carnitine
C5-M-DC Methylglutaryl-L-carnitine
C6:1 Hexenoyl-L-carnitine
C7-DC Pimelyl-L-carnitine
c8 Octanoyl-L-carnitine

" C8:1 Octenoyl-L-carnitine

,g (@) Nonayl-L-carnitine

.g c10 Decanoyl-L-carnitine

el Cc10:1 Decenoyl-L-carnitine

= C10:2 Decadienyl-L-carnitine
C12 Dodecanoyl-L-carnitine
c12: Dodecenoyl-L-carnitine
C12-DC Dodecanedioyl-L-carnitine
C14 Tetradecanoyl-L-carnitine
C14:1 Tetradecenoyl-L-carnitine
C14:1-OH Hydroxytetradecenoyl-L-carnitine
C14:2 Tetradecadienyl-L-carnitine
C14:2-OH Hydroxytetradecadienyl-L-carnitine
c16 Hexadecanoyl-L-carnitine
C16:1 Hexadecenoyl-L-carnitine
C16:1-OH Hydroxyhexadecenoyl-L-carnitine
C16:2 Hexadecadienyl-L-carnitine
C16:2-OH Hydroxyhexadecadienyl-L-carnitine
C16-OH Hydroxyhexadecanoyl-L-carnitine
c18 Octadecanoyl-L-carnitine
C18:1 Octadecenoyl-L-carnitine
C18:1-OH Hydroxyoctadecenoyl-L-carnitine
C18:2 Octadecadienyl-L-carnitine
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Metabolite Short name Biochemical Name
Class
Sugars H1 Hexose
Arg Arginine
GIn Glutamine
Gly Glycine
His Histidine
Met Methionine
“ Orn Ornithine
3
H Phe Phenylalanine
-;é Pro Pro'line
Ser Serine
Thr Threonine
Trp Tryptophan
Tyr Tyrosine
Val Valine
xLeu xLeucine
lysoPC a C14:0 lysoPhosphatidylcholine acyl C14:0
lysoPC a C16:0 lysoPhosphatidylcholine acyl C16:0
lysoPC a C16:1 lysoPhosphatidylcholine acyl C16:1
lysoPCa C17:0 lysoPhosphatidylcholine acyl C17:0
lysoPC a C18:0 lysoPhosphatidylcholine acyl C18:0
lysoPCa C18:1 lysoPhosphatidylcholine acyl C18:1
lysoPC a C18:2 lysoPhosphatidylcholine acyl C18:2
lysoPC a C20:3 lysoPhosphatidylcholine acyl C20:3
lysoPC a C20:4 lysoPhosphatidylcholine acyl C20:4
lysoPC a C24:0 lysoPhosphatidylcholine acyl C24:0
] lysoPC a C26:0 lysoPhosphatidylcholine acyl C26:0
:% lysoPC a C26:1 lysoPhosphatidylcholine acyl C26:1
% lysoPC a C28:0 lysoPhosphatidylcholine acyl C28:0
'§_ lysoPC a C28:1 lysoPhosphatidylcholine acyl C28:1
& lysoPC a C6:0 lysoPhosphatidylcholine acyl C6:0
© PCaa C24:0 Phosphatidylcholine diacyl C 24:0
PCaa C26:0 Phosphatidylcholine diacyl C 26:0
PCaa C28:1 Phosphatidylcholine diacyl C 28:1
PCaa C30:0 Phosphatidylcholine diacyl C 30:0
PCaa C30:2 Phosphatidylcholine diacyl C 30:2
PCaaC32:0 Phosphatidylcholine diacyl C 32:0
PCaaC32:1 Phosphatidylcholine diacyl C 32:1
PCaa C32:2 Phosphatidylcholine diacyl C 32:2
PCaaC32:3 Phosphatidylcholine diacyl C 32:3
PCaa C34:1 Phosphatidylcholine diacyl C 34:1
PCaaC34:2 Phosphatidylcholine diacyl C 34:2
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PCaaC34:3 Phosphatidylcholine diacyl C 34:3
PCaa C34:4 Phosphatidylcholine diacyl C 34:4
PCaa C36:0 Phosphatidylcholine diacyl C 36:0
PCaa C36:1 Phosphatidylcholine diacyl C 36:1
PCaa C36:2 Phosphatidylcholine diacyl C 36:2
PCaa C36:3 Phosphatidylcholine diacyl C 36:3
PCaa C36:4 Phosphatidylcholine diacyl C 36:4
PCaa C36:5 Phosphatidylcholine diacyl C 36:5
PCaa C36:6 Phosphatidylcholine diacyl C 36:6
PCaa C38:0 Phosphatidylcholine diacyl C 38:0
PCaa C38:1 Phosphatidylcholine diacyl C 38:1
PCaaC38:3 Phosphatidylcholine diacyl C 38:3
PCaaC38:4 Phosphatidylcholine diacyl C 38:4
PCaa C38:5 Phosphatidylcholine diacyl C 38:5
PCaa(C38:6 Phosphatidylcholine diacyl C 38:6
PC aa C40:1 Phosphatidylcholine diacyl C 40:1
PC aa C40:2 Phosphatidylcholine diacyl C 40:2

] PCaa C40:3 Phosphatidylcholine diacyl C 40:3

:% PC aa C40:4 Phosphatidylcholine diacyl C 40:4

<

g PC aa C40:5 Phosphatidylcholine diacyl C 40:5

'§_ PC aa C40:6 Phosphatidylcholine diacyl C 40:6

E; PCaa C42:0 Phosphatidylcholine diacyl C 42:0

© PCaa C42:1 Phosphatidylcholine diacyl C 42:1
PCaa C42:2 Phosphatidylcholine diacyl C 42:2
PCaa C42:4 Phosphatidylcholine diacyl C 42:4
PCaa C42:5 Phosphatidylcholine diacyl C 42:5
PCaa C42:6 Phosphatidylcholine diacyl C 42:6
PCae C30:0 Phosphatidylcholine acyl-alkyl C 30:0
PCae C30:1 Phosphatidylcholine acyl-alkyl C 30:1
PCae C30:2 Phosphatidylcholine acyl-alkyl C 30:2
PCae C32:1 Phosphatidylcholine acyl-alkyl C 32:1
PCae C32:2 Phosphatidylcholine acyl-alkyl C 32:2
PCae C34:0 Phosphatidylcholine acyl-alkyl C 34:0
PC ae C34:1 Phosphatidylcholine acyl-alkyl C 34:1
PCae C34:2 Phosphatidylcholine acyl-alkyl C 34:2
PCae C34:3 Phosphatidylcholine acyl-alkyl C 34:3
PCae C36:0 Phosphatidylcholine acyl-alkyl C 36:0
PCae C36:1 Phosphatidylcholine acyl-alkyl C 36:1
PC ae C36:2 Phosphatidylcholine acyl-alkyl C 36:2
PCae C36:3 Phosphatidylcholine acyl-alkyl C 36:3
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PCae C36:4 Phosphatidylcholine acyl-alkyl C 36:4
PCae C36:5 Phosphatidylcholine acyl-alkyl C 36:5
PC ae C38:0 Phosphatidylcholine acyl-alkyl C 38:0
PCae C38:1 Phosphatidylcholine acyl-alkyl C 38:1
PCae C38:2 Phosphatidylcholine acyl-alkyl C 38:2
PCae C38:3 Phosphatidylcholine acyl-alkyl C 38:3
PCae C38:4 Phosphatidylcholine acyl-alkyl C 38:4
PCae C38:5 Phosphatidylcholine acyl-alkyl C 38:5
PCae C38:6 Phosphatidylcholine acyl-alkyl C 38:6
PC ae C40:0 Phosphatidylcholine acyl-alkyl C 40:0
] PC ae C40:1 Phosphatidylcholine acyl-alkyl C 40:1
:% PC ae C40:2 Phosphatidylcholine acyl-alkyl C 40:2
=
g PC ae C40:3 Phosphatidylcholine acyl-alkyl C 40:3
'§_ PC ae C40:4 Phosphatidylcholine acyl-alkyl C 40:4
E’>,. PC ae C40:5 Phosphatidylcholine acyl-alkyl C 40:5
© PC ae C40:6 Phosphatidylcholine acyl-alkyl C 40:6
PC ae C42:0 Phosphatidylcholine acyl-alkyl C 42:0
PCae C42:1 Phosphatidylcholine acyl-alkyl C 42:1
PCae C42:2 Phosphatidylcholine acyl-alkyl C 42:2
PCae C42:3 Phosphatidylcholine acyl-alkyl C 42:3
PCae C42:4 Phosphatidylcholine acyl-alkyl C 42:4
PCae C42:5 Phosphatidylcholine acyl-alkyl C 42:5
PCae C44:3 Phosphatidylcholine acyl-alkyl C 44:3
PCae C44:4 Phosphatidylcholine acyl-alkyl C 44:4
PC ae C44:5 Phosphatidylcholine acyl-alkyl C 44:5
PC ae C44:6 Phosphatidylcholine acyl-alkyl C 44:6
SM (OH) C14:1 Hydroxysphingomyeline C 14:1
SM (OH) C16:0 Hydroxysphingomyeline C 16:0
SM (OH) C22:1 Hydroxysphingomyeline C 22:1
SM (OH) C22:2 Hydroxysphingomyeline C 22:2
SM (OH) C24:1 Hydroxysphingomyeline C 24:1
3 SM C16:0 Sphingomyeline C 16:0
% SM C16:1 Sphingomyeline C 16:1
.E SM C18:0 Sphingomyeline C 18:0
& SM C18:1 Sphingomyeline C 18:1
SM C20:2 Sphingomyeline C 20:2
SM C22:3 Sphingomyeline C 22:3
SM C24:0 Sphingomyeline C 24:0
SM C24:1 Sphingomyeline C 24:1
SM C26:0 Sphingomyeline C 26:0
SM C26:1 Sphingomyeline C 26:1
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Healthy vs.

Healthy DM1 DM1
Metabolite Mean sD Mean sD P-value
co 31.9 5.8 26.6 4.8 0.073
c2 4.24 0.57 3.58 1.06 0.133
c 0.273 0.043 0.192 0.042 0.002
C3:1 0.010 0.002 0.012 0.003 0.139
C3-DC (C4-OH) 0.074 0.062 0.049 0.011 0.304
C3-OH 0.020 0.003 0.024 0.005 0.020
c4 0.105 0.019 0.105 0.057 0.979
C4:1 0.022 0.003 0.031 0.007 0.005
c5 0.120 0.032 0.097 0.027 0.153
C5:1 0.022 0.003 0.024 0.004 0.148
C5:1-DC 0.020 0.004 0.019 0.002 0.628
C5-DC (C6-OH) 0.017 0.003 0.019 0.005 0.273
C5-M-DC 0.035 0.003 0.039 0.004 0.047
C5-OH (C3-DC-M) 0.023 0.003 0.025 0.004 0.405
C6 (C4:1-DC) 0.066 0.022 0.058 0.014 0.385
C6:1 0.027 0.003 0.026 0.002 0.828
C7-DC 0.025 0.008 0.024 0.008 0.975
c8 0.172 0.126 0.121 0.066 0.356
c8:1 0.065 0.009 0.088 0.043 0.151
c9 0.025 0.010 0.024 0.005 0.817
c10 0.274 0.228 0.181 0.073 0.321
C10:1 0.124 0.073 0.093 0.039 0.324
C10:2 0.027 0.006 0.028 0.004 0.593
c12 0.084 0.051 0.055 0.015 0.179
c12:1 0.080 0.035 0.059 0.018 0.163
C12-DC 0.087 0.005 0.101 0.005 0.000#
c14 0.029 0.008 0.022 0.004 0.044
C14:1 0.071 0.028 0.049 0.015 0.080
C14:1-OH 0.009 0.002 0.009 0.001 0.684
C14:2 0.027 0.016 0.020 0.008 0.300
C14:2-OH 0.007 0.001 0.007 0.001 0.277
c16 0.072 0.018 0.060 0.010 0.136
C16:1 0.059 0.004 0.056 0.006 0.231
C16:1-OH 0.006 0.001 0.005 0.001 0.174
C16:2 0.007 0.002 0.006 0.001 0.164
C16:2-OH 0.010 0.001 0.010 0.002 0.684
C16-OH 0.006 0.001 0.007 0.003 0.714
c18 0.025 0.007 0.024 0.007 0.798
C18:1 0.073 0.009 0.074 0.019 0.949
C18:1-OH 0.009 0.001 0.009 0.001 0.668
C18:2 0.025 0.006 0.028 0.006 0.467

Table S5: Acylcarnitine levels after normal sleep duration. Mean = mean plasma metabolite level (uUM).
DM1 = individuals with type 1 diabetes. #P<0.001 (0.05/41). P-values are based on independent Students
t-tests. Abbreviations of all metabolites are shown in Supplemental Table S3. Healthy individuals n=9, DM1
n=7.
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Healthy vs.

Healthy DM1 DM1
Metabolite Mean sb Mean sD P-value
co 323 7.0 26.6 6.4 0.113
c2 0.287 0.212 0.208 0.078 0.434
c 0.120 0.057 0.115 0.037 0.839
C3:1 0.027 0.005 0.028 0.005 0.680
C3-DC (C4-OH) 0.094 0.056 0.070 0.018 0.309
C3-OH 0.094 0.034 0.080 0.023 0.356
ca 0.089 0.006 0.104 0.011 0.004
Ca:1 0.032 0.008 0.028 0.006 0.300
c5 0.087 0.032 0.073 0.026 0.336
C5:1 0.009 0.001 0.010 0.003 0.261
C5:1-DC 0.032 0.016 0.028 0.008 0.595
C5-DC (C6-OH) 0.007 0.001 0.008 0.002 0.447
C5-M-DC 0.077 0.016 0.070 0.014 0.398
C5-OH (C3-DC-M) 0.063 0.006 0.061 0.011 0.577
C6 (C4:1-DC) 0.007 0.002 0.007 0.002 0.610
Cé6:1 0.008 0.002 0.008 0.003 0.715
C7-DC 0.010 0.001 0.010 0.001 0.937
c8 0.006 0.001 0.007 0.002 0.213
cs8:1 0.027 0.009 0.027 0.006 0.932
c9 0.088 0.014 0.092 0.024 0.664
c10 0.010 0.002 0.011 0.002 0.225
C10:1 0.031 0.006 0.037 0.009 0.103
C10:2 4.421 1.169 4.859 1.478 0.517
c12 0.271 0.065 0.180 0.039 0.006
c12:1 0.010 0.002 0.010 0.003 0.810
C12-DC 0.080 0.047 0.057 0.015 0.241
c14 0.021 0.003 0.024 0.005 0.255
C14:1 0.113 0.028 0.120 0.072 0.793
C14:1-OH 0.024 0.004 0.032 0.007 0.012
C14:2 0.132 0.038 0.106 0.036 0.188
C14:2-OH 0.021 0.005 0.026 0.006 0.121
c16 0.019 0.004 0.021 0.004 0.209
c16:1 0.015 0.003 0.019 0.003 0.028
C16:1-OH 0.034 0.005 0.040 0.007 0.086
C16:2 0.023 0.003 0.025 0.005 0.222
C16:2-OH 0.068 0.016 0.069 0.025 0.919
C16-OH 0.027 0.003 0.027 0.004 0.637
c18 0.027 0.008 0.033 0.008 0.159
Cc18:1 0.166 0.109 0.135 0.063 0.507
C18:1-OH 0.073 0.028 0.104 0.048 0.128
C18:2 0.024 0.007 0.025 0.005 0.645

Table S6: Acylcarnitine levels after short sleep duration. Mean = mean plasma metabolite level (uM).
DMT1 = individuals with type 1 diabetes. P-values are based on independent Students t-tests. Abbreviations
of all metabolites are shown in Supplemental Table S3. Healthy individuals n=9, DM1 n=7.
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