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Chapter 6

Case Study: Image Features and
Classi�cation Models

Based on:

� Y. Guo, H. Dibeklioglu & L. van der Maaten, �Graph-based kinship recog-

nition,� in IEEE Conference on Pattern Recognition, Stockholm, Sweden,

2014, pp. 4287-4292.

� Y. Guo, C. Liang, F. Lens, R. Vos & F.J. Verbeek, �Image based taxonomy

using convolutional neural networks,� publication in preparation.
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6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

This chapter addresses RQ 6.

RQ 6: To what extent is it possible that the classi�cation models (or regression

models) are able to validate the performance of the image features to characterise

the phenotypes in support of shape analysis?

Abstract � It is di�cult to characterise the phenotypes from high-magni�cation

and high-resolution only through the shape analysis. For example, the variation

of the local structures of cells and tissues is di�cult to represent by the shape

description as a whole. Therefore, we propose to, additionally, apply image fea-

tures to extract the phenotypes encoded in the textures and local structures for

the objects in images. Consequently, we use classi�cation models to validate the

performance of the applied features on phenotype characterisation. Rather than

departing from zebra�sh, in this chapter, we use a set of annotated datasets of

images, i.e., human faces, a family of butter�ies, a family of orchids and an public

source for wood species. We aim to develop methods to estimate a structured

taxonomy for each of these datasets. For the dataset of human faces, kinship is

carefully labelled for pairwise faces and using this dataset, we propose a graph-

ical model to recognise the kinship among a group of people in a family photo

(see Section 6.1). In fact, the kinship can be considered as a particular example

of taxonomy in which the parents and the children respectively correspond to

a parent- and child-node in the hierarchy. For the other datasets, a two-level

taxonomy, i.e., the genius and species, are used in the annotations. With the

development of feature engineering such the feature learning using a supervised

manner, the performance of image classi�cation has been impressively improved.

Therefore, we want to investigate representative features for the task of image

based taxonomy using the convolutional neural networks (CNN) (see Section

6.2). Experimental results show that our proposed methods have improved the

recognition accuracy in both cases. This results in a good understanding of the

behaviour of our methods which can be applied in the applications with zebra�sh

as model system.
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6.1 Graphical model for kinship recognition

6.1 Graphical model for kinship recognition

Genetic correlation among family members is formally represented as kinship,

which can be straightforwardly modelled using facial appearance similarity, a

particular phenotype. However, due to the diversity of human faces, this phe-

notype similarity is weak and subsequently presents a challenge to image-based

kinship recognition which plays an important role in the application of pheno-

type characterisation. It is di�cult to estimate the kinship from paired faces only

through shape analysis. Some prior studies solve the problem of pairwise kinship

veri�cation, i.e., on the question of whether two people are kin, through the as-

sessment of the similarity of visual features on images of faces. Such approaches

fail to exploit the fact that a global assessment on a group of family members may

provide more clues for an accurate kinship recognition; for instance, the proba-

bility of two people being brothers increases when both people are recognized to

have the same father. In this work, we propose a graphical model that integrates

a local kinship con�dence, i.e., facial similarity for all pairwise family members

in an image, and a global kinship estimation which is represented as a series of

reasonable semantic kinship graphs. For a complete and feasible kinship graph,

we present an annotated dataset for the kinship of siblings to extend the exist-

ing kinship datasets; we also present a dataset of the images with group family

members (more than 1) for the performance evaluation of our approach. In our

experiments, we have found that the visual features such as Local Binary Pat-

terns can well represent the facial appearance similarity for kinship recognition.

The proposed graphical model has improved the accuracy of kinship recognition

in group faces.

6.1.1 Kinship recognition using faces

Kinship can be expressed as physiological similarity among family members. For

example, parents and children tend to show similar facial appearance and be-

haviours. In life-sciences, kinship research will support to track genetic evolution

of a species. With respect to human beings, facial appearance as an important

phenotype can be used as evidence to recognise kinship among di�erent individu-

als. The image-based kinship recognition has become popular due to its e�ciency

and reproductivity, which tries to recognise kinship between people based solely
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6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

on photographs of their faces. Such application bene�ts the phenotype charac-

terisation from a large volume of facial images. This may be further helpful in

uncovering and analysing social networks, and has applications in surveillance

and in criminal investigation. Image-based kinship recognition is a challenging

problem: it is a hard task even for humans to recognise kinship among peo-

ple based on facial similarities. It is encouraging that some recent studies have

demonstrated the possibility of kinship veri�cation by means of image-based ap-

proaches [128, 129] identifying facial patterns that people may have inherited

from their parents. In particular, siblings have the same gene sources which re-

sults in the presence of similar facial features. Facial cues that are informative

for kinship recognition include the colour and shape of the eyes, eyebrows, nose,

and mouth [130].

Prior work on image-based kinship recognition has three main limitations. First,

prior studies only consider kinship veri�cation: they try to determine whether

kinship exists between a pair of faces, but they do not aim at recognising the

exact type of kinship [129, 131, 132, 133]. Second, current kinship datasets are

insu�cient for the evaluation of existing kinship recognition algorithms, in par-

ticular, because existing datasets do not contain examples of siblings. Third,

prior studies only consider settings in which kinship needs to be veri�ed between

pairs of people. This does not correspond to the typical setting encountered on

social network websites, on which people often upload photographs that contain

more than two family members. One may deal with this problem by separately

classifying all pairs of faces in the family picture, but such an approach fails to

share information between the pairs of people and may produce classi�cations

that are inconsistent (e.g., two people may be classi�ed as sisters whilst they are

also classi�ed as having di�erent parents).

Motivated by the aforementioned problems of prior work in kinship recognition,

we study image-based kinship recognition in photographs that contain several

family members. Speci�cally, this section makes three main contributions. First,

we focus on kinship recognition instead of kinship veri�cation: we aim to recog-

nise the type of kinship relations between people. Second, we introduce two new

datasets: (a) an annotated dataset containing photographs of siblings and (b)

an annotated dataset of family photographs. The latter dataset and part of the

former dataset is made publicly available. Third, we propose a novel graph-based

algorithm that performs joint kinship recognition of all faces in a family picture.
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6.1 Graphical model for kinship recognition

The general framework of this algorithm is illustrated in Figure 6.1. The key ad-

vantage of our graph-based algorithm is that it exploits the fact that in a normal

family, the recognised kinship of a particular pair of faces provides evidence for

(non)kinship between other pairs of people. For example, in a family, two siblings

should have the same father and mother1: if A and B are brothers and C is the

father of A, then C must also be the father of B. Our graph-based algorithm

constructs a fully connected graph in which faces are represented by vertices and

kinship relations between pairs of faces are represented as edges. Using a few

simple kinship rules (that are shown in Table 6.1), we can generate all valid kin-

ship graphs. For each new test image, the predicted kinship graph is the one that

obtains the highest score when we sum all scores of the pairwise classi�ers that

correspond to the edges. Because our graph-based algorithm shares information

between the pairwise classi�ers, ambiguities in the pairwise kinship classi�cations

may be resolved, which may lead to improved performance. The results of our

experiments demonstrate that the proposed algorithm can substantially improve

kinship recognition accuracy.

6.1.2 Previous work

Most prior studies on image-based kinship recognition aim to solve the kinship

veri�cation problem using computer vision and machine learning techniques [129,

131, 132, 133]. All these approaches extract facial features and train a kinship

veri�cation classi�er on a collection of annotated examples. In the seminal paper

on automatic kinship detection [129], facial resemblance is represented by the

di�erence between facial features. The extracted features include face colour,

the position and shape of face parts, as well as gradient histograms. Face parts

are localised using a pictorial structures model [134]. Classi�cation is performed

using a k-nearest neighbour classi�er. [129] presents experiments in which the

performance of an automatic kinship veri�cation system is compared with human

performance; the results show that the proposed algorithm performs 4.9% better

than human accuracy on this task. [132] improves over this method by dropping

the assumption that kinship examples have higher feature similarities than non-

kinship examples. They learn a distance metric that aims to repel non-kinship

samples as far as possible, whilst kinship samples are pulled close. The method of

1In this study, step relationships are not considered.
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Figure 6.1: Overview of the proposed kinship recognition system. In the learning
phase, a multi-class kinship classi�er is jointly trained on di�erent kinship relations.
In the evaluation phase, the faces in family photographs are detected, cropped,
and normalised. The set of all valid kinship graphs is generated according to the
constraints on kinship relations. For each resulting candidate graph, the classi�er
scores are summed to obtain an overall score. The kinship graph with the highest
overall score is selected as the prediction.

Figure 6.2: Normalised face pairs (from the Group-Face dataset) showing di�erent
kinship relations.
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6.1 Graphical model for kinship recognition

[132] also combines di�erent types of feature descriptors by learning a multiview

distance metric.

In [131] and [135], Xia et al. propose to use transfer subspace learning meth-

ods for kinship veri�cation. They exploit the idea that the kinship veri�cation

between children and their parents is easier when the parents are young. The

method learns a subspace in which old parents and their children are projected

close together; the subspace model can then be used to make images of parents

look younger. Recently, Dibeklio§lu et al. have proposed a method that uses

facial expression dynamics combined with spatio-temporal appearance features

to verify kinship in videos [133]. This method is based on the observation that

the dynamics of facial expressions are informative for kinship recognition based

on videos of people.

In contrast to the aforementioned methods, [136] does not focus on kinship veri-

�cation but aims at recognising whether a group picture is a family picture. The

method estimates the gender and age of every face in the group picture. An

image graph is constructed by �tting a minimum spanning tree based on the face

locations. Subsequently, the image is represented as a bag of image subgraphs.

The resulting bag-of-image-subgraph features are then used to determine whether

the group picture is a family picture. The method, however, does not recognise

the types of kinship that are present within the family picture.

Our work has several di�erences in comparison to prior studies. First of all,

instead of verifying kin relationships, our study focusses on recognising the exact

type of kinship relations. Additionally, our study is the �rst attempt to generate

complete kinship graphs for family photographs.

6.1.3 Graphical model for kinship recognition

Here, we propose an automatic kinship recognition system that relies on graph-

based optimization of multi-class kinship classi�cation. This work does not con-

sider kinship veri�cation between face pairs but focusses on classifying the type of

kin relations. Assuming that kin pairs are known in a given group photograph (or

predicted by an existing kinship veri�cation system), our system predicts a kin-

ship graph that describes the kinship relations between the family members.

(A) Feature extraction
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6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

Table 6.1: Kinship graph generation rules

De�nition Instance

• One child can at most have
one father and one mother.

(A-B:Father-Daughter/Son) ⇒ ¬ (C-B:Father-Daughter/Son)
(A-B:Mother-Daughter/Son) ⇒ ¬ (C-B:Mother-Daughter/Son)

• Siblings have the same par-
ents.

[(A-B:Father/Mother-Daughter/Son) ∧ (A-C:Father/Mother-Daughter/Son)]
⇒ (B-C:Sister/Brother-Sister/Brother)

• Siblings have the same sib-
lings.

[(A-B:Sister/Brother-Sister/Brother) ∧ (A-C:Sister/Brother-Sister/Brother)]
⇒ (B-C:Sister/Brother-Sister/Brother)

• There should not be kinship
between father and mother.

[(A-B:Father-Daughter/Son) ∧ (C-B:Mother-Daughter/Son)] ⇒
(A-C:Non-kinship)

For the reliability of similarity analysis, face images need to be aligned before

the feature extraction step. To this end, eye corners are located using the facial

landmarking method proposed in [137]. Based on the eye locations, faces are

aligned (in terms of roll rotation, translation, and scale) and cropped. The size of

the resulting images are 64×64 pixels. Figure 6.2 shows samples of the normalised

faces.

To describe the facial appearance, we use Local Binary Pattern (LBP) fea-

tures [138]. Following [133], LBP features are extracted from each cell in a 7× 5

grid that is imposed over the normalised face. In addition to LBP appearance

features, we also extract gender and age features from the face images.

In order to estimate a gender feature fgender(Ii) ∈ {−1,+1} for a given face image

Ii, we classify LBP and bio-inspired features (BIF) [139] using a binary support

vector machine (SVM) classi�er (with radial basis function kernel). Additionally,

we extract an age feature fage(Ii, Ij) ∈ {−1, 0,+1} that describes the relative age
of the given face images Ii and Ij:

fage(Ii, Ij) =


−1 : a(Ii) < a(Ij)

0 : a(Ii) ∼= a(Ij)
+1 : a(Ii) > a(Ij)

, (6.1)

where a denotes the true age of the given subject. For the estimation of fage,

we employ a three-class SVM classi�er using BIF features. To obtain the �nal

feature vector for a pair of face images (Ii, Ij), all features are concatenated:

xij = [fLBP(Ii), fLBP(Ij), fgender(Ii), fgender(Ij), fage(Ii, Ij)] .

(B) Pairwise kinship classi�cation
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6.1 Graphical model for kinship recognition

We model the resulting feature vectors to be able to distinguish between dif-

ferent kinship types. Moreover, we aim to predict the direction of these rela-

tions. For instance, the estimation for the given images will be that Ii is the

father of son Ij (father→son), instead of just indicating that Ii and Ij have

father-son relation. To this end, we de�ne 12 types of directional kinship re-

lations such as father→daughter, father←daughter, father→son, father←son,

mother→daughter, mother←daughter, mother→son, mother←son, brother→sister,

brother←sister, brother-brother, and sister-sister. By using these kinship types,

more distant kinship relationships such as grandparents↔grandchildren, cousins,

and uncle/aunt-nephew/niece may also be inferred if the family picture also con-

tains the �intermediate� people.

We use a multi-class linear logistic regressor (LR) as the classi�er in our system.

For a pair of face images, the predicted label y∗ is thus given by:

y∗ = argmax
y

y>
(
W>x + b

)
, (6.2)

where y is a 1-of-K label vector. W and b denote the classi�er weights and

bias, respectively. To train the multi-class logistic regressor, we de�ne the class-

conditional probability:

p(y|x) =
exp(y>(W>x + b))∑
y′ exp(y′>(W>x + b))

. (6.3)

In our application, this probability represents the likelihood of the kinship type

given a pair of faces. We aim to minimize the penalized conditional log-likelihood

L:

L(W,b) = argmax
W

(∑
x

log p(y|x)− λ‖W‖2
2

)
. (6.4)

Herein, the second term is an L2-norm regulariser that is employed to prevent

over�tting. The value of the regularisation λ is set based on the error measured

on a small, held-out validation set.

(C) Kinship graphs

A straightforward way to recognise kinship relations in a family photograph is

to classify each pair of faces individually. However, this approach does not share

information between the pairwise classi�cations: if the classi�er doubts between
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6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

two kinship types, individual classi�cation cannot exploit the other kinship rela-

tions in the photo to resolve this ambiguity. Individual classi�cation may even

produce infeasible kinship graphs. For example, it may predict that two people

are brothers whilst predicting that they have di�erent parents. The graph-based

algorithm we propose aims to resolve these two problems by: (1) generating all

feasible kinship graphs and (2) selecting the kinship graph that obtains the high-

est score.

A kinship graph can be de�ned as G = (V,E) in which faces correspond to

vertices and edges to kinship relations. In other words, each edge (i, j) ∈ E has an

associated label yij. Two examples of kinship graphs using three faces are shown

in Figure 6.3. Note that the graph shown in Figure 6.3(b) is actually infeasible

since it violates the constraints on kinship relations that are given in Table 6.1.

In the �rst step, all possible kinship graphs that satisfy these constraints are

generated. It is important to note that the candidate graphs can actually be

generated o�ine. The resulting set of candidate kinship graphs are denoted by

G . Afterwards, we assign a score to each of the candidate kinship graphs that

measures the (log)likelihood of that kinship graph for the observed family picture.

Speci�cally, we de�ne the kinship graph score as the sum of the kinship classi�er

scores that correspond to each of the edges in the graph:

s(G|I) =
∑

(i,j)∈E

y>ij
(
W>xij + b

)
, (6.5)

where I is the family photo, G = (V,E) is the kinship graph that we are scor-

ing, xij is the feature vector extracted from the pair of faces associated to edge

(i, j) ∈ E, and yij is the corresponding kinship label. We perform kinship graph

prediction for family photo I by maximising the graph score over the set of all

candidate kinship graphs:

G∗ = argmax
G∈G

s(G|I), (6.6)

where graph G∗ is the predicted kinship graph.

6.1.4 New datasets

To evaluate our approach, we gathered two new kinship recognition datasets: (A)

a dataset with image pairs of siblings and (B) a dataset with family photographs.

116



6.1 Graphical model for kinship recognition

FACE #1

Father-Son

Father-Son Brother-Brother

FACE #3

FACE #2

(b) A legal kinship graph(a)

FACE #1

Father-Son

Father-Son Father-Son

FACE #3

FACE #2

(a) An illegal kinship graph(b)

Figure 6.3: Samples of (a) feasible and (b) infeasible kinship graphs.

Figure 6.4: Sample images from the Group-Face dataset.

Both datasets (except some copyrighted images in the �rst dataset) are made

available to the research community. One can �nd the dataset at https://pan.

baidu.com/s/1nvPxQ8D (pincode: e8if). Both datasets are described separately

below.

(A) Sibling-Face dataset

Existing large-scale kinship datasets (such as the KFW-II dataset [132]) do not
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6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

Table 6.2: Distribution of kin pairs (image pairs) in the KFW-II, Sibling-Face and
Group-Face datasets.

KFW-II Sibling-Face Group-Face

Father-Daughter 250 - 69
Father-Son 250 - 69
Mother-Daughter 250 - 70
Mother-Son 250 - 62
Brother-Brother - 232 40
Sister-Sister - 211 32
Brother-Sister - 277 53

include sibling pairs. The UvA-NEMO dataset [133, 140] contains sibling pairs,

but it has a small number of subjects. We have gathered a new dataset that

contains more than 200 image pairs for each of three possible sibling relations

(brother-brother, sister-sister, and brother-sister). All sibling images have been

collected from websites such as Flickr; the sibling relations have been determined

based on the tags or descriptions of the images. The sibling faces have been

processed in the same way as done for the images in the KFW-II dataset: they

are aligned according to the position of eyes, and resized to a �xed size of 64×64

pixels. In our experiments, the Sibling-Face dataset is combined with the KFW-II

dataset to train kinship classi�ers. The distribution of kin pairs in the KFW-II

and Sibling-Face datasets is given in Table 6.2.

(B) Group-Face dataset

We have also gathered a collection of group photographs from publicly available

sources such as Flickr. Speci�cally, we have selected group pictures in which

the people are all frontally facing the camera. Some samples from the collected

dataset are shown in Figure 6.4. The dataset consists of 106 group photographs, of

which 82 contain group(s) of family members. To facilitate labelling of the kinship

relations, we have selected photographs of famous families (royalty, presidents,

Hollywood stars, etc.) and photographs of regular families with reliable kin labels.

The Group-Face dataset contains father-daughter (FD), father-son (FS), mother-

daughter (MD), mother-son (MS), brother-brother (BB), sister-sister (SS) and

brother-sister (BS) pairs. Table 6.2 shows the number of image pairs in each

kinship class. All the faces in the dataset have been cropped and aligned in the

same way as the faces in the Sibling-Face dataset.
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6.1 Graphical model for kinship recognition

6.1.5 Experimental Results

In our experiments, the KFW-II and Sibling-Face datasets are combined and used

for training. We employ the family photos in our Group-Face dataset as the test

set. It is assumed that we know which pairs of faces in the family pictures have

kinship and which pairs of faces do not, i.e., we assume that we have access to a

perfect kinship veri�cation algorithm and focus solely on recognising what type of

kinship exists between two people. In our experiments, the maximum number of

family members is limited to four because, in our current (naive) implementation,

the total number of candidate kinship graphs and the required amount of memory

drastically increases when more than four faces are used. Speci�cally, when a

family photo contains two parents and four children, we manually split the family

into two groups which both have parents and two children. In this way, we

obtained 98 kinship groups (16 groups with two faces, 40 groups with three faces,

and 42 groups with four faces) that we use in our kinship recognition experiments.

The test set we used in our experiments is made publicly available (as part of the

Group-Face dataset).

As a baseline approach, we individually perform pairwise classi�cation on each

edge of the kinship graph to determine the type of kinship. We set the regulari-

sation parameter λ (see Equation 6.4) of the kinship classi�er by cross-validating

over a small held-out validation set.

To test the reliability and e�cacy of the proposed graph-based kinship recogni-

tion, we perform two di�erent experiments. In the �rst experiment, kinship recog-

nition performances of the graph-based and pairwise approaches are compared.

In the second experiment, we investigate the e�ect of age/gender estimation ac-

curacy on the robustness of the graph-based and pairwise methods. To this end,

we systematically perturb the gender and age features which are extracted from

the test data. The details and results of these experiments are given below.

(A) Graph-based versus pairwise classi�cation

In this experiment, the correct classi�cation rates of the graph-based and pairwise

approaches are compared. As shown in Table 6.3, the graph-based method pro-

posed in our study outperforms the pairwise kinship classi�cation by 16.77% (ab-

solute) on average. This result demonstrates the e�cacy of the graph-based kin-

ship recognition. The highest performance of the graph-based method is achieved

for the sister-sister relationship with an accuracy of 76.92%.
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6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

Table 6.3: Kinship recognition accuracy of the pairwise (baseline) and the graph-
based approaches.

Relationship Pairwise (%) Graph-based (%) # Test Pairs

Father-Daughter 66.15 67.69 65
Father-Son 51.72 65.52 58
Mother-Daughter 57.81 71.88 64
Mother-Son 48.15 72.22 54
Brother-Brother 43.33 63.33 30
Sister-Sister 34.62 76.92 26
Brother-Sister 44.00 68.00 25

All 52.48 69.25 322

For further exploration of the results, the confusion matrices for both methods are

given in Figure 6.5. The results suggest that, unlike the pairwise classi�cation, the

graph-based approach is able to recover from errors in the age/gender estimations.

For instance, the baseline approach often confuses the father-son relation with the

brother-brother relation, presumably due to errors in the relative age estimation1.

By contrast, the graph-based approach corrects most of such misclassi�cations

by incorporating other relations in the graph, and by ensuring that the predicted

kinship graph is feasible. This is con�rmed by the number of kinship graphs

which are correctly predicted (completely) on the Group-Face dataset. Whilst

the graph-based approach correctly predicts 56 of 98 kinship graphs, only 29

kinship graphs are correctly recognised by the baseline method.

(B) E�ect of age and gender estimation accuracy

The results presented in the previous subsection illustrate the potential merits of

our graph-based algorithm, which mainly stem from its ability to correct errors

in the age and gender estimations. We further investigate the e�ect of age and

gender estimation accuracy in our method. To this end, we randomly generate

labels for the relative age classes and gender by systematically changing the error

rate. Both the graph-based and pairwise methods are tested using these labels.

1The correct classi�cation rate of the gender classi�er, used in our experiments, is approx-
imately 90% based on 10-fold cross-validation. Combination of the KFW-II, Sibling-Face, and
UvA-NEMO datasets is used for the evaluation. 10-fold cross-validation accuracy of the relative
age estimator is approximately 65% on the combination of KFW-II and Sibling-Face datasets.
Higher error rate in age estimation is mostly due to small size (low resolution) of the face
images, which makes facial wrinkles nearly invisible.
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Figure 6.5: Confusion matrices for (a) the pairwise and (b) graph-based ap-
proaches.
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Figure 6.6: Kinship recognition accuracy (%) as a function of the error level
in age and gender estimation for (a) pairwise and (b) graphical model of kinship
recognition.

Figure 6.6 shows the kinship recognition accuracy as a function of the error level

in age and gender estimation. As shown in Figure 6.6, both methods achieve

100% classi�cation accuracy when the age and gender ground truths are used:

age and gender completely determine the type of kinship relation between two

people, if we assume that the given pair has kinship.

The results show that both pairwise and graph-based approaches perform worse

when the perturbation rate is increased for gender and age. However, our graph-

based method is more robust to gender and age estimation errors than to the

pairwise approach. In particular, the graph-based algorithm is less sensitive to
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6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

incorrect age prediction. This is bene�cial because age estimation is a di�cult

task in real-life conditions, in particular, because age estimates are strongly in-

�uenced by changes in resolution, illumination, gender [141], and facial expres-

sion [142]. Our graph-based algorithm is more robust to the resulting errors in

the age estimates. As shown in Figure 6.6 (see top right side of the accuracy

maps), graph-based approach performs much better than the pairwise classi�er

in such conditions.

6.1.6 Section conclusions and future work

In this section, we have proposed a novel graph-based method to recognise kinship

relations in family photos. It partially answers RQ 6: To what extent is it possible

that the classi�cation models (or regression models) are able to validate the per-

formance of the image features to characterise the phenotypes in support of shape

analysis? Our approach models the kin relationships using a fully connected

graph in which faces are represented by vertices and edges represent kinship re-

lations. The overall score of each feasible kinship graph is computed by summing

classi�er scores over the edges of the graph. The graph with the highest overall

score is selected as the prediction. The results of our experiments demonstrate

that our graph-based outperforms the pairwise kinship classi�cation approach.

Moreover, the proposed method guarantees consistency of the predicted kinship

graphs.

We consider that RQ 6 is partially answered that the graphical model and a classi-

�cation model, i.e., the logistic regression, have cooperated to validate the perfor-

mance of the LBP features in the application of image based kinship recognition.

It turns out that the well-designed image features will be able to characterise the

subtle variation of the phenotypes such as shape and texture.

As a future direction, we aim to develop a graph-based method to train our kin-

ship classi�er as well by framing the task as a structured prediction problem.

Also, we aim to improve the speed of our current (naive) implementation by ex-

ploiting redundancies in the score computations (like in dynamic programming).

Moreover, we plan to include a kinship veri�cation step prior to the classi�cation

of relations. Finally, we will apply the method in the applications which use the

zebra�sh as model system.
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6.2 Image based taxonomy using CNN

6.2 Image based taxonomy using CNN

Phenotypes including shape and texture represented in appearance are essential

in image based taxonomic classi�cation of biological specimens. This presents a

challenge to the choice of features to generalise these phenotypes. We are moti-

vated to investigate representative features for the task of image based taxonomy

using the convolutional neural networks (CNN). We �rst present three dataset

with a taxonomic structure, which include orchids, butter�ies as well as intro-

duce an open source for wood species (in fact, the kinship addressed in Section

6.1 is a special category of the taxonomic structure). We adapt a popular CNN

architecture, the VGGNet-16, to learn representative features for these tasks in

a supervised manner. We implement a multi-output layer of which each output

corresponds to a �at classi�er for each level in the taxonomy. In this manner, we

can introduce multi-supervision to the training time of the networks. This avoids

to learn individual classi�ers on each level or each node which is commonly used

in conventional hierarchical classi�cation. We use a �ne-tuning strategy to ac-

celerate and stabilise the training process. Experimental results show that the

proposed approach achieves better performance compared to the methods using

hand-crafted features and pre-trained networks. From our observation, represen-

tative features are of great importance to a well-performing recognition system

for taxonomy. Importantly, in our method the prediction for each level in the

taxonomy can be performed in one forward pass.

6.2.1 Image based taxonomy

A feasible and convenient manner for categorisation gives rise to digitization,

reuse and e�cient management for the large amount of the collection of cultural

heritage. Under these circumstances, taxonomic categories are commonly used,

which formally use a hierarchical ranking i.e., Kingdom, Phylum, Class, Order,

Family, Genus and Species to categorise and annotate the specimens [1, 143].

This manner also facilitates an e�cient top-to-bottom data retrieval. In practice,

a taxonomic recognition system will also facilitate many applications such as

recognition of endangered species [144].

Using imaging of specimens makes image based taxonomy possible. It aims to

learn a model to recognise each rank in the taxonomy for a specimen using images

which represent that specimen as a whole or microscopic structure. In practice,

123



6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

researchers in life-sciences make use of their expertise to identify the species of

a specimen [145]. However, some species, for example, the ones in the same

genus, present rather similar shapes; subsequently, their textures such as special

patterns on the specimen surface should be emphasised. Therefore, the image

based taxonomy requires comprehensive investigation of phenotypes including

shape and texture in the whole appearance of the specimen.

Image based taxonomy is, in fact, a typical hierarchical classi�cation problem

[146]. Each level in the hierarchy represents a rank in the taxonomy. In a task

of image based taxonomy, it is usually easy to recognise a higher rank due to the

remarkable dissimilarity of appearance for the specimens from di�erent classes;

and it is usually di�cult to recognise a lower rank due to the dramatic similar-

ity of appearance for the specimens of which the classes share the same parent

rank. Therefore, a proper choice of feature representation for phenotypes can

result in a well-performed taxonomic recognition system. For example, experts

can accurately recognise a wood species through a careful investigation on micro-

scopic features such as shape and size of vessels and �brous structure of tissues

[147].

In practice, we have multiple options of image features. For the last decades,

many local features have been increasingly used for image recognition, such as

Histograms of Oriented Gradients (HOG) [24], Local Binary Patterns (LBP) [138]

and Scale Invariant Feature Transform (SIFT) [109]. There are also many avail-

able shape features, such as shape context [148], the angular radial transform

[149] and projective invariant contexts [150]. Some of these features are generic

and suitable to the problem of image based taxonomy; some are well-designed

for a particular domain. With the fast development of deep convolutional neu-

ral networks (CNN) [25, 151, 152, 153], successful applications have been made

in many �elds like computer vision [64, 154, 155] and gaming [156]. The read-

out of a deep CNN architecture is, in fact, a feature engineering which learns

discriminative features from images in a supervised manner. This makes the

deep CNN architecture very �exible for learning representative features for cor-

responding applications. The current development has inspired us to apply the

CNN architecture in the image based taxonomy due to the diversity of taxonomic

categorisation as for each speci�c taxonomic category, di�erent features should

be emphasised.
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Here, we �rst present three taxonomic structured datasets with expert tags; Ja-

vanese butter�ies, slipper orchids and wood species. The �rst one is obtained

from a collection of Dutch National Natural History Museum (Naturalis Biodi-

versity Center http://www.naturalis.nl/) for the family of Papilionidae. The

second one is obtained from some public sources such as ImageNet [157] for the

family of Cypripedioideae. Both datasets are labelled by a two level taxonomy:

genus and species. The third dataset is a public source for microscope images

of wood species [158]. This dataset contains a more speci�c taxonomic struc-

ture from class to species. In this work, we only employ two level annotations

including class and species.

We are motivated to present a CNN architecture based on the VGGNet [151]

which is extended with a multi-output layer for the image based taxonomy. Each

output corresponds to a local classi�er for each level in the taxonomy. We train

the whole networks considering all the taxonomic annotations for each example

to be trained. This means that the multi-supervision jointly contributes to the

training phase. We use a �ne-tuning strategy for the training of the networks.

We �rst introduce a pre-trained model using a large dataset such as ImageNet

and then use our datasets to enhance the representability of the networks for our

application. This operation largely stabilises and accelerates the training of the

network.

In an hierarchical classi�cation, the proposed method can be categorised as a

local classi�cation per level approach, which is also referred to as top-down strat-

egy [159]. This method may introduce the problem of label inconsistency. For

instance, a testing example may be assigned labels that not refer to a reasonable

parent-child routine. This procedure can be improved by post processing. An-

other possible solution is to use the �at classi�cation approach. Such an approach

only trains a classi�er for the bottom level and a bottom-top strategy can be used

to back-propagate the labels on higher level according the deterministic property

of the parent-child mode [160]. Other attempts concern global classi�cation mod-

els [161, 162, 163, 164]. We should note that all these methods mainly focus on

a classi�cation model to generalise the hierarchical classi�cation problem. The

method can be considered to improve the output layer in our application of image

based taxonomy. Here, we would like to focus on the contribution of features in

our particular problem. Therefore, we �rst use a simple classi�cation strategy

e.g., softmax [33], as a local classi�er for each level to validate the performance

of our representative features.
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Actually, the hierarchical classi�cation problem can be considered as a special

case of multi-label classi�cation [165]. Many deep CNN architectures have been

reported to solve this problem [166, 167, 168]. Recently, a hierarchical deep

CNN (HD-CNN) architecture has been reported, which presented a coarse-to-�ne

strategy for a large scale of visual recognition [169]. This enables the so-called

local classi�er per node approach with a CNN architecture. Here, we stress the

importance of features in our image based taxonomy of biological specimens. So,

we propose to extend the CNN architecture with a multi-output layer, of which

each output corresponds to a level in the taxonomy. This will provide a good

understanding of the performance of the features for each level. In future work,

we can consider to introduce a dedicated architecture such as the HD-CNN in

our problem.

6.2.2 Image based taxonomy using CNN architecture

We �rst present (A) the datasets used in this work, and (B) elaborate in details

the CNN architecture we have adapted.

(A) Datasets

Below we brie�y discuss the datasets, i.e., Butter�ies, Orchids and Woods.

The dataset of Butter�ies are obtained from a large collection for the family of

Papilionidae, a category of Javanese butter�ies caught in the 1930s. With the

development of digitalisation of cultural heritage, images have been made for

these specimens. Some examples can be seen in Fig. 6.7 (A). In the images,

the specimens are well-positioned on their pro�le-view and most of the features

such as the texture and patterns on their wings are clearly presented. In this

manner, we avoid the e�ects of shape misalignment and scaling. This dataset is

structured in a two taxonomic categories, i.e., genus and species. Until now, the

dataset consists of 1829 images which are from 18 genera and 45 species.

The dataset of Orchids are obtained for the family of Cypripedioidea. The orchid

experts annotated 1117 images with 5 genera and 116 species [170]. Examples

can be seen in Fig. 6.7 (B). One should note that the datasets of Butter�ies and

Orchids have the problem of data imbalance. Some classes only contains a small

number of examples and some others contain much more. This will present a

challenge to a classi�cation model which may result in over�tting for the classes

with a large number of examples.
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Genus:   Appias
Species: Leptis

Genus:   Graphium
Species: Adonarensis

Genus:   Appias
Species: Nero

Genus:   Graphium
Species: Agamemnon

(A) Examples of Butterflies

Genus:   Cypripedium
Species: Franchetii

Genus:   Cypripedium
Species: Reginae

Genus:   Paphiopedilum
Species: Acmodontum

Genus:   Paphiopedilum
Species: Appletoniaum

(B) Examples of Orchids

Class:     Angiosperms
Species: Brosmum alicastrum

Class:     Angiosperms
Species: Cabralea canjerana

Class:     Gymnosperms
Species: Abies vejari

Class:     Gymnosperms
Species: Agathis becarii

(C) Examples of Woods

Figure 6.7: Examples of the images from dataset (A) Butter�ies (B) Orchids
and (C) Woods. For each dataset, we select four examples from four species,
two of which are from the same genus (class). One can observe that, the
phenotypes, such as the colour and patterns on butter�y's wings, the shape
and the texture of orchid's pedals, the shape and structure of wood's vessel
and tissue, show signi�cant similarity from the species which share the same
genus (class).

Input layer Convolution layer Maxpooling layer Fully-connected layer

Output layer

Genus: Acraea

Species: Adamas

Figure 6.8: The CNN architecture with a multi-output layer. Only one �lter
is shown for the convolution and pooling layers.

127



6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

The dataset of Woods was originally presented in [158]. It contains 2240 wood

images from 2 classes and 112 species. This dataset has an even distribution

as each species contains 20 examples. The images from stained wood slices are

acquired using a microscope (Olympus Cx40) with a 100x objective. The size of

the acquired RGB images is 1024x768. Examples of the images can be found in

Fig. 6.7 (C).

From the datasets, we can see a remarkable diversity of the task to design the

image based taxonomy. It is di�cult to design a type of generalised feature for

this application with diverse objectives. For example, the HOG features works

�ne in the butter�ies and orchids but totally fails in the woods. This requires a

generalised framework for feature engineering to obtain more discriminative and

representative features for each task. We can also observe that the datasets of

Butter�ies and Woods are produced in speci�c imaging conditions. The acquired

images are all standard, for example, the orientation and position of the specimen

represented in the images is stable. The dataset of Orchids is more challenging

because the examples are collected in a natural setting.

(B) VGGNet with a multi-output layer

A standard CNN architecture consists of one input layer, a set of convolution

layers, several pooling layers, one or two fully-connected layers and one or multiple

outputs layer. In Fig. 6.8, we show a schematic representation of the CNN

architecture with a multi-output layer.

The input layer is also referred to as data layer which converts the input image

into the format a CNN architecture requires. The convolution layer generates a

set of feature maps through convolving the previous feature maps using di�erent

�lters. The weights of a �lter are shared by the whole convolution which produces

one feature map. This means each element in a feature map corresponds to

a receptive �eld from the original image. One should note that a non-linear

operation of recti�cation such as ReLU [25] is performed after each convolution

layer. The pooling layer aims to subsample a feature map, to an extent holding

good spatial property in the feature representation. Similar to the conventional

multi-layer perceptron [171], the fully-connected layer connects all the elements in

previous layer to each of the neurons in the fully-connected layer. This operation

converts the feature map into a one-dimensional feature vector. The output layer

can be a fully-connected layer which can be followed by a loss in training time.

The supervision of the network training is implemented in this process. In this
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supervised manner, the parameters in a CNN architecture can be obtained using a

standard algorithm such as gradient back-propagation. As a result, a well-trained

CNN architecture can largely �t the training data and the extracted feature maps

can be discriminative and representative to our task, i.e., image based taxonomic

recognition.

We have adapted the VGGNet-16 in our CNN architecture. In order to produce

taxonomic categories, we adapted the last layer of VGGNet-16, i.e., the out-

put layer, with a multi-output layer. Each output corresponds to a level in the

taxonomy. The networks consists of 14 convolutional layers, 5 pooling layers, 2

fully-connected layers and 1 multi-output layer. More concrete, the con�guration

is depicted as follows: Input image (224×224×3)→ 2 (3×3) convolution layers

(64 feature maps)→ maxpooling layer→ 2 (3×3) convolution layers (128 feature

maps) → maxpooling layer → 3 (3× 3) convolution layers (256 feature maps) →
maxpooling layer→ 3 (3× 3) convolution layers (512 feature maps)→ maxpool-

ing layer → 3 (3× 3) convolution layers (512 feature maps) → maxpooling layer

→ fully-connected layer (4096) → fully-connected layer (4096) → multi-output

layer (softmax).

We use the library of Ca�e [172] in our implementation. Both for the training

and testing, we re-scale all the images into a size of 256× 256 pixels. At training

time, we use a pre-trained model to initialise the weight layers including all the

convolution layers and the 2 fully-connected layers. For the last fully-connected

layer, i.e., the multi-output layer, we initialise the weights using a Gaussian dis-

tribution with the mean as 0 and the standard deviation as 0.01. We use the

statistical gradient descent strategy to train the networks and we set the batch

size as 64. We set the total iterations as 2000 and the learning rate as 5× 10−3.

We decay the learning rate as half of the original value after 1000 iterations. We

train and test our model using two NVIDIA TITAN X GPUs.

6.2.3 Experiments

In this subsection, we apply our CNN architecture on the datasets to evaluate

the its performance in the task of image based taxonomy. (A) We compare

the performance by di�erent methods. (B) We discuss the classi�cation results

using confusion matrix and visualise the representative features from our CNN

architecture using the t-SNE map [173].
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(A) Performance evaluation with di�erent features

In this experiment, we perform cross validation on the datasets using di�erent

methods. Due to the data imbalance in the datasets of Butter�ies and Orchids,

we leave out the classes with less than 3 examples and �nally we use 3-fold

cross validation. For the dataset of Woods, we use 5-fold cross validation. We

randomize the partition of the folds and repeat the whole process for 5 times to

obtain a statistical representation for the accuracy. In Table 6.4, we separately

report the accuracy for the two levels in the taxonomy of the datasets. In each

row of Table 6.4, the upper value corresponds to the accuracy for the prediction

of genus (class), and the lower value represents the accuracy for the prediction of

species.

A1. Con�guration We use two popular features, the rotation-invariant uniform

LBP and HOG, as comparisons in this experiment. In order to obtain the identical

feature dimensions in each dataset, we rescale the images from Butter�ies and

Orchids to 256 × 256 pixels; and we keep the original image size for the Woods,

i.e., 1024× 768.

For the LBP, we con�gure the sampling radius and the number of sampling points

as (2,8) for the Butter�ies and Orchids ; (3,24) for the dataset of Woods due to

its large image size. The former results in a 59-dimensional feature vector; the

latter produces a 555-dimensional feature vector.

For the HOG, we con�gure the cell size and block size as (32,4) for the Butter�ies

and Orchids ; (8,2) for the Woods to capture its microscopic structure. Due to the

high-dimensional of the obtained HOG features, we apply principal component

analysis (PCA) for feature dimensionality reduction. We keep 99% components

of the decomposed principal components, which dramatically reduce the obtained

feature size.

For the classi�cation model, we use the polynomial kernel SVM. We set the

regularisation term as 10 to prevent over�tting of the model.

We also use a shallow CNN architecture i.e., the AlexNet [25] for comparison.

In Table 6.4, a CNN architecture without an indication of ∗ denotes that we use
a pre-trained network based on a large image datasets which does not include

our datasets to extract features. We consequently use the polynomial SVM for

classi�cation. The notation ∗ means that we use the strategy presented in this
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Table 6.4: Accuracy (%) of di�erent methods on taxonomic datasets

LBP HOG AlexNet AlexNet∗ VGGNet VGGNet∗

Butter�ies
91.6±0.3 96.9±0.3 97.8±0.1 99.5±0.1 98.2±0.2 99.6±0.1
82.2±0.2 93.5±0.2 95.1±0.2 98.7±0.1 95.5±0.2 98.9±0.2

Orchids
86.0±0.4 88.4±0.5 91.6±0.2 98.4±0.2 92.4±0.2 98.8±0.2
9.4±0.5 41.8±0.7 51.1±1.0 82.7±0.7 50.8±0.4 86.1±0.5

Woods
97.2±0.2 75.7 ±0.4 99.2±0.2 100 ±0.0 99.8±0.02 100±0.0
88.4±0.4 30.1±0.5 85.9±0.4 95.6±0.4 90.7±0.2 95.6±0.3

chapter. Namely, we use our datasets to �ne-tune the pre-trained network and

extend the network with a multi-output layer for prediction.

A2.Results First, from the results, we can see that the taxonomic recognition on

a higher rank is relatively more easy than that of a lower rank. This is re�ected

by a much higher classi�cation accuracy on the level of genus(class) than that on

the level of species for all the datasets, using di�erent methods.

Second, if we focus on the well-designed features in the �rst two columns, we can

observe that the LBP can obtain higher recognition accuracy for the Woods and

the HOG can obtain higher recognition accuracy for the Butter�ies on both levels.

The LBP is advantageous in capturing textural structures and the HOG is capable

of holding the whole appearance in an image. Accordingly, the characteristics of

the woods are represented as important patterns on the shape and structure of

the vessels and tissues; the characteristics of the butter�ies are represented in

larger scale patterns on butter�y's wings. Those can be separately stressed by

the LBP and HOG. For the Orchids, the LBP and HOG features obtain similar

results on level 1, both of which, however, failed in the species recognition. This

is caused by the diverse patterns for the orchids. One should integrate colour,

texture, shape as well imaging conditions to characterise orchid's patterns. It is

di�cult for the LBP and HOG to generalise all these characteristics.

Third, we can �nd that a simple and pre-trained CNN architecture like AlexNet

can obtain better performance on the three datasets than the well-designed fea-

tures, but it fails to compete with the LBP features on the species recognition of

the Woods. This is because the pre-trained CNN architectures do not have su�-

cient training images similar to theWoods. This leads the CNN cannot su�ciently

generalise the microscopic tissular patterns.
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Fourth, after a �ne-tuning, both of the shallow and deeper CNN architectures can

obtain very accurate recognition on the three datasets. This again illustrates the

power of the CNN architecture on representative feature learning for image based

taxonomy. In addition, although a small di�erent performance can be found for

the two CNN architectures on Butter�ies and Woods, a large improvement is

made by the VGGNet for the species classi�cation on the Orchids. From the

observation, we may conclude that for a relatively simple image base taxonomy

which introduces less variant conditions can be solved by a simple CNN archi-

tecture such as AlexNet, while the complication of a task, e.g., the taxonomic

recognition for the Orchids, requires a deeper CNN architecture.

(B) Results visualisation

In this experiment, we further explore the results obtained by the proposed

method with the manners of confusion matrix and feature visualisation.

B1. Confusion matrix In Fig. 6.9 (a1) to (a3), we present the confusion

matrix for the genus recognition of each dataset obtained from the proposed

method, i.e., the VGGNet with a multi-output layer.

In each confusion matrix of Fig 6.9, we use orange lines to indicate the grouping of

the species. The species separated by the lines are from the same genus (class).

We have left out the species with less than 3 examples and the corresponding

result is shown as zero on the diagonal in the confusion matrix. Due to the

limited space, we show the names of some selected species.

First, one can observe in the confusion matrices that the recognition accuracy

for the three datasets is high which corresponds to the result shown in Table 6.4.

Although data imbalance is occurring in the datasets of Butter�ies and Orchids,

it is hardly to see serious over�tting for the species with more examples. This

can be re�ected by the high recall and precision for all the species.

Second, we can �nd an important phenomenon that the classi�cation errors of the

species are mainly distributed within the same genus. One can see the squares

associated with the diagonals in Fig. 6.9 (a2) and (a3) for this message. Accord-

ing to this observation, we can conclude that, in the image based taxonomy for

biological specimens, it is more di�cult to recognise the species which share the

same genus. The prediction on a higher level, e.g. genus and class, probably does

not help to improve the recognition accuracy on the level of species.
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B2. Feature visualisation In Fig. 6.9 (b1) to (b3), we produce the so-called

t-SNE map [173] for the visualisation of the representative features obtained in

our method. From this visualisation, we can clearly see the separation among

di�erent species in each dataset according to the representative features. This

is shown as the separated clusters. A relatively sparse t-SNE map is obtained

for the Orchids and Woods due to their large number of species. Another reason

resulting in the sparse t-SNE map is that the learned representative features in

the same species are very similar for di�erent specimens. This produces rather

dense overlap among specimens from the same genus (class). In fact, in each

clustering center a dense overlapped with the features extracted from di�erent

specimens. Yet, obvious clustering centers can be found for each species in these

two datasets.

6.2.4 Section conclusions and future work

For the task of image based taxonomy, we have presented a CNN architecture

which extends the conventional VGGNet with a multi-output layer. This makes

the prediction on each level in the taxonomy possible. We have proposed to

apply the �ne-tuning strategy to accelerate and stabilise the training of the net-

works. We also present two taxonomic structured datasets of biological speci-

mens. Compared to the well-designed image features, i.e., LBP and HOG, the

proposed method can obtain discriminative and representative features for each

task, yielding much better taxonomic recognition accuracy.

This section answers RQ 6: To what extent is it possible that the classi�cation

models (or regression models) are able to validate the performance of the image

features to characterise the phenotypes in support of shape analysis? It conveys

us the message that the CNN architecture is very helpful to characterise the

phenotypes including shape and texture from macroscopic to microscopic imaging

scale. Importantly, we �nd that a good estimation on a higher level in a taxonomy

probably is not helpful to improve the recognition accuracy on the level of species.

In order to further explore this, we can apply a structured prediction model

such as the popular CNN+RNN architecture [174]. Regarding the application

of phenotype characterisation using microscopy, we need to solve the problem of

limited availability of annotated training data. In this context, semi-supervised

or weakly supervised learning algorithms should be taken into account. Moreover,

an increasing size of the dataset will also help.
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6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

(a1) (b1)

(a2) (b2)

(a3) (b3)

Figure 6.9: (a1)-(a3) Confusion matrix and (b1)-(b3) t-SNE map of Butter�ies,
Orchids and Woods obtained from the proposed method.
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