
Shape analysis for phenotype characterisation from high-throughput
imaging
Guo, Y.; Guo Y.

Citation
Guo, Y. (2017, October 17). Shape analysis for phenotype characterisation from high-
throughput imaging. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/56254
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/56254
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/56254


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/56254 holds various files of this Leiden University 
dissertation 
 
Author: Guo Yuanhao 
Title: Shape analysis for phenotype characterisation from high-throughput imaging 
Date: 2017-10-17 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/56254


Chapter 4

A Novel 3D Reconstruction
Approach

Based on:

� Y. Guo, Y. Zhang & F.J. Verbeek, �A two-phase 3D reconstruction approach

for light microscopy axial-view imaging,� in IEEE Journal of Selected Topics

in Signal Processing, 2017.
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4. A NOVEL 3D RECONSTRUCTION APPROACH

This chapter addresses RQ 4.

RQ 4: How can we e�ciently deal with the translucency and trans-

parency of specimen in light microscopy and still obtain a good 3D

shape description from the MM-HTAI architecture?

Abstract � Three-dimensional representations in light microscopy are impor-

tant for accurate shape assessment of model systems in biosciences (see Section

4.1). The computational multi-view 3D reconstruction seems feasible in obtain-

ing the 3D representations, in particular for high-throughput. The specimen for

imaging can have properties, i.e., transparency and translucency, that impede

the detection of well-de�ned boundaries (see Section 4.2). Consequently, 3D

reconstruction and measurements, i.e., volume and surface area, will be inaccu-

rate. The motivation in this chapter is to develop a two-phase 3D reconstruction

approach for light microscopy axis-view imaging that can deal with these prop-

erties (see Section 4.4). In phase I of this approach, we develop an improved

3D volumetric representation de�ned as the con�dence map. It is derived from

texture-augmented axial-view images of the specimen. In phase II, the 3D re-

construction is accomplished by searching the optimal surface for the specimen

over the con�dence map. Subsequently, from the obtained 3D reconstruction,

3D measurements can be extracted. We apply our MM-HTAI architecture pre-

sented in Chapter 3 and propose three typical datasets with di�erent imaging

modalities, including (1) standard RGB images, (2) the bright-�eld images of

zebra�sh larvae, and (3) zebra�sh liver in �uorescence (see Section 4.3). In the

experiments, we have applied our approach on these datasets. We �nd that our

approach yields a precise 3D shape representation and a natural visualisation (see

Section 4.5). In comparison with a groundtruth setup, we have obtained accurate

3D measurements both for the organism and the organ, which holds a promising

shape assessment for model systems in biosciences (see Section 4.6).
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4.1 Improved 3D reconstruction

Volume: 2.80 × 108𝜇𝑚3

Surface area: 3.53 × 106𝜇𝑚2

(A) Image acquisition and processing

(B) Camera system calibration

(C) Confidence map

(D) 3D reconstruction and measurements

Figure 4.1: A schematic of the 2-3DLA approach. Phase I: (A) A series of axial-
view images of a specimen are acquired. The textures are augmented by the mean
shift �ltering, and the multi-scale images are used as input of the system. (B) 2D
shape approximations of the specimen are obtained from the augmented textures, by
which the camera calibration can be accomplished. (C) An improved 3D volumetric
representation in the form of a con�dence map is derived from the textures through
the volume intersection model. Phase II: (D) Region based level set method is
adapted and applied to the con�dence map to estimate the optimal enclosed surface
retaining a natural shape and smooth appearance of the specimen, from which the
volume and surface area are derived.

4.1 Improved 3D reconstruction

In modern life-science research, large volumes of microscopy data, i.e., represen-

tative images of a specimen from cellular to whole-mount scale are used. Robust

and reproducible methods for data acquisition, image processing, and analysis are

essential for further handling of the data. As data volumes get larger, comprehen-

sive visualisations summarising the data content also become important.

Images from samples, i.e., specimens, acquired from light microscopy carry a great

deal of information that can be expressed by features such as shape and texture.

Variations in these features provide information for a classi�cation according to a

speci�c condition. Such an approach is typically employed in imaging applications

in the �elds of cytology, toxicology, oncology and others. At a glance, experts are

able to observe variations in colour, though subtle di�erences of size and shape

are more di�cult to capture. Moreover, as the volume of the data increases, it is

not possible to classify the di�erences objectively. Therefore, these features need

to be extracted in an automated manner. So, more advanced systems need to

be developed [38]. For high-throughput systems this is especially true. Manual
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4. A NOVEL 3D RECONSTRUCTION APPROACH

inspection is not feasible and in order to make inferences from the data, robust

methods are required that produce accurate and reproducible measurements for

shape analysis.

For the study of whole specimens, we should acknowledge that the nature of the

shape is, de facto, in 3D. Thus, from a 3D shape representation of the specimen

one will be able to produce an informative shape description, e.g., volume, surface

area and 3D shape factors. With such features, we can accurately assess and

compare shape variations in applications. These descriptors are also important for

phenotypical systems evaluation that requires volume normalisation into metric

measurements [39].

3D images can be generated by di�erent techniques. With a confocal laser scan-

ning microscope (CLSM) 3D images can be acquired from which 3D representa-

tions can be derived. For high-throughput imaging, CLSM is less e�cient and

also larger objects are not feasible for CLSM imaging. The post-processing of the

images is not straightforward [94]. Alternative to CLSM is the optical projection

tomography (OPT) [95]. However, a serious limitation of this technique is that it

does not work for live specimens. Moreover, the specimen preparation is rather

time consuming. In light �eld microscopy [96], microlenses are con�gured be-

tween the main lens and image sensor. Through 3D deconvolution a larger focal

range is addressed and in this manner focal images are combined into a 3D image

[97]. This technique is suitable for semi-transparent objects. In our research, we

deal with specimens that consist of opaque, specular and transparent regions. A

second limitation of light-�eld microscopy is the trade-o� between spatial and

angular resolution.

In this chapter, we present an axial-view imaging architecture based on light mi-

croscopy using the Vertebrate Automated Screening Technology (VAST BioIm-

ager) [26]. From this imaging architecture, we can generate a series of 2D axial-

view images for the specimen. In fact, this imaging belongs to the class of multi-

view imaging techniques, which is also referred to as turn-table sequence [31]. In

the �eld of computer vision, multi-view stereo (MVS) approaches have been de-

veloped to recover a 3D scene, or an object, from a range of 2D multi-view images.

In these approaches, surface points, or a depth map, of an object can be estimated

through the matching of correlated images [30]. However, for light microscopy

imaging, objects of interest can be (partially) translucent and/or transparent;

this holds for the microscope modalities that we are using, i.e., bright-�eld and
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4.1 Improved 3D reconstruction

�uorescence. These qualities are in favour of the observation of internal struc-

tures of the specimen but prevent the feasibility of surface points matching which

is required for a MVS approach.

In Chapter 3, we have obtained a binary 3D volumetric representation from the

shape-based 3D reconstruction which is intuitive and suitable for the goal of shape

analysis through 3D measurements [98]. This method requires precise 2D shape

segmentation. However, the accurate shape segmentation is sometimes di�cult

to obtain from images depicting specimens with poor-de�ned boundaries as a

consequence of translucent and transparent properties of the specimen. Instead,

a probabilistic framework for the 3D volumetric representation generates more

�exible but not always accurate 3D shape description. To address the problems,

we propose a two-phase approach for the 3D reconstruction and measurements

from light microscopy axial-view imaging; this is abbreviated as 2-3DLA. A

schematic representation of this approach is shown in Fig. 4.1. The system takes

a series of axial-view images as input and reconstructs a precise 3D model of the

object from which accurate 3D measurements, i.e., volume and surface area, can

be derived.

Speci�cally, in Phase I of 2-3DLA, an improved 3D volumetric representation in

the form of a con�dence map is constructed. First, the mean shift algorithm [29]

is applied to improve the texture representation of the original images. Thus, the

translucent and transparent regions of the specimen are enhanced so that they

become more separable. Subsequently, approximations of the 2D shapes of the

specimen are obtained and used for camera system calibration. Together with

all the data, based on the camera projection intersection model, we obtain the

con�dence map by imposing a score, instead of a binary value or a probability,

to each voxel element in the 3D space. The score is obtained by integrating two

probabilistic models. These probabilistic models are jointly estimated from all

the axial-view images in a multi-scale fashion and aims to generalise the texture

distributions of the object and background. The con�dence map indicates the

likelihood of each voxel in 3D space to be part of the object. This is a more

�exible 3D representation for the optimisation of the surface. In phase II, we

present the assumption that the optimal surface which includes the specimen will

be able to (1) maximally separate the voxels from the object to the background

as well as (2) retain a smooth appearance of the object. The 3D reconstruction

and measurements are accomplished by searching for such an enclosed surface

over the con�dence map. Consequently, we formulate the 3D reconstruction as a
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4. A NOVEL 3D RECONSTRUCTION APPROACH

3D segmentation problem which can be solved by employing a region based level

set method.

In modern life-sciences, e.g., developmental biology and pharmacokinetics, ze-

bra�sh are widely used as model systems in various experimental settings [18].

Zebra�sh are small in embryonic stages and can be easily studied with di�er-

ent types of microscopes; zebra�sh are transparent in the early stages. In re-

cent years, zebra�sh are augmented with a large amount of reporter lines and

these lines are extensively used in disease studies. We use our light microscopy

axial-view imaging architecture to acquire three representative datasets including

bright-�eld images of zebra�sh and �uorescence images of zebra�sh liver. We use

the zebra�sh and the corresponding axial-view images as a case study for the eval-

uation of 2-3DLA. We have found that the 2-3DLA can be successfully applied

in this research �eld; we have achieved promising results for 3D reconstruction

and measurements of zebra�sh and its liver.

We summarise our major contributions as follows.

I We present a multi-modal axial-view imaging architecture using light mi-

croscopy.

II We present three representative datasets of light microscopy axial-view imag-

ing including the zebra�sh in bright-�eld and the zebra�sh liver in �uores-

cence.

III We propose a computational and automated system named 2-3DLA to solve

the problem of accurate 3D reconstruction and measurements.

IV The proposed 2-3DLA is applicable in the datasets to obtain detailed 3D

shape description both for the zebra�sh and its liver. This makes the 2-

3DLA generic for shape analysis on the level of the organism as well as on

the level of the organ.

The remainder of the chapter is structured as follows. In Section 4.2, the back-

ground and related topics of our approach is introduced and the proposed system

is motivated. In Section 4.3, we introduce three di�erent complementary datasets

using the MM-HTAI architecture. In Section 4.4, we describe the prior knowl-

edge of the light microscope camera calibration and the binary 3D volumetric

representation. This is followed by a detailed description of the proposed system.

In Section 4.5 we present experiments and discuss the results. Finally, in Section
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4.2 Background and related work

4.6 we summarise the answer to RQ 4, present conclusions and describe future

work.

4.2 Background and related work

Given a sequence of calibrated multi-view images of an unknown scene, one cat-

egory of the multi-view stereo (MVS) approaches aims to estimate a depth map

for each view by matching each pixel of a binocular image pair [99, 100, 101].

The matching criterion is usually de�ned within a support window, i.e., a local

neighbourhood, centred around a target pixel [102, 103]. Another approach for-

mulates the depth map estimation as a continuous optimisation problem of an

energy functional integrating colour, spatial consistency of neighbouring views

and a global smoothness constraint [104]. A merging strategy is developed to in-

tegrate the multi-view depth maps. A patchmatch method [105] takes the slanted

planar surface into account for a better depth map estimation in binocular stereo.

An extension of the patchmatch method is developed for massive parallelisation

and integration of multi-view depth maps [106].

Alternatively, a conventional MVS approach directly estimates the surface points

of an object using a sparse-to-dense strategy [107]. A novel approach [108] extends

the patch-based method into multi-view 4D reconstruction, solving the problem

of temporally consistent 3D modelling in videos.

Regarding MVS, an accurate estimation of epipolar geometry is essential, which

could signi�cantly reduce the search space on the epipolar line and thereby in-

crease the matching quality [67]. Structure from motion (SFM) enables the esti-

mation of camera poses from the cooperation of salient point detection [109, 110]

and bundle adjustment [89, 111]. However, both SFM and MVS rely on the

quantity and quality of the salient point detection and matching from correlated

images. In our light-microscopy imaging, the challenge is that the object surface

and boundaries are not always well-de�ned. In most cases, volume instead of

surface for an object is observable.

For image based 3D reconstruction, the volumetric representation approach is

an important category. The goal is to estimate a convex hull in the 3D space

represented as discrete voxels according to their visibility to each view [31, 73,

74, 112]. Accordingly, the shape-based method de�nes the 3D object through the
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4. A NOVEL 3D RECONSTRUCTION APPROACH

intersection of a set of projections exposed from the 2D shapes of the objects in the

images. A space carving algorithm aims to recover the 3D object by wiping out

the voxels which are consistently invisible to the views [75, 76]. These methods,

however, require accurate image segmentations which are not always available in

light microscopy imaging.

In addition, the textures from the multi-view images can be used to optimise the

3D volumetric representation based 3D reconstruction [79, 80, 81]. Instead of us-

ing a binary representation, the probabilities indicating the membership of each

voxel are estimated by applying multivariate Gaussian kernels on the textures of

foreground and background, respectively. However, this requires user speci�ca-

tion. Consequently, the quality of user input will, to a certain extent, determine

the quality of the 3D reconstruction. Other methods attempt to fuse the shape

and texture consistency in an integral deformable framework [113].

There are also other well-designed 3D reconstruction methods. Some in partic-

ular solve the problem of specular and transparent object reconstruction [114].

These methods work well on a macroscopic scale as they position special patterns

behind the object to enable the shape-from-distortion or set up various lighting to

collect surface re�ective-highlights [115, 116, 117]. A recent study [118] presents

a semantic reconstruction as a convex-relaxation formulation which combines a

data term and a regularisation constraint, achieving elaborate results on pub-

lic datasets [100]. Nowadays, deep learning is used in the MVS to improve the

matching quality [119, 120]. This type of method requires a large volume of

training data, which, in our case, is not available.

From the study of related work, we may conclude that the volumetric repre-

sentation based approaches, such as shape-based 3D reconstruction with binary

volumetric representation are most promising in addressing the challenge of 3D

reconstruction and measurements for light microscopy imaging. However, this

conclusion is not su�cient in itself, as in some cases accurate 2D shapes cannot

be obtained. Therefore, we have developed the 2-3DLA method to solve the prob-

lem. In our approach, we �rst estimate a con�dence map using the augmented

textures from the axial-view images. The con�dence map is actually an improved

3D representation. Subsequently, we accomplish the 3D reconstruction using the

region based level set method on the con�dence map. A validation has shown

that our method yields accurate 3D measurements.
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4.3 Dataset collection

4.3 Dataset collection

In Chapter 3, we have developed our MM-HTAI architecture. In this section, we

provide a comprehensive depiction of the dataset collection and show how the

multi-modal images are produced.

The VAST BioImager is speci�cally set up to work for high-throughput imaging of

zebra�sh. For the remainder of the chapter, the concept of specimen and zebra�sh

are both used. Specimen is used in a generic context while zebra�sh is used

in the particular application of the zebra�sh high-throughput imaging. In the

VAST BioImager, the specimens, i.e., zebra�sh larvae, are positioned along their

longitudinal axis as in this manner the most important features can be readily

observed; it is also related to the manipulation of the specimen in the capillary.

In this orientation we obtain images from all axial-views along the pro�le axis

from one full revolution. A schema of the imaging architecture is depicted in

Subsection 3.3.1 (Fig. 3.2). A positioning module consists of a capillary (the

holder of specimen) and a set of stepper motors that accomplish the rotation

manipulation of the specimen.

A VAST camera (#1) is mounted with the device and used to detect the location

and orientation of the specimen so as to keep it in the �eld of view for image

acquisition. An object is revolved over 360 degrees by the stepper motors so that

bright-�eld images for the specimen in the axial-views can be acquired. These

image always depict the whole specimen. The VAST camera (#1) is an Allied

Vision Systems, Pro Silica GE 1050 CCD (pixel size 5.5 µm × 5.5 µm.). This

camera acquires images of 1024×1024 pixels. The resolving power for this camera

system is about 13.4 µm.

The VAST unit is mounted on a microscope, of which the microscope-camera (#2)

is able to acquire detailed microscopic images both in bright-�eld and �uorescence

from arbitrary axial positions; this setup uses the Leica DFC450C CCD (pixel

size 3.4 µm×3.4 µm) and it acquires images of 1920×2560 pixels (5 Megapixel).

We use two objectives in this case. The resolving power for a 2.5× objective is

about 4.8 µm and for a 4× lens (red �uorescence) it is about 3.1 µm.

The image acquisition protocol is as follows. In a full revolution of the capillary, 84

axial-view images are acquired for the specimen. The step size between adjacent

axial-views is about 4.3◦ (360◦ ÷ 84 ' 4.3◦). We have shown that 21 evenly

sampled axial-views (N = 21) are su�cient to obtain accurate results [98]. We
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4. A NOVEL 3D RECONSTRUCTION APPROACH

apply this acquisition protocol to obtain 3 di�erent datasets that we will use as

case-studies for the evaluation of our 2-3DLA approach under di�erent imaging

conditions.

Dataset A is obtained by the VAST camera. A number of zebra�sh larvae during

di�erent development stages, i.e., 3, 4 and 5 days post fertilisation (dpf) are

acquired. The dataset �nally contains 12 examples for 3 dpf, 24 examples for 4

dpf and 24 examples for 5 dpf, respectively, and 60 examples in total. We will

use the images from this dataset as example to interpret our 2-3DLA system.

Examples of the images in this dataset are shown in Fig. 4.3. This dataset is also

used in Chapter 3.

Dataset B is obtained using the microscope-camera; the VAST unit manipulates

the position of the specimen while, in this case, the microscope-camera acquires

bright-�eld images. For the acquisition the objective 2.5 × /0.07NA is used.

Dataset B consists of a set of representative examples, i.e., 3 specimens of 5 dpf.

Examples of the images are depicted in Fig. 4.6.

Dataset C represents a collection of images of an internal structure of the ze-

bra�sh, i.e., an organ. These images are obtained using the �uorescence imaging

modality as the organ is speci�cally visible with �uorescence. For �uorescence we

use the objective 4 × /0.12NA to collect the dataset for the zebra�sh liver. We

used 7 zebra�sh samples of 3 dpf. The microscope is equipped for �uorescence

and the images are acquired with the microscope-camera. Examples of the im-

ages are depicted in Fig. 4.7; in Appendix A the preparation of these samples is

given.

4.4 Two-phase 3D reconstruction from axial-views

In this section we elaborate on the 2-3DLA approach. For the 3D reconstruc-

tion using axial-views, a microscope camera calibration is necessary. This can

be solved by the algorithm of voxel residual volume maximization. As a base-

line method, the shape-based 3D reconstruction is used for comparison with our

method. For the details of the microscope camera calibration and the shape-

based 3D reconstruction method, we refer to Section 3.3. Below we discuss: the

improved 3D volumetric representation as con�dence map in Subsection 4.4.1 and

3D reconstruction as objective function optimisation in Subsection 4.4.2.
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4.4 Two-phase 3D reconstruction from axial-views

4.4.1 Improved 3D volumetric representation as con�dence map

In shape-based 3D reconstruction we need accurate segmentations of the original

images. These are, however, not always satisfactory. One of the important com-

plications is the translucency and transparency of the specimen in the images.

We, therefore, propose the improved 3D volumetric representation in the form

of a con�dence map which is derived from the probabilistic models as estimated

from the object and background presented in the axial-view images.

We observe that the partial transparency of the specimen is di�cult to recover.

Severe texture variation within the object challenges the generality of the proba-

bilistic models. We therefore need to collect prior knowledge on the approximate

locations of the objects of interest and background. It can be implemented in

an interactive manner. In this case, the results of the 3D reconstruction will

rely on the quality of the user input; insu�cient user input tends to produce an

underestimated model.

In following, we propose to apply the MS algorithm to obtain the approximations

of the 2D shapes for the specimen. The MS algorithm improves the texture rep-

resentation of the object so that the translucent and transparent regions of the

specimen become more separable from the background. We threshold the texture-

augmented images to obtain the 2D shape approximations. This also results in

an augmentation of the texture representation in the transparent parts of the

specimen. The approximations of the 2D shapes can roughly separate the object

and background. Although such shape approximations are inaccurate, morpho-

logical operations to the envelope of the shape (dilation and erosion) enforce the

discrimination of the object and background. In this manner, we have solved the

problem of texture augmentation for the partial transparent specimens. In addi-

tion, the obtained 2D shape approximations can serve as the shape constraints,

such that almost all texture information included by the object can be sampled.

This improves the generalisation of the probabilistic models and contributes to

the successful automation of the whole system.

We combine the multi-scale textures interpreted as image pyramids to further

enhance the probabilistic models. Now, let Isc = {I(1,sc), I(2,sc), ..., I(N,sc)} and

S = {S1,S2, ...,SN} denote the images (after mean shift �ltering) in scale of sc

and the approximations of 2D shapes in original scale, where N represents the

number of views. In any of the views, the foreground and background can be

approximately discriminated and indexed by xf and xb, where S(Ω) ≈ {xf ,xb}
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4. A NOVEL 3D RECONSTRUCTION APPROACH

and Ω represents the whole image domain. Then, the multi-scale textures are

represented as Isc(xf ) and Isc(xb), where Isc(x) = (r, g, b)T denote the RGB

values in colour space for any pixel in scale sc. Next, a multivariate Gaussian is

applied to estimate the probabilistic models of the range images for each speci�c

scale. Thus:

p(f,sc)(xf ) =
1√

(2π)3|Σf |
e−

1
2

(Isc(xf )−µf )T Σ−1
f (Isc(xf )−µf )

p(b,sc)(xb) =
1√

(2π)3|Σb|
e−

1
2

(Isc(xb)−µb)T Σ−1
b (Isc(xb)−µb)

(4.1)

where p(•,sc) represents the probabilistic model estimated for the textures in scale

sc; and (µf , Σf ) and (µb, Σb) denote the mean vectors and the covariance matri-

ces estimated for the foreground and background, respectively. To avoid overesti-

mation of the probabilistic models, we randomly select a subset of the axial-views

for computation.

A voxel X ∈ X in 3D space corresponds to a pixel location in I(i,sc) (the ith

image in scale sc) through the pinhole camera model x = PiX, where Pi ∈ P
is the camera projection matrix estimated for each view. We can obtain the

probabilities of this voxel being the foreground and background by pf (x) and

pb(x). Suppose that all the N axial-view images Isc in scale sc are independent,

the joint probabilities of a voxel X indicating its visibility to the foreground and

background can then be modelled as follows:

P(f,sc)(X) =

( ∏
i=1:N

p(f,sc)(x)

) 1
N

P(b,sc)(X) = 1−

( ∏
i=1:N

(1− p(b,sc)(x)

) 1
N

(4.2)

We can interpret Eq. (4.2) as the intersection of the N camera projections for

each voxel. We use the logarithm to re-scale the two probabilities. The multi-

scale probabilistic models are then fused to obtain the con�dence map de�ned

as:
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4.4 Two-phase 3D reconstruction from axial-views

I∗ =
M∑
sc=1

βsc
[
log(P(f,sc))− log(P(b,sc))

]
(4.3)

where β = {βsc}sc=1:M speci�es the weight for each scale and 1T · β = 1. In

our speci�c implementation, a uniform distribution of β is used, which simply

averages the multi-scale probabilities. We use three-scale textures (M = 3) in

a hierarchical fashion, such that the higher scales can be generated by halving

the images in the respective lower scales. The con�dence map takes a con�dence

score as the entry for each voxel to indicate its likelihood to be the object (or

background). The larger the con�dence score of a voxel is, the more possible that

voxel is classi�ed as the object.

4.4.2 3D reconstruction as objective function optimisation

With the con�dence map, we can accomplish the 3D reconstruction by searching

for an enclosed surface which is able to correctly classify all the voxels into the

object and background. The marching cubes algorithm [121] straightforwardly

estimates a speci�c surface. However, it is di�cult to determine which is the

optimal one; and serious fractal behaviour of the estimated surface will occur.

This will result in inaccurate 3D measurements of volume and surface area. An

empirical solution can be applied to cascade a surface re�nement module which

needs to be carefully validated. In this work, we apply the region based level

set method (CV model) [41] to accomplish this task. The employment of the

CV model transfers the 3D reconstruction problem into a 3D segmentation. The

optimal enclosed surface retaining a smooth appearance is achieved.

According to the CV model, an enclosed 3D surface C is embedded in a distance

regularised level set function (LSF) C := {X ∈ Ω;φ(X) = c}, where Ω and X

are consistently de�ned as the image domain (3D in this case) and the spatial

locations of the voxels in world frame. To separate the object and background

according to the similarity in the con�dence map we de�ne the objective function

Eq. (4.4). This includes the external force as the con�dence map and the internal

force as the smooth appearance of the surface. Thus:
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4. A NOVEL 3D RECONSTRUCTION APPROACH

E(φ) = µ

∫
Ω

|∇H(φ)|dX︸ ︷︷ ︸
internal force

+ υ

∫
Ω

[
|I∗ − uin|2H(φ) + |I∗ − uout|2(1−H(φ))

]
dX︸ ︷︷ ︸

external forece

(4.4)

where, uin and uout represent the mean intensity of the con�dence map in and

outside of the surface; µ and υ are constants used to balance di�erent terms. H

is the Heaviside function de�ned as follows:

Hε(x) =

{
1, if x ≥ 0
0, if x < 0

(4.5)

Using the Euler-Lagrange equation, as:

∂φ

∂t
= −∂E

∂φ
, (4.6)

one can implement the surface evolution by computing the gradient �ow for the

objective function de�ned as:

∂φ

∂t
= δ(φ)

{
µ div

(
∆φ

|∆φ|

)
+ υ

[(
|I∗ − uout|2 − |I∗ − uin|2

)] }
, (4.7)

where δ(φ) is the derivative of H(φ). By setting a proper step size ∆t, we can

complete the 3D reconstruction via gradient descent, de�ned as:.

φt+1 = φt + ∆t
∂φ

∂t
(4.8)

3D measurements inference Given the 3D reconstruction represented as the

optimal surface embedded in φ, we can derive the 3D measurements. The volume

is obtained by the integration over all the voxels which are included in the object

φ: V =
∑

φ 1[φ > c∗]×v, where 1[•] keeps its representation as an indicator func-
tion; c∗ is the optimal c-level set which we will investigate in following sections; v

is the unit volume for the voxels which is pre-de�ned. A set of surface points are

generated from the c∗-level set of φ, which will be used to produce a triangulated

mesh. The surface area is obtained by the integration over all the facets in the

82



4.5 Experiments

triangulated meshes using Heron's formula A = (s(s− a)(s− b)(s− c))1/2, where

s = (a+ b+ c)/2 and a, b, c represent the edges of a triangle.

4.5 Experiments

In this section, we describe our experiments to evaluate the performance of the

proposed approach for our datasets. In Subsection 4.5.1, we perform a visual

inspection of the results on Dataset A. In Subsection 4.5.2, we discuss how to

obtain accurate 3D measurements for Dataset A. In Subsection 4.5.3, we perform

visualisation and 3D measurements on Dataset B & C. In Subsection 3.5.4, we

evaluate the proposed method by runtime.

4.5.1 Visual inspection of the results on Dataset A

We �rst apply (A) di�erent methods on the Dataset A to compare the obtained

3D models through visualisation. We next (B) apply our 2-3DLA approach on

the whole Dataset A to demonstrate its performance on the zebra�sh in various

developmental stages.

(A) Comparison with various methods using visualisation

We implemented an interactive method [81] which requires user input to indicate

the approximate locations of the object and background. So, the quality of the

3D models will rely on the user input. The shape-based 3D reconstruction is also

used in this comparison.

In Fig. 4.2 (A), the results obtained by the interactive method are shown. Two

types of user input are employed to estimate the probabilistic models for each

specimen. One input collects less textures by drawing shorter scribbles on the

object. The other input covers a larger region of the object, thus collecting more

texture information. In Fig 4.2 (A), the corresponding 3D reconstructions are

shown next to the input drawings. Our assumption is con�rmed that variations

in user input impact the quality of the 3D reconstructions. Su�cient texture

sampling usually results in better 3D reconstructions preserving most of the shape

of the specimen. However, even with �good� user input, parts of the zebra�sh,

mostly at the tail area, still fail to be faithfully reconstructed. The main reason

is the considerable texture inhomogeneity of the specimen which hampers the
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3 dpf

4 dpf

5 dpf

(A) Interactive method (B) Shape-based method (C) 2-3DLA

Figure 4.2: Comparison of visualised results of di�erent methods. We select
one example from each larval stage, i.e., 3, 4 and 5 dpf. For each 3D model, we
visualise the same perspectives, i.e., lateral and ventral. (A) The 3D reconstruction
of the interactive method. The users randomly draw on the object of interest (red
scribble) and background (blue scribble), respectively. Two types of user input are
considered, as shown on the left. Corresponding 3D reconstructed models are shown
on the right. (B) The 3D reconstruction of the shape-based 3D reconstruction. The
raw 3D models are shown in the top two rows. The 3D models with extra surface
re�nement are shown below. (C) The 3D reconstructions of the 2-3DLA using only
the original-scale textures and multi-scale textures are separately shown in each
box above and below.

generality of the probabilistic models and thereby results in a misclassi�cation

of the translucent part of the specimen as background. From the results of the

interactive method, we can also observe the fractal behaviour of the surface.

It is apparent that inaccurate 3D reconstruction will result in inaccurate 3D

measurements.

In Fig. 4.2 (B) we show results of the shape-based method with a set of accurate

2D shapes, which generates very accurate 3D shape representation of the spec-

imen. Each shape shows a natural and detailed surface, but fractal behaviour

also occurs due to the carving e�ects of the method. This is depicted in the top

two rows of Fig. 4.2 (B). After extra surface re�nement [93], accurate 3D mea-

surements can be available. The re�ned 3D models are shown in the bottom two

rows of Fig. 4.2 (B). We need to accept that the shape-based method requires
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accurate 2D segmentations from the original images which are sometimes di�cult

to obtain in light microscopy imaging.

In Fig. 4.2 (C) we show the 3D models obtained by the 2-3DLA system. In

the top two rows, the 3D reconstructed models are obtained by the con�dence

map derived with one-scale texture. In the bottom two rows, the results obtained

with three-scales texture are shown. One can observe a better 3D visualisation

for both of the results. In the 2-3DLA, the employment of the MS algorithm

ensures improved discrimination between the object and background. Further-

more, the shape constrained texture collection augments the generality of the

con�dence map. These improvements cooperate in obtaining a better volumetric

representation. The CV model aims to search for the optimal surface which can

largely separate the object and background in the con�dence map and preserves

a smooth appearance of the specimen, which subsequently results in accurate

3D measurements. However, a little fractal behaviour is still showing in the re-

sults with one-scale texture, resulting in a slightly de�cient tail region of the

zebra�sh.

(B) 3D visualisation for Dataset A using 2-3DLA

Here we apply the 2-3DLA on the whole Dataset A. In Fig. 4.3 some results are

depicted. For each developmental stage of the zebra�sh, we randomly select one

specimen in the dataset. To create additional value for 3D models, we map the

textures from the original images onto the surface of the 3D models to produce

texturised 3D shapes. For practical reasons, the texturing of the partial trans-

parent regions is arti�cial. We separately show the binary and the texturised 3D

models in the middle and bottom rows for each specimen. We select three typical

axial-views, i.e., lateral, tilted, and ventral.

From the visualisation, we can assess that the 2-3DLA obtains quite natural and

vivid 3D shapes for the specimens. The problem arising from the translucency

and transparency seems to be solved. From the 3D shapes it is obvious that older

zebra�sh are larger compared to the younger ones. The size of yolk in the various

stages is di�erent. During the development, the yolk of the zebra�sh provides nu-

trient for its growth. Consequently, older zebra�sh have smaller yolk, simply as a

result of their growth. Furthermore, the 3D shape obtained by our approach of-

fers a good framework for the visualisation of the biological system by introducing

organ-level 3D systems, the circulatory system, the liver, the brain, etc.. Using

speci�c staining, the 3D systems can be incorporated and visualised. The whole
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(A) 3 dpf

(B) 4 dpf 

(C) 5 dpf 

Figure 4.3: 3D models visualisation of the zebra�sh in various larval stages from
Dataset A. Each bounding box denotes a staged zebra�sh. For each specimen, three
typical perspectives are shown in di�erent columns. The original axial-view images
are shown in the top row; the pure 3D models are shown in the middle row; the
texturised models are shown in the bottom row.

process is reviewed in a 2-3DLA spotlight including animated visualisations of the

3D models at http://bio-imaging.liacs.nl/galleries/VAST-2-3DLA/.

4.5.2 3D measurements for Dataset A

We investigate how to obtain accurate 3D measurements from the 3D models

obtained by the 2-3DLA. To this end, the hyperparameter of c-level set needs to

be tuned, because an unvalidated c-level set may lead to inaccurate 3D measure-

ments. We present two interpretations, (A) the 2D shape coherence and (B) the

3D shape coherence, for the inference of accurate 3D measurements. We compute

the (C) 3D measurements based on the inference for Dataset A.
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0-LS

View 1 View 2

2-LS

3-LS

Figure 4.4: 2D shape coherence
(red) between the projections from
3D models to axial-view images and
the groundtruth 2D shapes (green
contours) with various c-level sets.
A subsection of the original 2D
shape coherence (dashed bounding
box) is zoomed in and shown at the
bottom of each row.
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Figure 4.5: 3D shape coherence
with various c-level sets. The tri-
angles indicate the minimum of
the measurements, which are found
around 1.4-level set.

(A) 2D shape coherence

A good 3D reconstruction must approximate the real shape of the object. We

evaluate and interpret this as shape coherence. We de�ne the 2D shape coherence

as a disparity map from the projected shape of a 3D model to a �groundtruth

2D shape� in each original axial-view. We have developed a robust method for

the segmentation of zebra�sh larvae. Using manual segmentations, the method is

validated and turned out to be accurate. We thereby use the segmentation results

as the approximation of the groundtruth 2D shape for the Dataset A. Accordingly,

we interpret the 2D shape coherence as the overlap from the projected shape to

the groundtruth 2D shape. We chose three di�erent c-level sets (c-LS), i.e., 0-LS,

2-LS, and 3-LS, to extract the corresponding 3D models. The 2D shape coherence

that are obtained in this manner are shown in Fig. 4.4. We depict two typical

axial-views of the object, i.e., ventral and lateral. We represent the groundtruth

2D shapes as green contours. In order to appreciate the results, a subsection of

the 2D shape coherence is zoomed in and its visualisation is shown in the bottom
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row for each view.

We observe that a small c-LS, i.e., 0-LS, produces an overestimation of the 3D

model, which presents a large 2D shape coherence. This is illustrated as the

red area exceeds the green contours in the top row of Fig. 4.4. A large c-LS,

i.e., 3-LS, results in a more compact 3D shape of the object, which obtains a

smaller 2D shape coherence. It is illustrated as the red area separating from the

green contours in the bottom row of Fig. 4.4. In contrast, a reasonable c-LS,

i.e., 2-LS, obtains highly correlated 2D shape coherence producing a better 3D

reconstruction.

(B) 3D shape coherence

The shape-based 3D reconstruction method results in a binary volumetric rep-

resentation. If accurate 2D shapes are used in this method, the obtained 3D

model can serve as the �groundtruth�. The 3D shape coherence is then de�ned as

the disparity from the 3D models obtained by the 2-3DLA to the �groundtruth

3D model�. We propose two measurements to evaluate the 3D shape coherence:

volume disparity (V ) and surface area disparity (A). They are separately de-

�ned as V = [(1/M)
∑

i (V
∗
i − V m

i )2](1/2) and A = [(1/M)
∑

i (A
∗
i − Ami )2](1/2),

where V ∗ and A∗ are the volume and surface area measured from the 3D model

groundtruth; V m and Am are the volume and surface measured from the 3D mod-

els obtained using a speci�c c-LS; and M is the number of specimens. We use

half of the Dataset A for the validation of this experiment. In Fig. 4.5, we show

a graph of the 3D shape coherence for various c-LS. We illustrate that the choice

of a small c-LS, e.g., 0-LS, tends to produce an overestimation of the measure-

ments. The choice of a large c-LS, e.g., 2-LS, will lead to an underestimation.

This corresponds nicely with the �ndings in the 2D shape coherence as shown in

Fig. 4.4. Finally, we �nd that the 1.4-LS is a good compromise and gives the

best estimation of the volume and surface area. For the next paragraph (4.5.2

(C)), we use the 1.4-LS to obtain the deterministic 3D models from which we can

derive the 3D measurements.

(C) 3D measurements for Dataset A

We use the remaining half of the Dataset A to compute the 3D measurements of

the zebra�sh in various developmental stages, i.e., 3, 4, and 5 dpf. In this exper-

iment, we compute the statistics for the volume and surface area of the zebra�sh

and show the results in Table 4.1 and 4.2. The 3D measurements obtained from
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Table 4.1: Volume statistics (×108µm3)
of the 3D models for the zebra�sh in

various developmental stages

Shape 2-3DLA
3 dpf 2.53± 0.11 2.56± 0.12
4 dpf 2.63± 0.19 2.66± 0.19
5 dpf 3.00± 0.18 2.96± 0.18

Table 4.2: Surface area statistics
(×106µm2) of the 3D models for the

zebra�sh in various developmental stages

Shape 2-3DLA
3 dpf 3.20± 0.15 3.21± 0.14
4 dpf 3.34± 0.17 3.36± 0.17
5 dpf 3.63± 0.14 3.61± 0.14

the shape-based 3D reconstruction method are used to assess the performance of

the 2-3DLA.

From the tables we may conclude that the 2-3DLA can obtain accurate 3D mea-

surements of volume and surface area comparable to the groundtruth method.

This holds for the zebra�sh in the three developmental stages. The results of

the 2-3DLA are slightly larger, but the di�erence is small and acceptable. One

should note that the 2-3DLA will be advantageous for the cases in which accu-

rate segmentations are not available. Furthermore, the increasing trends of the

volume and surface area for the zebra�sh staged from 3 dpf to 5 dpf is consistent

with the expected physical growth of the zebra�sh. Importantly, Table 4.1 and

4.2 o�er baseline metrics for volume and surface area of the zebra�sh in various

stages; this facilitates quantitative and qualitative analysis using the zebra�sh as

model system.

4.5.3 3D reconstruction and measurements of Dataset B & C

We have shown that the 2-3DLA can obtain an accurate 3D shape description of

the whole specimen o�ering the baseline reference for the 3D measurements. This

is, however, not su�cient to evaluate a specimen on the level of organs. From

the optics used, the resolving power of Dataset B & C (see Section 4.3) is much

higher. Moreover, di�erent microscope modalities are used for these datasets, i.e.,

bright-�eld and �uorescence. As a case study, in addition to the whole specimen,

we use the zebra�sh liver as a model organ system. The liver size is important

to pharmacokinetics, as it is an crucial organ for drug metabolism. For Dataset

B & C, 3D measurements of volume and surface area are separately reported in

Table 4.3 and 4.4. As a comparison, we still use the results obtained from the

shape-based 3D reconstruction approach.

89



4. A NOVEL 3D RECONSTRUCTION APPROACH

Table 4.3: Volume (×108µm3) and surface area (×106µm2) of the
3D models for the zebra�sh in Dataset B

Volume Surface area
Shape 2-3DLA Shape 2-3DLA

#1 3.00 3.05 3.61 3.65
#2 2.95 3.04 3.52 3.60
#3 3.06 3.13 3.69 3.74

Table 4.4: Volume (×105µm3) and surface area (×104µm2) of the
3D models for zebra�sh liver in Dataset C

Volume Surface area
Shape 2-3DLA Shape 2-3DLA

#1 7.70 7.56 4.67 4.57
#2 5.38 4.15 3.61 3.15
#3 8.10 8.47 4.91 5.04
#4 9.06 9.28 5.20 5.18
#5 11.6 9.77 6.07 5.49
#6 15.1 16.6 6.89 7.69
#7 6.55 6.79 4.28 4.31

In Table 4.3 we observe only a small di�erence of the volume and surface area

produced by the 2-3DLA compared to baseline method. This di�erence is accept-

able. It is apparent that both of the measurements are within the distributions

given in Table 4.1 and 4.2. This suggests that the 2-3DLA system shows stable

performance for bright-�eld microscopy axial-view imaging. Subsequently, it can

obtain accurate 3D measurements for the specimen as a whole. In Fig. 4.6, we

show the 3D models for two specimens. The results are presented in the similar

fashion as used in Fig. 4.3. An interesting phenomenon shown in the Example

#1 is that the tail of the 3D model is thinner than the original specimen. The

reason is that, in this experiment, the specimen were alive and anesthetised. Dur-

ing the imaging, the motion of the positioning capillary introduces slight shape

deformations of the specimen. This impedes accurate 3D reconstruction which

requires static objects.

In Table 4.4 we can �nd that most of the zebra�sh livers are reconstructed well

and comparable 3D measurements are obtained. Signi�cant di�erence for the 3D

measurements are found in example #2. Both the volume and surface obtained

by the 2-3DLA are smaller than those obtained by the baseline method. This
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(A) Example #1

(B) Example #2

Figure 4.6: Visualisation of 3D models of the zebra�sh in bright-�eld microscopy
from Dataset B. For each specimen, three typical axial-view images are shown on
the top; the corresponding axial-views of the pure and texturised 3D models are
shown in the middle and bottom, respectively.

(A) Example #1 (B) Example #2

Figure 4.7: Visualisation of 3D models of the zebra�sh liver in �uorescent mi-
croscopy from Dataset C. We show three axial-view images and the corresponding
3D perspectives in the top and bottom row for each specimen.

is caused by the image quality for the example #2. We visualise the 3D model

for this example in Fig. 4.7 (B). We observe that the original axial-view images

do not clearly represent the specimen. A reason for the obfuscation may be the

relatively small external force in Eq. (4.7) for all the specimens, which produces

compact 3D models. In fact, using a di�erent con�guration for the parameter in

example #2 will result in accurate 3D measurements. However, in order to ensure
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Table 4.5: Performance evaluation on runtime (s=second,min=minute)

Step A Step B Step C Step D Total

Dataset A 36± 1.4(s) 12.6± 0.8(s) 35.9± 0.9(s) 2.2± 0.5(min) ∼ 3.6(min)

Dataset B 4.3± 0.2(min) 56.4± 0.9(s) 37.2± 0.4(min) 7.9± 0.5(min) ∼ 50.3(min)

Dataset C 5.5± 0.6(min) 39.0± 7.4(s) 8.8± 1.2(min) 12.1± 1.1(min) ∼ 27.1(min)

• Step A: Image capture • Step B: 2D shape approximation
• Step C: Camera system calibration • Step D: 3D reconstruction

a justi�ed evaluation of this experiment, we reported the results obtained with the

same parameters. In future work, we can validate the parameter speci�cations in

relation to image quality.

4.5.4 Evaluation on e�ciency

For the evaluation of the computational e�ciency of our approach, we �rst specify

the setup. We represent the process of (1) image capture, (2) 2D shape approxi-

mation, (3) camera system calibration, and (4) the 3D reconstruction as Step A,

B, C, and D, respectively. In Step A, we use the VAST BioImager to automati-

cally obtain Dataset A. A well-trained biologist used the microscope setup (Leica

DMRB) to acquire Dataset B & C. In this data acquisition, the object is manip-

ulated by the VAST BioImager to present in the view of the microscope. The

remaining steps are implemented with the Matlab platform (and partial C/C++

implementation) on a desktop equipped with a CPU i7 and 16G RAM. In Step

B, we heuristically con�gure the �lter width in spatial, colour feature space as

(hs, hr) = (10, 20) for Dataset A; and (hs, hr) = (20, 30) for Dataset B & C. In

Step C, we �nd that the Nelder-Mead simplex method works much faster for

Dataset A & C. The evolution strategy achieves robust performance for Dataset

B, though it is not e�cient. We take a compromise on the optimisers and we

apply the Nelder-Mead simplex method for Dataset A & C and the evolution

strategy for Dataset B. In phase II of our 2-3DLA, we set the parameters µ = 10,

υ = 1, and ∆t = 0.5 for all cases.

In Table 4.5, for each step from A to D, we report the performance evaluation in

terms of runtime in minutes or seconds for the three datasets. We compute the

average and standard deviation of the runtime for each specimen in the datasets.

First, from the results, we may conclude that the performance of our approach
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on Dataset A is most e�cient. In contrast, the larger size of the images in

the Dataset B and C results in an expensive computation for our approach.

Second, Step B performs very e�ciently in the three datasets due to our fast

implementation of the MS algorithm. Third, Step C in Dataset B and C requires

a large amount of computations. The reason is that during the camera system

optimisation, massive evaluations for the cost function are executed. However, a

better optimiser and a high-performance scheme such as parallelisation or GPU

programming can be employed to improve the e�ciency of this step. Fourth, Step

D in the three datasets seems be computationally expensive. One reason is the

iterative 3D surface evolution. We set up a restricted termination criterion that

requires the change of the cost function to be close to zero. So, this results in more

iterations. In addition, we set a small grid size for the voxel space. This leads to

massive projections and demands a large amount of memory to ful�l a precision

guarantee. Again, this can, to a certain extent, be solved by the introduction of

high-performance computing strategies.

4.6 Chapter conclusions and future work

Imaging of partially transparent objects impedes the visualisation of a continuous

surface which renders it di�cult to estimate a depth map of the object. To

handle this problem, we �rst present three typical datasets using our MM-HTAI

architecture. We then have developed the 2-3DLA approach for 3D reconstruction

and measurement in light microscopy axial-view imaging. It answers RQ 4: How

can we e�ciently deal with the translucency and transparency of specimen in

light microscopy and still obtain a good 3D shape description from the MM-HTAI

architecture?

More concrete, in phase I of our 2-3DLA approach, we estimate an improved 3D

volumetric representation as a con�dence map from a range of texture-augmented

images by applying the MS algorithm on the original images. In phase II, we adapt

the region based level set method to estimate the optimal enclosed surface for the

object which balances the 3D shape integrity and the smoothness of appearance

for the 3D model. Compared with the shape-based method, the proposed 2-3DLA

approach obtains comparable 3D reconstructions and measurements, but it does

not require accurate 2D segmentations of the original images. As segmentation of

partial transparent objects can be di�cult, this system provides a good solution
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to this shortcoming. Unlike the shape-based 3D reconstruction method, the 2-

3DLA does not need extra re�nement to obtain a natural and smooth 3D surface.

We have successfully applied our approach for zebra�sh analysis in multi-modal

light microscopy axial-view imaging including bright-�eld and �uorescence. The

obtained results can be directly used for the model system evaluation in the �elds

of toxicology, infectious diseases and oncology.

Still, we admit that the e�ciency of our approach needs improvement with respect

to larger images. A possible solution can be a dynamic programming scheme for

high-performance parallelisation. As is well known, the zebra�sh model is inten-

sively used in the �eld of life-sciences. Therefore, in our 2-3DLA we can learn a

good probabilistic model for the zebra�sh either in supervised or semi-supervised

way [122]. Yet, our approach needs the support from 2D shape approximation in

the process of camera system calibration. In future research, we thus aim for a

method which is independent on image segmentation. In addition, other multi-

view imaging modes are investigated by our method. However, the axial-view

imaging is the most commonly used modality, so the 2-3DLA can be considered

generic for other specimen observations.

Appendix A

The zebra�sh used in Dataset C are from a transgenic line Tg(lfabp:dsRed;

elaA:EGFP) with 2 �uorescent colours for liver and pancreas (2CLIP). The eggs

were kept in 60 µg/mL Instant Ocean Sea Salts (Sera Marin, Heinsberg Ger-

many) in demineralised water and treated with 0.003% 1-phenyl-2-thiourea (PTU,

Sigma-Aldrich, Zwijndrecht, The Netherlands) to prevent pigmentation.
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