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Chapter 2

A Hybrid Segmentation Method for
2D Shape Description

Based on:

� Y. Guo, Z. Xiong & F.J. Verbeek, �An e�cient and robust hybrid method

for segmentation of zebra�sh objects from bright-�eld microscope images,�

submitted to Machine Vision and Applications, 2017.
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

This chapter addresses RQ 2.

RQ 2: To what extent is it possible to obtain an accurate 2D shape

description for the zebra�sh from the MM-HTAI architecture?

Abstract � Accurate segmentation of zebra�sh from bright-�eld microscope im-

ages is crucial to many applications in the life-sciences. Early zebra�sh stages are

used and in these stages the zebra�sh is partially transparent. This transparency

leads to edge ambiguity as is typically seen in the larval stages. Therefore, seg-

mentation of zebra�sh objects from images is a challenging task in computational

bio-imaging (see Section 2.1). Popular computational models fail to segment the

relevant edges which subsequently results in inaccurate measurements and evalu-

ations (see Section 2.2). Here we present a hybrid method to accomplish accurate

and e�cient segmentation of zebra�sh specimens from bright-�eld microscope im-

ages (see Section 2.3). (A) We employ the mean shift algorithm to augment the

color representation in the images (see Section 2.3.1). This (1) improves the dis-

crimination of the specimen to the background and (2) provides a segmentation

candidate retaining an overall shape of the zebra�sh. (B) A distance regularised

level set function is initialised from this segmentation candidate and fed to an im-

proved level set method, such that we can obtain another segmentation candidate

which preserves the explicit contour of the object (see Section 2.3.2). (C) The two

candidates are fused using heuristics and the hybrid result is re�ned to represent

the contour of the zebra�sh specimen (see Section 2.3.3). We have applied the

proposed method on two typical datasets (see Section 2.4.1). From experiments,

we conclude that the proposed hybrid method improves both e�ciency and ac-

curacy of the segmentation of images with zebra�sh specimen (see Section 2.4.2

& 2.4.3). The results are going to be used for high-throughput applications with

zebra�sh (see Section 2.5).
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2.1 2D shape description

Volume:           𝟐. 𝟓𝟓 × 𝟏𝟎𝟖𝝁𝒎𝟑

Surface area:   𝟑. 𝟒𝟐 × 𝟏𝟎𝟔𝝁𝒎𝟐

(B)

(A)

Figure 2.1: Typical applications of zebra�sh segmentation. (A) Fluorescence
images visualization and evaluation. Bright-�eld zebra�sh images o�er reference for
the shape of the specimen (column one). Fluorescent images present informative
signals, e.g. the blood vessels in green (column two). Accurate segmentation of
the bright-�eld image provides a good shape reference to evaluate the �uorescent
signals, for example, the development and concentration of speci�c cells (column
three). (B) 3D zebra�sh reconstruction from axial-views. Axial-view zebra�sh
images (column one) are segmented to obtain 2D binary shapes (column two), from
which the axial-view based 3D reconstruction produces 3D models as well as 3D
measurements (column three).

2.1 2D shape description

High-throughput imaging applications pose a challenge to the image acquisition

in that in some cases the quality of the imaging is compromised at the cost of

the speed of the imaging. Often this compromise is well-studied and the loss

of quality is relatively mild. We have studied high-throughput applications for

zebra�sh; the zebra�sh is a popular model system in bio-medical research. At

present, high-throughput applications for zebra�sh can be found, among others,

in the �elds of toxicology, cytology and oncology [36, 37].
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

(F)

(B)

(D)

(E)

(A)

(C)

Figure 2.2: Segmentations by di�erent methods for a zebra�sh specimen in lateral
position. Blue bounding box indicates the expected segmentations and red bound-
ing box indicates inaccurate segmentations. (A) Segmentation by the geodesic
active contours (GAC) model. Due to the edge sensitivity, the GAC model fails to
detect the tail of the specimen. (B) Segmentation by Chan-Vese (CV) model. The
partial transparency of the specimen makes it di�cult for a region based method to
discriminate the object from the background. (C) Segmentation by a local region
based level set (LRLS) model. Similar problem occurs that the tail of the spec-
imen is incorrectly segmented. (D) Segmentation by an improved level set (ILS)
method. (E) Segmentation by mean shift (MS) algorithm. Better results are ob-
tained though, edge sensitivity becomes worse. (F) Segmentation by the proposed
hybrid (HY) method. The accurate segmentation presents a natural and compact
shape description for the zebra�sh specimen.

The development of zebra�sh high-throughput imaging [7] has resulted in massive

amounts of data, i.e. images, becoming available. This requires an e�cient and

robust analysis for the images, so that phenotype descriptions of the zebra�sh can

be generated. Genetically engineered zebra�sh can be labelled with �uorescent

markers. Images from �uorescence present good properties of visibility and mea-

surability for cancer cells and organs. In order to evaluate the features which are

usually represented as color intensity and concentration from the �uorescence,

accurate segmentation of the zebra�sh in bright-�eld images is quite essential to

o�er a shape reference for the measurements [38]. So, feature evaluations from

control and experimental groups become comparable. In Fig. 2.1(A), an example

of this application is depicted.
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2.1 2D shape description

(A)

(B)

(C)

(D)

(E)

(F)

(G)

Figure 2.3: A pipeline schematic of the hybrid method. (A) MS algorithm is
applied to improve the visibility of the transparent regions and weak edges. (B)
An enclosed contour is extracted from the segmentation candidate in (A). (C) A
distance regularized level set function (LSF) is initialized from the zebra�sh contour
in (B). (D) The ILS method is activated and applied on the original image. (E)
Another segmentation candidate is generated. (F) An initial hybrid segmentation
of the zebra�sh is obtained by stitching the remarkable segments from the two
candidates according to pre-de�ned protocols. (G) A re�nement is followed to �ne-
tune the segmentation which can accurately represent the shape of the zebra�sh.

Moreover, we can observe more informative features, e.g. volume, surface area and

3D shape variation, in 3D zebra�sh imaging [39]. To this end, we need accurate 2D

zebra�sh segmentation to obtain su�cient shape priors for the axial-view based

3D zebra�sh reconstruction [40]. In Fig. 2.1(B), we show this application.

In a particular case, according to the observation that the hemopoietic stem cells

in zebra�sh predominantly distribute in the tail, an accurate description of the

overall shape of the zebra�sh will ensure the evaluation of particular diseases by

detecting and localising the tail region [17, 18]. Thus, an accurate segmentation

of zebra�sh objects in bright �eld microscopy is very signi�cant for a large range

of biomedical applications.
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

Computational methods from the �eld of computer vision can, in principle, help

to accomplish the image segmentation task in zebra�sh imaging. However, when

popular image segmentation methods are applied, for example, the geodesic ac-

tive contours (GAC) model [28] and the Chan-Vese (CV) model [41], the inho-

mogeneity of the intensity distribution caused by partial transparency and edge

discontinuity of zebra�sh larvae usually results in an inaccurate segmentation. To

illustrate these e�ects, in Fig. 2.2(A) and Fig. 2.2(B), the segmentation results

from, respectively, the GAC model and the CV model are shown. These segmen-

tations show that the CV model converges at the most observable region but fails

to retain the whole shape of the object; the GAC model obtains a poor shape

description for the zebra�sh tail. As shown in Fig. 2.2(C) and Fig. 2.2(D), other

improved algorithms, such as the local region based level set (IRLS) model [42]

and the improved level set (ILS) method [43] also do not result in an accurate

segmentation of the zebra�sh.

In fact, the edge based methods including the GAC model and the ILS method

are able to accurately discriminate the visible edges but su�er from the problem

of edge leakage. In contrast, as depicted in Fig. 2.2(E), unsupervised learning

methods such as the mean shift (MS) algorithm [29] can obtain an overview

shape description for the object, whilst the explicit edge will be, to a certain

extent, contaminated due to region fusion e�ects.

For this particular research project, we aim at an e�cient and robust solution

for accurate zebra�sh segmentation from bright-�eld microscope images. We,

therefore, have developed the hybrid (HY) method to combine the advantages

of various models. The objective of the HY method is to largely preserve the

prominent contour of the object and discriminate the transparent regions and

weak edges. In Fig. 2.2(F), we show the segmentation result. A schema of the

HY method is depicted in Fig. 2.3, and below we elaborate the method.

In (A), we apply the MS algorithm on the original image to improve the color

representation from the transparent object with respect to the background and

obtain a segmentation candidate. This initial segmentation retains and approxi-

mates an overall shape of the zebra�sh. In (B), we extract an enclosed contour

for the object from the results obtained in (A). In (C), a distance regularised

level set function is initialised from the result obtained in (B). In (D), with the

initialised level set function, the ILS method is applied on the original image to
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2.2 Related work and background

obtain another segmentation candidate. It is important that this manner of ini-

tialisation signi�cantly accelerates the curve convergence of the level set method

and improves the segmentation accuracy. Because the initialisation already ap-

proaches to the edge potentials, the local minimum problem is solved to a certain

extent. In (F), according to pre-de�ned protocols, we heuristically fuse the two

segmentation candidates. In (G), a cascaded re�nement module aims to �ne-tune

the segmentation result, which drives the contour to describe the shape of the

zebra�sh in a compact and accurate form.

A similar initialisation idea to step (C) is proposed in [44]. However, the employ-

ment of the MS algorithm in this work is not only to accelerate and stabilize the

curve evolution, but also to obtain an overall view of the shape of the zebra�sh

which is bene�cial for the following hybrid result. In other words, compared

to the problem presented in [44], our zebra�sh segmentation problem presents

a more challenging task; the segmentors with just the improved initialisation is

insu�cient to achieve the best performance.

The remainder of this chapter is structured as follows. In Section 2.2, we re-

view the related work and derive the level set method. We elaborate the HY

method in Section 2.3. In Section 2.4, we present two datasets of zebra�sh ob-

jects from bright-�eld microscope imaging. The experimental setup is depicted

and the experimental results to evaluate the performance of the proposed method

are presented. In Section 2.5, we summarise the research and indicate future de-

velopments.

2.2 Related work and background

In medical imaging, the functional based segmentation methods have been suc-

cessfully developed and obtained good performance. These methods seem to be

suitable for bright-�eld microscope imaging where complex scenes and noise are

common. These methods aim at optimising an energy functional to estimate the

optimal enclosed contour attaching the object boundary.

An early version of this technique is proposed as the classic active contours

(snakes) model [45], from which the more advanced algorithms have been de-

rived. The snakes model detects the object boundary by parameterising it as an

enclosed curve C(p) ∈ R2, p ∈ [0, 1]. The curve will topographically evolve to
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

minimise an energy functional formulated as E(C) which incorporates an internal

force considering the total length and the smoothness of the curve, and an exter-

nal force derived from the image to encourage the curve to approach the object

boundary. However, the snakes model cannot deal with changes in topology, in

other words, it cannot detect all the boundaries in an image with multiple objects.

Moreover, this method is rather sensitive to blurred edges.

The level set method is developed to handle the problems of topological merging

and breaking [46]. The idea is to formulate the object boundary as the zero level

set contour implicitly embedded in a three dimensional function which is known

as the level set function ((LSF)) φ(x, t) : Ω→ R, where the t is an arti�cial time

variable presenting the time evolution procedure and the Ω is the image domain.

The φ is usually assigned with positive and negative values in and out of the zero

level set contour. The energy functional is transformed to Ê(φ) from E(C).

Subsequently, a region based level set (CV) model is proposed [41]. With the

introduction of the Heaviside function

H(x) =

{
1, if x ≥ 0
0, if x < 0

(2.1)

the energy functional is de�ned as

Ê(φ) = µ

∫
Ω

|∇H(φ)|dx︸ ︷︷ ︸
Length term

+ υ

∫
Ω

(
|I − uin|2H(φ)dx + |I − uout|2(1−H(φ))

)
dx︸ ︷︷ ︸

External forece

,

(2.2)

where, uin and uout represent the mean intensity of the image inside and outside

of the curve, µ and υ are constants which can be tuned to balance di�erent forces.

The CV model can deal with the edge blurred images without employing edge

terms. Based on the Euler-Lagrange equation, the gradient descent can solve the

curve evolution problem. The gradient �ow is computed as follows:

∂φ

∂t
= −∂Ê

∂φ
. (2.3)
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2.2 Related work and background

However, as shown in Fig. 2.1(B), the CV model fails to segment the zebra�sh

because of severe intensity inhomogeneity in the images. A local region based

level set (LRLS) method is proposed to model the intensity variation as a bias

term for each of the local region generated from intensity clustering [42].

Di�erently, the geodesic active contours (GAC) model [28, 47] which originates

from the snakes model has its advantage of edge preserving, of which the energy

functional is proposed as

Ê(φ) = µ

∫
Ω

g(|∇I|)|∇H(φ)|dx︸ ︷︷ ︸
Length term

+ υ

∫
Ω

g(|∇I|)H(φ)dx︸ ︷︷ ︸
Area term

= µ

∫
Ω

g(|∇I|)δ(φ)|∇φ|dx + υ

∫
Ω

g(|∇I|)H(φ)dx,

(2.4)

where the g is known as the edge indicator which is formulated as

g(|∇I|) =
1

1− c|∇I|2
. (2.5)

The values of g are close to zero at the region of object edges and one at the

region of non-edges. This de�nition encourages the curve to converge at the

object boundary when the energy functional is minimised. To derive the level

set based GAC model, the gradient �ow can be computed according to Eq. (2.3)

as:

∂φ

∂t
= µδ(φ)div

(
g(|∇I|) ∇φ

|∇φ|

)
+ υg(|∇I|)}δ(φ)

= µδ(φ)[g(|∇I|)div
(
∇φ
|∇φ|

)
+ ∇g(|∇I|)|∇φ|] + υg(|∇I|)δ(φ).

(2.6)

Finally, the curve evolution problem is transformed as a level set surface evolution

problem

φi+1 = φi + ∆t
∂φ

∂t
, (2.7)

where the step size controller of ∆t is tunable during solution search. This search

is a standard gradient descent approach which can quickly locate the minimum
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

of the functional.

From the observations of our bright �eld images, the contour of the zebra�sh is

more discriminative than the color. So, the edge based level set method should

be suitable for our problem. However, from Figs. 2.1(A), 2.1(C) and 2.1(D),

the boundary defects of zebra�sh result in the problem of edge leakage for the

aforementioned methods. To solve this problem, the shape prior based level set

method are proposed [48, 49, 50]. This type of methods uses pre-de�ned shape

templates to constrain the curve evolution. The employment of the shape con-

straint enforces the curve to approach the linear transformed template. However,

the methods can only deal with the problems with limited shape deformations.

Moreover, the methods including curvature constraint try to minimise the total

curvature of the curve in order to control curve smoothness [51, 52]. However,

these methods are di�cult to implement with numerical solutions.

Besides, the performance of the GAC model also depends on the initialisation of

LSF. A bad initialiser may lead the curve to converge at a local minimum, for

example, the boundaries of the capillary as present in the images of the zebra�sh.

Cohen and Chen [53, 54] propose to �nd the global minimum of the geodesic

energy by solving the Eikonal equation, but those methods require initial and

end points from user input. In zebra�sh high-throughput imaging, we prefer an

automated manner.

Unsupervised learning based methods, e.g. k-means clustering [55, 56], superpix-

els [57, 58] and mean shift algorithm [29, 59], represent also a broad category of im-

age segmentation techniques. Those methods can cope with complicated images

by merging similar local regions and o�er reasonable pre-segmentations.

Supervised learning based models [60, 61, 62] have drawn a lot of attention. Re-

cently, the Convolutional Neural Networks (CNN )approach is becoming very

popular and being successfully applied in many computer vision applications

[25]. For the problem of image segmentation, some architectures are proposed

and achieve great performance [63, 64, 65]. Those generic methods are usually

trained from a large annotated dataset which is, however, not available for our

problem.

Based on the discussions so far, we may conclude that each of the image segmen-

tation methods shows good properties to solve a generic problem but also has its

own limitations. Therefore, it is reasonable to develop a method to take advan-

tage of the good properties of each of the methods. Here we aim at an e�cient
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2.3 A hybrid method for zebra�sh segmentation

and robust solution for our zebra�sh segmentation problem from bright-�eld mi-

croscope images. Considering the intrinsic characteristics of bright-�eld images

of zebra�sh, we propose the HY method. This method applies an unsupervised

learning method, i.e. mean shift algorithm, to obtain an overview shape descrip-

tion of the object. The edge based level set method takes the pre-segmentation

as initialisation and detects the explicit boundary. Finally, the two segmenta-

tion candidates are incorporated to obtain a better shape representation of the

zebra�sh.

2.3 A hybrid method for zebra�sh segmentation

In this section we develop the HY method by fusing the advantages of the MS

algorithm and the edge based level set methods, i.e the ILS method, to obtain

accurate segmentation for bright �eld microscope imaging of zebra�sh. The term

hybrid represents a dual semantics. We �rst refer to hybrid as the improved

manner of initialisation for the level set method with the MS algorithm. Com-

pared with the functional based models, the MS algorithm shows the advantage

of fast convergence and robust discrimination of transparency and weak edges. In

this manner a segmentation candidate representing an overview of the zebra�sh

shape can be obtained and used to initialise the LSF for the ILS method. The

ILS method can obtain another segmentation candidate to retain the explicit

contour of the zebra�sh. Then we refer to hybrid as the hybrid operation of the

two segmentation candidates.

This section describes three topics: mean shift algorithm and the �rst segmen-

tation candidate (in Subsection 2.3.1), the hybrid of improved level set method

and accelerated initialisation for a second segmentation candidate (in Subsection

2.3.3), and hybrid of the segmentation candidates (in Subsection 2.3.3).

2.3.1 Mean shift algorithm and the segmentation candidate

We present a short recap of the MS algorithm in the application of clustering.

In principle, the MS algorithm can cluster the similar data points through the

estimation of the maximal density distribution of each data point. It is a kernel

based density estimator which is derived from a method known as Parzen window.
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

Given n data points xi, i = 1, ..., n, the density distribution of a data point of x

can be approximated by a kernel density estimator

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
, (2.8)

where h is the size of the bandwidth; d is the feature dimension; and K(·) usually
takes the form of multivariate Guassian kernel which can be written as K(x) =

(2π)−d/2 exp(−||x||2/2). From the de�nition of Eq. (2.8), one can �nd that a

data point similar to x will contribute more to its density estimation. We take

the pro�le notation k(x) = exp(−x/2) instead of the kernel representation of K

and yields the a pro�le representation of Eq. (2.9).

f̂h,K(x) =
ck,d
nhd

n∑
i=1

k

(∣∣∣∣∣∣∣∣x− xih

∣∣∣∣∣∣∣∣2
)
. (2.9)

If a function is de�ned as g(x) = −k′(x), the negative gradient of the pro�le

function k, the gradient of (2.9) can be computed and transformed into the form

as follows:

∇̂fh,K(x) =
2ck,d
nhd+2

[
n∑
i=1

g

(∣∣∣∣∣∣∣∣x− xih

∣∣∣∣∣∣∣∣2
)]∑i=1:n xig

(∣∣∣∣x−xi

h

∣∣∣∣2)∑n
i=1 g

(∣∣∣∣x−xi

h

∣∣∣∣2) − x

 .
(2.10)

The second term in Eq. (2.10) inspired us to the de�nition of the mean shift

mh(x) =

∑n
i=1 xig

(∣∣∣∣x−xi

h

∣∣∣∣2)∑n
i=1 g

(∣∣∣∣x−xi

h

∣∣∣∣2) − x, (2.11)

which indicates that the density maximizer of the data point x directs from the

current data point to the kernel weighted mean of all the training data within a

bandwidth of h. The location of the maximal density distribution of data point

x can be approximated by updating Eq. (2.11) until convergence.

We apply the MS algorithm in image texture augmentation which we refer to

as the image �ltering and smoothing. In our problem of segmentation in images
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2.3 A hybrid method for zebra�sh segmentation

of zebra�sh, the texture augmentation serves to (1) improve the discrimination

from the transparent object with respect to the background and (2) to enhance

the weak boundary. Considering both the color and spatial features in images,

two bandwidths should be de�ned separately for those two metrics. The kernel

of K should combine those two feature spaces and is represented as follows:

Khr,hs(x) =
C

h3
r, h

2
s

k

(∣∣∣∣∣∣∣∣xrhr
∣∣∣∣∣∣∣∣2
)
k

(∣∣∣∣∣∣∣∣xshs
∣∣∣∣∣∣∣∣2
)
, (2.12)

where k keeps the form of pro�le as previous de�nition; (xr,xs) denote color

and spatial features, respectively; the pair (hr, hs) represents the bandwidth in

the two feature spaces. We use the three-channel RGB image and represent the

spatial feature as two-dimensional coordinates of the pixel location. According

to Eq. (2.12), the pixels within a range domain contribute more, i.e. represented

as higher weights, for the density estimation of the centre pixel when the neigh-

bouring pixels and the centre pixel are similar in color and spatial space.

By determining a proper combination of the bandwidths for (hr, hs) and applying

the MS algorithm on the images of zebra�sh, the weak boundary of the specimen

can be, to a certain extent, recovered by the neighbouring pixels. At the same

time, the color inhomogeneous regions are smoothed. For our application, only

one object is present in the image, so a segmentation candidate for the zebra�sh is

directly obtained by thresholding the texture augmented images and represented

as SM .

2.3.2 Hybrid of level set method and accelerated initialisation

In this chapter, we apply the ILS method for two reasons: (1) the e�cient imple-

mentation and (2) its tunable properties to a problem. The ILS method improves

the GAC model by the employment of a �region based term�. Its energy functional

is de�ned in Eq. (2.13).

Ê(φ) =

∫
Ω

[µg(|∇I|)|∇Hε(φ)| + υ(I −m)Hε(φ)] dx (2.13)

where m is a user provided value which is used to pre-process the images. We

use a smooth approximation of the Heaviside function, here de�ned as
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

Hε(x) =


1
2
(1 + x

ε
+ 1

π
sin(πx

ε
)), if |x| ≤ ε

1, if x > ε
0, if x < −ε,

(2.14)

and its derivative

δε(x) =

{
1
2ε

[
1 + cos

(
πx
ε

)]
, if |x| ≤ ε

0, if |x| > −ε (2.15)

According to Eq. (2.3), the gradient �ow of the ILS method is derived as:

∂φ

∂t
= δε(φ)

{
µ

[
g(|∇I|)div

(
∇φ
|∇φ|

)
+∇g(|∇I|) ∇φ

|∇φ|

]
+ υ(I −m)

}
, (2.16)

where div denotes the divergence operator.

In fact, the ILS method replaces the �area constraint� in the original GAC model

by a region based term inferred from the image to make the solution more tunable.

For the sake of fast implementation, the additive operator splitting (AOS) scheme

[47, 66] is used.

In general, an LSF should be de�ned to initialise the level set methods. Multiple

options are available to accomplish this; e.g. random initialisation. Application

of a random initialisation for segmentation of zebra�sh images has the risk of

the enclosed contour of the zero level set converging at a local minimum which is

presented as the noise. The segmentation candidate from the MS algorithm o�ers

an overall shape representation of the zebra�sh, which is a reasonable initialiser

and can be fed to the ILS method. The LSF initialised by the MS algorithm is

an approximation of the object, which imposes the curve evolution of the ILS

method to be activated from a considerably good location. Based on this idea,

we accomplish the �rst goal of the HY method and specify the curve evolution of

Eq. (2.7) in two phases:


φ1 = φM0 + ∆t1

∂φ
∂t
, t = 0,

φt+1 = φt + ∆t1
∂φ
∂t
, t = 1 to T1 − 1,

(2.17)

where the notation φM0 denotes the shape constrained LSF by the MS algorithm.

Compared to the random initialisation fashions, the proposed HY method leads
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2.3 A hybrid method for zebra�sh segmentation

the LSF to approach to the global minimum, such that the ILS method is ac-

celerated and more robust with less iterations. We obtain the second segmen-

tation candidate of the zebra�sh, represented as SL through searching for the

non-negative level sets in the converging LSF of φ.

2.3.3 Hybrid of the segmentation candidates

In order to accomplish the second task of the HY method, we de�ne a hybrid

operator to obtain the hybrid for the two segmentation candidates. To that end,

we �rst detect the orientation of the zebra�sh. In general, the side close to the

broadest part of a zebra�sh is recognised as the head side. The hybrid operator

includes multiple operations of splitting and fusing and is mathematically de�ned

as

S = SL ⊕ SM
= (SHL ∩ SHM) ∪ (STL ∪ STM),

(2.18)

where S, SL, and SM represent the segmentations by the hybrid operation, the

ILS method and the MS algorithm, respectively. SH and ST denote the segments

from the Head and Tail sides of the zebra�sh. For the segment close to the

side of head in zebra�sh, the ILS method o�ers more compact contour so we

take the intersection of the corresponding segments from the two segmentation

candidates. For the segment close to the side of tail, the MS algorithm o�ers an

approximation for the natural shape of zebra�sh, therefore we take the union of

the corresponding segments. The splitter of the two segments is then de�ned as

F (S)→ {SH , ST}. The splitting factor is empirically chosen as 10% of the full

length of the zebra�sh with respect to the tip of the narrowest part.

From the observation of the initial result of the HY method, segmentation arti-

facts at the stitching point might occur. Therefore, we propose a re�nement in

the form of the second-phase curve evolution based on the LSF initialised by the

initial hybrid segmentation result. We specify this idea in Eq. (2.19). Hereby we

use u to de�ne the LSF to distinguish from Eq. (2.7).


u1 = uHY0 + ∆t2

∂u
∂t
, t = 0,

ut+1 = ut + ∆t2
∂u
∂t
, t = 1 to T2 − 1.

(2.19)
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Algorithm 1: The HY method for zebra�sh segmentation in bright-�eld mi-
croscopy

Input: Bright-�eld zebra�sh image I
Setup: µ, υ, ∆t1, ∆t2, T1, T2, hr, hs
Begin:

Pre-process the noise of capillary: Id = detect_capillary(I)
Apply the MS algorithm: IM = meanshift(Id)
Extract the segmentation candidate: SM = threshold(IM)
Initialise LSF: φM0 = distance_transform(SM)
for iterator = 1 : T1 do

Compute Eq. (2.16) to obtain gradient �ow ∂φ
∂t

Compute Eq. (2.17) to update φ

Obtain segmentation candidate: SL = 1(φ ≥ 0)
Factorise segmentations: F (SL)→ {SHL , STL}, F (SM)→ {SHM , STM}
Apply Eq. (2.18) to obtain hybrid result S
Initialise LSF: uHY0 = distance_transform(S)
for iterator = 1 : T2 do

Compute Eq. (2.16) to obtain gradient �ow ∂u
∂t

Compute Eq. (2.19) to update u

Obtain the �nal hybrid segmentation: SF = 1(u ≥ 0)
End

Through the aforementioned manner, we can obtain more accurate representation

of the zebra�sh contour which is embedded as the zero level set in the u. The step

size ∆t2 of the gradient �ow is set to be much smaller than the previous one of

∆t1, which prevents the occurrence of edge leakage. In order to clearly illustrate

the proposed method, we summarise the whole procedure in Algorithm 1.

2.4 Experiments

In this section we �rst present two datasets of bright �eld axial-view images of

zebra�sh from the Vertebrate Automated Screening Technology (VAST BioIm-

ager) (http://www.unionbio.com/vast/) (Subsection 2.4.1). We apply our HY

method as well as several popular segmentors on the datasets to compare per-

formances (Subsection 2.4.2). We evaluate the methods in the forms of accuracy

and e�ciency. The visualisation of segmentation results show the limitations
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2.4 Experiments

of the reference methods and the merit of the HY method for segmentation of

bright-�eld microscope images of zebra�sh (Subsection 2.4.3).

2.4.1 Data collection

The VAST BioImager is developed for high-throughput experiments with ze-

bra�sh; the device can be mounted on a microscopes; its main feature is the

ability of manipulation of zebra�sh in the �eld of view by loading them in capil-

lary. The VAST camera detects the orientation and location of the object. Once

the object is present in the �eld of view of the imager, a set of stepper motors

holding the capillary rotate the specimen in a full revolution, so that images of

the zebra�sh can be acquired in any axial-view. In our experiments, 84 axial-

views (images) are evenly sampled from a full revolution (around 4.3o per view)

for each specimen.

Dataset A - The VAST BioImager is equipped with a standard camera, the VAST

camera, which is used to detect the object presence in the �eld of view. With

this camera axial-view images for the specimen can also be acquired representing

an overview of the object. These images are 1024× 1024 in size with a pixel size

of 5.5 µm × 5.5 µm. In Fig. 2.4 examples of the images acquired by the VAST

camera are depicted. The partial transparency and weak edge are clearly visible

in most of the images. The All images in Dataset A are collected with the VAST

camera. Dataset A includes a range of developmental stages of the zebra�sh,

i.e. three, four and �ve days post fertilization (dpf). The dataset contains three

groups with in 60 examples. With 84 views per sample, this results in over 5,000

images in total (84× 60).

Dataset B - The images produced by the VAST BioImager are relatively low-

resolution and are insu�cient for detailed observations of the zebra�sh. Our

setup consists of a microscope on which the VAST BioImager is mounted to

produce high-resolution images. The VAST BioImager manipulates the specimen

and the camera mounted on the microscope acquires the high-resolution images.

Therefore, as an extension to Dataset A a Dataset B is obtained. The same

imaging protocol with respect to Dataset A is used, i.e. 84 evenly sampled axial-

views are acquired in a full revolution. The image size of each is 1920×2560 with

a pixel size of 3.4 µm × 3.4 µm. In Fig. 2.5 some the examples of these images

are depicted. For better visualisation, both of the vertical sides of the images are

cropped to centre of the object and the image size is cropped to 600×2560.
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Table 2.1: Segmentation performance of di�erent methods on Dataset A

Model Runtime (seconds) F-score

CV model 1.74± 0.31 0.758± 0.123
CV model+MS 1.32± 0.16 0.758± 0.123
LRLS 22.83± 3.70 0.956± 0.026
LRLS+MS 19.56± 0.15 0.968± 0.014
GAC model 3.34± 0.38 0.976± 0.006
GAC model+MS 1.72± 0.13 0.976± 0.007
ILS 2.65± 0.42 0.976± 0.007
ILS+MS 1.26± 0.32 0.978± 0.006
MS 0.63± 0.07 0.964± 0.006
HY 1.37± 0.22 0.983± 0.004

Table 2.2: Segmentation performance of di�erent methods on Dataset B

Model Runtime (seconds) F-score

CV model 8.87± 1.78 0.838± 0.120
CV model+MS 6.96± 1.63 0.838± 0.120
LRLS 152.27± 1.06 0.968± 0.016
LRLS+MS 126.60± 1.76 0.977± 0.011
GAC model 21.92± 0.19 0.918± 0.068
GAC model+MS 8.95± 0.40 0.957± 0.034
ILS 14.53± 6.39 0.970± 0.015
ILS+MS 7.23± 1.73 0.973± 0.022
MS 2.32± 0.31 0.965± 0.023
HY 8.30± 0.98 0.986± 0.004

2.4.2 Evaluation of di�erent methods

In the experiment, the e�ciency and performance are evaluated for di�erent seg-

mentation methods. The abbreviations of CV, GAC, LRLS and ILS consistently

represent the Chan-Vese model, geodesic active contours model, local region based

level set model [42] and the improved level set method [43], respectively; MS de-

notes the mean shift algorithm. The representation of ∗+MS indicates the ∗
model with an initialiser from the MS algorithm and HY is the proposed HY

method.

In order to have a groundtruth set, we manually segmented 336 images of 4
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specimens (84 views per specimen) from Dataset A. In addition, a subset from

Dataset B including 33 images selected from 3 objects, is also manually segmented

to obtain groundtruth annotations.

We measure the accuracy represented as F-score and the e�ciency as runtime

for all the methods on the subsets. The F-score is de�ned as F = (2 · recall ·
precision)/(recall + precision). The closer to one the F-score is, the better

performance of a method is. The mean and standard deviation for the two mea-

surements are computed.

In the experiment, we partially used the fast implementation from [43]. To justify

di�erent methods, we give the same setups. For the models initialised by the MS

algorithm, we take the con�guration of the kernel bandwidths (hr, hs) as (20, 20).

Besides, all the methods are con�gured with the same number of iterations.

(A) Performance evaluation on subsets of Dataset A

In Table 2.1, we show the performance of di�erent methods, evaluated on the

subset of Dataset A with groundtruth. One can see that the CV model obtains

the lowest F-score. This can also be seen in the segmentation result visualisation

depicted in Fig. 2.1(B). Due to intensity inhomogeneity of the zebra�sh in the

image, it is di�cult for the CV model to estimate the general mean of the texture

inside and outside the object. Consequently, the CV model almost completely

fails to detect the zebra�sh.

For the other methods, comparable performances are seen, but di�erences are still

existing. It is obvious that the MS algorithm is the most e�cient segmentor. This

provides evidence for the fact that a segmentor equipped with an MS initialiser

is always more e�cient than the same model with the random initialisation. We

may conclude that the hybrid of the MS initialisation with the functional based

segmentation model is helpful to improve the e�ciency of zebra�sh segmentation.

The reason is that, the MS initialiser can produce a good estimation of the overall

shape of the zebra�sh. This shape approaches the global minimum.

The LRLS model also achieves a good performance. However, we should make

more e�ort for the con�gurations and post-processing to obtain a natural shape

for the zebra�sh in the LRLS model. We do not have the fast implementation

for the LRLS model, so that we cannot reasonably given a justi�cation of its

e�ciency. Nevertheless, we can appreciate the hybrid of the MS algorithm and

the LRLS model for a fast curve evolution.
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Both the ILS method and the GAC model can obtain better segmentation results

than the aforementioned methods. We �nd that the ILS method works faster

than the GAC model. So, we choose to use the ILS method in our HY method.

Considering the accuracy, the proposed HY method has the best performance.

This is reasonable as the HY method combines the advantages of the MS algo-

rithm and the ILS method. The segmentation result preserves an overall shape

and retains the original explicit contour of the zebra�sh.

(B) Performance evaluation on subsets of Dataset B

In Table 2.2 we show the performances of the di�erent methods as evaluated on

the subset of Dataset B. We can directly see that the e�ciency of all methods is

lower as a result of the larger image size. In addition, similar to the experiment

on Dataset A it can be seen that the methods equipped with the MS initialiser

generally work faster than the methods with random initialisation. Although the

LRLS model obtains slightly better results than the ILS, the latter usually works

faster. We do not have equivalent implementation of the LRLS model, so for

the runtime no justi�cation can be given. Due to the employment of the hybrid

operation and post-processing, the proposed HY method works a little bit slower

than the ILS method with an MS initialiser, but the segmentation accuracy is

clearly improved.

2.4.3 Inspection of results by visualisation

In this experiment, we have visualised some representative segmentation results

of Dataset A and Dataset B in this experiment.

For Dataset A, we randomly selected one zebra�sh specimen from each group in

Dataset A. For each example, three typical axial-views (lateral, 45o tilted and

ventral) are selected and shown in Fig. 2.4. We can observe that for the images

with the zebra�sh positioned in the view of ventral (dorsal), all the methods result

in an accurate segmentation; this is due to the fact that the image portrays an

explicit boundary of zebra�sh. In the images with a lateral view of the zebra�sh,

the GAC model, LRLS model and ILS method fail to detect the weak edges.

This phenomenon of edge leakage commonly occurs. Although the MS algorithm

can retain a natural shape for the zebra�sh, it loses the edge sensitivity. The

proposed HY method obtains more accurate segmentations.
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In Fig. 2.5, a representative set of images from Dataset B is depicted. Com-

pared to Dataset A, these images have a better contrast and the outline (con-

tour) of the zebra�sh specimen is more explicit. Consequently, the classical edge

based segmentors such as the GAC model have less di�culty segmenting the

zebra�sh from these images; even for zebra�sh from a lateral view. The risk

of edge leakage, however, still exists. In Fig. 2.5(B) and (C), we can see the

contours resulted from the GAC model, LRLS model and ILS method converg-

ing at the wrong regions. The MS algorithm results in a segmentation retaining

the whole boundary of the object, but the shape as a whole is less compact.

From our experiment, we may conclude that the proposed HY method is able

to deal with the segmentation problem for zebra�sh specimens in bright-�eld

microscopy. It results in more accurate results and shows a good performance.

Due to the illumination conditions in the microscope, the acquired images are

sometimes less explicit; this is depicted in the third column of Fig. 2.1(A). A

straightforward pre-processing solution such as color equalization can improve

the image contrast of the object with respect to the background. More segmen-

tation results in this experiment represented as animations can be found here:

http://bio-imaging.liacs.nl/galleries/VAST-Hybrid/.

2.5 Chapter conclusions and future work

In this chapter, we have presented a hybrid method to accomplish the task of

e�cient and robust segmentation of zebra�sh from the bright-�eld microscope

images. This answers RQ 2: To what extent is it possible to obtain an accurate

2D shape description for the zebra�sh from the MM-HTAI architecture? Below

we specify this answer more precisely.

We propose to employ the mean shift algorithm to augment the color representa-

tion for the partial transparent regions and transform the ambiguous edges more

separable, such that we can obtain a segmentation candidate which preserves an

overview of the zebra�sh shape. A distance regularized level set function is ini-

tialised from this segmentation candidate and fed to an improved level set method

in order to obtain a more compact shape representation preserving the explicit

object contours. This hybrid operation accelerates the curve convergence at the

regions of interest. We intuitively fuse those two segmentation candidates and

employ a re�nement in order to obtain the accurate hybrid segmentation. The
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results of our segmentation method facilitate the visualisation and evaluation of

gene expressions in zebra�sh in both 2D and 3D. This is directly relevant for

the success of experiments in which imaging is crucial. Such experiments are

typical for applications in life-sciences, e.g. cancer and pharmacokinetics. Fur-

thermore, the proposed method is very suitable for high-throughput applications

with zebra�sh.

Below we provide three future perspectives. (1) The proposed method can be

generalised by taking images into consideration that contain multiple objects

positioned in various orientations. For orientation detection and initialisation over

multiple instances modules need be developed that constitute the generalisation.

For the work presented in this paper, the single instance is the approach for high-

throughput applications. (2) Moreover, bright-�eld microscopy is a standard

component for this type of applications. Nevertheless, the proposed HY method

can be evaluated for other imaging modalities, with other lenses and illumination

architectures. In this manner the HY method is probed and challenged for other

and di�erent image qualities. As an example, we consider optical projection

tomography (OPT) imaging [22]; bright-�led images are included in this imaging

technique and the processing of these images might bene�t from the application

of the proposed HY method. (3) Application to other imaging techniques will

contribute to a further development and evaluation of the HY method.

34



2.5 Chapter conclusions and future work

GAC

LRLS

ILS

MS

HY

GT

View 1 View 2 View 3

GAC

LRLS

ILS

MS

HY

View 1 View 2 View 3

GAC

LRLS

ILS

MS

HY

View 1 View 2 View 3

(A)

(B)

(C)

Figure 2.4: Segmentation results visualisation of di�erent methods on Dataset A.
GAC = geodesic active contours model [28]. LRLS = local region based level set
model [42]. ILS = Improved Level Set method [43]. MS = mean shift algorithm [29].
HY = the proposed hybrid method. GT = groundtruth. A subset of the zebra�sh
larvae of 5 dpf are provided with manual annotations. For each example, three
typical views (dorsal, tilted and lateral) are shown. (A), (B) and (C) correspond
to three zebra�sh larval stage of 5, 4 and 3 dpf respectively.
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Figure 2.5: Segmentation results visualisation of di�erent methods on Dataset B.
(A), (B) and (C) correspond to three zebra�sh examples, respectively.
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