Shape analysis for phenotype characterisation from high-throughput imaging
Guo, Y.; Guo Y.

Citation

Version: Not Applicable (or Unknown)
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/56254

Note: To cite this publication please use the final published version (if applicable).
The handle http://hdl.handle.net/1887/56254 holds various files of this Leiden University dissertation

Author: Guo Yuanhao
Title: Shape analysis for phenotype characterisation from high-throughput imaging
Date: 2017-10-17
Shape Analysis for Phenotype Characterisation from High-throughput Imaging

Yuanhao Guo
Cover painting and design: Yang Lili, Zhou Jinglong
Cover painting: Human beings and nature are in harmony. In humility, we are grateful to make use of the materials (zebrafish, butterfly, orchid, wood, etc.) that nature offers for our research. Indeed, the output of this research improves our living conditions.
Shape Analysis for Phenotype Characterisation from High-throughput Imaging

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 17 oktober 2017
klokke 15.00 uur

door

Yuanhao Guo

egeboren te Jinan, China
in 1986
Yuanhao Guo was financially supported through the China Scholarship Council (CSC) to participate in the PhD programme of Leiden University. Grant number 201206220108.

The research reported in this thesis was partially funded by the Netherlands Organisation for Scientific Research (NWO), under grant number 834.14.001.

SIKS Dissertation Series No. 2017-36.
The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research School for Information and Knowledge Systems.
Contents

1 Introduction
 1.1 Importance of shape ... 1 2
 1.2 High-throughput imaging 1 3
 1.3 Model organism .. 1 4
 1.4 Problem statement and research questions 1 4
 1.5 Research methodology .. 1 8
 1.6 Thesis structure .. 1 1 0

2 A Hybrid Segmentation Method for 2D Shape Description 1 3
 2.1 2D shape description ... 1 5
 2.2 Related work and background 1 9
 2.3 A hybrid method for zebrafish segmentation 2 3
 2.3.1 Mean shift algorithm and the segmentation candidate ... 2 3
 2.3.2 Hybrid of level set method and accelerated initialisation . 2 5
 2.3.3 Hybrid of the segmentation candidates 2 7
 2.4 Experiments .. 2 8
 2.4.1 Data collection ... 2 9
 2.4.2 Evaluation of different methods 3 0
 2.4.3 Inspection of results by visualisation 3 2
 2.5 Chapter conclusions and future work 3 3

3 Shape-based 3D Reconstruction and 3D Measurements 3 7
 3.1 3D shape description for zebrafish 3 9
 3.2 Background and method motivation 1 2
 3.3 Materials and methods .. 1 4
 3.3.1 MM-HTAI architecture 1 4
 3.3.2 Preprocessing and segmentation of the images 1 6
 3.3.3 Camera model parameterisation 1 6
CONTENTS

3.3.4 Shape-based zebrafish 3D reconstruction
3.3.5 Camera system optimisation
3.4 Experimental results
3.4.1 Sampling of axial-views and volume for the experiments
3.4.2 Validation of the proposed method
3.4.3 Evaluations on zebrafish larvae
3.4.4 3D measurements on zebrafish larvae
3.5 Chapter conclusions and future work

4 A Novel 3D Reconstruction Approach
4.1 Improved 3D reconstruction
4.2 Background and related work
4.3 Dataset collection
4.4 Two-phase 3D reconstruction from axial-views
4.4.1 Improved 3D volumetric representation as confidence map
4.4.2 3D reconstruction as objective function optimisation
4.5 Experiments
4.5.1 Visual inspection of the results on Dataset A
4.5.2 3D measurements for Dataset A
4.5.3 3D reconstruction and measurements of Dataset B & C
4.5.4 Evaluation on efficiency
4.6 Chapter conclusions and future work

5 Multi-modal 3D Reconstruction
5.1 Multi-modal 3D reconstruction
5.2 Our approach
5.2.1 Dataset collection
5.2.2 Shape-based 3D reconstruction
5.2.3 3D multi-models alignment and fusion
5.3 Experiments
5.3.1 Results visualisation
5.3.2 3D measurements for 3D multi-models
5.4 Chapter conclusions and future work

6 Case Study: Image Features and Classification Models
6.1 Graphical model for kinship recognition
6.1.1 Kinship recognition using faces
6.1.2 Previous work