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Introduction

1



1. INTRODUCTION

Computational approaches are important to characterise phenotypes in mod-

ern life-science research, in developmental biology, (patho)physiology, toxicology,

pharmacology, etc.. According to the de�nition, the phenotype is recognised as

an observable trait in the whole appearance of an organism from molecular to

organism scale [1]. The study of gene expression can be used to visualise the

phenotype. The process of gene expression operates on the level of synthesis and

structuring of proteins which subsequently contribute to the organism's appear-

ance in any form. In order to obtain an understanding of a phenotype, imaging is

used to explore the phenotype characteristics. Thus, a readout of the phenotype

by means of images is accomplished. Consequently, the phenotype characteristics

need to be extracted from images and this can be realised through image analy-

sis. Therefore, computational approaches for image analysis have to be developed.

Recently, some approaches have been developed for this purpose (see [2, 3, 4]). In

this thesis, we aim at developing dedicated computational approaches which may

achieve an e�cient and robust performance in generalising the whole description

for phenotype characterisation.

1.1 Importance of shape

In this thesis, a shape in an image is formally de�ned as the quality of an object

that depends on the relative position of all points on its surface (adapted from

[5]). With respect to the whole phenotype of an organism, shape appears to be

directly relevant to the physical development of that organism (or the organ)

under investigation. For example, some shapes can directly re�ect apparent vari-

ations of an object. The shape variations are often caused by the exposure of

the samples in a compound for screening or by the timing control for wild type

individuals.

However, in some circumstances, the shape variation is subtle, so that the vari-

ation is di�cult to observe and analyse. In light microscopy, for example, it is

di�cult to compare the whole-mount of a sample with another from the same

model organism in the same developmental stage. Yet, subtle shape variations

can play an important role in toxicology, since the size of the organism re�ects its

response to certain drugs. Indeed, the shape variations in some experimental set-

tings can be observed, but empirical interventions may introduce and propagate

subjective errors. For instance, interactive annotation of key points in images is
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1.2 High-throughput imaging

often used to analyse delicate structures such as the skeleton of an organism [6],

but di�erent annotators may have their own assessments for the objectivity.

As a result, accurate shape analysis of an organism will lead to reliable charac-

terisation of phenotypes. To this end, we �rst need a good shape representation

to describe the shape of an object precisely. In order to validate the performance

of such shape representation, the scalar primitives for a shape, e.g., (a) perime-

ter and area in 2D shape representation, and (b) volume and surface area in 3D

shape representation, can be used. With a validated shape representation, the ge-

ometrical primitives for the shape can be further involved for more sophisticated

shape analysis. In practice, the simple scalar primitives for the shape are very

important as they provide us with intuitive, stable, and accurate 2D/3D mea-

surements, for a delicate exploration of subtle shape variations in the phenotype

characterisation. Therefore, we are motivated, in this thesis, to develop new com-

putational approaches based on images (1) to promote precise shape description

and (2) to make reliable and accurate 2D/3D measurements possible.

1.2 High-throughput imaging

We should be aware that an unbiased shape analysis is available in a population

of the model. In practice, this is conditioned by the choice of the sampling size

for the population. As a result, a su�ciently large sampling size may re�ect

the general properties of the samples, which will result in an accurate statistical

assessment. In order to obtain adequate sampling size, high-throughput (HT)

screening was initiated for the applications of cytomics and toxicology, and has

been applied on the application on organism scale such as zebra�sh [7]. The HT

screening facilitated the fast development of high-throughput imaging (HTI). A

feasible HTI architecture can easily acquire a su�ciently large volume of data

represented by images of the subject under study. This HTI architecture has

the following advantages: (1) we can use bright-�eld microscopy producing the

images, representing an overall shape for a specimen; (2) �uorescence microscopy

can be used to produce the images presenting the �uorescently marked compo-

nents such as detailed inner structures of a specimen; (3) synchronization of bright

and �uorescence microscopy results in the so-called multi-modal microscopy pro-

ducing fused multi-modal images which can be used to represent and evaluate the

comparison between di�erent modes; (4) we can potentially obtain shape analysis
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1. INTRODUCTION

at a very high-resolution with the help of a better quality objective lens, in which

structures such as tissues and cell type can be re�ected from micro-scale texture

in images.

1.3 Model organism

In modern life-science, a feasible and convenient model organism also plays an

important role since many human diseases can be cultivated in a model organism.

A good understanding of the model organism can obtain insights into the disease

or treatment, and the obtained knowledge can be transferred to research on hu-

mans. In practice, we have many options for the model system. Invertebrate

models such as fruit �y [8] and c. elegans [9] are intensively used in molecular ge-

netics. As a comparison, vertebrate models like mouse are suitable and commonly

used in the research of human diseases [10]. However, the growth of mouse is slow

and it is di�cult to get access to a large sampling size. Alternatively, in the last

decade, zebra�sh has been increasingly used for human disease studies as they

present many remarkable characteristics [11], among which the most signi�cant

one is its 70% genome equivalence to human [12]. The development of zebra�sh

is pretty fast as its organs develop within 36 hours post fertilisation (hdf) [13].

The zebra�sh are fertile, and one adult couple can easily produce 300 eggs per

week [14]. In early larval stages, zebra�sh are quite small (< 1mm) and optically

transparent thus the whole body of a zebra�sh as well as partial inner organs

are observable using microscopy [15]. In particular, with the availability of many

transgenic lines, the zebra�sh is genetically modi�ed with �uorescent markers

like green �uorescent protein (GFP) [14, 16]. Fluorescence microscopy can be

employed to visualise the �uorescently marked structures within a specimen such

as organs and infectious diseases. Taking all the properties into consideration,

zebra�sh is very suitable to be used in high-throughput applications. Therefore,

in this thesis, we will consistently use the zebra�sh larvae as our model system

to illustrate and validate our approaches.

1.4 Problem statement and research questions

In section 1.1, we have discussed the importance of shape analysis for phenotype

characterisation. The HTI architecture will serve as the basis for the production
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1.4 Problem statement and research questions

Images

RQ2: Image 
segmentation

RQ6: Visual 
features

RQ3: Shape based 
3D reconstruction

2D shape descriptor 
& measurements

3D  shape descriptor 
& measurements

Pattern recognition & 
graph-based 

taxonomy

Statistical 
shape analysis

RQ1: Multi-modal 
high-throughput 

axial-view imaging

RQ4: Improved 3D 
reconstruction

Flexible 3D  shape 
descriptor

RQ5: Multi-modal 
3D reconstruction

Multi-modal 3D  
shape descriptor & 

measurements

Requisition Support

Figure 1.1: A schematic representation of a uni�ed system for shape analysis in
support of phenotype characterisation using an MM-HTAI architecture. The six
RQs formulated in the text are indicated in the boxes.

of adequate data. We expect to obtain an e�cient and robust shape analysis to

characterise the phenotype from HTI. This idea has inspired the formulation of

our problem statement (PS).

PS: To what extent can we develop a stable HTI architecture and

produce a robust and accurate shape analysis for the phenotype char-

acterisation from the HTI architecture?

To address the PS, we are motivated to design a uni�ed system integrating mul-

tiple functional modules. They should correspond to new computational ap-

proaches for shape analysis in support of the phenotype characterisation from

HTI. We start remarking that the system needs to deal with the problem of a

precise shape representation. Then a validation of the shape representation is

required. This will imply a delicate shape analysis using geometrical primitives.

The validation can be realised through scalar primitives for the shape in the

form of 2D/3D measurements. To reach our goal, we specify and investigate six

research questions (RQs). In Fig. 1.1, we provide a schematic representation

corresponding to the six RQs.

As stated above, we need to develop a feasible HTI architecture for image ac-

quisition of the zebra�sh larvae. In practice, the zebra�sh larvae are always

positioned along their longitudinal axis when they are in an imaging modality.

In this manner they are easy to manipulate. Moreover, most of its features are
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1. INTRODUCTION

then observable and can be visualised. This gives rise to the high-throughput

axial-view imaging (HTAI) architecture. Since the HTI can adopt multi-modal

microscopy, we can obtain a multi-modal high-throughput axial-view imaging

(MM-HTAI) architecture. Our �rst RQ is thus formulated as follows.

RQ 1: To what extent is it possible to develop an MM-HTAI archi-

tecture for the zebra�sh larvae?

From the axial-view images of the zebra�sh acquired by the MM-HTAI architec-

ture, one should �rst obtain a well-de�ned 2D shape descriptor and then derive

accurate 2D measurements such as the perimeter and the area of an object. With

respect to zebra�sh, we can see the following properties. On the one hand, an

accurate description (both for a whole-shape and its organs on microscopic level)

will ensure a reliable quantitative assessment in the applications, such as drug

targeting. On the other hand, we have to realise that the part of zebra�sh tail

is particularly relevant to some diseases since the hemopoietic stem cells in the

zebra�sh are found predominantly in the tail. An detailed description for every

section of the zebra�sh such as its tail will ensure accurate localisation, tracking

and evaluation of some infectious diseases, such as the spread and development

of cancer cells [17, 18]. However, in applications using the zebra�sh as model sys-

tem, the partial transparency across the whole specimen and the weakly de�ned

boundaries which are mainly distributed around the tail in early larval stages,

are commonly existing and observable. Hence, we formulate our second RQ as

follows.

RQ 2: To what extent is it possible to obtain an accurate 2D shape

description for the zebra�sh from the MM-HTAI architecture?

With respect to shape analysis, a 3D description is more reliable due to the 3D

nature of an object's shape than a 2D descriptor. The confocal laser scanning

microscope (CLSM) can obtain 3D imaging for a �uorescently labelled structure

in an organism. 3D reconstruction has been produced from the images acquired

by CLSM using the TDR-3Dbase software [19, 20]. However, there are two ob-

stacles. (1) It is di�cult to depict an overall shape of the whole organism for the

CLSM, and (2) the CLSM has a low e�ciency of image acquisition. Recently,

an attempt for 3D imaging has been reported as optical projection tomography

(OPT) [21, 22], whilst rather dense scanning is required and extra processing

like 3D image segmentation should be employed for further image analysis. In

OPT, the sample preparation is also rather time-consuming. To the best of our
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1.4 Problem statement and research questions

knowledge, there are few systematic assessments of 3D measurements, e.g., the

volume and surface area, in real metrics for the zebra�sh in phenotype research.

Actually, these 3D measurements are essential in many applications. For exam-

ple, statistical representations of the 3D measurements for the whole-mount of

zebra�sh in various developmental stages will give insights into the accuracy of

shape analysis which enables HT compound screening. In fact, the axial-view

images acquired by the MM-HTAI provide su�cient information for a good 3D

description which is a prerequisite for reliable estimation of 3D measurements.

This observation results in our third RQ.

RQ 3: To what extent is it possible to obtain a precise 3D shape

description and derive accurate 3D measurements that are statistically

relevant for the zebra�sh from the MM-HTAI architecture?

In our study, translucency and transparency often occur in light microscopy.

Admittedly, in some cases, the boundaries of an organism are weakly de�ned.

Yet, the qualities will still present a good 3D description for the whole-mount of

the zebra�sh, even without accurate 2D shape descriptions. Hence we formulate

our fourth RQ as follows.

RQ 4: How can we e�ciently deal with the translucency and trans-

parency of specimen in light microscopy and still obtain a good 3D

shape description from the MM-HTAI architecture?

In life-science research such as toxicology, quantitative endpoints like organ size or

growth retardation play signi�cant roles. This requires an accurate 3D shape de-

scription and rather precise measurements on organ scale, such as the evaluation

of organ susceptibility of toxicology in the zebra�sh larvae [23]. The MM-HTAI

is capable of producing multi-modal images including (1) bright-�eld images pre-

senting the overall shape of the zebra�sh and (2) �uorescence images presenting

the detailed inner structure like zebra�sh liver. So, we formulate our �fth RQ as

follows.

RQ 5: How can we obtain a multi-modal 3D description and the

corresponding measurements for the zebra�sh from the MM-HTAI ar-

chitecture?

If we go to a higher resolution scale, i.e., on the cellular or tissue level, textures

such as detailed �brous structures in the specimens can contribute to even better

shape analysis. In this case we will represent the shapes as well-de�ned features
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1. INTRODUCTION

according to geometrical and textural information extracted from an image [24]

or even representative features such as the convolutional neural networks (CNN)

[25]. Hence we formulate RQ 6 as follows.

RQ 6: To what extent is it possible that the classi�cation models (or

regression models) are able to validate the performance of the image

features to characterise the phenotypes in support of shape analysis?

1.5 Research methodology

The research methodology in this thesis consists of (1) literature study and anal-

ysis, (2) development and implementation of new computational approaches, (3)

performance validation and evaluation for the approaches. The literature study

is realised by reading and investigation; the analysis by a comparison with the de-

velopment of state-of-the-art. The new computational approaches are inspired by

ideas from other well-developed research �elds, such as computer vision and ma-

chine learning. The performance validation is achieved by applying the method-

ologies on datasets and comparing the results with state-of-the-art. We elaborate

the methodologies in the analysis of the six RQs. We do so as follows.

In RQ 1, we employ the Vertebrate Automated Screening Technology (VAST

BioImager) [26] and light microscopy to develop the MM-HTAI architecture. The

VAST BioImager is used to manipulate the input. The positioning module of the

VAST BioImager consists of a delicate capillary which is held by a pair of stepper

motors. The stepper motors can manipulate the positioning module to revolve

for 360 degrees. A pumping action system is loading a zebra�sh larva into the

positioning module; a mounted camera which we refer to as VAST camera is used

to detect and localise the object and then manage the system to position the

specimen in the view of an observer from an arbitrary axial-view. The observer

can be either the VAST camera or a microscope camera. In this manner, the

MM-HTAI can be accomplished and a sequence of axial-view images including

bright-�eld and �uorescence of the specimen can be acquired.

In RQ 2, we take inspiration from the �eld of computer vision [27]. We consider an

advanced method as image segmentation or edge detection for the acquisition of

the 2D shape description of an organism represented in the images obtained from

8



1.5 Research methodology

the MM-HTAI architecture. The methodology focusses on an e�cient and ro-

bust segmentation method that incorporates conventional segmentation methods,

such as variational based methods [28] and unsupervised learning based methods

[29].

In RQ 3, a 3D shape representation for a scene or an object can be obtained from

a range of multi-view images using multi-view stereo [30]. Our axial-view im-

age sequence is a particular case for the multi-view, which is commonly referred

to as turn-table data [31]. We can resort to a shape-based 3D reconstruction

method to solve the problem of 3D shape description from the MM-HTAI archi-

tecture. Subsequently, 3D measurements can be directly derived from the results

of the shape-based 3D reconstruction method. Importantly, we show that we can

implement this 3D shape acquisition in an e�cient manner.

In RQ 4, we need to solve the problem of 3D shape description for an organism

that is partial translucent/transparent. It might result in weakly-de�ned bound-

aries. Therefore, we require an improved 3D reconstruction method which does

not require the most accurate initial 2D shape descriptions. The method can be

considered as an extension of the shape-based 3D reconstruction. We incorporate

texture information from the axial-view images to infer a more �exible volumet-

ric representation. We use probabilistic models and further validate accurate 3D

measurements.

In RQ 5, the multi-modal images acquired by the MM-HTAI are used to obtain

a multi-modal 3D shape description by the fusion of the 3D shapes both on

organism and organ scale for the zebra�sh larvae. This is supported by the

shape-based and improved 3D reconstruction methods. The 3D shape description

on organism scale presents a shape reference for the normalisation of the 3D

description on organ scale. It requires an alignment of the multiple 3D shape

descriptions resulting in a natural visualisation and a high quality 3D image

fusion for the organism and its organs.

In RQ 6, we �rst extract features in the images from annotated datasets, and

then apply classi�cation (or regression) models to validate the performance of the

features [32, 33]. Currently our research is hampered by the availability of su�-

ciently large annotated datasets for the zebra�sh. Therefore, we choose to study

the behaviour of the features and classi�cation models in a collection of datasets

concerning phenotypes/gene expression, e.g., humans, animals, and plants. We

do so in order to obtain a balanced understanding of the methodologies. We
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1. INTRODUCTION

believe that it is possible to transfer the knowledge in these datasets towards the

application area of the zebra�sh for the phenotype characterisation. The reason

is that we are able to provide su�cient evidence for the generality and accuracy

of the system in similar domains. Therefore, we will investigate various texture

features and develop a graph-based local-global strategy for taxonomy prediction

in several datasets. One of the particular cases would be kinship recognition in

humans by facial analysis; other cases will refer to a diverse collection of datasets

including butter�ies, orchids, and wood species.

1.6 Thesis structure

The structure of this thesis is as follows. We address at least one research question

in a chapter by presenting a new approach. Careful discussions and thorough

inferences will be given. Chapter 1 provides the PS, the six RQs and the research

methodologies.

Chapter 2 aims to answer RQ 2 (For RQ 1, see Chapter 3). To this end, we

present an e�cient and robust hybrid method for zebra�sh image segmentation

for bright-�eld microscopy of the MM-HTAI architecture. We integrate the merits

of conventional segmentation methods, i.e., the variational based segmentation

method and the unsupervised learning based segmentation method. Then we pro-

pose a sequential re�nement on the hybrid segmentation, resulting in a better 2D

shape description. The results present an overview for the zebra�sh larvae.

Chapter 3 addresses RQ 1 and RQ 3. We �rst specify the MM-HTAI architecture

based on the VAST BioImager and the light microscopy. From the acquired

images, we address the problem of 3D shape acquisition through a shape-based

3D reconstruction method. The method uses the 2D shapes obtained in Chapter

2. An accurate camera motion estimation is the basis for this method. We solve

the problem by presenting a novel method as the voxel residual volume (VRV)

maximisation algorithm. We validate our method through particles of known size.

In this chapter we also report a 3D shape reference using statistical distributions

from 3D measurements of the zebra�sh for three commonly used larval stages, i.e.,

3, 4, 5 days post fertilisation (dpf). According to the best of our knowledge, this

is the �rst validated and justi�ed report on the topic in this �eld; the results have

already been successfully used in pharmacokinetics and toxicology [34, 35].
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1.6 Thesis structure

Chapter 4 answers the RQ 4. We improve the 3D reconstruction by the incorpo-

ration of texture information from the original axial-view images, since in some

cases, a 2D shape is di�cult to obtain due to partial transparency. So, we take

the texture distribution sampled from the images into consideration to estimate a

more �exible 3D volumetric representation with a con�dence score as entry. We

demonstrate the successful application of the method in the MM-HTAI architec-

ture.

Chapter 5 presents a solution for RQ 5. We propose the methodology of multi-

modal 3D reconstruction for the zebra�sh larvae on both organism and organ

scale. We use the feature of our MM-HTAI architecture to produce images for

both the whole organism in bright-�eld and detailed organ structures in �uo-

rescence. We take the zebra�sh larvae and its liver as examples to explain our

method. The shape-based 3D reconstruction method is applied to obtain the

multiple 3D shape description; an alignment and a fusion of the multiple 3D

shapes are integrated to obtain a good visualisation of the results.

Chapter 6 concerns RQ 6. We apply a hand-crafted feature, the Local Binary

Patterns (LBP), on human facial appearance. Then we propose a graphical model

to predict the taxonomy (kinship) for genetic related family members. We also

apply a CNN architecture to acquire representative features. Subsequently, we

design a multi-output layer to enable taxonomy prediction for a set of datasets of

biological specimens, i.e., butter�ies, orchids and wood species. As a result, we

have successfully applied our methods in the applications mentioned earlier. The

experiment provides suitable knowledge and understanding for the behaviour of

the method when transferring the knowledgeable items from current applications

to the phenotype characterisation using the zebra�sh.

Chapter 7 summaries the answers to the six RQs and answers the PS. We list

a few limitations of the whole work and propose possible solutions. Finally, we

o�er six recommendations for further research.
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1. INTRODUCTION

Table 1.1: The structure of the thesis

Chapter
RQ 1 RQ 2 RQ 3 RQ 4 RQ 5 RQ 6 PS

1 X X X X X X X

2 X

3 X X

4 X

5 X

6 X

7 X X X X X X X
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Chapter 2

A Hybrid Segmentation Method for
2D Shape Description

Based on:

� Y. Guo, Z. Xiong & F.J. Verbeek, �An e�cient and robust hybrid method

for segmentation of zebra�sh objects from bright-�eld microscope images,�

submitted to Machine Vision and Applications, 2017.
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

This chapter addresses RQ 2.

RQ 2: To what extent is it possible to obtain an accurate 2D shape

description for the zebra�sh from the MM-HTAI architecture?

Abstract � Accurate segmentation of zebra�sh from bright-�eld microscope im-

ages is crucial to many applications in the life-sciences. Early zebra�sh stages are

used and in these stages the zebra�sh is partially transparent. This transparency

leads to edge ambiguity as is typically seen in the larval stages. Therefore, seg-

mentation of zebra�sh objects from images is a challenging task in computational

bio-imaging (see Section 2.1). Popular computational models fail to segment the

relevant edges which subsequently results in inaccurate measurements and evalu-

ations (see Section 2.2). Here we present a hybrid method to accomplish accurate

and e�cient segmentation of zebra�sh specimens from bright-�eld microscope im-

ages (see Section 2.3). (A) We employ the mean shift algorithm to augment the

color representation in the images (see Section 2.3.1). This (1) improves the dis-

crimination of the specimen to the background and (2) provides a segmentation

candidate retaining an overall shape of the zebra�sh. (B) A distance regularised

level set function is initialised from this segmentation candidate and fed to an im-

proved level set method, such that we can obtain another segmentation candidate

which preserves the explicit contour of the object (see Section 2.3.2). (C) The two

candidates are fused using heuristics and the hybrid result is re�ned to represent

the contour of the zebra�sh specimen (see Section 2.3.3). We have applied the

proposed method on two typical datasets (see Section 2.4.1). From experiments,

we conclude that the proposed hybrid method improves both e�ciency and ac-

curacy of the segmentation of images with zebra�sh specimen (see Section 2.4.2

& 2.4.3). The results are going to be used for high-throughput applications with

zebra�sh (see Section 2.5).
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2.1 2D shape description

Volume:           𝟐. 𝟓𝟓 × 𝟏𝟎𝟖𝝁𝒎𝟑

Surface area:   𝟑. 𝟒𝟐 × 𝟏𝟎𝟔𝝁𝒎𝟐

(B)

(A)

Figure 2.1: Typical applications of zebra�sh segmentation. (A) Fluorescence
images visualization and evaluation. Bright-�eld zebra�sh images o�er reference for
the shape of the specimen (column one). Fluorescent images present informative
signals, e.g. the blood vessels in green (column two). Accurate segmentation of
the bright-�eld image provides a good shape reference to evaluate the �uorescent
signals, for example, the development and concentration of speci�c cells (column
three). (B) 3D zebra�sh reconstruction from axial-views. Axial-view zebra�sh
images (column one) are segmented to obtain 2D binary shapes (column two), from
which the axial-view based 3D reconstruction produces 3D models as well as 3D
measurements (column three).

2.1 2D shape description

High-throughput imaging applications pose a challenge to the image acquisition

in that in some cases the quality of the imaging is compromised at the cost of

the speed of the imaging. Often this compromise is well-studied and the loss

of quality is relatively mild. We have studied high-throughput applications for

zebra�sh; the zebra�sh is a popular model system in bio-medical research. At

present, high-throughput applications for zebra�sh can be found, among others,

in the �elds of toxicology, cytology and oncology [36, 37].
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

(F)

(B)

(D)

(E)

(A)

(C)

Figure 2.2: Segmentations by di�erent methods for a zebra�sh specimen in lateral
position. Blue bounding box indicates the expected segmentations and red bound-
ing box indicates inaccurate segmentations. (A) Segmentation by the geodesic
active contours (GAC) model. Due to the edge sensitivity, the GAC model fails to
detect the tail of the specimen. (B) Segmentation by Chan-Vese (CV) model. The
partial transparency of the specimen makes it di�cult for a region based method to
discriminate the object from the background. (C) Segmentation by a local region
based level set (LRLS) model. Similar problem occurs that the tail of the spec-
imen is incorrectly segmented. (D) Segmentation by an improved level set (ILS)
method. (E) Segmentation by mean shift (MS) algorithm. Better results are ob-
tained though, edge sensitivity becomes worse. (F) Segmentation by the proposed
hybrid (HY) method. The accurate segmentation presents a natural and compact
shape description for the zebra�sh specimen.

The development of zebra�sh high-throughput imaging [7] has resulted in massive

amounts of data, i.e. images, becoming available. This requires an e�cient and

robust analysis for the images, so that phenotype descriptions of the zebra�sh can

be generated. Genetically engineered zebra�sh can be labelled with �uorescent

markers. Images from �uorescence present good properties of visibility and mea-

surability for cancer cells and organs. In order to evaluate the features which are

usually represented as color intensity and concentration from the �uorescence,

accurate segmentation of the zebra�sh in bright-�eld images is quite essential to

o�er a shape reference for the measurements [38]. So, feature evaluations from

control and experimental groups become comparable. In Fig. 2.1(A), an example

of this application is depicted.
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2.1 2D shape description

(A)

(B)

(C)

(D)

(E)

(F)

(G)

Figure 2.3: A pipeline schematic of the hybrid method. (A) MS algorithm is
applied to improve the visibility of the transparent regions and weak edges. (B)
An enclosed contour is extracted from the segmentation candidate in (A). (C) A
distance regularized level set function (LSF) is initialized from the zebra�sh contour
in (B). (D) The ILS method is activated and applied on the original image. (E)
Another segmentation candidate is generated. (F) An initial hybrid segmentation
of the zebra�sh is obtained by stitching the remarkable segments from the two
candidates according to pre-de�ned protocols. (G) A re�nement is followed to �ne-
tune the segmentation which can accurately represent the shape of the zebra�sh.

Moreover, we can observe more informative features, e.g. volume, surface area and

3D shape variation, in 3D zebra�sh imaging [39]. To this end, we need accurate 2D

zebra�sh segmentation to obtain su�cient shape priors for the axial-view based

3D zebra�sh reconstruction [40]. In Fig. 2.1(B), we show this application.

In a particular case, according to the observation that the hemopoietic stem cells

in zebra�sh predominantly distribute in the tail, an accurate description of the

overall shape of the zebra�sh will ensure the evaluation of particular diseases by

detecting and localising the tail region [17, 18]. Thus, an accurate segmentation

of zebra�sh objects in bright �eld microscopy is very signi�cant for a large range

of biomedical applications.
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

Computational methods from the �eld of computer vision can, in principle, help

to accomplish the image segmentation task in zebra�sh imaging. However, when

popular image segmentation methods are applied, for example, the geodesic ac-

tive contours (GAC) model [28] and the Chan-Vese (CV) model [41], the inho-

mogeneity of the intensity distribution caused by partial transparency and edge

discontinuity of zebra�sh larvae usually results in an inaccurate segmentation. To

illustrate these e�ects, in Fig. 2.2(A) and Fig. 2.2(B), the segmentation results

from, respectively, the GAC model and the CV model are shown. These segmen-

tations show that the CV model converges at the most observable region but fails

to retain the whole shape of the object; the GAC model obtains a poor shape

description for the zebra�sh tail. As shown in Fig. 2.2(C) and Fig. 2.2(D), other

improved algorithms, such as the local region based level set (IRLS) model [42]

and the improved level set (ILS) method [43] also do not result in an accurate

segmentation of the zebra�sh.

In fact, the edge based methods including the GAC model and the ILS method

are able to accurately discriminate the visible edges but su�er from the problem

of edge leakage. In contrast, as depicted in Fig. 2.2(E), unsupervised learning

methods such as the mean shift (MS) algorithm [29] can obtain an overview

shape description for the object, whilst the explicit edge will be, to a certain

extent, contaminated due to region fusion e�ects.

For this particular research project, we aim at an e�cient and robust solution

for accurate zebra�sh segmentation from bright-�eld microscope images. We,

therefore, have developed the hybrid (HY) method to combine the advantages

of various models. The objective of the HY method is to largely preserve the

prominent contour of the object and discriminate the transparent regions and

weak edges. In Fig. 2.2(F), we show the segmentation result. A schema of the

HY method is depicted in Fig. 2.3, and below we elaborate the method.

In (A), we apply the MS algorithm on the original image to improve the color

representation from the transparent object with respect to the background and

obtain a segmentation candidate. This initial segmentation retains and approxi-

mates an overall shape of the zebra�sh. In (B), we extract an enclosed contour

for the object from the results obtained in (A). In (C), a distance regularised

level set function is initialised from the result obtained in (B). In (D), with the

initialised level set function, the ILS method is applied on the original image to
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2.2 Related work and background

obtain another segmentation candidate. It is important that this manner of ini-

tialisation signi�cantly accelerates the curve convergence of the level set method

and improves the segmentation accuracy. Because the initialisation already ap-

proaches to the edge potentials, the local minimum problem is solved to a certain

extent. In (F), according to pre-de�ned protocols, we heuristically fuse the two

segmentation candidates. In (G), a cascaded re�nement module aims to �ne-tune

the segmentation result, which drives the contour to describe the shape of the

zebra�sh in a compact and accurate form.

A similar initialisation idea to step (C) is proposed in [44]. However, the employ-

ment of the MS algorithm in this work is not only to accelerate and stabilize the

curve evolution, but also to obtain an overall view of the shape of the zebra�sh

which is bene�cial for the following hybrid result. In other words, compared

to the problem presented in [44], our zebra�sh segmentation problem presents

a more challenging task; the segmentors with just the improved initialisation is

insu�cient to achieve the best performance.

The remainder of this chapter is structured as follows. In Section 2.2, we re-

view the related work and derive the level set method. We elaborate the HY

method in Section 2.3. In Section 2.4, we present two datasets of zebra�sh ob-

jects from bright-�eld microscope imaging. The experimental setup is depicted

and the experimental results to evaluate the performance of the proposed method

are presented. In Section 2.5, we summarise the research and indicate future de-

velopments.

2.2 Related work and background

In medical imaging, the functional based segmentation methods have been suc-

cessfully developed and obtained good performance. These methods seem to be

suitable for bright-�eld microscope imaging where complex scenes and noise are

common. These methods aim at optimising an energy functional to estimate the

optimal enclosed contour attaching the object boundary.

An early version of this technique is proposed as the classic active contours

(snakes) model [45], from which the more advanced algorithms have been de-

rived. The snakes model detects the object boundary by parameterising it as an

enclosed curve C(p) ∈ R2, p ∈ [0, 1]. The curve will topographically evolve to
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

minimise an energy functional formulated as E(C) which incorporates an internal

force considering the total length and the smoothness of the curve, and an exter-

nal force derived from the image to encourage the curve to approach the object

boundary. However, the snakes model cannot deal with changes in topology, in

other words, it cannot detect all the boundaries in an image with multiple objects.

Moreover, this method is rather sensitive to blurred edges.

The level set method is developed to handle the problems of topological merging

and breaking [46]. The idea is to formulate the object boundary as the zero level

set contour implicitly embedded in a three dimensional function which is known

as the level set function ((LSF)) φ(x, t) : Ω→ R, where the t is an arti�cial time

variable presenting the time evolution procedure and the Ω is the image domain.

The φ is usually assigned with positive and negative values in and out of the zero

level set contour. The energy functional is transformed to Ê(φ) from E(C).

Subsequently, a region based level set (CV) model is proposed [41]. With the

introduction of the Heaviside function

H(x) =

{
1, if x ≥ 0
0, if x < 0

(2.1)

the energy functional is de�ned as

Ê(φ) = µ

∫
Ω

|∇H(φ)|dx︸ ︷︷ ︸
Length term

+ υ

∫
Ω

(
|I − uin|2H(φ)dx + |I − uout|2(1−H(φ))

)
dx︸ ︷︷ ︸

External forece

,

(2.2)

where, uin and uout represent the mean intensity of the image inside and outside

of the curve, µ and υ are constants which can be tuned to balance di�erent forces.

The CV model can deal with the edge blurred images without employing edge

terms. Based on the Euler-Lagrange equation, the gradient descent can solve the

curve evolution problem. The gradient �ow is computed as follows:

∂φ

∂t
= −∂Ê

∂φ
. (2.3)
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2.2 Related work and background

However, as shown in Fig. 2.1(B), the CV model fails to segment the zebra�sh

because of severe intensity inhomogeneity in the images. A local region based

level set (LRLS) method is proposed to model the intensity variation as a bias

term for each of the local region generated from intensity clustering [42].

Di�erently, the geodesic active contours (GAC) model [28, 47] which originates

from the snakes model has its advantage of edge preserving, of which the energy

functional is proposed as

Ê(φ) = µ

∫
Ω

g(|∇I|)|∇H(φ)|dx︸ ︷︷ ︸
Length term

+ υ

∫
Ω

g(|∇I|)H(φ)dx︸ ︷︷ ︸
Area term

= µ

∫
Ω

g(|∇I|)δ(φ)|∇φ|dx + υ

∫
Ω

g(|∇I|)H(φ)dx,

(2.4)

where the g is known as the edge indicator which is formulated as

g(|∇I|) =
1

1− c|∇I|2
. (2.5)

The values of g are close to zero at the region of object edges and one at the

region of non-edges. This de�nition encourages the curve to converge at the

object boundary when the energy functional is minimised. To derive the level

set based GAC model, the gradient �ow can be computed according to Eq. (2.3)

as:

∂φ

∂t
= µδ(φ)div

(
g(|∇I|) ∇φ

|∇φ|

)
+ υg(|∇I|)}δ(φ)

= µδ(φ)[g(|∇I|)div
(
∇φ
|∇φ|

)
+ ∇g(|∇I|)|∇φ|] + υg(|∇I|)δ(φ).

(2.6)

Finally, the curve evolution problem is transformed as a level set surface evolution

problem

φi+1 = φi + ∆t
∂φ

∂t
, (2.7)

where the step size controller of ∆t is tunable during solution search. This search

is a standard gradient descent approach which can quickly locate the minimum
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

of the functional.

From the observations of our bright �eld images, the contour of the zebra�sh is

more discriminative than the color. So, the edge based level set method should

be suitable for our problem. However, from Figs. 2.1(A), 2.1(C) and 2.1(D),

the boundary defects of zebra�sh result in the problem of edge leakage for the

aforementioned methods. To solve this problem, the shape prior based level set

method are proposed [48, 49, 50]. This type of methods uses pre-de�ned shape

templates to constrain the curve evolution. The employment of the shape con-

straint enforces the curve to approach the linear transformed template. However,

the methods can only deal with the problems with limited shape deformations.

Moreover, the methods including curvature constraint try to minimise the total

curvature of the curve in order to control curve smoothness [51, 52]. However,

these methods are di�cult to implement with numerical solutions.

Besides, the performance of the GAC model also depends on the initialisation of

LSF. A bad initialiser may lead the curve to converge at a local minimum, for

example, the boundaries of the capillary as present in the images of the zebra�sh.

Cohen and Chen [53, 54] propose to �nd the global minimum of the geodesic

energy by solving the Eikonal equation, but those methods require initial and

end points from user input. In zebra�sh high-throughput imaging, we prefer an

automated manner.

Unsupervised learning based methods, e.g. k-means clustering [55, 56], superpix-

els [57, 58] and mean shift algorithm [29, 59], represent also a broad category of im-

age segmentation techniques. Those methods can cope with complicated images

by merging similar local regions and o�er reasonable pre-segmentations.

Supervised learning based models [60, 61, 62] have drawn a lot of attention. Re-

cently, the Convolutional Neural Networks (CNN )approach is becoming very

popular and being successfully applied in many computer vision applications

[25]. For the problem of image segmentation, some architectures are proposed

and achieve great performance [63, 64, 65]. Those generic methods are usually

trained from a large annotated dataset which is, however, not available for our

problem.

Based on the discussions so far, we may conclude that each of the image segmen-

tation methods shows good properties to solve a generic problem but also has its

own limitations. Therefore, it is reasonable to develop a method to take advan-

tage of the good properties of each of the methods. Here we aim at an e�cient
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2.3 A hybrid method for zebra�sh segmentation

and robust solution for our zebra�sh segmentation problem from bright-�eld mi-

croscope images. Considering the intrinsic characteristics of bright-�eld images

of zebra�sh, we propose the HY method. This method applies an unsupervised

learning method, i.e. mean shift algorithm, to obtain an overview shape descrip-

tion of the object. The edge based level set method takes the pre-segmentation

as initialisation and detects the explicit boundary. Finally, the two segmenta-

tion candidates are incorporated to obtain a better shape representation of the

zebra�sh.

2.3 A hybrid method for zebra�sh segmentation

In this section we develop the HY method by fusing the advantages of the MS

algorithm and the edge based level set methods, i.e the ILS method, to obtain

accurate segmentation for bright �eld microscope imaging of zebra�sh. The term

hybrid represents a dual semantics. We �rst refer to hybrid as the improved

manner of initialisation for the level set method with the MS algorithm. Com-

pared with the functional based models, the MS algorithm shows the advantage

of fast convergence and robust discrimination of transparency and weak edges. In

this manner a segmentation candidate representing an overview of the zebra�sh

shape can be obtained and used to initialise the LSF for the ILS method. The

ILS method can obtain another segmentation candidate to retain the explicit

contour of the zebra�sh. Then we refer to hybrid as the hybrid operation of the

two segmentation candidates.

This section describes three topics: mean shift algorithm and the �rst segmen-

tation candidate (in Subsection 2.3.1), the hybrid of improved level set method

and accelerated initialisation for a second segmentation candidate (in Subsection

2.3.3), and hybrid of the segmentation candidates (in Subsection 2.3.3).

2.3.1 Mean shift algorithm and the segmentation candidate

We present a short recap of the MS algorithm in the application of clustering.

In principle, the MS algorithm can cluster the similar data points through the

estimation of the maximal density distribution of each data point. It is a kernel

based density estimator which is derived from a method known as Parzen window.
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Given n data points xi, i = 1, ..., n, the density distribution of a data point of x

can be approximated by a kernel density estimator

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
, (2.8)

where h is the size of the bandwidth; d is the feature dimension; and K(·) usually
takes the form of multivariate Guassian kernel which can be written as K(x) =

(2π)−d/2 exp(−||x||2/2). From the de�nition of Eq. (2.8), one can �nd that a

data point similar to x will contribute more to its density estimation. We take

the pro�le notation k(x) = exp(−x/2) instead of the kernel representation of K

and yields the a pro�le representation of Eq. (2.9).

f̂h,K(x) =
ck,d
nhd

n∑
i=1

k

(∣∣∣∣∣∣∣∣x− xih

∣∣∣∣∣∣∣∣2
)
. (2.9)

If a function is de�ned as g(x) = −k′(x), the negative gradient of the pro�le

function k, the gradient of (2.9) can be computed and transformed into the form

as follows:

∇̂fh,K(x) =
2ck,d
nhd+2

[
n∑
i=1

g

(∣∣∣∣∣∣∣∣x− xih

∣∣∣∣∣∣∣∣2
)]∑i=1:n xig

(∣∣∣∣x−xi

h

∣∣∣∣2)∑n
i=1 g

(∣∣∣∣x−xi

h

∣∣∣∣2) − x

 .
(2.10)

The second term in Eq. (2.10) inspired us to the de�nition of the mean shift

mh(x) =

∑n
i=1 xig

(∣∣∣∣x−xi

h

∣∣∣∣2)∑n
i=1 g

(∣∣∣∣x−xi

h

∣∣∣∣2) − x, (2.11)

which indicates that the density maximizer of the data point x directs from the

current data point to the kernel weighted mean of all the training data within a

bandwidth of h. The location of the maximal density distribution of data point

x can be approximated by updating Eq. (2.11) until convergence.

We apply the MS algorithm in image texture augmentation which we refer to

as the image �ltering and smoothing. In our problem of segmentation in images
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2.3 A hybrid method for zebra�sh segmentation

of zebra�sh, the texture augmentation serves to (1) improve the discrimination

from the transparent object with respect to the background and (2) to enhance

the weak boundary. Considering both the color and spatial features in images,

two bandwidths should be de�ned separately for those two metrics. The kernel

of K should combine those two feature spaces and is represented as follows:

Khr,hs(x) =
C

h3
r, h

2
s

k

(∣∣∣∣∣∣∣∣xrhr
∣∣∣∣∣∣∣∣2
)
k

(∣∣∣∣∣∣∣∣xshs
∣∣∣∣∣∣∣∣2
)
, (2.12)

where k keeps the form of pro�le as previous de�nition; (xr,xs) denote color

and spatial features, respectively; the pair (hr, hs) represents the bandwidth in

the two feature spaces. We use the three-channel RGB image and represent the

spatial feature as two-dimensional coordinates of the pixel location. According

to Eq. (2.12), the pixels within a range domain contribute more, i.e. represented

as higher weights, for the density estimation of the centre pixel when the neigh-

bouring pixels and the centre pixel are similar in color and spatial space.

By determining a proper combination of the bandwidths for (hr, hs) and applying

the MS algorithm on the images of zebra�sh, the weak boundary of the specimen

can be, to a certain extent, recovered by the neighbouring pixels. At the same

time, the color inhomogeneous regions are smoothed. For our application, only

one object is present in the image, so a segmentation candidate for the zebra�sh is

directly obtained by thresholding the texture augmented images and represented

as SM .

2.3.2 Hybrid of level set method and accelerated initialisation

In this chapter, we apply the ILS method for two reasons: (1) the e�cient imple-

mentation and (2) its tunable properties to a problem. The ILS method improves

the GAC model by the employment of a �region based term�. Its energy functional

is de�ned in Eq. (2.13).

Ê(φ) =

∫
Ω

[µg(|∇I|)|∇Hε(φ)| + υ(I −m)Hε(φ)] dx (2.13)

where m is a user provided value which is used to pre-process the images. We

use a smooth approximation of the Heaviside function, here de�ned as
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Hε(x) =


1
2
(1 + x

ε
+ 1

π
sin(πx

ε
)), if |x| ≤ ε

1, if x > ε
0, if x < −ε,

(2.14)

and its derivative

δε(x) =

{
1
2ε

[
1 + cos

(
πx
ε

)]
, if |x| ≤ ε

0, if |x| > −ε (2.15)

According to Eq. (2.3), the gradient �ow of the ILS method is derived as:

∂φ

∂t
= δε(φ)

{
µ

[
g(|∇I|)div

(
∇φ
|∇φ|

)
+∇g(|∇I|) ∇φ

|∇φ|

]
+ υ(I −m)

}
, (2.16)

where div denotes the divergence operator.

In fact, the ILS method replaces the �area constraint� in the original GAC model

by a region based term inferred from the image to make the solution more tunable.

For the sake of fast implementation, the additive operator splitting (AOS) scheme

[47, 66] is used.

In general, an LSF should be de�ned to initialise the level set methods. Multiple

options are available to accomplish this; e.g. random initialisation. Application

of a random initialisation for segmentation of zebra�sh images has the risk of

the enclosed contour of the zero level set converging at a local minimum which is

presented as the noise. The segmentation candidate from the MS algorithm o�ers

an overall shape representation of the zebra�sh, which is a reasonable initialiser

and can be fed to the ILS method. The LSF initialised by the MS algorithm is

an approximation of the object, which imposes the curve evolution of the ILS

method to be activated from a considerably good location. Based on this idea,

we accomplish the �rst goal of the HY method and specify the curve evolution of

Eq. (2.7) in two phases:


φ1 = φM0 + ∆t1

∂φ
∂t
, t = 0,

φt+1 = φt + ∆t1
∂φ
∂t
, t = 1 to T1 − 1,

(2.17)

where the notation φM0 denotes the shape constrained LSF by the MS algorithm.

Compared to the random initialisation fashions, the proposed HY method leads
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2.3 A hybrid method for zebra�sh segmentation

the LSF to approach to the global minimum, such that the ILS method is ac-

celerated and more robust with less iterations. We obtain the second segmen-

tation candidate of the zebra�sh, represented as SL through searching for the

non-negative level sets in the converging LSF of φ.

2.3.3 Hybrid of the segmentation candidates

In order to accomplish the second task of the HY method, we de�ne a hybrid

operator to obtain the hybrid for the two segmentation candidates. To that end,

we �rst detect the orientation of the zebra�sh. In general, the side close to the

broadest part of a zebra�sh is recognised as the head side. The hybrid operator

includes multiple operations of splitting and fusing and is mathematically de�ned

as

S = SL ⊕ SM
= (SHL ∩ SHM) ∪ (STL ∪ STM),

(2.18)

where S, SL, and SM represent the segmentations by the hybrid operation, the

ILS method and the MS algorithm, respectively. SH and ST denote the segments

from the Head and Tail sides of the zebra�sh. For the segment close to the

side of head in zebra�sh, the ILS method o�ers more compact contour so we

take the intersection of the corresponding segments from the two segmentation

candidates. For the segment close to the side of tail, the MS algorithm o�ers an

approximation for the natural shape of zebra�sh, therefore we take the union of

the corresponding segments. The splitter of the two segments is then de�ned as

F (S)→ {SH , ST}. The splitting factor is empirically chosen as 10% of the full

length of the zebra�sh with respect to the tip of the narrowest part.

From the observation of the initial result of the HY method, segmentation arti-

facts at the stitching point might occur. Therefore, we propose a re�nement in

the form of the second-phase curve evolution based on the LSF initialised by the

initial hybrid segmentation result. We specify this idea in Eq. (2.19). Hereby we

use u to de�ne the LSF to distinguish from Eq. (2.7).


u1 = uHY0 + ∆t2

∂u
∂t
, t = 0,

ut+1 = ut + ∆t2
∂u
∂t
, t = 1 to T2 − 1.

(2.19)
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Algorithm 1: The HY method for zebra�sh segmentation in bright-�eld mi-
croscopy

Input: Bright-�eld zebra�sh image I
Setup: µ, υ, ∆t1, ∆t2, T1, T2, hr, hs
Begin:

Pre-process the noise of capillary: Id = detect_capillary(I)
Apply the MS algorithm: IM = meanshift(Id)
Extract the segmentation candidate: SM = threshold(IM)
Initialise LSF: φM0 = distance_transform(SM)
for iterator = 1 : T1 do

Compute Eq. (2.16) to obtain gradient �ow ∂φ
∂t

Compute Eq. (2.17) to update φ

Obtain segmentation candidate: SL = 1(φ ≥ 0)
Factorise segmentations: F (SL)→ {SHL , STL}, F (SM)→ {SHM , STM}
Apply Eq. (2.18) to obtain hybrid result S
Initialise LSF: uHY0 = distance_transform(S)
for iterator = 1 : T2 do

Compute Eq. (2.16) to obtain gradient �ow ∂u
∂t

Compute Eq. (2.19) to update u

Obtain the �nal hybrid segmentation: SF = 1(u ≥ 0)
End

Through the aforementioned manner, we can obtain more accurate representation

of the zebra�sh contour which is embedded as the zero level set in the u. The step

size ∆t2 of the gradient �ow is set to be much smaller than the previous one of

∆t1, which prevents the occurrence of edge leakage. In order to clearly illustrate

the proposed method, we summarise the whole procedure in Algorithm 1.

2.4 Experiments

In this section we �rst present two datasets of bright �eld axial-view images of

zebra�sh from the Vertebrate Automated Screening Technology (VAST BioIm-

ager) (http://www.unionbio.com/vast/) (Subsection 2.4.1). We apply our HY

method as well as several popular segmentors on the datasets to compare per-

formances (Subsection 2.4.2). We evaluate the methods in the forms of accuracy

and e�ciency. The visualisation of segmentation results show the limitations
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of the reference methods and the merit of the HY method for segmentation of

bright-�eld microscope images of zebra�sh (Subsection 2.4.3).

2.4.1 Data collection

The VAST BioImager is developed for high-throughput experiments with ze-

bra�sh; the device can be mounted on a microscopes; its main feature is the

ability of manipulation of zebra�sh in the �eld of view by loading them in capil-

lary. The VAST camera detects the orientation and location of the object. Once

the object is present in the �eld of view of the imager, a set of stepper motors

holding the capillary rotate the specimen in a full revolution, so that images of

the zebra�sh can be acquired in any axial-view. In our experiments, 84 axial-

views (images) are evenly sampled from a full revolution (around 4.3o per view)

for each specimen.

Dataset A - The VAST BioImager is equipped with a standard camera, the VAST

camera, which is used to detect the object presence in the �eld of view. With

this camera axial-view images for the specimen can also be acquired representing

an overview of the object. These images are 1024× 1024 in size with a pixel size

of 5.5 µm × 5.5 µm. In Fig. 2.4 examples of the images acquired by the VAST

camera are depicted. The partial transparency and weak edge are clearly visible

in most of the images. The All images in Dataset A are collected with the VAST

camera. Dataset A includes a range of developmental stages of the zebra�sh,

i.e. three, four and �ve days post fertilization (dpf). The dataset contains three

groups with in 60 examples. With 84 views per sample, this results in over 5,000

images in total (84× 60).

Dataset B - The images produced by the VAST BioImager are relatively low-

resolution and are insu�cient for detailed observations of the zebra�sh. Our

setup consists of a microscope on which the VAST BioImager is mounted to

produce high-resolution images. The VAST BioImager manipulates the specimen

and the camera mounted on the microscope acquires the high-resolution images.

Therefore, as an extension to Dataset A a Dataset B is obtained. The same

imaging protocol with respect to Dataset A is used, i.e. 84 evenly sampled axial-

views are acquired in a full revolution. The image size of each is 1920×2560 with

a pixel size of 3.4 µm × 3.4 µm. In Fig. 2.5 some the examples of these images

are depicted. For better visualisation, both of the vertical sides of the images are

cropped to centre of the object and the image size is cropped to 600×2560.
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Table 2.1: Segmentation performance of di�erent methods on Dataset A

Model Runtime (seconds) F-score

CV model 1.74± 0.31 0.758± 0.123
CV model+MS 1.32± 0.16 0.758± 0.123
LRLS 22.83± 3.70 0.956± 0.026
LRLS+MS 19.56± 0.15 0.968± 0.014
GAC model 3.34± 0.38 0.976± 0.006
GAC model+MS 1.72± 0.13 0.976± 0.007
ILS 2.65± 0.42 0.976± 0.007
ILS+MS 1.26± 0.32 0.978± 0.006
MS 0.63± 0.07 0.964± 0.006
HY 1.37± 0.22 0.983± 0.004

Table 2.2: Segmentation performance of di�erent methods on Dataset B

Model Runtime (seconds) F-score

CV model 8.87± 1.78 0.838± 0.120
CV model+MS 6.96± 1.63 0.838± 0.120
LRLS 152.27± 1.06 0.968± 0.016
LRLS+MS 126.60± 1.76 0.977± 0.011
GAC model 21.92± 0.19 0.918± 0.068
GAC model+MS 8.95± 0.40 0.957± 0.034
ILS 14.53± 6.39 0.970± 0.015
ILS+MS 7.23± 1.73 0.973± 0.022
MS 2.32± 0.31 0.965± 0.023
HY 8.30± 0.98 0.986± 0.004

2.4.2 Evaluation of di�erent methods

In the experiment, the e�ciency and performance are evaluated for di�erent seg-

mentation methods. The abbreviations of CV, GAC, LRLS and ILS consistently

represent the Chan-Vese model, geodesic active contours model, local region based

level set model [42] and the improved level set method [43], respectively; MS de-

notes the mean shift algorithm. The representation of ∗+MS indicates the ∗
model with an initialiser from the MS algorithm and HY is the proposed HY

method.

In order to have a groundtruth set, we manually segmented 336 images of 4
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specimens (84 views per specimen) from Dataset A. In addition, a subset from

Dataset B including 33 images selected from 3 objects, is also manually segmented

to obtain groundtruth annotations.

We measure the accuracy represented as F-score and the e�ciency as runtime

for all the methods on the subsets. The F-score is de�ned as F = (2 · recall ·
precision)/(recall + precision). The closer to one the F-score is, the better

performance of a method is. The mean and standard deviation for the two mea-

surements are computed.

In the experiment, we partially used the fast implementation from [43]. To justify

di�erent methods, we give the same setups. For the models initialised by the MS

algorithm, we take the con�guration of the kernel bandwidths (hr, hs) as (20, 20).

Besides, all the methods are con�gured with the same number of iterations.

(A) Performance evaluation on subsets of Dataset A

In Table 2.1, we show the performance of di�erent methods, evaluated on the

subset of Dataset A with groundtruth. One can see that the CV model obtains

the lowest F-score. This can also be seen in the segmentation result visualisation

depicted in Fig. 2.1(B). Due to intensity inhomogeneity of the zebra�sh in the

image, it is di�cult for the CV model to estimate the general mean of the texture

inside and outside the object. Consequently, the CV model almost completely

fails to detect the zebra�sh.

For the other methods, comparable performances are seen, but di�erences are still

existing. It is obvious that the MS algorithm is the most e�cient segmentor. This

provides evidence for the fact that a segmentor equipped with an MS initialiser

is always more e�cient than the same model with the random initialisation. We

may conclude that the hybrid of the MS initialisation with the functional based

segmentation model is helpful to improve the e�ciency of zebra�sh segmentation.

The reason is that, the MS initialiser can produce a good estimation of the overall

shape of the zebra�sh. This shape approaches the global minimum.

The LRLS model also achieves a good performance. However, we should make

more e�ort for the con�gurations and post-processing to obtain a natural shape

for the zebra�sh in the LRLS model. We do not have the fast implementation

for the LRLS model, so that we cannot reasonably given a justi�cation of its

e�ciency. Nevertheless, we can appreciate the hybrid of the MS algorithm and

the LRLS model for a fast curve evolution.
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2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

Both the ILS method and the GAC model can obtain better segmentation results

than the aforementioned methods. We �nd that the ILS method works faster

than the GAC model. So, we choose to use the ILS method in our HY method.

Considering the accuracy, the proposed HY method has the best performance.

This is reasonable as the HY method combines the advantages of the MS algo-

rithm and the ILS method. The segmentation result preserves an overall shape

and retains the original explicit contour of the zebra�sh.

(B) Performance evaluation on subsets of Dataset B

In Table 2.2 we show the performances of the di�erent methods as evaluated on

the subset of Dataset B. We can directly see that the e�ciency of all methods is

lower as a result of the larger image size. In addition, similar to the experiment

on Dataset A it can be seen that the methods equipped with the MS initialiser

generally work faster than the methods with random initialisation. Although the

LRLS model obtains slightly better results than the ILS, the latter usually works

faster. We do not have equivalent implementation of the LRLS model, so for

the runtime no justi�cation can be given. Due to the employment of the hybrid

operation and post-processing, the proposed HY method works a little bit slower

than the ILS method with an MS initialiser, but the segmentation accuracy is

clearly improved.

2.4.3 Inspection of results by visualisation

In this experiment, we have visualised some representative segmentation results

of Dataset A and Dataset B in this experiment.

For Dataset A, we randomly selected one zebra�sh specimen from each group in

Dataset A. For each example, three typical axial-views (lateral, 45o tilted and

ventral) are selected and shown in Fig. 2.4. We can observe that for the images

with the zebra�sh positioned in the view of ventral (dorsal), all the methods result

in an accurate segmentation; this is due to the fact that the image portrays an

explicit boundary of zebra�sh. In the images with a lateral view of the zebra�sh,

the GAC model, LRLS model and ILS method fail to detect the weak edges.

This phenomenon of edge leakage commonly occurs. Although the MS algorithm

can retain a natural shape for the zebra�sh, it loses the edge sensitivity. The

proposed HY method obtains more accurate segmentations.
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In Fig. 2.5, a representative set of images from Dataset B is depicted. Com-

pared to Dataset A, these images have a better contrast and the outline (con-

tour) of the zebra�sh specimen is more explicit. Consequently, the classical edge

based segmentors such as the GAC model have less di�culty segmenting the

zebra�sh from these images; even for zebra�sh from a lateral view. The risk

of edge leakage, however, still exists. In Fig. 2.5(B) and (C), we can see the

contours resulted from the GAC model, LRLS model and ILS method converg-

ing at the wrong regions. The MS algorithm results in a segmentation retaining

the whole boundary of the object, but the shape as a whole is less compact.

From our experiment, we may conclude that the proposed HY method is able

to deal with the segmentation problem for zebra�sh specimens in bright-�eld

microscopy. It results in more accurate results and shows a good performance.

Due to the illumination conditions in the microscope, the acquired images are

sometimes less explicit; this is depicted in the third column of Fig. 2.1(A). A

straightforward pre-processing solution such as color equalization can improve

the image contrast of the object with respect to the background. More segmen-

tation results in this experiment represented as animations can be found here:

http://bio-imaging.liacs.nl/galleries/VAST-Hybrid/.

2.5 Chapter conclusions and future work

In this chapter, we have presented a hybrid method to accomplish the task of

e�cient and robust segmentation of zebra�sh from the bright-�eld microscope

images. This answers RQ 2: To what extent is it possible to obtain an accurate

2D shape description for the zebra�sh from the MM-HTAI architecture? Below

we specify this answer more precisely.

We propose to employ the mean shift algorithm to augment the color representa-

tion for the partial transparent regions and transform the ambiguous edges more

separable, such that we can obtain a segmentation candidate which preserves an

overview of the zebra�sh shape. A distance regularized level set function is ini-

tialised from this segmentation candidate and fed to an improved level set method

in order to obtain a more compact shape representation preserving the explicit

object contours. This hybrid operation accelerates the curve convergence at the

regions of interest. We intuitively fuse those two segmentation candidates and

employ a re�nement in order to obtain the accurate hybrid segmentation. The

33

http://bio-imaging.liacs.nl/galleries/VAST-Hybrid/


2. A HYBRID SEGMENTATION METHOD FOR 2D SHAPE DESCRIPTION

results of our segmentation method facilitate the visualisation and evaluation of

gene expressions in zebra�sh in both 2D and 3D. This is directly relevant for

the success of experiments in which imaging is crucial. Such experiments are

typical for applications in life-sciences, e.g. cancer and pharmacokinetics. Fur-

thermore, the proposed method is very suitable for high-throughput applications

with zebra�sh.

Below we provide three future perspectives. (1) The proposed method can be

generalised by taking images into consideration that contain multiple objects

positioned in various orientations. For orientation detection and initialisation over

multiple instances modules need be developed that constitute the generalisation.

For the work presented in this paper, the single instance is the approach for high-

throughput applications. (2) Moreover, bright-�eld microscopy is a standard

component for this type of applications. Nevertheless, the proposed HY method

can be evaluated for other imaging modalities, with other lenses and illumination

architectures. In this manner the HY method is probed and challenged for other

and di�erent image qualities. As an example, we consider optical projection

tomography (OPT) imaging [22]; bright-�led images are included in this imaging

technique and the processing of these images might bene�t from the application

of the proposed HY method. (3) Application to other imaging techniques will

contribute to a further development and evaluation of the HY method.
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Figure 2.4: Segmentation results visualisation of di�erent methods on Dataset A.
GAC = geodesic active contours model [28]. LRLS = local region based level set
model [42]. ILS = Improved Level Set method [43]. MS = mean shift algorithm [29].
HY = the proposed hybrid method. GT = groundtruth. A subset of the zebra�sh
larvae of 5 dpf are provided with manual annotations. For each example, three
typical views (dorsal, tilted and lateral) are shown. (A), (B) and (C) correspond
to three zebra�sh larval stage of 5, 4 and 3 dpf respectively.
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Figure 2.5: Segmentation results visualisation of di�erent methods on Dataset B.
(A), (B) and (C) correspond to three zebra�sh examples, respectively.
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Chapter 3

Shape-based 3D Reconstruction
and 3D Measurements

Based on:

� Y. Guo, W.J. Veneman, H.P. Spaink & F.J. Verbeek, �Silhouette-based

3D model for zebra�sh high-throughput imaging� in IEEE Conference on

Image Processing Theory, Tools and Applications, Orleans, France, 2015,

pp. 403-408.

� Y. Guo, W.J. Veneman, H.P. Spaink & F.J. Verbeek, �Three-dimensional

reconstruction and measurements of zebra�sh larvae from high-throughput

axial-view in vivo imaging,� Biomedical Optics Express, vol. 8, no. 5, pp.

2611-2634, 2017.
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This chapter addresses RQ 1 and RQ 3.

RQ 1: To what extent is it possible to develop an MM-HTAI archi-

tecture for the zebra�sh larvae?

RQ 3: To what extent is it possible to obtain precise 3D shape de-

scription and derive accurate 3D measurements that are statistically

relevant for the zebra�sh from the MM-HTAI architecture?

Abstract � High-throughput imaging is applied to provide observations for ac-

curate statements on phenomena in biology and this has been successfully applied

in the domain of cells, i.e., cytomics. In the domain of whole organisms, we need

to take the challenge to ensure that the imaging can be accomplished with a

su�cient throughput and reproducibility. For vertebrate biology, zebra�sh is a

popular model system for high-throughput applications (see Section 3.1). The

development of the Vertebrate Automated Screening Technology (VAST BioIm-

ager), a microscope mounted system, enables the application of zebra�sh high-

throughput screening. For the VAST BioImager, �uorescence and/or confocal

microscopes are used. Quantitation of a speci�c signal as derived from a label in

one �uorescent channel requires insight into the zebra�sh volume to be able to

normalise quantitation to volume units. However, from the setup of the VAST

BioImager, a specimen volume cannot be straightforwardly derived.

We �rst present the multi-modal high-throughput axial-view imaging architecture

by the employment of di�erent types of microscopes based on the VAST BioIm-

ager (see Subsection 3.3.1). We then propose shape-based 3D reconstruction to

produce 3D volumetric representations for zebra�sh larvae using the axial-views

(see Subsection 3.3.3 and 3.3.4). Volume and surface area are then derived from

the 3D reconstruction to obtain the shape characteristics in high-throughput mea-

surements. In addition, we develop a calibration and a validation of our method-

ology (see Subsection 3.3.5). In Section 3.4, from our experiments, we show that

with a limited amount of views, accurate measurements of volume and surface

area for zebra�sh larvae can be obtained. We have applied the proposed method

on a range of developmental stages in zebra�sh and produced real metric refer-

ences for the volume and surface area of each stage (see Subsection 3.4.4).

38



3.1 3D shape description for zebra�sh

3.1 3D shape description for zebra�sh

The application of high-throughput imaging is wide-spread in modern molecu-

lar genetics based biology. Imaging takes an important position in a variety of

high-throughput applications and the image based applications are found on the

cellular, tissue-culture and organismal level. High-throughput is a demanding

process and as throughput is required, the optics setup needs to cover for su�-

cient image quality in further processing of the samples.

Zebra�sh is a popular model system to study a broad range of biological phe-

nomena. A lot of these phenomena are rooted in molecular genetics, i.e., devel-

opmental biology, toxicology, cancer, infectious diseases, and drug targeting. In

an experimental setting zebra�sh are easy to breed and per crossing about 200

eggs can be obtained. The early embryonic stages are easily studied through

microscopy as well as easy to manipulate. In the past decade, through genetic

engineering, a large amount of transgenic zebra�sh lines incorporating Green Flu-

orescent Protein (GFP, and the like) as a reporter gene have become available.

These lines, and the genes they represent, support the research in that the gene-

expression from the transgenic line helps indicating speci�c events in space and

time. The GFP-like reporter genes are studied through �uorescent and confocal

microscopy and the �uorescence facilitates measurability of the expression so that

a numerical representation of experiments can be obtained.

Zebra�sh, augmented with the large amount of reporter lines, are quite suitable

for high-throughput experiments given the number of embryos that can be ob-

tained for experimentation. Furthermore, the genomics of zebra�sh is close to

human. Therefore, zebra�sh is now massively used as a model in disease studies

which are often performed in a high-throughput setting. Initially, these exper-

iments were designed to such a way that the read-out was realised using 2D

images and subsequent processing of these images. In this manner a kind of

mid-throughput could be accomplished. The space and time features of these

images could, de facto, be used e�ciently. In order to scale experiments to true

high-throughput, other solutions need be probed [7]. Moreover, spatial acuity is

required to enable the 3D image analysis. Apparently, confocal laser scanning

microscopy (CLSM) seems the best option. So, in addition to the microscope

and automated acquisition protocols, devices are required to make it possible to

do accurate and fast imaging, both 2D and 3D, on life specimens and, if possible,

in a time-lapse fashion. A solution has been presented through the adaptation
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(A) (B)

(C)

(D)

Initial guess of camera 
configurations 𝜓

(E)

Figure 3.1: Flowchart of the 3D reconstruction and measurements of zebra�sh
larvae for the high-throughput axial-view imaging system. (A) Axial-view images of
zebra�sh as acquired from the VAST camera. (B) 2D shapes are obtained from the
segmentation of axial views. (C) Initialisation of camera con�gurations estimated
from the VAST BioImager. (D) Visualisation of parameterisation and calibration
of the axial-view camera system. The bold dots represent centre of the camera lens;
the dash lines represent the principal axis of the camera. (E) Reconstructed 3D
zebra�sh models with a volumetric representation shown on the left and a texture-
mapping model on the right. The �+ symbol indicates the integration of di�erent
computational modules. For further details see Section 3.3.

of screening hardware from the invertebrate �eld and making it suitable for the

vertebrate �eld, more speci�cally for zebra�sh; i.e., the Vertebrate Automated

Screening Technology (VAST BioImager) [26]. The VAST BioImager extends a

microscope, equipped with (epi-)�uorescence and/or confocal imaging options.

Through a capillary system, zebra�sh embryos/larvae are delivered, transported

and kept in a �xed position for imaging. The capillary is mounted such that it

can rotate while the specimen is kept in its �xed position. In this manner, images

from di�erent angles, i.e., axial-view images, can be acquired and analysed. Some

typical examples of the axial views obtained by the VAST camera are depicted

in Fig. 3.1 (A).

In order to obtain successful image analysis of zebra�sh, accurate and precise

shape measurements are important, especially for providing a reference of the

overall size and shape. In �uorescence, only the speci�c shape characteristics

from speci�c labels can be analysed. In contrast, bright-�eld images will give all

information on shape and size if they present an overview of the specimen. There-

fore, we investigate how the axial-view images can be employed to obtain precise
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and accurate measurements on size and shape [40]. We �rst design a multi-modal

high-throughput axial-view imaging (MM-HTAI) architecture based on the VAST

system and light microscopy. This architecture can produce a full revolution of

the specimen and acquire, with the VAST camera, a set of axial-view images. A

potential of the MM-HTAI architecture is to produce detailed microscopic im-

ages both in bright-�eld and �uorescence. Subsequently, we will investigate how

these images can be used to reconstruct a volume and obtain the size and shape

measurements. These measurements then serve as a reference of size and shape

of more speci�c features. A general overview of the proposed method is shown

in Fig. 3.1. Given the microscope setup with the VAST BioImager, axial-view

shapes of the zebra�sh as shown in Fig.3.1 (B) are extracted from the original

images as shown in Fig. 3.1 (A) and, henceforth, a 3D volume can be produced

through combination of the shapes. The underlying idea of the 3D reconstruction

from axial-views is similar to the problem of multi-view based 3D vision. To that

end, a camera calibration model needs to be developed as framed in Fig. 3.1 (D).

The 3D reconstruction can be accomplished once the segmentation and camera

calibration are in place. An example of the 3D reconstructed zebra�sh model is

depicted in Fig. 3.1 (E). We need, however, to make sure that the result is a

good representation of the shape; i.e., the measurements that we derive from the

model can be considered correct. So, validation experiments and evaluation of

the methodology on zebra�sh larvae will be performed.

In order to clarify our method, the following issues are addressed in the next sec-

tions of this chapter. In Section 3.2, a number of 3D reconstruction methods are

reviewed and the proposed method is motivated by the 3D reconstruction based

on shapes, i.e., the binary masks obtained from segmentation of the object. In

order to apply the method, an accurate estimation of the camera con�guration

is required. Therefore, we elaborate this issue for microscope optics and include

some necessary optimisation steps for e�cient computation in Section 3.3. In

Section 3.4, we continue with a validation of the proposed method by introducing

calibration beads that are used in an initial experiment testing whether our setup

can produce accurate reconstructions. In addition, we test whether our measure-

ment algorithms are sound. Subsequently, we have performed experiments on a

large set of zebra�sh larvae and shown successful applications of the proposed

method for zebra�sh larvae. The experiment deals with a range of developmental

stages in zebra�sh and the outcome of the measurements is interpreted. One of
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the results is a graph of the distribution for volume and surface area of the ze-

bra�sh larvae. We explain how this distribution is derived from the experimental

results. We present the major conclusions from this research, answer the RQ 1

and RQ 3, and extrapolate to future work in Section 3.5.

3.2 Background and method motivation

In multi-view 3D reconstruction methods, two major categories can be discerned.

The �rst category is based on epipolar geometry and aims estimating the depth

information by matching the corresponding points from correlated images of one

identical scene using geometrical clues [67, 68]. The methods use texture map-

ping to de�ne point similarity or disparity, but require pixel-wise correspondence.

The second category concerns the multi-view 3D reconstruction by producing a

volumetric representation of the object from a series of binary masks of the shape,

which sometimes is referred to as the silhouette based 3D reconstruction.

For the 3D measurements that we wish to extract from the zebra�sh, the 3D

shape plays an important role. Our method should, thus, have an innate shape

preserving ability. Due to the partial transparency of the zebra�sh embryos, it is

di�cult to determine point correspondences from the object surface within the

multi-view images. Therefore, the silhouette based 3D reconstruction method is

more suitable for this type of data. In this chapter, a binary mask is derived from

an axial-view image which is preferably de�ned as a shape. As of now, we thereby

use, in the remainder of this paper, the term shape-based 3D reconstruction to

indicate our reconstruction method.

In the silhouette based method, the initial idea takes into account the parallel

projections derived from each individual shape [69] to generate a 3D intersection.

Various 3D volumetric representations are then proposed. Hierarchical resolution

voxels are used for an e�cient construction of the 3D object [70]. The voxels that

are populating the object surface are represented with a high resolution grid,

while the voxels inside the object are represented by much coarser grid. Such

data structure is commonly referred as an Octree. Due to the characteristics of

the camera imaging system, cone-shaped projections have been derived from the

camera con�gurations [31, 71]. The silhouette based 3D reconstruction methods

have become more feasible through the introduction of the concept of the visual

hull [72, 73, 74]. The space carving algorithm [75, 76], as conceptualised in the
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space-carving theory, is an important implementation of this concept. In this

method, based on the pinhole camera projection model, all the silhouettes are

back-projected to the 3D space represented as a voxel-space. According to space

carving theory [76], only the voxels visible to each of the silhouettes are preserved

and used to reconstruct the �nal 3D model.

Other methods combine the information from texture mappings of the original

images; one of which includes the surface re�ectance to generate more natural

3D scene [77]. In recent approaches [78, 79, 80, 81], the 3D reconstruction is

accomplished by searching for an optimal surface. The 3D surface is embedded

in a higher dimensional space. Each voxel candidate included or excluded by the

enclosed surface is assigned with a probability which indicates the possibility of

the voxel candidate belonging to the object or the background. The probability

is modelled by a multi-variate Gaussian kernel which is applied on the texture

mappings interactively indicated by users. An energy function is subsequently

de�ned by incorporating the total probability and the total surface area. Finally,

the variational framework is taken to solve the optimisation problem. Recently,

innovations [82, 83] were reported, which (1) are carefully formulated to preserve

and re�ne the details across the projective rays on the object surface by introduc-

ing various constraints, and (2) achieve elaborate results on public datasets.

Our aim is to accomplish 3D measurements from our high-throughput imaging

system. From the related work, we have taken our inspiration to further develop

the multi-view based 3D reconstruction and introduce new ideas for the calibra-

tion of the optical setup in microscopy. Our point of departure is an existing

opto-electronic con�guration for high-throughput imaging to accomplish a recon-

struction of zebra�sh larvae. As a consequence, in order to be able to produce

reconstructions from multi-view imaging, a calibration of the microscope imaging

system needs be performed. To that end, a solution for the calibration problem

is proposed using a revisited objective function in the optimisation. This func-

tion is de�ned as the voxel residual volume (VRV) maximization problem, which

is a simpli�ed formulation of the area coherence [84]. In terms of implementa-

tion, VRV is more e�cient compared to the silhouette coherence [85]. In order

to validate the proposed method, a large dataset of zebra�sh larvae of di�erent

developmental stages is produced. For each of the instances in this dataset, a

multi-view image set is acquired. From our method, 3D reconstructions are pro-

duced including the generation of dense surface points and triangulated meshes

[86]. From the volumetric reconstructions and the meshes, volume and surface

43



3. SHAPE-BASED 3D RECONSTRUCTION AND 3D MEASUREMENTS

area can be computed. In addition, the method is applied to calibrated spheres

in order to obtain metrical references. With a statistical analysis of the dataset,

we have obtained a metrical reference for the most frequently used developmen-

tal stages of zebra�sh in High-throughput imaging. This analysis will provide a

baseline evaluation for future research in high-throughput imaging of zebra�sh

as well as a baseline for volume and surface estimations in zebra�sh development

providing reference values for a range of other features.

3.3 Materials and methods

Below we elaborate on the MM-HTAI system in Subsection 3.3.1. Our start-

ing point is images that are acquired with the system; from these images, the

shapes (silhouettes) need to be extracted using the method proposed in Chapter

2 which is also discerned in Subsection 3.3.2. We parameterise the camera model

in Subsection 3.3.3, which is essential to the shape-based 3D reconstruction as

elaborated in Subsection 3.3.4. For a good shape-based 3D reconstruction, the

camera calibration should be operated and is addressed in Subsection 3.3.5.

3.3.1 MM-HTAI architecture

In this subsection, we describe the imaging system and procedures. Fig. 3.2

shows the so-called MM-HTAI architecture based on the VAST BioImager as

designed for zebra�sh high-throughput imaging. One at a time, the specimen

is loaded into a dedicated capillary. A system of stepper-motors is used to �x

and rotate the capillary; the positioning of the specimen in the �eld of view of

the microscope is accomplished with an extra camera (Allied Vision Systems,

Pro Silica GE 1050) which is part of the VAST BioImager system. We refer to

this camera as the VAST camera which has a mounted lens that observes the

capillary via a prism. Originally, the VAST camera is used for visual detection of

the location and orientation of the specimen in the capillary so that the system

will be able to manipulate the position and perspective of the specimen and

initialise the imaging.

In practice, the VAST BioImager can operate with bright-�eld, �uorescence and

confocal microscopy. In a synchronised acquisition protocol, images from di�erent

views, e.g, lateral, dorsal, and ventral, are acquired with the microscope mounted
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(A) Reservoir 

for zebrafish

(B) Positioning

capillary

(C) Stepper motor

(D) Prism
(E) VAST 

camera #1

(G) Management

(F) Microscopic

camera #2

Figure 3.2: A schematic illustration of the MM-HTAI architecture based on the
VAST BioImager. Zebra�sh larvae are loaded from a reservoir (A) and delivered in
to the capillary (B). The stepper motors (C) manipulate the view of the specimen.
Through a prism (D), the VAST camera (E) detects the position and orientation
of an object and then keeps the object in its �eld of view. The whole system
is mounted on a microscope, of which an equipped high resolution camera (F)
facilitates both of the organ- and cellular-level imaging. In addition, the VAST
camera (E) manipulated by the management software (G) can acquire arbitrary
axial-view images which always present an overview of the zebra�sh.

camera or photomultiplier (in case of CLSM) in a full revolution of the capillary.

The microscope view renders more detail, due to the characteristics of its lenses,

but does not necessarily produce a complete view of the specimen. In addition,

the VAST camera can also acquire images of the specimen, at a lower resolution,

but always with a full view of the specimen. In fact, it can do so rather e�ciently

for a large amount of specimen. This is very suitable for our application of 3D

reconstruction and measurements of the specimen. Therefore, we adopted the

system to be the basis of our 3D reconstructions. It should be noted that the

VAST BioImager is mounted on a microscope, of which the high resolution camera

will be able to produce more detailed images of the specimen. In combination

with the VAST camera, the further analysis of cellular-, organ- and overview-

level of the specimen will become possible. This gives rise to the MM-HTAI

architecture. In this chapter, we only use the modality of the VAST camera in

our MM-HTAI to produce bright-�eld images.
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3.3.2 Preprocessing and segmentation of the images

In our method, we require the binary representations of the object segmented

from the colour images acquired from the VAST BioImager. In order to obtain

a good and solid reconstruction, these binary representations should re�ect the

whole subject; in the case of transparent zebra�sh, we have to ensure that the

translucent parts are also included in the shape representation. We concluded

that standard segmentation methods are not su�cient and therefore we have

implemented a hybrid method that incorporates the mean shift algorithm (MS)

[29] and an improved level-set method (ILS) [87]. In Chapter 2, one can observe

that the MS preserves a whole shape representation for the object, but fails in edge

sensitivity for the original clear boundaries. The ILS can obtain a more compact

2D shape but is hampered by the problem of edge leakage. So, we combine the two

segmentation methods followed by a re�nement to obtain accurate segmentations

of the object, i.e., the zebra�sh. For the rest of the chapter, the results from

this segmentation method will be the basis for the 3D reconstructions. The

segmentation of a set of axial views will be referred to as the shapes.

3.3.3 Camera model parameterisation

Key to the shape-based 3D reconstruction is a feasible and su�ciently accurate

parameterisation of the camera imaging system. For our particular application,

the camera position is static while the object rotates through the revolution of

the capillary that holds the object, over a given pro�le axis. In order to make

parameter parameterisation and visualisation feasible, the camera is represented

as a range of �xed cameras around the object in a circular path as shown in Fig.

3.1(D). Now, for each of these cameras, the pinhole imaging principle can be used

to interpret the imaging procedure. We start from a straightforward case of the

camera model in which case the camera centre is de�ned as the world origin. Let

X = (X, Y, Z, 1)T be a point in 3D space and x = (x, y, 1)T be the corresponding

point in a 2D image plane, represented in homogeneous coordinates. Then, the

mapping between the point and the corresponding image can be geometrically

represented as a proportional projection of x = (fX)/Z and y = (fY )/Z, where

f denotes the focal length of the camera lens. The scaling factors kx and ky,

image centre (ux, uy)
T and the skew factor s are, de facto, the intrinsic properties

of the camera. Taking these intrinsic properties into consideration, the matrix

representation of the projection can then be formulated as:
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Figure 3.3: A visualisation of the parameterisation of 3D transformation from
camera centre to object centre. We assume that the object is positioned in the
focal plane and a good quality image is acquired, so the projection line from camera
centre to the object centre is de�ned as the focal length. The ∠α and ∠γ represent
the 3D rotation angles of camera centre around Y and Z axis. The ∠ϕ is de�ned
as the �translation� angle from the object centre to the image centre. It models the
3D translations of camera centre over Y and Z axis.

(B)

(A)

Figure 3.4: Illustration of the importance of camera system calibration. 3D re-
constructions of one zebra�sh, without (A) and with (B) camera calibration, are
depicted. In the �rst row of (A) and (B) from three di�erent viewpoints are shown.
The overlap between the projected image from the 3D models and the original im-
age are shown in red in the second row of (A) and (B). (A) Using an uncalibrated
camera con�gurations results in poor 3D reconstruction and thus a relatively small
overlap. (B) Using a calibrated camera system generates an accurate and natural
3D shape. It can be appreciated that projecting the 3D shape to the original axial
view results in an almost perfect overlap with respect to the original object.
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x̃ =

 fkx s ux
0 fky uy
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

X, (3.1)

where x̃ = xZ. To simplify the formulation, an implicit transform of Eq. (3.1)

is denoted as x̃ = PX, where P = K (I | 0), and P is de�ned as the camera

projection matrix and K is de�ned as the intrinsic camera matrix. In practice,

the more generic case for the camera model is to de�ne the object centre as the

world origin, which is more convenient for computation and parameterisation.

The decomposed parameterisation for the camera model allows convenient incor-

poration of the extrinsic camera parameters which are the 3D transformation of

the camera centre with respect to the world centre.

Suppose that for one object we have N views, the intrinsic camera matrix K

is shared by all the cameras, however, a corresponding 3D transformation for

each individual view should be formulated. This is illustrated in Fig. 3.1(C)

and Fig. 3.3. For the ith camera, the 3D translation of the camera centre from

the object centre is parametrized as Ci = [0, f cos(ϕi), f sin(ϕi)]
T following a

general de�nition [85]. Now, let Ri = Ri,XRi,Y Ri,Z be the total 3D rotation,

the revised formulation of the camera projection matrix is then represented by

Pi = K Ri (I | Ci).

The �translation� angle of ϕ and the rotation angle of γ around Z axis are speci�ed

by each of the cameras. In this manner we intend solving the problem that the

rotation axis is not exactly parallel to the object centre. In practice, with the

VAST BioImager one can accurately align the object, so that these two angles

can be shared by all N cameras. Finally, a camera parameter vector is generated

through the concatenation of all parameters.

ψ = (f, kx, ky, ux, uy, s︸ ︷︷ ︸
intrinsic

, α, γ, ϕ, ω1:N−1︸ ︷︷ ︸
extrinsic

)T. (3.2)

Given a speci�c camera parameter vector ψ, a series of correlated camera con-

�gurations can be generated, so that the multi-view 3D projections P can be

modelled.
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3.3.4 Shape-based zebra�sh 3D reconstruction

We aim to recover the volumetric representation of the object from a range of

2D axial-view images. The shape-based 3D reconstruction method shows to be

suitable for shape preservation in this application. Given a series of (object)

shapes extracted from the axial-view images, combined with the corresponding

camera projection matrices, the 3D representation can be generated by back-

projecting the shapes to the 3D world frame so as to obtain the intersections.

Let the 3D point Xj ∈ X (j ∈ [1,M ]) be the index of the jth voxel candidate

centre included by a collection of voxels, where M is the total number of the

voxels; if the collection of voxels is spatially constrained, then M will determine

the 3D volumetric resolution. The larger the M is, the higher the resolution will

be. Next, one can �nd the corresponding pixel of the jth voxel in the ith image

plane by xji = PiX
j. According to the space-carving theorem, if the voxel Xj is

visible to the view of ith camera, its corresponding image should be covered by

the ith shape Si. In mathematical terms this can be formulated as:

Xi = {X | Si(xji ) 6= 0,xji = PiX
j,Xj ∈ X}, (3.3)

where Xi denotes the volumetric representation for the object generated from the

ith camera. When involving all the views, we can locate the pixel location in each

image plane for each voxel. In general, only the voxels which are visible to all of

the N shapes are preserved. Thus,

X ∗ = ∩
i=1,...,N

Xi (3.4)

where X ∗ denotes the optimal 3D volumetric representation of the object. Eq.

(3.4) can be e�ciently implemented by iteratively discarding the invisible voxels

from the original voxel collection. However, regarding the eventual imperfection

in the shapes segmentation, some voxels which should be included in the 3D object

are excluded during this space carving operation. Instead, we assign a score to

each of the voxels indicating its visibility. This score is formalised as

Vj =
N∑
i=1

1
[
Si(x

j
i ) 6= 0

]
(3.5)
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where 1[·] denotes an indicator function which takes the value of 1 if the image

of the jth voxel lies in the ith shape and 0 otherwise. The score function assigns

a value between 0 and N for each individual voxel. If, in addition, a constrained

error tolerance rate ε is de�ned, the problem of imperfection in the shape segmen-

tation can be more or less solved by thresholding the membership function of a

voxel. Accordingly, the 3D reconstruction model of Eq. (3.4) is reparameterised

as:

X ∗ = {X | Vj > (1− ε)N,Xj ∈ X}, ε ∈ [0, 1). (3.6)

For our particular application in zebra�sh imaging, we have empirically estab-

lished that the parameter ε takes the value of 0.05, meaning that the voxels

visible up to 95% of the shapes will contribute to the 3D reconstruction. With

the reconstructed 3D volumetric representation, an initial 3D surface model can

be obtained by the marching cubes algorithm; this surface model is formulated

as dense surface points and a triangulated mesh, which can be further optimised

[86].

3.3.5 Camera system optimisation

From the previous sections it becomes clear that the camera projection matrix,

i.e., the camera con�guration, plays an important role in the shape-based 3D re-

construction. A good estimation of the camera con�guration will ensure accuracy

in the 3D projective geometry. If a set of speci�c camera parameters as denoted

in Eq. (3.2) are given, the camera projection matrix P can be correspondingly

computed. The camera parameters, more speci�cally, the extrinsic camera prop-

erties, are usually unknown or not su�ciently accurate; e.g., through a drift of the

image centre from the object centre. Therefore, an automated camera con�gura-

tion estimation, i.e., a camera calibration, should be performed. The importance

of a camera calibration is demonstrated in Fig. 3.4 by the results of applying the

method to 3D reconstruction of zebra�sh shapes. Standard camera calibration

methods [88, 89] for our imaging environment are not available for the small scales

of microscope imaging, i.e., the VAST camera. Therefore we have proposed [40] a

method similar to ideas on texture registration and stitching [84, 85]. We de�ne

the area coherence as the area of overlap between the image projected from the
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3D reconstructed model and the groundtruth shape. Accordingly, we can de�ne

an energy function as:

f(ψ) =
1

N

N∑
i=1

C(Si,Pi(ψ)X ), (3.7)

where the camera matrix is reparameterised as Pi(ψ) meaning that P is a function

of ψ. By evaluating the camera con�guration space, the optimal suggestion of ψ

can be obtained by maximising Eq. (3.7)

ψ∗ = arg
ψ∈Ψ

max f(ψ). (3.8)

Visualisations corresponding with this approach are depicted in the lower rows

of Fig. 3.4 (A) and (B). We argue, however, that the expression of Eq. (3.7) is

equivalent to the, so called, voxel residual volume (VRV) which is de�ned as

f(ψ) = |X ∗(ψ)|. (3.9)

Eq. (3.9) denotes the total number of the voxel candidates of the 3D volu-

metric representation. Similarly, the reparameterisation of X ∗(ψ) indicates the

functional relation between X ∗ and ψ. In fact, keeping the maximal total over-

lap area between the projected images and the groundtruth shapes is equivalent

with keeping the maximal VRV of the reconstructed object. The VRV is, how-

ever, computationally more e�cient while the same performance can be obtained.

This is because the computation of the area coherence is unnecessary. For such

an unconstrained optimisation problem, multiple optimisers are available, for ex-

ample, the Nelder-Mead simplex [90] and the Evolution Strategy (ES) [91, 92].

One should be aware that, although small, there always exists the risk of a local

minimum of the optimisers which may lead to an inaccurate camera con�guration

estimation. However, feasible initialisations are possible so as to provide acceler-

ations and improvements to the optimisation. The intrinsic camera parameters

including the focal length and the scaling factors are provided by the camera

and lens speci�cations. The extrinsic parameters including the 3D rotations and

translations can be assigned through reasonable estimations; e.g., the parameter

of ωi is initialised as ωi = (i−1)∗2π/N . With these sensible initialisations, more

e�cient and accurate camera con�gurations become possible.
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3.4 Experimental results

In this section we explore the method through validation experiments. In Sub-

section 3.4.1, we de�ne the sampling for both the axial-view and spatial elements.

In Subsection 3.4.2, we perform the experiments on calibration particles to de-

termine the sampling size and validate the accuracy of proposed method. In

Subsection 3.3.3, we evaluate the performance of our method on zebra�sh larvae.

This will result in numerical and statistical validity of the method so that it can

be successfully applied in further research. In Subsection 3.3.4, we report the 3D

measurements of volume and surface area using a statistical representation for

the zebra�sh in three larval stages.

3.4.1 Sampling of axial-views and volume for the experiments

With respect to the sampling, the physical limitations imposed by the hardware

and the imaging scale are con�ned. There are two sampling modes that co-

operate in the reconstruction process. The production of axial-view images is

depending on the properties of the hardware, which is referred to as the Axial-view

Sampling Density (ASD) and determined by the step size of the stepper motors

that operate the capillary. For the experiments we will use a range of steps in

order to �nd a good operational ASD from sparse to dense. For the shape-based

3D reconstruction, a volumetric representation is required. From the hardware

and the spatial constraints of specimens, a con�ned volume of 5000×1000×1000

µm3 (width×height×depth) is determined, which can include the whole object.

The sampling involves the variation of the size of the isotropic elements (voxels)

in this volume, which can be inferred as the total number of the elements. The

smallest sampling size will be equal to the sampling elements on the CCD sensor

in which case the number of sampling elements is 30 × 106; this represents the

largest number of sampling elements. The smallest number of elements is 1× 106

which gives rise to a considerably di�erent performance. The given sampling

volume is used in all experiments described in this chapter.

3.4.2 Validation of the proposed method

In order to validate the accuracy of the proposed method, particles, i.e., beads,

with a known size distribution are used (GP 500 µm Control Particles, High

52



3.4 Experimental results

(A) (B) (C)

Particle #1

Particle #2

Particle #3

Figure 3.5: Illustration of example images of 3 calibration particles and their 3D
reconstruction. Each row indicates one calibration particle example. (A) Original
RGB images. (B) Extracted pro�les. (C) Reconstructed 3D models by an ASD=7
(left column) and an ASD=21 (right column). Although the ASD=7 already pro-
duces acceptable 3D shapes for the calibration particles, while some carving artifacts
are still visible. A better result is shown for the 3D models reconstructed with an
ASD=21.

Fluorescence, lot 110701, Union Biometrica). The particles are used to calibrate

the VAST BioImager system. Some typical examples are depicted in Fig. 3.4(A),

from which we can observe some variation in the diameter of the particles. We

assume that this variation in size is according to a Gaussian distribution as given

by the manufacturer, i.e., N (500, 25) measured in µm. We have acquired image

sets from the VAST BioImager for 25 calibration particles. Subsequently, the

proposed 3D reconstruction method is applied to these image sets.

If the size measured from the reconstructions corresponds with the distribution of

the size of the original calibration particles, it means that the proposed method

can accurately recover the 3D object in terms of size and shape. There are

two methods for evaluations: (A) To measure the diameter of the reconstructed

calibration particles, a 3D sphere is estimated to �t the dense surface points by

minimizing a least squares function. (B) To measure volume and surface area,

the reconstructed 3D models can be used.

The result of the shape-based 3D reconstruction method can be a�ected by the

Axial-view Sampling Density (ASD) and the voxel size (sampling density). As far

as the ASD is concerned, more views may result in a more accurate and natural

shape, similarly a higher sampling density of the voxels may result in a more

accurate representation of the shape. Therefore, the experiments are designed to
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verify the accuracy according to these two parameters as well as establishing the

correctness of the measurement itself by comparing to analytical representations

or empirical observations.

The results are presented in Table 3.1 to 3.3; here the sampling density is denoted

as SD given the size of the isotropic sampling element (in µm). For all tables the

horizontal direction, from left to right, indicates an increasing sampling density

from 17.10 µm per voxel to 5.85 µm per voxel. The vertical direction indicates an

increase of the ASD from 4 to 84 views. We have con�gured our imaging system

to take 84 images, corresponding with a step-size of 4.3◦ per axial-view, in a full

revolution of the shape. Initial experiments have shown that a strategy of even

axial-view sampling in a full revolution accomplishes the most stable performance.

By resampling of the 84 views of 4.3◦, a range of di�erent ASDs is obtained for

the experiments.

(A) Evaluations for diameter of the calibration particles

We interpret the measurements of the diameter in terms of the mean and stan-

dard deviation over the 25 calibration particles and present the results in Table

3.1. The results show that from the proposed method accurate estimations are

obtained which are in range of the distribution (500 ± 25 µm) provided by the

manufacturer. The results vary with di�erent ASD and SD. More speci�cally,

an increase in the sampling density results in an increase of the estimated di-

ameter which asymptotically stabilises at the higher sampling densities. A high

sampling density generates a smoother 3D surface, while for lower resolutions

the volumetric representation tends to be a little bit expanded. An increase of

the ASD results in an decrease of the estimated diameter while for higher ASD

it stabilises. Using more views to reconstruct the 3D shapes causes less voxels

to be preserved and the 3D shapes seem to be more compact compared to the

ones reconstructed by smaller ASD. We tested whether our measurements were

su�ciently accurate. In Table 3.1, in each second row, the T-test scores are given

per ASD. We state in the null hypothesis that the measured diameter from the

3D reconstructed models equals to the values (mean, sigma) given by the manu-

facturer, i.e., 500 µm. For a signi�cance level of 0.01 (two-sided T-test), a value

of 2.787 is given from the table of selected values. From Table 3.1 one can ap-

preciate that most T-test scores are smaller than the selected value; this means

that our measurements for the diameter of the calibration particles from the 3D
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reconstructions are accurate. Especially, the values from the ASD of 21 combined

an SD of 6.93 µmor smaller come out very well.

(B) Evaluations for volume and surface area of the calibration parti-

cles

The calibration particles have been provided with an indication of the size dis-

tribution, i.e., given diameter. However, the real distributions of the volume and

surface area are unknown. In Table 3.2 and 3.3 the volume and surface area

of the calibration particles are presented as computed from the reconstructed

shapes in a range of parameters for ASD and SD. Volumes are computed directly

from the voxels in the shape, i.e., integrating over the residual voxels after re-

construction. For each object a surface model is composed from a dense surface

point cloud and a mesh triangulation from these points. The surface area can be

obtained by integrating over the facets of the meshes using Heron's formula [86]

A = (s(s−a)(s− b)(s− c))(1/2), where s = (a+ b+ c)/2 and a, b, c represent the

edge-length of a triangle. We assume that the shape of the calibration particles is

a standard sphere, consequently the diameters from Table 3.1 are used to obtain

the analytical computation of the volume and surface area by V = (4/3)∗π (d/2)3

and S = 4π (d/2)2 for each set of parameters.

For each ASD, the values measured from the reconstructions are listed in each

�rst row of Table 3.2 and 3.3, indicated by M. The second row for each ASD in

Table 3.2 and 3.3 lists the analytical computations, indicated by A. The trends in

Table 3.2 (Volume) and 3.3 (Surface area) are similar to those observed in Table

3.1. While the ASD increases, the reconstructed shapes are smoother and less

voxels are preserved. Moreover, the variation in the results decreases at higher

SD with voxels smaller than than 6.93 µm.

Taking the reconstruction e�ects shown in Fig. 3.5 (C) into account, it can be

appreciated that a ASD of 21 is a reasonable choice to generate a smooth and

natural shape with very few carving artifacts. Moreover, one can observe rather

small di�erences between the measured and analytical values for an ASD of 21 as

of the SD of 6.93 µm; i.e., the shape of the calibration particle is well preserved

and reconstructed with such set of parameters. In comparison, a larger value

of ASD requires more camera projections and the 3D reconstruction is therefore

computationally more expensive; a sampling density smaller than 6.93 µm re-

quires more memory and computation to ensure the precision. So, the results

in this experiment indicate that the proposed method can obtain accurate 3D
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reconstructions measured in size, volume and surface area; the ASD of 21 and

SD of 6.93 µm are empirically selected as the con�gurations for the further ex-

periments.

3.4.3 Evaluations on zebra�sh larvae

In order to obtain 3D reconstructions and evaluate the performance of the pro-

posed method as applied to zebra�sh specimens, we �rst assemble a large number

of image sets of zebra�sh larvae with the help of the axial-view imaging architec-

ture presented in Subsection 3.3.1 and put the images in a dataset. We have cho-

sen the most frequently used larval stages (for VAST BioImager) to be represented

in the dataset; meaning 3 groups, i.e., 3, 4 and 5 days post fertilisation (dpf),

containing 12, 24 and 24 instances, respectively. Although the VAST BioImager

is suitable for live imaging, for this experiment, we have used �xed samples of

one and the same strain, i.e., ABxTL wild type. All samples were �xed in 4%

PFA/PBS (PFA: paraformaldehyde; PBS: Phosphate-Bu�ered saline). For the

imaging, the samples were kept in a solution of PBS with 0.3% Tween-80.

For each specimen, the same imaging setup of the VAST BioImager is consis-

tently used (cf. calibration experiment con�guration). Speci�cally, in one full

revolution, 84 views are captured with equal step size. Other ASDs, i.e., 42, 21,

etc., are evenly sampled from the these 84 views. In the acquisition, the rotation

steps between any two contiguous views are considered to be equal. However,

due to the drift on the electro-mechanical parts of the VAST imager, we have to

take into account that there can be a variation in the step size. If present, this

variation can seriously a�ect the 3D reconstruction of the zebra�sh specimens

and therefore a calibration of the camera system is necessary.

In Table 3.4 and 3.5, we list the volume and surface area for the three groups of

larval stages. For these tables the horizontal direction indicates an increase in

ASD. In order to get a better idea of the data, we visualised Table 3.4 and 3.5 in

Fig. 3.6 and 3.7, in which the voxel residual volume (VRV) and the surface area

are plotted as a function of the ASD, respectively.

For all three groups the trend is similar, as the ASD increases the VRV decreases.

This can be explained from the methodology as only voxels which are visible to

most of the views are preserved. Consequently, less voxels will be preserved

when more views are employed. The decrease of VRV rapidly changes in an
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asymptotic fashion of VRV for an ASD larger than 7. The asymptote indicates

that we do not need an abundance of sampling views, an ASD of 42 or 84 does

not result in a much better reconstruction and therefore these are unnecessary

for the reconstruction of the zebra�sh larvae in our application.

The VRV changes with the growth of the zebra�sh for the di�erent larval stages;

i.e., as the zebra�sh grow, the VRV increases. Similar trends can also be found

in Fig. 3.6 which depicts the asymptotics of surface area for the 3D zebra�sh

models. External conditions in�uence growth as it also depends on the feeding

policy. At some point in development the larvae have used all their yolk and are

thereafter depending on nutrients in the medium. So, if the amount of nutrients

is low, a delayed growth will occur.

From Fig. 3.6 and 3.7 it can be concluded that an ASD of 7 is already a good

option for this application. However, integrating the results from all experiments,

shows that an ASD of 21 achieves the best performance measured in terms of

size, volume and area. In order to appreciate this, the reconstructed results are

visualised for an identical zebra�sh specimen in Fig. 3.8. For a ASD of 4 or 7,

the 3D models exhibit a large number of arti�cialities. The space carving e�ects

generate some �at regions on the surface. However, with a higher ASD value,

such as 12 or 14, the 3D reconstruction results improve; the surface of the shape

is still rough though. As of an ASD of 21 or larger, one can appreciate that

results are more or less similar; the 3D shapes all appear smooth and natural.

The visualisation quality does not improve much for an ASD larger than 21, while

a large ASD is computationally much more expensive. The empirical ASD of 21

is therefore a motivated tradeo� over a range of considerations regarding the 3D

reconstruction of zebra�sh larvae and the measurement thereof.

A number of typical examples of models from 3D reconstructed zebra�sh larvae

are shown in Fig. 3.9. For each zebra�sh developmental stage in our experi-

ment two individuals have been selected; the 3D shapes are visualised with and

without texture mapping. The texture mappings are just serving visualisation

purposes, where texture is used to add some realism to the view. The specimens,

in this stage, are still partially transparent, therefore, some arti�cial mapping was

applied to obtain a realistic visualisation. For measurement the binary volume

models are used.
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Figure 3.6: Voxel residual volume of zebra�sh larval stages against ASD. The
descending trends of the voxel residual volume are clearly demonstrated in the
graph for all 3 groups of zebra�sh larvae at increasing ASD. However, after an ASD
of 7 the decrease tends to be asymptotic, especially after an ASD of 21. This means
that dense axial-view sampling (42, 84, etc.) for our 3D zebra�sh reconstruction
and measurements is unnecessary. The consistent di�erences of the volume for the
three larval stages can be observed.
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Figure 3.7: Surface area of zebra�sh larval stages against ASD. The trend in
surface area is similar to that of the volume as depicted in Fig. 3.6. The surface
area is computed from a mesh, to suppress noise a mesh smoothing, i.e., implicit
fairing, with 10 iterations was applied to all meshes [93].
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4 axial-views 7 axial-views

12 axial-views 14 axial-views

21 axial-views 28 axial-views

42 axial-views 84 axial-views

Figure 3.8: Visualisations of 3D reconstructions for a range of di�erent ASD us-
ing the same zebra�sh larva instance. The use of an ASD=4 (A) and an ASD=7
(B) results in the 3D reconstructions presenting a large number of sharp and �at
surface elements which are generated by the carving e�ects of shape-based 3D re-
construction method. The use of an ASD=12 (C) and an ASD=14 (D) results in
an improvement of the 3D models, but some carving artifacts remain. Using an
ASD=21(E) to an ASD=84 (H) results in accurate and natural-shaped 3D mod-
els. For our particular problem domain, this suggests that both sparse and dense
axial-view sampling are not the optimal con�guration for zebra�sh larvae 3D re-
construction. Sparse axial-view sampling produces poor 3D models while dense
axial-views sampling requires more computation time whilst the e�ects do not im-
prove accordingly.
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Figure 3.9: Visualisation of 3D models of 3 zebra�sh larval stages (3 dpf, 4 dpf
and 5 dpf). Each box represents a reconstructed 3D model for one speci�c zebra�sh
larvae visualised from three di�erent viewpoints. The 3D volumetric representations
are shown on the left side in each box. The models with texture-mapping are in the
right side of each box. (A) 3D models of two selected 3 dpf zebra�sh larvae. (B)
3D models of two selected 4 dpf zebra�sh larvae. (C) 3D models of two selected 5
dpf zebra�sh larvae. Variation in size and shape between stages and within stages
(interclass and intraclass) can be appreciated from the visualisations. A remarkable
intraclass discrimination originates from the size and colour of the yolk. In addition,
animations of the 3D zebra�sh models are available at: http://bio-imaging.

liacs.nl/galleries/VAST-3Dimg/

.

3.4.4 3D measurements on zebra�sh larvae

From the aforementioned experiments we may conclude that (1) an accurate

reconstruction can be obtained from our method and that (2) from the 3D re-

construction accurate measurements can be made. In order to assess the shape

and size in a high-throughput setup we use the database of our samples to �nd

the distributions per larval stage.

From our empirically established parameters we reconstruct our images to 3D

models using an ASD of 21 and a voxel sampling density of 6.93 µm. On these

models, the computations are performed, the volume and surface area expressed

in µm3 and µm2 respectively. Over the measurements per group, the mean and
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Figure 3.10: Distribution of volume of zebra�sh larval stages (3 - 5 dpf). X axis:
volume; Y axis: normalised probability density. The colour-�lled triangles on the
Volume-axis indicate the locations of the mean for each of the 3 distributions. The
numerical values of the mean and standard deviation are indicated with correspond-
ing double-sided coloured arrows. One can see that the volume of older zebra�sh
larvae is always larger than the younger ones. The growth rate increases more from
4 dpf to 5 dpf compared to that from 3 dpf to 4 dpf.
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Figure 3.11: Distribution of surface area of zebra�sh larval stages (3 - 5 dpf). X
axis: surface area; Y axis: normalised probability density.

standard derivation are calculated and a Gaussian distribution is applied to model

the data. In order to compare the 3 groups of larval stages the density distribu-

tions are normalised.

The distribution of the volume is shown in Fig. 3.10. The trend as seen in Fig 3.6

is re�ected in the results in that the volume of 5 dpf zebra�sh is the largest, and

61



3. SHAPE-BASED 3D RECONSTRUCTION AND 3D MEASUREMENTS

that of 3 dpf zebra�sh is the smallest. The volume is more discriminative for the 3

dpf and 5 dpf zebra�sh. The 3 dpf and 4 dpf zebra�sh appear to be very similar

in volume, which can be seen from the large overlap of the two distributions.

Indeed, these larval stages are quite similar in shape and appearance and this is

also illustrated in Fig. 3.9. The distribution of surface area is shown in Fig. 3.11

and can be interpreted in similar fashion to the volume measurement. A plot for

the joint distribution of volume and surface area is shown in Fig. 3.12. Although

the distributions of 4 and 5 dpf zebra�sh are close to each other we can clearly

separate the 3 centres.

This experiment provides signi�cant quantitative information on zebra�sh lar-

vae because from the distributions, given the larval stage, the regularity of the

shape can be directly assessed. The distributions provide an absolute reference

baseline of volume and surface area for zebra�sh in 3 larval stages. This is very

important for applications in toxicology and drug targeting in which quantities

of speci�c substances need to be related to volume and shape and phenotypical

information on dose and e�ect. These need to be derived from measurements on

the specimen. Moreover, as the readout of e�ects of substances is often measured

with �uorescent probes, a relation to volume is even more important. In addition

to these basic measurements other 3D features, i.e., moments, wavelets, shape

descriptors, etc., can be considered. This will further strengthen the phenotyp-

ical description and assessment of zebra�sh larvae in high-throughput imaging

applications.

In order to make sure that we could measure the speci�c characteristics of the

given larval stages, we used �xed specimens. In a control experiment we have used

living larvae staged by specialists and imaged with the VAST BioImager under

exactly the same conditions. We used 7 examples from 4 dpf and 8 examples

from 5 dpf. The results of the measurements are shown in Table 3.6. From

these results one can appreciate that they are all within the range of the �xed

specimens.

We validated our methodology for the 3D reconstruction and measurements and

at the same time showed the importance of the baseline measurements for the

3 larval stages; the major stages in compound screens with zebra�sh. The ref-

erence values for volume and surface area as well as their distributions for the

di�erent larval stages can be directly used in experiments. Consequently, for phe-

notype analysis an assessment for relative size and shape can be made. Moreover,
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Figure 3.12: Joint distribution of volume and surface area of zebra�sh larval
stages (3 - 5 dpf). X axis: volume; Y axis: surface area. The 3 joint distributions
have overlap with respect to each other, especially for the 4 dpf zebra�sh larvae.
Nevertheless, individual distribution centres can still be separated. The colour
schema is similar to that of Fig. 3.10 and Fig. 3.11

features that are frequently used for phenotyping zebra�sh and thereby evaluat-

ing anomalies can be related to size and shape to better assess the e�ect under

study.

3.5 Chapter conclusions and future work

In this chapter, we presented the multi-modal high-throughput axial-view imag-

ing (MM-HTAI) architecture based on the VAST BioImager in which images of

zebra�sh larvae are acquired. It answers the RQ 1: To what extent is it possi-

ble to develop an MM-HTAI architecture for the zebra�sh larvae? We presented

the shape-based 3D reconstruction using the acquired axial-view images to re-

construct 3D models so that 3D shape description of the zebra�sh are obtained.

Subsequently, 3D measurements can be applied on the whole specimen. It answers

the RQ 3: To what extent is it possible to obtain precise 3D shape description and

derive accurate 3D measurements that are statistically relevant for the zebra�sh

from the MM-HTAI architecture?

More concrete, the research presented in this chapter integrates the MM-HTAI ar-

chitecture, image segmentation, camera system optimisation and the shape-based

3D reconstruction method. The 3D measurements of volume and surface area,
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as well as the 3D visualisation become available through the proposed method

on zebra�sh larvae using high-throughput imaging. The important conclusions

are that (1) accurate 3D measurements for the zebra�sh larvae can be made in

high-throughput; (2) as of now a metrical reference of shape descriptors for 3 im-

portant larval stages is produced and (3) the methodology for these measurements

is validated.

Below, we propose four directions for future research. (1) The results are directly

applicable for a range of di�erent in vivo applications, such as toxicology, drug

targeting and infection studies. Further research will be directed to 3D shape

alignment so that an even better match between di�erent zebra�sh instances can

be given. Subsequently, other 3D features will be explored to accomplish elab-

orate classi�cation of subtle di�erences between di�erent treatment groups of

zebra�sh in experiments. (2) The VAST camera provides good overview images

which have been employed for this study. The same methodology can be applied

with the microscope camera. The higher numerical aperture and the magni�ca-

tion of the lenses in the microscope will then provide 3D details of the specimen

in similar fashion. The tradeo� of using a confocal or wide �eld approach for

such applications needs to be assessed from future results. (3) Alternative to the

axial-reconstruction with the VAST BioImager, Optical Projection Tomography

(OPT) imaging can be probed. This imaging approach has been successfully

applied in zebra�sh research [21] and, recently, successful high-throughput appli-

cations in zebra�sh have been reported [22]. (4) As indicated, the measurements

and their distributions provide reference values for volume and surface area (size

and shape). This supports the assessment of other observations as we now can

relate the e�ect of a change in size to a norm. In a similar manner, the VAST

system can be used to provide distributions of other morphometrical landmarks

in zebra�sh development; to this end the microscope can be used to acquire

axial-views at higher resolution and, in that manner, provide 3D features. These

features can be combined with volume/surface area features to enable relative

comparisons between experiments. Such analysis will further enhance our under-

standing of phenotypes in zebra�sh and their exposure to experimental conditions

which is a necessity for high-throughput analysis.
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3.5 Chapter conclusions and future work
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Chapter 4

A Novel 3D Reconstruction
Approach

Based on:

� Y. Guo, Y. Zhang & F.J. Verbeek, �A two-phase 3D reconstruction approach

for light microscopy axial-view imaging,� in IEEE Journal of Selected Topics

in Signal Processing, 2017.
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4. A NOVEL 3D RECONSTRUCTION APPROACH

This chapter addresses RQ 4.

RQ 4: How can we e�ciently deal with the translucency and trans-

parency of specimen in light microscopy and still obtain a good 3D

shape description from the MM-HTAI architecture?

Abstract � Three-dimensional representations in light microscopy are impor-

tant for accurate shape assessment of model systems in biosciences (see Section

4.1). The computational multi-view 3D reconstruction seems feasible in obtain-

ing the 3D representations, in particular for high-throughput. The specimen for

imaging can have properties, i.e., transparency and translucency, that impede

the detection of well-de�ned boundaries (see Section 4.2). Consequently, 3D

reconstruction and measurements, i.e., volume and surface area, will be inaccu-

rate. The motivation in this chapter is to develop a two-phase 3D reconstruction

approach for light microscopy axis-view imaging that can deal with these prop-

erties (see Section 4.4). In phase I of this approach, we develop an improved

3D volumetric representation de�ned as the con�dence map. It is derived from

texture-augmented axial-view images of the specimen. In phase II, the 3D re-

construction is accomplished by searching the optimal surface for the specimen

over the con�dence map. Subsequently, from the obtained 3D reconstruction,

3D measurements can be extracted. We apply our MM-HTAI architecture pre-

sented in Chapter 3 and propose three typical datasets with di�erent imaging

modalities, including (1) standard RGB images, (2) the bright-�eld images of

zebra�sh larvae, and (3) zebra�sh liver in �uorescence (see Section 4.3). In the

experiments, we have applied our approach on these datasets. We �nd that our

approach yields a precise 3D shape representation and a natural visualisation (see

Section 4.5). In comparison with a groundtruth setup, we have obtained accurate

3D measurements both for the organism and the organ, which holds a promising

shape assessment for model systems in biosciences (see Section 4.6).
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4.1 Improved 3D reconstruction

Volume: 2.80 × 108𝜇𝑚3

Surface area: 3.53 × 106𝜇𝑚2

(A) Image acquisition and processing

(B) Camera system calibration

(C) Confidence map

(D) 3D reconstruction and measurements

Figure 4.1: A schematic of the 2-3DLA approach. Phase I: (A) A series of axial-
view images of a specimen are acquired. The textures are augmented by the mean
shift �ltering, and the multi-scale images are used as input of the system. (B) 2D
shape approximations of the specimen are obtained from the augmented textures, by
which the camera calibration can be accomplished. (C) An improved 3D volumetric
representation in the form of a con�dence map is derived from the textures through
the volume intersection model. Phase II: (D) Region based level set method is
adapted and applied to the con�dence map to estimate the optimal enclosed surface
retaining a natural shape and smooth appearance of the specimen, from which the
volume and surface area are derived.

4.1 Improved 3D reconstruction

In modern life-science research, large volumes of microscopy data, i.e., represen-

tative images of a specimen from cellular to whole-mount scale are used. Robust

and reproducible methods for data acquisition, image processing, and analysis are

essential for further handling of the data. As data volumes get larger, comprehen-

sive visualisations summarising the data content also become important.

Images from samples, i.e., specimens, acquired from light microscopy carry a great

deal of information that can be expressed by features such as shape and texture.

Variations in these features provide information for a classi�cation according to a

speci�c condition. Such an approach is typically employed in imaging applications

in the �elds of cytology, toxicology, oncology and others. At a glance, experts are

able to observe variations in colour, though subtle di�erences of size and shape

are more di�cult to capture. Moreover, as the volume of the data increases, it is

not possible to classify the di�erences objectively. Therefore, these features need

to be extracted in an automated manner. So, more advanced systems need to

be developed [38]. For high-throughput systems this is especially true. Manual
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inspection is not feasible and in order to make inferences from the data, robust

methods are required that produce accurate and reproducible measurements for

shape analysis.

For the study of whole specimens, we should acknowledge that the nature of the

shape is, de facto, in 3D. Thus, from a 3D shape representation of the specimen

one will be able to produce an informative shape description, e.g., volume, surface

area and 3D shape factors. With such features, we can accurately assess and

compare shape variations in applications. These descriptors are also important for

phenotypical systems evaluation that requires volume normalisation into metric

measurements [39].

3D images can be generated by di�erent techniques. With a confocal laser scan-

ning microscope (CLSM) 3D images can be acquired from which 3D representa-

tions can be derived. For high-throughput imaging, CLSM is less e�cient and

also larger objects are not feasible for CLSM imaging. The post-processing of the

images is not straightforward [94]. Alternative to CLSM is the optical projection

tomography (OPT) [95]. However, a serious limitation of this technique is that it

does not work for live specimens. Moreover, the specimen preparation is rather

time consuming. In light �eld microscopy [96], microlenses are con�gured be-

tween the main lens and image sensor. Through 3D deconvolution a larger focal

range is addressed and in this manner focal images are combined into a 3D image

[97]. This technique is suitable for semi-transparent objects. In our research, we

deal with specimens that consist of opaque, specular and transparent regions. A

second limitation of light-�eld microscopy is the trade-o� between spatial and

angular resolution.

In this chapter, we present an axial-view imaging architecture based on light mi-

croscopy using the Vertebrate Automated Screening Technology (VAST BioIm-

ager) [26]. From this imaging architecture, we can generate a series of 2D axial-

view images for the specimen. In fact, this imaging belongs to the class of multi-

view imaging techniques, which is also referred to as turn-table sequence [31]. In

the �eld of computer vision, multi-view stereo (MVS) approaches have been de-

veloped to recover a 3D scene, or an object, from a range of 2D multi-view images.

In these approaches, surface points, or a depth map, of an object can be estimated

through the matching of correlated images [30]. However, for light microscopy

imaging, objects of interest can be (partially) translucent and/or transparent;

this holds for the microscope modalities that we are using, i.e., bright-�eld and

72



4.1 Improved 3D reconstruction

�uorescence. These qualities are in favour of the observation of internal struc-

tures of the specimen but prevent the feasibility of surface points matching which

is required for a MVS approach.

In Chapter 3, we have obtained a binary 3D volumetric representation from the

shape-based 3D reconstruction which is intuitive and suitable for the goal of shape

analysis through 3D measurements [98]. This method requires precise 2D shape

segmentation. However, the accurate shape segmentation is sometimes di�cult

to obtain from images depicting specimens with poor-de�ned boundaries as a

consequence of translucent and transparent properties of the specimen. Instead,

a probabilistic framework for the 3D volumetric representation generates more

�exible but not always accurate 3D shape description. To address the problems,

we propose a two-phase approach for the 3D reconstruction and measurements

from light microscopy axial-view imaging; this is abbreviated as 2-3DLA. A

schematic representation of this approach is shown in Fig. 4.1. The system takes

a series of axial-view images as input and reconstructs a precise 3D model of the

object from which accurate 3D measurements, i.e., volume and surface area, can

be derived.

Speci�cally, in Phase I of 2-3DLA, an improved 3D volumetric representation in

the form of a con�dence map is constructed. First, the mean shift algorithm [29]

is applied to improve the texture representation of the original images. Thus, the

translucent and transparent regions of the specimen are enhanced so that they

become more separable. Subsequently, approximations of the 2D shapes of the

specimen are obtained and used for camera system calibration. Together with

all the data, based on the camera projection intersection model, we obtain the

con�dence map by imposing a score, instead of a binary value or a probability,

to each voxel element in the 3D space. The score is obtained by integrating two

probabilistic models. These probabilistic models are jointly estimated from all

the axial-view images in a multi-scale fashion and aims to generalise the texture

distributions of the object and background. The con�dence map indicates the

likelihood of each voxel in 3D space to be part of the object. This is a more

�exible 3D representation for the optimisation of the surface. In phase II, we

present the assumption that the optimal surface which includes the specimen will

be able to (1) maximally separate the voxels from the object to the background

as well as (2) retain a smooth appearance of the object. The 3D reconstruction

and measurements are accomplished by searching for such an enclosed surface

over the con�dence map. Consequently, we formulate the 3D reconstruction as a
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3D segmentation problem which can be solved by employing a region based level

set method.

In modern life-sciences, e.g., developmental biology and pharmacokinetics, ze-

bra�sh are widely used as model systems in various experimental settings [18].

Zebra�sh are small in embryonic stages and can be easily studied with di�er-

ent types of microscopes; zebra�sh are transparent in the early stages. In re-

cent years, zebra�sh are augmented with a large amount of reporter lines and

these lines are extensively used in disease studies. We use our light microscopy

axial-view imaging architecture to acquire three representative datasets including

bright-�eld images of zebra�sh and �uorescence images of zebra�sh liver. We use

the zebra�sh and the corresponding axial-view images as a case study for the eval-

uation of 2-3DLA. We have found that the 2-3DLA can be successfully applied

in this research �eld; we have achieved promising results for 3D reconstruction

and measurements of zebra�sh and its liver.

We summarise our major contributions as follows.

I We present a multi-modal axial-view imaging architecture using light mi-

croscopy.

II We present three representative datasets of light microscopy axial-view imag-

ing including the zebra�sh in bright-�eld and the zebra�sh liver in �uores-

cence.

III We propose a computational and automated system named 2-3DLA to solve

the problem of accurate 3D reconstruction and measurements.

IV The proposed 2-3DLA is applicable in the datasets to obtain detailed 3D

shape description both for the zebra�sh and its liver. This makes the 2-

3DLA generic for shape analysis on the level of the organism as well as on

the level of the organ.

The remainder of the chapter is structured as follows. In Section 4.2, the back-

ground and related topics of our approach is introduced and the proposed system

is motivated. In Section 4.3, we introduce three di�erent complementary datasets

using the MM-HTAI architecture. In Section 4.4, we describe the prior knowl-

edge of the light microscope camera calibration and the binary 3D volumetric

representation. This is followed by a detailed description of the proposed system.

In Section 4.5 we present experiments and discuss the results. Finally, in Section
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4.6 we summarise the answer to RQ 4, present conclusions and describe future

work.

4.2 Background and related work

Given a sequence of calibrated multi-view images of an unknown scene, one cat-

egory of the multi-view stereo (MVS) approaches aims to estimate a depth map

for each view by matching each pixel of a binocular image pair [99, 100, 101].

The matching criterion is usually de�ned within a support window, i.e., a local

neighbourhood, centred around a target pixel [102, 103]. Another approach for-

mulates the depth map estimation as a continuous optimisation problem of an

energy functional integrating colour, spatial consistency of neighbouring views

and a global smoothness constraint [104]. A merging strategy is developed to in-

tegrate the multi-view depth maps. A patchmatch method [105] takes the slanted

planar surface into account for a better depth map estimation in binocular stereo.

An extension of the patchmatch method is developed for massive parallelisation

and integration of multi-view depth maps [106].

Alternatively, a conventional MVS approach directly estimates the surface points

of an object using a sparse-to-dense strategy [107]. A novel approach [108] extends

the patch-based method into multi-view 4D reconstruction, solving the problem

of temporally consistent 3D modelling in videos.

Regarding MVS, an accurate estimation of epipolar geometry is essential, which

could signi�cantly reduce the search space on the epipolar line and thereby in-

crease the matching quality [67]. Structure from motion (SFM) enables the esti-

mation of camera poses from the cooperation of salient point detection [109, 110]

and bundle adjustment [89, 111]. However, both SFM and MVS rely on the

quantity and quality of the salient point detection and matching from correlated

images. In our light-microscopy imaging, the challenge is that the object surface

and boundaries are not always well-de�ned. In most cases, volume instead of

surface for an object is observable.

For image based 3D reconstruction, the volumetric representation approach is

an important category. The goal is to estimate a convex hull in the 3D space

represented as discrete voxels according to their visibility to each view [31, 73,

74, 112]. Accordingly, the shape-based method de�nes the 3D object through the
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intersection of a set of projections exposed from the 2D shapes of the objects in the

images. A space carving algorithm aims to recover the 3D object by wiping out

the voxels which are consistently invisible to the views [75, 76]. These methods,

however, require accurate image segmentations which are not always available in

light microscopy imaging.

In addition, the textures from the multi-view images can be used to optimise the

3D volumetric representation based 3D reconstruction [79, 80, 81]. Instead of us-

ing a binary representation, the probabilities indicating the membership of each

voxel are estimated by applying multivariate Gaussian kernels on the textures of

foreground and background, respectively. However, this requires user speci�ca-

tion. Consequently, the quality of user input will, to a certain extent, determine

the quality of the 3D reconstruction. Other methods attempt to fuse the shape

and texture consistency in an integral deformable framework [113].

There are also other well-designed 3D reconstruction methods. Some in partic-

ular solve the problem of specular and transparent object reconstruction [114].

These methods work well on a macroscopic scale as they position special patterns

behind the object to enable the shape-from-distortion or set up various lighting to

collect surface re�ective-highlights [115, 116, 117]. A recent study [118] presents

a semantic reconstruction as a convex-relaxation formulation which combines a

data term and a regularisation constraint, achieving elaborate results on pub-

lic datasets [100]. Nowadays, deep learning is used in the MVS to improve the

matching quality [119, 120]. This type of method requires a large volume of

training data, which, in our case, is not available.

From the study of related work, we may conclude that the volumetric repre-

sentation based approaches, such as shape-based 3D reconstruction with binary

volumetric representation are most promising in addressing the challenge of 3D

reconstruction and measurements for light microscopy imaging. However, this

conclusion is not su�cient in itself, as in some cases accurate 2D shapes cannot

be obtained. Therefore, we have developed the 2-3DLA method to solve the prob-

lem. In our approach, we �rst estimate a con�dence map using the augmented

textures from the axial-view images. The con�dence map is actually an improved

3D representation. Subsequently, we accomplish the 3D reconstruction using the

region based level set method on the con�dence map. A validation has shown

that our method yields accurate 3D measurements.
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4.3 Dataset collection

In Chapter 3, we have developed our MM-HTAI architecture. In this section, we

provide a comprehensive depiction of the dataset collection and show how the

multi-modal images are produced.

The VAST BioImager is speci�cally set up to work for high-throughput imaging of

zebra�sh. For the remainder of the chapter, the concept of specimen and zebra�sh

are both used. Specimen is used in a generic context while zebra�sh is used

in the particular application of the zebra�sh high-throughput imaging. In the

VAST BioImager, the specimens, i.e., zebra�sh larvae, are positioned along their

longitudinal axis as in this manner the most important features can be readily

observed; it is also related to the manipulation of the specimen in the capillary.

In this orientation we obtain images from all axial-views along the pro�le axis

from one full revolution. A schema of the imaging architecture is depicted in

Subsection 3.3.1 (Fig. 3.2). A positioning module consists of a capillary (the

holder of specimen) and a set of stepper motors that accomplish the rotation

manipulation of the specimen.

A VAST camera (#1) is mounted with the device and used to detect the location

and orientation of the specimen so as to keep it in the �eld of view for image

acquisition. An object is revolved over 360 degrees by the stepper motors so that

bright-�eld images for the specimen in the axial-views can be acquired. These

image always depict the whole specimen. The VAST camera (#1) is an Allied

Vision Systems, Pro Silica GE 1050 CCD (pixel size 5.5 µm × 5.5 µm.). This

camera acquires images of 1024×1024 pixels. The resolving power for this camera

system is about 13.4 µm.

The VAST unit is mounted on a microscope, of which the microscope-camera (#2)

is able to acquire detailed microscopic images both in bright-�eld and �uorescence

from arbitrary axial positions; this setup uses the Leica DFC450C CCD (pixel

size 3.4 µm×3.4 µm) and it acquires images of 1920×2560 pixels (5 Megapixel).

We use two objectives in this case. The resolving power for a 2.5× objective is

about 4.8 µm and for a 4× lens (red �uorescence) it is about 3.1 µm.

The image acquisition protocol is as follows. In a full revolution of the capillary, 84

axial-view images are acquired for the specimen. The step size between adjacent

axial-views is about 4.3◦ (360◦ ÷ 84 ' 4.3◦). We have shown that 21 evenly

sampled axial-views (N = 21) are su�cient to obtain accurate results [98]. We
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apply this acquisition protocol to obtain 3 di�erent datasets that we will use as

case-studies for the evaluation of our 2-3DLA approach under di�erent imaging

conditions.

Dataset A is obtained by the VAST camera. A number of zebra�sh larvae during

di�erent development stages, i.e., 3, 4 and 5 days post fertilisation (dpf) are

acquired. The dataset �nally contains 12 examples for 3 dpf, 24 examples for 4

dpf and 24 examples for 5 dpf, respectively, and 60 examples in total. We will

use the images from this dataset as example to interpret our 2-3DLA system.

Examples of the images in this dataset are shown in Fig. 4.3. This dataset is also

used in Chapter 3.

Dataset B is obtained using the microscope-camera; the VAST unit manipulates

the position of the specimen while, in this case, the microscope-camera acquires

bright-�eld images. For the acquisition the objective 2.5 × /0.07NA is used.

Dataset B consists of a set of representative examples, i.e., 3 specimens of 5 dpf.

Examples of the images are depicted in Fig. 4.6.

Dataset C represents a collection of images of an internal structure of the ze-

bra�sh, i.e., an organ. These images are obtained using the �uorescence imaging

modality as the organ is speci�cally visible with �uorescence. For �uorescence we

use the objective 4 × /0.12NA to collect the dataset for the zebra�sh liver. We

used 7 zebra�sh samples of 3 dpf. The microscope is equipped for �uorescence

and the images are acquired with the microscope-camera. Examples of the im-

ages are depicted in Fig. 4.7; in Appendix A the preparation of these samples is

given.

4.4 Two-phase 3D reconstruction from axial-views

In this section we elaborate on the 2-3DLA approach. For the 3D reconstruc-

tion using axial-views, a microscope camera calibration is necessary. This can

be solved by the algorithm of voxel residual volume maximization. As a base-

line method, the shape-based 3D reconstruction is used for comparison with our

method. For the details of the microscope camera calibration and the shape-

based 3D reconstruction method, we refer to Section 3.3. Below we discuss: the

improved 3D volumetric representation as con�dence map in Subsection 4.4.1 and

3D reconstruction as objective function optimisation in Subsection 4.4.2.
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4.4.1 Improved 3D volumetric representation as con�dence map

In shape-based 3D reconstruction we need accurate segmentations of the original

images. These are, however, not always satisfactory. One of the important com-

plications is the translucency and transparency of the specimen in the images.

We, therefore, propose the improved 3D volumetric representation in the form

of a con�dence map which is derived from the probabilistic models as estimated

from the object and background presented in the axial-view images.

We observe that the partial transparency of the specimen is di�cult to recover.

Severe texture variation within the object challenges the generality of the proba-

bilistic models. We therefore need to collect prior knowledge on the approximate

locations of the objects of interest and background. It can be implemented in

an interactive manner. In this case, the results of the 3D reconstruction will

rely on the quality of the user input; insu�cient user input tends to produce an

underestimated model.

In following, we propose to apply the MS algorithm to obtain the approximations

of the 2D shapes for the specimen. The MS algorithm improves the texture rep-

resentation of the object so that the translucent and transparent regions of the

specimen become more separable from the background. We threshold the texture-

augmented images to obtain the 2D shape approximations. This also results in

an augmentation of the texture representation in the transparent parts of the

specimen. The approximations of the 2D shapes can roughly separate the object

and background. Although such shape approximations are inaccurate, morpho-

logical operations to the envelope of the shape (dilation and erosion) enforce the

discrimination of the object and background. In this manner, we have solved the

problem of texture augmentation for the partial transparent specimens. In addi-

tion, the obtained 2D shape approximations can serve as the shape constraints,

such that almost all texture information included by the object can be sampled.

This improves the generalisation of the probabilistic models and contributes to

the successful automation of the whole system.

We combine the multi-scale textures interpreted as image pyramids to further

enhance the probabilistic models. Now, let Isc = {I(1,sc), I(2,sc), ..., I(N,sc)} and

S = {S1,S2, ...,SN} denote the images (after mean shift �ltering) in scale of sc

and the approximations of 2D shapes in original scale, where N represents the

number of views. In any of the views, the foreground and background can be

approximately discriminated and indexed by xf and xb, where S(Ω) ≈ {xf ,xb}
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and Ω represents the whole image domain. Then, the multi-scale textures are

represented as Isc(xf ) and Isc(xb), where Isc(x) = (r, g, b)T denote the RGB

values in colour space for any pixel in scale sc. Next, a multivariate Gaussian is

applied to estimate the probabilistic models of the range images for each speci�c

scale. Thus:

p(f,sc)(xf ) =
1√

(2π)3|Σf |
e−

1
2

(Isc(xf )−µf )T Σ−1
f (Isc(xf )−µf )

p(b,sc)(xb) =
1√

(2π)3|Σb|
e−

1
2

(Isc(xb)−µb)T Σ−1
b (Isc(xb)−µb)

(4.1)

where p(•,sc) represents the probabilistic model estimated for the textures in scale

sc; and (µf , Σf ) and (µb, Σb) denote the mean vectors and the covariance matri-

ces estimated for the foreground and background, respectively. To avoid overesti-

mation of the probabilistic models, we randomly select a subset of the axial-views

for computation.

A voxel X ∈ X in 3D space corresponds to a pixel location in I(i,sc) (the ith

image in scale sc) through the pinhole camera model x = PiX, where Pi ∈ P
is the camera projection matrix estimated for each view. We can obtain the

probabilities of this voxel being the foreground and background by pf (x) and

pb(x). Suppose that all the N axial-view images Isc in scale sc are independent,

the joint probabilities of a voxel X indicating its visibility to the foreground and

background can then be modelled as follows:

P(f,sc)(X) =

( ∏
i=1:N

p(f,sc)(x)

) 1
N

P(b,sc)(X) = 1−

( ∏
i=1:N

(1− p(b,sc)(x)

) 1
N

(4.2)

We can interpret Eq. (4.2) as the intersection of the N camera projections for

each voxel. We use the logarithm to re-scale the two probabilities. The multi-

scale probabilistic models are then fused to obtain the con�dence map de�ned

as:
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I∗ =
M∑
sc=1

βsc
[
log(P(f,sc))− log(P(b,sc))

]
(4.3)

where β = {βsc}sc=1:M speci�es the weight for each scale and 1T · β = 1. In

our speci�c implementation, a uniform distribution of β is used, which simply

averages the multi-scale probabilities. We use three-scale textures (M = 3) in

a hierarchical fashion, such that the higher scales can be generated by halving

the images in the respective lower scales. The con�dence map takes a con�dence

score as the entry for each voxel to indicate its likelihood to be the object (or

background). The larger the con�dence score of a voxel is, the more possible that

voxel is classi�ed as the object.

4.4.2 3D reconstruction as objective function optimisation

With the con�dence map, we can accomplish the 3D reconstruction by searching

for an enclosed surface which is able to correctly classify all the voxels into the

object and background. The marching cubes algorithm [121] straightforwardly

estimates a speci�c surface. However, it is di�cult to determine which is the

optimal one; and serious fractal behaviour of the estimated surface will occur.

This will result in inaccurate 3D measurements of volume and surface area. An

empirical solution can be applied to cascade a surface re�nement module which

needs to be carefully validated. In this work, we apply the region based level

set method (CV model) [41] to accomplish this task. The employment of the

CV model transfers the 3D reconstruction problem into a 3D segmentation. The

optimal enclosed surface retaining a smooth appearance is achieved.

According to the CV model, an enclosed 3D surface C is embedded in a distance

regularised level set function (LSF) C := {X ∈ Ω;φ(X) = c}, where Ω and X

are consistently de�ned as the image domain (3D in this case) and the spatial

locations of the voxels in world frame. To separate the object and background

according to the similarity in the con�dence map we de�ne the objective function

Eq. (4.4). This includes the external force as the con�dence map and the internal

force as the smooth appearance of the surface. Thus:
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E(φ) = µ

∫
Ω

|∇H(φ)|dX︸ ︷︷ ︸
internal force

+ υ

∫
Ω

[
|I∗ − uin|2H(φ) + |I∗ − uout|2(1−H(φ))

]
dX︸ ︷︷ ︸

external forece

(4.4)

where, uin and uout represent the mean intensity of the con�dence map in and

outside of the surface; µ and υ are constants used to balance di�erent terms. H

is the Heaviside function de�ned as follows:

Hε(x) =

{
1, if x ≥ 0
0, if x < 0

(4.5)

Using the Euler-Lagrange equation, as:

∂φ

∂t
= −∂E

∂φ
, (4.6)

one can implement the surface evolution by computing the gradient �ow for the

objective function de�ned as:

∂φ

∂t
= δ(φ)

{
µ div

(
∆φ

|∆φ|

)
+ υ

[(
|I∗ − uout|2 − |I∗ − uin|2

)] }
, (4.7)

where δ(φ) is the derivative of H(φ). By setting a proper step size ∆t, we can

complete the 3D reconstruction via gradient descent, de�ned as:.

φt+1 = φt + ∆t
∂φ

∂t
(4.8)

3D measurements inference Given the 3D reconstruction represented as the

optimal surface embedded in φ, we can derive the 3D measurements. The volume

is obtained by the integration over all the voxels which are included in the object

φ: V =
∑

φ 1[φ > c∗]×v, where 1[•] keeps its representation as an indicator func-
tion; c∗ is the optimal c-level set which we will investigate in following sections; v

is the unit volume for the voxels which is pre-de�ned. A set of surface points are

generated from the c∗-level set of φ, which will be used to produce a triangulated

mesh. The surface area is obtained by the integration over all the facets in the

82



4.5 Experiments

triangulated meshes using Heron's formula A = (s(s− a)(s− b)(s− c))1/2, where

s = (a+ b+ c)/2 and a, b, c represent the edges of a triangle.

4.5 Experiments

In this section, we describe our experiments to evaluate the performance of the

proposed approach for our datasets. In Subsection 4.5.1, we perform a visual

inspection of the results on Dataset A. In Subsection 4.5.2, we discuss how to

obtain accurate 3D measurements for Dataset A. In Subsection 4.5.3, we perform

visualisation and 3D measurements on Dataset B & C. In Subsection 3.5.4, we

evaluate the proposed method by runtime.

4.5.1 Visual inspection of the results on Dataset A

We �rst apply (A) di�erent methods on the Dataset A to compare the obtained

3D models through visualisation. We next (B) apply our 2-3DLA approach on

the whole Dataset A to demonstrate its performance on the zebra�sh in various

developmental stages.

(A) Comparison with various methods using visualisation

We implemented an interactive method [81] which requires user input to indicate

the approximate locations of the object and background. So, the quality of the

3D models will rely on the user input. The shape-based 3D reconstruction is also

used in this comparison.

In Fig. 4.2 (A), the results obtained by the interactive method are shown. Two

types of user input are employed to estimate the probabilistic models for each

specimen. One input collects less textures by drawing shorter scribbles on the

object. The other input covers a larger region of the object, thus collecting more

texture information. In Fig 4.2 (A), the corresponding 3D reconstructions are

shown next to the input drawings. Our assumption is con�rmed that variations

in user input impact the quality of the 3D reconstructions. Su�cient texture

sampling usually results in better 3D reconstructions preserving most of the shape

of the specimen. However, even with �good� user input, parts of the zebra�sh,

mostly at the tail area, still fail to be faithfully reconstructed. The main reason

is the considerable texture inhomogeneity of the specimen which hampers the
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3 dpf

4 dpf

5 dpf

(A) Interactive method (B) Shape-based method (C) 2-3DLA

Figure 4.2: Comparison of visualised results of di�erent methods. We select
one example from each larval stage, i.e., 3, 4 and 5 dpf. For each 3D model, we
visualise the same perspectives, i.e., lateral and ventral. (A) The 3D reconstruction
of the interactive method. The users randomly draw on the object of interest (red
scribble) and background (blue scribble), respectively. Two types of user input are
considered, as shown on the left. Corresponding 3D reconstructed models are shown
on the right. (B) The 3D reconstruction of the shape-based 3D reconstruction. The
raw 3D models are shown in the top two rows. The 3D models with extra surface
re�nement are shown below. (C) The 3D reconstructions of the 2-3DLA using only
the original-scale textures and multi-scale textures are separately shown in each
box above and below.

generality of the probabilistic models and thereby results in a misclassi�cation

of the translucent part of the specimen as background. From the results of the

interactive method, we can also observe the fractal behaviour of the surface.

It is apparent that inaccurate 3D reconstruction will result in inaccurate 3D

measurements.

In Fig. 4.2 (B) we show results of the shape-based method with a set of accurate

2D shapes, which generates very accurate 3D shape representation of the spec-

imen. Each shape shows a natural and detailed surface, but fractal behaviour

also occurs due to the carving e�ects of the method. This is depicted in the top

two rows of Fig. 4.2 (B). After extra surface re�nement [93], accurate 3D mea-

surements can be available. The re�ned 3D models are shown in the bottom two

rows of Fig. 4.2 (B). We need to accept that the shape-based method requires
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accurate 2D segmentations from the original images which are sometimes di�cult

to obtain in light microscopy imaging.

In Fig. 4.2 (C) we show the 3D models obtained by the 2-3DLA system. In

the top two rows, the 3D reconstructed models are obtained by the con�dence

map derived with one-scale texture. In the bottom two rows, the results obtained

with three-scales texture are shown. One can observe a better 3D visualisation

for both of the results. In the 2-3DLA, the employment of the MS algorithm

ensures improved discrimination between the object and background. Further-

more, the shape constrained texture collection augments the generality of the

con�dence map. These improvements cooperate in obtaining a better volumetric

representation. The CV model aims to search for the optimal surface which can

largely separate the object and background in the con�dence map and preserves

a smooth appearance of the specimen, which subsequently results in accurate

3D measurements. However, a little fractal behaviour is still showing in the re-

sults with one-scale texture, resulting in a slightly de�cient tail region of the

zebra�sh.

(B) 3D visualisation for Dataset A using 2-3DLA

Here we apply the 2-3DLA on the whole Dataset A. In Fig. 4.3 some results are

depicted. For each developmental stage of the zebra�sh, we randomly select one

specimen in the dataset. To create additional value for 3D models, we map the

textures from the original images onto the surface of the 3D models to produce

texturised 3D shapes. For practical reasons, the texturing of the partial trans-

parent regions is arti�cial. We separately show the binary and the texturised 3D

models in the middle and bottom rows for each specimen. We select three typical

axial-views, i.e., lateral, tilted, and ventral.

From the visualisation, we can assess that the 2-3DLA obtains quite natural and

vivid 3D shapes for the specimens. The problem arising from the translucency

and transparency seems to be solved. From the 3D shapes it is obvious that older

zebra�sh are larger compared to the younger ones. The size of yolk in the various

stages is di�erent. During the development, the yolk of the zebra�sh provides nu-

trient for its growth. Consequently, older zebra�sh have smaller yolk, simply as a

result of their growth. Furthermore, the 3D shape obtained by our approach of-

fers a good framework for the visualisation of the biological system by introducing

organ-level 3D systems, the circulatory system, the liver, the brain, etc.. Using

speci�c staining, the 3D systems can be incorporated and visualised. The whole
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4. A NOVEL 3D RECONSTRUCTION APPROACH

(A) 3 dpf

(B) 4 dpf 

(C) 5 dpf 

Figure 4.3: 3D models visualisation of the zebra�sh in various larval stages from
Dataset A. Each bounding box denotes a staged zebra�sh. For each specimen, three
typical perspectives are shown in di�erent columns. The original axial-view images
are shown in the top row; the pure 3D models are shown in the middle row; the
texturised models are shown in the bottom row.

process is reviewed in a 2-3DLA spotlight including animated visualisations of the

3D models at http://bio-imaging.liacs.nl/galleries/VAST-2-3DLA/.

4.5.2 3D measurements for Dataset A

We investigate how to obtain accurate 3D measurements from the 3D models

obtained by the 2-3DLA. To this end, the hyperparameter of c-level set needs to

be tuned, because an unvalidated c-level set may lead to inaccurate 3D measure-

ments. We present two interpretations, (A) the 2D shape coherence and (B) the

3D shape coherence, for the inference of accurate 3D measurements. We compute

the (C) 3D measurements based on the inference for Dataset A.
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0-LS

View 1 View 2
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3-LS

Figure 4.4: 2D shape coherence
(red) between the projections from
3D models to axial-view images and
the groundtruth 2D shapes (green
contours) with various c-level sets.
A subsection of the original 2D
shape coherence (dashed bounding
box) is zoomed in and shown at the
bottom of each row.
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Figure 4.5: 3D shape coherence
with various c-level sets. The tri-
angles indicate the minimum of
the measurements, which are found
around 1.4-level set.

(A) 2D shape coherence

A good 3D reconstruction must approximate the real shape of the object. We

evaluate and interpret this as shape coherence. We de�ne the 2D shape coherence

as a disparity map from the projected shape of a 3D model to a �groundtruth

2D shape� in each original axial-view. We have developed a robust method for

the segmentation of zebra�sh larvae. Using manual segmentations, the method is

validated and turned out to be accurate. We thereby use the segmentation results

as the approximation of the groundtruth 2D shape for the Dataset A. Accordingly,

we interpret the 2D shape coherence as the overlap from the projected shape to

the groundtruth 2D shape. We chose three di�erent c-level sets (c-LS), i.e., 0-LS,

2-LS, and 3-LS, to extract the corresponding 3D models. The 2D shape coherence

that are obtained in this manner are shown in Fig. 4.4. We depict two typical

axial-views of the object, i.e., ventral and lateral. We represent the groundtruth

2D shapes as green contours. In order to appreciate the results, a subsection of

the 2D shape coherence is zoomed in and its visualisation is shown in the bottom
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4. A NOVEL 3D RECONSTRUCTION APPROACH

row for each view.

We observe that a small c-LS, i.e., 0-LS, produces an overestimation of the 3D

model, which presents a large 2D shape coherence. This is illustrated as the

red area exceeds the green contours in the top row of Fig. 4.4. A large c-LS,

i.e., 3-LS, results in a more compact 3D shape of the object, which obtains a

smaller 2D shape coherence. It is illustrated as the red area separating from the

green contours in the bottom row of Fig. 4.4. In contrast, a reasonable c-LS,

i.e., 2-LS, obtains highly correlated 2D shape coherence producing a better 3D

reconstruction.

(B) 3D shape coherence

The shape-based 3D reconstruction method results in a binary volumetric rep-

resentation. If accurate 2D shapes are used in this method, the obtained 3D

model can serve as the �groundtruth�. The 3D shape coherence is then de�ned as

the disparity from the 3D models obtained by the 2-3DLA to the �groundtruth

3D model�. We propose two measurements to evaluate the 3D shape coherence:

volume disparity (V ) and surface area disparity (A). They are separately de-

�ned as V = [(1/M)
∑

i (V
∗
i − V m

i )2](1/2) and A = [(1/M)
∑

i (A
∗
i − Ami )2](1/2),

where V ∗ and A∗ are the volume and surface area measured from the 3D model

groundtruth; V m and Am are the volume and surface measured from the 3D mod-

els obtained using a speci�c c-LS; and M is the number of specimens. We use

half of the Dataset A for the validation of this experiment. In Fig. 4.5, we show

a graph of the 3D shape coherence for various c-LS. We illustrate that the choice

of a small c-LS, e.g., 0-LS, tends to produce an overestimation of the measure-

ments. The choice of a large c-LS, e.g., 2-LS, will lead to an underestimation.

This corresponds nicely with the �ndings in the 2D shape coherence as shown in

Fig. 4.4. Finally, we �nd that the 1.4-LS is a good compromise and gives the

best estimation of the volume and surface area. For the next paragraph (4.5.2

(C)), we use the 1.4-LS to obtain the deterministic 3D models from which we can

derive the 3D measurements.

(C) 3D measurements for Dataset A

We use the remaining half of the Dataset A to compute the 3D measurements of

the zebra�sh in various developmental stages, i.e., 3, 4, and 5 dpf. In this exper-

iment, we compute the statistics for the volume and surface area of the zebra�sh

and show the results in Table 4.1 and 4.2. The 3D measurements obtained from
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Table 4.1: Volume statistics (×108µm3)
of the 3D models for the zebra�sh in

various developmental stages

Shape 2-3DLA
3 dpf 2.53± 0.11 2.56± 0.12
4 dpf 2.63± 0.19 2.66± 0.19
5 dpf 3.00± 0.18 2.96± 0.18

Table 4.2: Surface area statistics
(×106µm2) of the 3D models for the

zebra�sh in various developmental stages

Shape 2-3DLA
3 dpf 3.20± 0.15 3.21± 0.14
4 dpf 3.34± 0.17 3.36± 0.17
5 dpf 3.63± 0.14 3.61± 0.14

the shape-based 3D reconstruction method are used to assess the performance of

the 2-3DLA.

From the tables we may conclude that the 2-3DLA can obtain accurate 3D mea-

surements of volume and surface area comparable to the groundtruth method.

This holds for the zebra�sh in the three developmental stages. The results of

the 2-3DLA are slightly larger, but the di�erence is small and acceptable. One

should note that the 2-3DLA will be advantageous for the cases in which accu-

rate segmentations are not available. Furthermore, the increasing trends of the

volume and surface area for the zebra�sh staged from 3 dpf to 5 dpf is consistent

with the expected physical growth of the zebra�sh. Importantly, Table 4.1 and

4.2 o�er baseline metrics for volume and surface area of the zebra�sh in various

stages; this facilitates quantitative and qualitative analysis using the zebra�sh as

model system.

4.5.3 3D reconstruction and measurements of Dataset B & C

We have shown that the 2-3DLA can obtain an accurate 3D shape description of

the whole specimen o�ering the baseline reference for the 3D measurements. This

is, however, not su�cient to evaluate a specimen on the level of organs. From

the optics used, the resolving power of Dataset B & C (see Section 4.3) is much

higher. Moreover, di�erent microscope modalities are used for these datasets, i.e.,

bright-�eld and �uorescence. As a case study, in addition to the whole specimen,

we use the zebra�sh liver as a model organ system. The liver size is important

to pharmacokinetics, as it is an crucial organ for drug metabolism. For Dataset

B & C, 3D measurements of volume and surface area are separately reported in

Table 4.3 and 4.4. As a comparison, we still use the results obtained from the

shape-based 3D reconstruction approach.
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Table 4.3: Volume (×108µm3) and surface area (×106µm2) of the
3D models for the zebra�sh in Dataset B

Volume Surface area
Shape 2-3DLA Shape 2-3DLA

#1 3.00 3.05 3.61 3.65
#2 2.95 3.04 3.52 3.60
#3 3.06 3.13 3.69 3.74

Table 4.4: Volume (×105µm3) and surface area (×104µm2) of the
3D models for zebra�sh liver in Dataset C

Volume Surface area
Shape 2-3DLA Shape 2-3DLA

#1 7.70 7.56 4.67 4.57
#2 5.38 4.15 3.61 3.15
#3 8.10 8.47 4.91 5.04
#4 9.06 9.28 5.20 5.18
#5 11.6 9.77 6.07 5.49
#6 15.1 16.6 6.89 7.69
#7 6.55 6.79 4.28 4.31

In Table 4.3 we observe only a small di�erence of the volume and surface area

produced by the 2-3DLA compared to baseline method. This di�erence is accept-

able. It is apparent that both of the measurements are within the distributions

given in Table 4.1 and 4.2. This suggests that the 2-3DLA system shows stable

performance for bright-�eld microscopy axial-view imaging. Subsequently, it can

obtain accurate 3D measurements for the specimen as a whole. In Fig. 4.6, we

show the 3D models for two specimens. The results are presented in the similar

fashion as used in Fig. 4.3. An interesting phenomenon shown in the Example

#1 is that the tail of the 3D model is thinner than the original specimen. The

reason is that, in this experiment, the specimen were alive and anesthetised. Dur-

ing the imaging, the motion of the positioning capillary introduces slight shape

deformations of the specimen. This impedes accurate 3D reconstruction which

requires static objects.

In Table 4.4 we can �nd that most of the zebra�sh livers are reconstructed well

and comparable 3D measurements are obtained. Signi�cant di�erence for the 3D

measurements are found in example #2. Both the volume and surface obtained

by the 2-3DLA are smaller than those obtained by the baseline method. This
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(A) Example #1

(B) Example #2

Figure 4.6: Visualisation of 3D models of the zebra�sh in bright-�eld microscopy
from Dataset B. For each specimen, three typical axial-view images are shown on
the top; the corresponding axial-views of the pure and texturised 3D models are
shown in the middle and bottom, respectively.

(A) Example #1 (B) Example #2

Figure 4.7: Visualisation of 3D models of the zebra�sh liver in �uorescent mi-
croscopy from Dataset C. We show three axial-view images and the corresponding
3D perspectives in the top and bottom row for each specimen.

is caused by the image quality for the example #2. We visualise the 3D model

for this example in Fig. 4.7 (B). We observe that the original axial-view images

do not clearly represent the specimen. A reason for the obfuscation may be the

relatively small external force in Eq. (4.7) for all the specimens, which produces

compact 3D models. In fact, using a di�erent con�guration for the parameter in

example #2 will result in accurate 3D measurements. However, in order to ensure
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Table 4.5: Performance evaluation on runtime (s=second,min=minute)

Step A Step B Step C Step D Total

Dataset A 36± 1.4(s) 12.6± 0.8(s) 35.9± 0.9(s) 2.2± 0.5(min) ∼ 3.6(min)

Dataset B 4.3± 0.2(min) 56.4± 0.9(s) 37.2± 0.4(min) 7.9± 0.5(min) ∼ 50.3(min)

Dataset C 5.5± 0.6(min) 39.0± 7.4(s) 8.8± 1.2(min) 12.1± 1.1(min) ∼ 27.1(min)

• Step A: Image capture • Step B: 2D shape approximation
• Step C: Camera system calibration • Step D: 3D reconstruction

a justi�ed evaluation of this experiment, we reported the results obtained with the

same parameters. In future work, we can validate the parameter speci�cations in

relation to image quality.

4.5.4 Evaluation on e�ciency

For the evaluation of the computational e�ciency of our approach, we �rst specify

the setup. We represent the process of (1) image capture, (2) 2D shape approxi-

mation, (3) camera system calibration, and (4) the 3D reconstruction as Step A,

B, C, and D, respectively. In Step A, we use the VAST BioImager to automati-

cally obtain Dataset A. A well-trained biologist used the microscope setup (Leica

DMRB) to acquire Dataset B & C. In this data acquisition, the object is manip-

ulated by the VAST BioImager to present in the view of the microscope. The

remaining steps are implemented with the Matlab platform (and partial C/C++

implementation) on a desktop equipped with a CPU i7 and 16G RAM. In Step

B, we heuristically con�gure the �lter width in spatial, colour feature space as

(hs, hr) = (10, 20) for Dataset A; and (hs, hr) = (20, 30) for Dataset B & C. In

Step C, we �nd that the Nelder-Mead simplex method works much faster for

Dataset A & C. The evolution strategy achieves robust performance for Dataset

B, though it is not e�cient. We take a compromise on the optimisers and we

apply the Nelder-Mead simplex method for Dataset A & C and the evolution

strategy for Dataset B. In phase II of our 2-3DLA, we set the parameters µ = 10,

υ = 1, and ∆t = 0.5 for all cases.

In Table 4.5, for each step from A to D, we report the performance evaluation in

terms of runtime in minutes or seconds for the three datasets. We compute the

average and standard deviation of the runtime for each specimen in the datasets.

First, from the results, we may conclude that the performance of our approach
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on Dataset A is most e�cient. In contrast, the larger size of the images in

the Dataset B and C results in an expensive computation for our approach.

Second, Step B performs very e�ciently in the three datasets due to our fast

implementation of the MS algorithm. Third, Step C in Dataset B and C requires

a large amount of computations. The reason is that during the camera system

optimisation, massive evaluations for the cost function are executed. However, a

better optimiser and a high-performance scheme such as parallelisation or GPU

programming can be employed to improve the e�ciency of this step. Fourth, Step

D in the three datasets seems be computationally expensive. One reason is the

iterative 3D surface evolution. We set up a restricted termination criterion that

requires the change of the cost function to be close to zero. So, this results in more

iterations. In addition, we set a small grid size for the voxel space. This leads to

massive projections and demands a large amount of memory to ful�l a precision

guarantee. Again, this can, to a certain extent, be solved by the introduction of

high-performance computing strategies.

4.6 Chapter conclusions and future work

Imaging of partially transparent objects impedes the visualisation of a continuous

surface which renders it di�cult to estimate a depth map of the object. To

handle this problem, we �rst present three typical datasets using our MM-HTAI

architecture. We then have developed the 2-3DLA approach for 3D reconstruction

and measurement in light microscopy axial-view imaging. It answers RQ 4: How

can we e�ciently deal with the translucency and transparency of specimen in

light microscopy and still obtain a good 3D shape description from the MM-HTAI

architecture?

More concrete, in phase I of our 2-3DLA approach, we estimate an improved 3D

volumetric representation as a con�dence map from a range of texture-augmented

images by applying the MS algorithm on the original images. In phase II, we adapt

the region based level set method to estimate the optimal enclosed surface for the

object which balances the 3D shape integrity and the smoothness of appearance

for the 3D model. Compared with the shape-based method, the proposed 2-3DLA

approach obtains comparable 3D reconstructions and measurements, but it does

not require accurate 2D segmentations of the original images. As segmentation of

partial transparent objects can be di�cult, this system provides a good solution
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to this shortcoming. Unlike the shape-based 3D reconstruction method, the 2-

3DLA does not need extra re�nement to obtain a natural and smooth 3D surface.

We have successfully applied our approach for zebra�sh analysis in multi-modal

light microscopy axial-view imaging including bright-�eld and �uorescence. The

obtained results can be directly used for the model system evaluation in the �elds

of toxicology, infectious diseases and oncology.

Still, we admit that the e�ciency of our approach needs improvement with respect

to larger images. A possible solution can be a dynamic programming scheme for

high-performance parallelisation. As is well known, the zebra�sh model is inten-

sively used in the �eld of life-sciences. Therefore, in our 2-3DLA we can learn a

good probabilistic model for the zebra�sh either in supervised or semi-supervised

way [122]. Yet, our approach needs the support from 2D shape approximation in

the process of camera system calibration. In future research, we thus aim for a

method which is independent on image segmentation. In addition, other multi-

view imaging modes are investigated by our method. However, the axial-view

imaging is the most commonly used modality, so the 2-3DLA can be considered

generic for other specimen observations.

Appendix A

The zebra�sh used in Dataset C are from a transgenic line Tg(lfabp:dsRed;

elaA:EGFP) with 2 �uorescent colours for liver and pancreas (2CLIP). The eggs

were kept in 60 µg/mL Instant Ocean Sea Salts (Sera Marin, Heinsberg Ger-

many) in demineralised water and treated with 0.003% 1-phenyl-2-thiourea (PTU,

Sigma-Aldrich, Zwijndrecht, The Netherlands) to prevent pigmentation.
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Chapter 5

Multi-modal 3D Reconstruction

Based on:

� Y. Guo, R.C. van Wijk, E.H.J. Krekels, H.P. Spaink, P.H. van der Graaf

& F.J. Verbeek, �Multi-modal 3D reconstruction and measurements of ze-

bra�sh larvae and its organs using axial-view microscopy,� in IEEE Confer-

ence on Image Processing, Beijing, China, 2017.
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This chapter addresses RQ 5.

RQ 5: How can we obtain a multi-modal 3D description and the

corresponding measurements for the zebra�sh from the MM-HTAI ar-

chitecture?

Abstract � In life sciences, light microscopy is used to study specimens. On

the organism-level a bright-�eld representation presents an overview for the whole

shape of a specimen; the organ-level �uorescent staining representation insight-

fully supports in the interpretation of the detailed intrinsic structures (see Section

5.1). We apply our MM-HTAI architecture presented in Chapter 3 (see Subsec-

tion 3.3.1) to acquire axial-view images for the organism and organs of zebra�sh

larvae (See Subsection 5.2.1). We obtain multi-modal 3D reconstruction using the

shape-based method, from which we can derive the 3D measurements of volume

and surface area (see Subsection 5.2.2). In this method, we employ a micro-

scope camera calibration using voxel residual volume maximization algorithm.

We intuitively align and fuse the obtained multi-models (see Subsection 5.2.3).

Experimental results show natural visualisation both for the whole organism and

organ of zebra�sh larvae; subsequently accurate 3D measurements are obtained

(see Section 5.3). The method is very suitable for high-throughput research in

which knowledge on size and shape is relevant to the understanding for develop-

ment, e�ects of compounds or drugs (see Section 5.4).
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5.1 Multi-modal 3D reconstruction

In modern life-sciences research, e.g., developmental biology, (patho)physiology,

toxicology, and pharmacology, light microscopy is commonly used to produce 2D

colour representations of biological phenomena. Zebra�sh is a popular vertebrate

model organism in biomedical research because of its many advantages, among

which is optical transparency at early stages [11, 123]. The organs of the trans-

parent larvae can be studied in vivo through microscopy. Transgenic lines are

available that express a �uorescent reporter gene in speci�c organs, tissues, or

cell types [16]. In this way, organ development of the genetically engineered ze-

bra�sh can be visualised and monitored over time by �uorescence microscopy.

It makes the zebra�sh particularly suitable for large scale screening experiments

using light microscopy. For the screening of large libraries of compounds for or-

gan toxicity, such as hepatotoxicity [23], quantitative endpoints like organ size

or growth retardation are required. In order to accurately evaluate the shape

and size of an organ like the liver, 3D modelling of both the liver and the whole

organism are required. Compared with 2D imaging, 3D measurements, e.g., size,

volume and surface area, are more reliable. The organism-level imaging is an

overview of the shape of the object, serving as shape reference to normalise the

3D measurements of liver into unit metrics. Our aim is to develop a method

for 3D reconstruction and measurements of zebra�sh larvae and its organs using

axial-view microscopy.

In stereo vision, a 3D scene can be recovered by matching correlated multi-view

images [30]. This is implemented by pixel-level searching [102] or salient point

detection and matching [124]. However, these methods are challenged for our

typical application at hand, the zebra�sh. Here, partial transparency of the

zebra�sh complicates straightforward application of these methods as it is di�cult

to match the implicit surface points on the object. Based on the concept of visual

hull [125], the space carving algorithm reconstructs the 3D shape from a range

of 2D binary shapes [126], which is also referred to as the silhouette-based 3D

reconstruction [80, 81]. In a sample population of zebra�sh, a rather large colour

variation exists; this holds both for bright-�eld and �uorescence. Therefore, we

propose to use 2D binary representations. Accordingly, we have developed the

pro�le-based 3D zebra�sh reconstruction method based on a series of 2D axial-

view shapes of the object, obtaining a precise 3D representation and accurate 3D

measurements in various larval stages [98].
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(B)

(A)

(C)

Figure 5.1: A schema of the proposed method. One zebra�sh larva presents in
the two imaging pipelines. (A) The organism-level 3D reconstruction. (B) The
organ-level 3D reconstruction. (C) The multi-modal 3D reconstruction fusion and
visualisation. In (A) and (B), the �rst columns show the original axial-view images;
the second columns illustrate the 2D binary shapes; the third columns denote the
camera system calibration and pro�le-based 3D reconstruction.

In Chapter 3 (see Subsection 3.3.1), we have implemented our MM-HTAI architec-

ture. In this chapter, using the axial-view images acquired from this multi-modal

imaging modality, we propose a multi-modal 3D reconstruction method as pre-

sented in Fig. 5.1. A zebra�sh larva with �uorescent marker expressed in the liver

is captured in two imaging modes. The VAST camera enables the organism-level

imaging and a microscope camera facilitates the organ-level imaging. From the

axial-view images, 2D binary shapes are obtained through modern segmentation

algorithms [28, 29]. We estimate the camera projection geometry for the two cam-

era systems using the voxel residual volume maximization algorithm. We produce

the multi-modal 3D reconstruction for the organism (zebra�sh) and organ (liver)

using the pro�le-based 3D reconstruction method; we use heuristics to fuse the

two models acquired from di�erent imaging modalities. From the obtained 3D

models, 3D measurements, e.g., volume and surface area, are derived.

5.2 Our approach

In this section, we present a new dataset containing the zebra�sh on both organism-

and organ-level imaging (see Subsection 5.2.1). We introduce the microscope

camera calibration and elaborate shape-based 3D reconstruction (see Subsection
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Figure 5.2: (a) The VAST camera pose is modelled as the 3D transformation from
the camera centre O to the object centre (green circle). The green line denotes the
pro�le-axis along which the object revolves. ∠ω, ∠ϕ and ∠γ represents the 3D
rotation angles of the camera along the X, Y and Z directions, respectively. ∠α
is modelled as the �translation angle�. (b) The centre of the zebra�sh liver is not
aligned with the zebra�sh centre which results in its rotation and revolution with
respect to the zebra�sh centre, such that the �translate angle� ∠α of the microscope
camera is speci�ed for each view.

Figure 5.3: The alignment of the multi-modal 3D reconstruction is implemented
according to the iris centre of the zebra�sh. On the left-side is a bright-�eld image
of organism-level imaging. We crop this image to �t the space. On the right-side
is a bright-�eld image overlaid with a �uorescent image of organ-level imaging.

5.2.2). We present an interactive method to align and fuse the multi-modal 3D

reconstruction (see Subsection 5.2.3).

5.2.1 Dataset collection

In Chapter 4, we have collected three datasets using our MM-HTAI architecture.

We extend Dataset C in this chapter. We use the VAST camera in our MM-
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5. MULTI-MODAL 3D RECONSTRUCTION

HTAI architecture to obtain bright-�eld images presenting the whole shape of

the zebra�sh larvae. For the same specimens, we use the imaging modality of

�uorescent microscopy in our MM-HTAI architecture to obtain images presenting

the zebra�sh liver. We used the imaging protocol in accordance with Chapter 4.

In this manner, we obtain multi-modal images for the same group of specimens.

This further facilitates our multi-modal 3D reconstruction.

5.2.2 Shape-based 3D reconstruction

In this subsection, we apply our shape-based 3D reconstruction approach to ob-

tain the multi-modal 3D reconstruction for our specimen, i.e., the zebra�sh larvae

and its livers. More details for the methodology can be found in Subsection 3.3.3

and 3.3.4. We have learned that a good shape-based 3D reconstruction is condi-

tioned to a feasible microscope camera calibration. In Subsection 3.3.5, this has

been done by the voxel residual volume maximisation (VRV) algorithm. However,

in this chapter, a proper adaption for the method should be made. As shown in

Fig. 5.2 (a), the revolution centre of the specimen is aligned with its centre of the

pro�le-axis. This bene�ts the camera system parameterisation, because �transla-

tion angle� can be shared by all the virtual cameras. In Fig. 5.2 (b), one can see

that the motion of the zebra�sh liver is a mixture of the rotation along the centre

of the zebra�sh pro�le-axis and the revolution along its own centre. Accordingly,

we just need to specify the �translation angle� for each view in the microscope

camera calibration. The optimisation for the VRV algorithm again can be solved

by the Nelder-Mead simplex method [90]. In this manner, we separately perform

the camera calibration in the two imaging modalities, i.e., the VAST-camera and

the microscope camera.

5.2.3 3D multi-models alignment and fusion

The 3D models are obtained from di�erent imaging modes. So, we need to align

the resulting multi-modal 3D reconstruction as part of the fusion operation. Dur-

ing the organ-level imaging, we acquired bright-�eld images in register with the

�uorescent images. These images only partially depict the object, but provide a

good reference for alignment. We have obtained the camera poses for both mod-

els from camera calibration. So, we choose the same axial-view for the zebra�sh

and localise the iris centre as shown in Fig. 5.3. We use the organ-level 3D model
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as a template. The organism-level 3D model is scaled, rotated, and shifted to

align with the former according to the camera pose and the position of the iris

centre.

For a view of the zebra�sh liver, we use its corresponding bright-�eld microscopic

image to localise the iris centre for the specimen represented as l1; we choose

the same axial-view for VAST image for the same zebra�sh and localize the iris

centre represented as l2. In this subsection, we use index 1 and 2 to separately

represent the organ-level and organism-level coordinate frame. These are shown

in Fig. 5.3.

According to the camera projection model P, we can �nd the pixel location c for

the world centre C de�ned in the two cases as follows.

{
c1 = P1 ×C1

c2 = P2 ×C2
(5.1)

We can compute the relative displacement for our reference point, i.e., the ze-

bra�sh iris centre, with respect to the world centre in the image plane as d1 =

l1 − c1 and d2 = l2 − c2.

Through camera calibration, we have known the accurate focal length f of the

camera and the translation F along the principal line from world centre to the

camera centre. Using 3D geometry, we can �nd the coordinates of the two refer-

ence points in 3D world frame as:

{
L1 = d1 × F1

f1

L2 = d2 × F2

f2

(5.2)

We use V1 and V2 represent the vertices in the triangulated mesh for the 3D

modellings of the organ and the organism, respectively. From the calibrated

images, we can extract accurate 3D rotation R for the object with respect to the

world centre in our chosen reference view. If we choose the world frame as the

template, we need to rotate and translate the world frame for the organism to

align the former frame. This is formulated as follows.

V2→1 = V2 ×R−1 + (L1 − L2) (5.3)

Where R−1 denotes the inverse rotation for the organism.
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5. MULTI-MODAL 3D RECONSTRUCTION

Figure 5.4: Multi-modal 3D reconstruction visualisation. We selected three exam-
ples from our dataset and for each example we visualise two typical views (lateral
and dorsal). The �rst column represents �uorescent liver images. The middle col-
umn is the zebra�sh image in bright-�eld. The last column visualises the fusion of
the multi-modal 3D reconstruction. One can zoom in for a better observation.

Through the above process, we have obtained the aligned 3D model for the or-

ganism with respect to the organ. We then visualise the 3D multi-models V1 and

V2→1 in the same world frame to accomplish the multi-modal 3D reconstruction

fusion.

5.3 Experiments

In this section, we apply our method on the zebra�sh dataset for performance

evaluation. We �rst visualise some examples of the multi-modal 3D reconstruction

in Subsection 5.3.1, and subsequently report on the 3D measurements of volume

and surface area for the zebra�sh larvae and its liver in Subsection 5.3.2.

102



5.3 Experiments

Table 5.1: 3D measurements of the 3D reconstructed models
for the zebra�sh (ZF) and its liver (Liver)

Volume Surface area
ZF Liver ZF Liver

(×108µm3) (×105µm3) (×106µm2) (×104µm2)

#1 2.74 7.70 3.33 4.67
#2 2.59 5.38 3.24 3.61
#3 2.50 8.01 3.13 4.91
#4 2.91 9.06 3.44 5.20
#5 2.67 11.60 3.31 6.07
#6 2.80 15.15 3.47 6.89
#7 2.80 6.55 3.41 4.28

5.3.1 Results visualisation

From our dataset, we select three examples for visualisation as shown in Fig. 5.4.

Two typical axial-views are shown, i.e., lateral and dorsal, and each example is

separated by blue lines. The �rst column shows the original organ-level �uorescent

images. Those images depict the natural shape of the zebra�sh liver. One can

observe a variation in image quality from the di�erent examples. This is caused by

strength of the �uorescent marker. The middle column shows the organism-level

bright-�eld images. The zebra�sh are partially transparent but retains explicit

contours for the shape. The last column visualises the fusion of the 3D models.

For a natural appearance, we map the texture from the zebra�sh to the 3D model.

We clearly observe the shape of both the zebra�sh and its liver. The visual and

spatial discernibility of the models are emphasised from the multi-modal fusion.

It is interesting that, although the liver is not completely visible in a all views

(the �rst view of the �rst example), our method still recovers a good 3D shape

by imposing a threshold to the con�dence score to estimate a 3D model allowing

a range of errors. An animated visualisation of the results can be found at

http://bio-imaging.liacs.nl/galleries/VAST-3Dorgan/.

5.3.2 3D measurements for 3D multi-models

From the multi-modal 3D reconstruction, we derive 3D measurements, i.e., vol-

ume and surface area. The volume is obtained by the integration over all the

voxels included in the object. A set of surface points is generated from the voxels
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by the marching cubes algorithm [121], from which a triangulated mesh can be

produced. The obtained 3D surface is further re�ned [93]. Subsequently, the

surface area is obtained by the integration of all the facets in the triangulated

mesh using Heron's formula [92]. In Table 5.1 we report on the computed 3D

measurements of volume and surface area for both zebra�sh and its liver.

In previous work [98], we have reported accurate 3D measurements for the 3 dpf

zebra�sh, from which we obtained the volume statistics as 2.53±0.11 (×108µm3)

and the surface area as 3.20± 0.15 (×106µm2). In this experiment, the statistics

of the 3D measurements for the zebra�sh are 2.72 ± 0.14 (×108µm3) for the

volume and 3.33 ± 0.12 (×106µm2) for the surface area. The phenomenon that

the specimens in this experiment are larger compared to our reference set is due

to the fact that we did not accurately time the development for this experiment.

We also computed the statistics of the 3D measurements for the liver as 9.06 ±
3.33 (×105µm3) for the volume and 5.09± 1.10 (×104µm2) for the surface area.

The shape variation of the zebra�sh liver is large for di�erent individuals, but we

can observe that a larger zebra�sh tends to have a larger liver [127].

We implemented our method using Matlab programming on a desktop with an In-

tel i7 CPU and a 16G RAM. Subsequently, we evaluated the e�ciency as runtime

for the 3D reconstruction of the zebra�sh and its liver separately as 22.0± 0.4(s)

26.3± 1.3(s). The results of this experiment can be directly used for establishing

physiological values of a healthy liver of a 3 dpf zebra�sh. The method can be

more generically used to assess all observable e�ects of any compound on the

shape and size of an organ.

5.4 Chapter conclusions and future work

In this chapter, we have presented a method for multi-modal 3D reconstruction

and fusion on both organism- and organ-level through light microscopy axial-view

imaging. It answers RQ 5: How can we obtain a multi-modal 3D description and

the corresponding measurements for the zebra�sh from the MM-HTAI architec-

ture? We applied our MM-HTAI architecture to extend Dataset C presented in

Chapter 4 (see Subsection 4.3). We then applied our multi-modal 3D reconstruc-

tion method on the dataset. Within the reconstructed 3D models, we observe

an overview shape for the object on the organism-level and the detailed struc-

ture on the organ-level. The former provides a good shape reference to normalise
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and evaluate the organ development in phenotypical research. The experimental

results show a natural visualisation of the multi-modal fusion images. Addition-

ally, accurate 3D measurements are obtained, which can be directly used for the

evaluation of the biological system with compound screening.

We believe our method is adequate to address RQ 5. However, in near future,

we think it can be further developed for the determination of size and shape

of other �uorescently labelled organs and objects, such as pathogens or tumour

cells. In order to improve this work, a larger sample size of our subjects should

be considered to get better statistics for the 3D measurements. High-throughput

imaging would also be a good approach for this task.
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Chapter 6

Case Study: Image Features and
Classi�cation Models

Based on:

� Y. Guo, H. Dibeklioglu & L. van der Maaten, �Graph-based kinship recog-

nition,� in IEEE Conference on Pattern Recognition, Stockholm, Sweden,

2014, pp. 4287-4292.

� Y. Guo, C. Liang, F. Lens, R. Vos & F.J. Verbeek, �Image based taxonomy

using convolutional neural networks,� publication in preparation.
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This chapter addresses RQ 6.

RQ 6: To what extent is it possible that the classi�cation models (or regression

models) are able to validate the performance of the image features to characterise

the phenotypes in support of shape analysis?

Abstract � It is di�cult to characterise the phenotypes from high-magni�cation

and high-resolution only through the shape analysis. For example, the variation

of the local structures of cells and tissues is di�cult to represent by the shape

description as a whole. Therefore, we propose to, additionally, apply image fea-

tures to extract the phenotypes encoded in the textures and local structures for

the objects in images. Consequently, we use classi�cation models to validate the

performance of the applied features on phenotype characterisation. Rather than

departing from zebra�sh, in this chapter, we use a set of annotated datasets of

images, i.e., human faces, a family of butter�ies, a family of orchids and an public

source for wood species. We aim to develop methods to estimate a structured

taxonomy for each of these datasets. For the dataset of human faces, kinship is

carefully labelled for pairwise faces and using this dataset, we propose a graph-

ical model to recognise the kinship among a group of people in a family photo

(see Section 6.1). In fact, the kinship can be considered as a particular example

of taxonomy in which the parents and the children respectively correspond to

a parent- and child-node in the hierarchy. For the other datasets, a two-level

taxonomy, i.e., the genius and species, are used in the annotations. With the

development of feature engineering such the feature learning using a supervised

manner, the performance of image classi�cation has been impressively improved.

Therefore, we want to investigate representative features for the task of image

based taxonomy using the convolutional neural networks (CNN) (see Section

6.2). Experimental results show that our proposed methods have improved the

recognition accuracy in both cases. This results in a good understanding of the

behaviour of our methods which can be applied in the applications with zebra�sh

as model system.
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6.1 Graphical model for kinship recognition

Genetic correlation among family members is formally represented as kinship,

which can be straightforwardly modelled using facial appearance similarity, a

particular phenotype. However, due to the diversity of human faces, this phe-

notype similarity is weak and subsequently presents a challenge to image-based

kinship recognition which plays an important role in the application of pheno-

type characterisation. It is di�cult to estimate the kinship from paired faces only

through shape analysis. Some prior studies solve the problem of pairwise kinship

veri�cation, i.e., on the question of whether two people are kin, through the as-

sessment of the similarity of visual features on images of faces. Such approaches

fail to exploit the fact that a global assessment on a group of family members may

provide more clues for an accurate kinship recognition; for instance, the proba-

bility of two people being brothers increases when both people are recognized to

have the same father. In this work, we propose a graphical model that integrates

a local kinship con�dence, i.e., facial similarity for all pairwise family members

in an image, and a global kinship estimation which is represented as a series of

reasonable semantic kinship graphs. For a complete and feasible kinship graph,

we present an annotated dataset for the kinship of siblings to extend the exist-

ing kinship datasets; we also present a dataset of the images with group family

members (more than 1) for the performance evaluation of our approach. In our

experiments, we have found that the visual features such as Local Binary Pat-

terns can well represent the facial appearance similarity for kinship recognition.

The proposed graphical model has improved the accuracy of kinship recognition

in group faces.

6.1.1 Kinship recognition using faces

Kinship can be expressed as physiological similarity among family members. For

example, parents and children tend to show similar facial appearance and be-

haviours. In life-sciences, kinship research will support to track genetic evolution

of a species. With respect to human beings, facial appearance as an important

phenotype can be used as evidence to recognise kinship among di�erent individu-

als. The image-based kinship recognition has become popular due to its e�ciency

and reproductivity, which tries to recognise kinship between people based solely
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on photographs of their faces. Such application bene�ts the phenotype charac-

terisation from a large volume of facial images. This may be further helpful in

uncovering and analysing social networks, and has applications in surveillance

and in criminal investigation. Image-based kinship recognition is a challenging

problem: it is a hard task even for humans to recognise kinship among peo-

ple based on facial similarities. It is encouraging that some recent studies have

demonstrated the possibility of kinship veri�cation by means of image-based ap-

proaches [128, 129] identifying facial patterns that people may have inherited

from their parents. In particular, siblings have the same gene sources which re-

sults in the presence of similar facial features. Facial cues that are informative

for kinship recognition include the colour and shape of the eyes, eyebrows, nose,

and mouth [130].

Prior work on image-based kinship recognition has three main limitations. First,

prior studies only consider kinship veri�cation: they try to determine whether

kinship exists between a pair of faces, but they do not aim at recognising the

exact type of kinship [129, 131, 132, 133]. Second, current kinship datasets are

insu�cient for the evaluation of existing kinship recognition algorithms, in par-

ticular, because existing datasets do not contain examples of siblings. Third,

prior studies only consider settings in which kinship needs to be veri�ed between

pairs of people. This does not correspond to the typical setting encountered on

social network websites, on which people often upload photographs that contain

more than two family members. One may deal with this problem by separately

classifying all pairs of faces in the family picture, but such an approach fails to

share information between the pairs of people and may produce classi�cations

that are inconsistent (e.g., two people may be classi�ed as sisters whilst they are

also classi�ed as having di�erent parents).

Motivated by the aforementioned problems of prior work in kinship recognition,

we study image-based kinship recognition in photographs that contain several

family members. Speci�cally, this section makes three main contributions. First,

we focus on kinship recognition instead of kinship veri�cation: we aim to recog-

nise the type of kinship relations between people. Second, we introduce two new

datasets: (a) an annotated dataset containing photographs of siblings and (b)

an annotated dataset of family photographs. The latter dataset and part of the

former dataset is made publicly available. Third, we propose a novel graph-based

algorithm that performs joint kinship recognition of all faces in a family picture.
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6.1 Graphical model for kinship recognition

The general framework of this algorithm is illustrated in Figure 6.1. The key ad-

vantage of our graph-based algorithm is that it exploits the fact that in a normal

family, the recognised kinship of a particular pair of faces provides evidence for

(non)kinship between other pairs of people. For example, in a family, two siblings

should have the same father and mother1: if A and B are brothers and C is the

father of A, then C must also be the father of B. Our graph-based algorithm

constructs a fully connected graph in which faces are represented by vertices and

kinship relations between pairs of faces are represented as edges. Using a few

simple kinship rules (that are shown in Table 6.1), we can generate all valid kin-

ship graphs. For each new test image, the predicted kinship graph is the one that

obtains the highest score when we sum all scores of the pairwise classi�ers that

correspond to the edges. Because our graph-based algorithm shares information

between the pairwise classi�ers, ambiguities in the pairwise kinship classi�cations

may be resolved, which may lead to improved performance. The results of our

experiments demonstrate that the proposed algorithm can substantially improve

kinship recognition accuracy.

6.1.2 Previous work

Most prior studies on image-based kinship recognition aim to solve the kinship

veri�cation problem using computer vision and machine learning techniques [129,

131, 132, 133]. All these approaches extract facial features and train a kinship

veri�cation classi�er on a collection of annotated examples. In the seminal paper

on automatic kinship detection [129], facial resemblance is represented by the

di�erence between facial features. The extracted features include face colour,

the position and shape of face parts, as well as gradient histograms. Face parts

are localised using a pictorial structures model [134]. Classi�cation is performed

using a k-nearest neighbour classi�er. [129] presents experiments in which the

performance of an automatic kinship veri�cation system is compared with human

performance; the results show that the proposed algorithm performs 4.9% better

than human accuracy on this task. [132] improves over this method by dropping

the assumption that kinship examples have higher feature similarities than non-

kinship examples. They learn a distance metric that aims to repel non-kinship

samples as far as possible, whilst kinship samples are pulled close. The method of

1In this study, step relationships are not considered.

111



6. CASE STUDY: IMAGE FEATURES AND CLASSIFICATION MODELS

Learning Evaluation

Kinship 

Rules

Non-
kinship

Brother-
Brother

M
o

th
e

r-
S

o
n

F
a

th
e

r-
S

o
n

Father-
Son M

oth
er-

So
n

Graph #1

Brother-
Sister

M
o

th
e

r-
D

a
u

g
h

te
r

FACE #4FACE #3

FACE #2FACE #1

Non-
kinship

M
oth

er-

So
n

Graph #2

FACE #4FACE #3

FACE #2FACE #1

Father-

D
aughter

F
a

th
e

r-
S

o
n

Non-
Kinship

M
o

th
e

r-
D

a
u

g
h

te
r

M
oth

er-

D
augh

te
rF

a
th

e
r-

D
a

u
g

h
te

r

Father-

D
aughter

Sister-
Sister

Father-Daughter

Father-Son

Brother-Brother

Figure 6.1: Overview of the proposed kinship recognition system. In the learning
phase, a multi-class kinship classi�er is jointly trained on di�erent kinship relations.
In the evaluation phase, the faces in family photographs are detected, cropped,
and normalised. The set of all valid kinship graphs is generated according to the
constraints on kinship relations. For each resulting candidate graph, the classi�er
scores are summed to obtain an overall score. The kinship graph with the highest
overall score is selected as the prediction.

Figure 6.2: Normalised face pairs (from the Group-Face dataset) showing di�erent
kinship relations.

112



6.1 Graphical model for kinship recognition

[132] also combines di�erent types of feature descriptors by learning a multiview

distance metric.

In [131] and [135], Xia et al. propose to use transfer subspace learning meth-

ods for kinship veri�cation. They exploit the idea that the kinship veri�cation

between children and their parents is easier when the parents are young. The

method learns a subspace in which old parents and their children are projected

close together; the subspace model can then be used to make images of parents

look younger. Recently, Dibeklio§lu et al. have proposed a method that uses

facial expression dynamics combined with spatio-temporal appearance features

to verify kinship in videos [133]. This method is based on the observation that

the dynamics of facial expressions are informative for kinship recognition based

on videos of people.

In contrast to the aforementioned methods, [136] does not focus on kinship veri-

�cation but aims at recognising whether a group picture is a family picture. The

method estimates the gender and age of every face in the group picture. An

image graph is constructed by �tting a minimum spanning tree based on the face

locations. Subsequently, the image is represented as a bag of image subgraphs.

The resulting bag-of-image-subgraph features are then used to determine whether

the group picture is a family picture. The method, however, does not recognise

the types of kinship that are present within the family picture.

Our work has several di�erences in comparison to prior studies. First of all,

instead of verifying kin relationships, our study focusses on recognising the exact

type of kinship relations. Additionally, our study is the �rst attempt to generate

complete kinship graphs for family photographs.

6.1.3 Graphical model for kinship recognition

Here, we propose an automatic kinship recognition system that relies on graph-

based optimization of multi-class kinship classi�cation. This work does not con-

sider kinship veri�cation between face pairs but focusses on classifying the type of

kin relations. Assuming that kin pairs are known in a given group photograph (or

predicted by an existing kinship veri�cation system), our system predicts a kin-

ship graph that describes the kinship relations between the family members.

(A) Feature extraction
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Table 6.1: Kinship graph generation rules

De�nition Instance

• One child can at most have
one father and one mother.

(A-B:Father-Daughter/Son) ⇒ ¬ (C-B:Father-Daughter/Son)
(A-B:Mother-Daughter/Son) ⇒ ¬ (C-B:Mother-Daughter/Son)

• Siblings have the same par-
ents.

[(A-B:Father/Mother-Daughter/Son) ∧ (A-C:Father/Mother-Daughter/Son)]
⇒ (B-C:Sister/Brother-Sister/Brother)

• Siblings have the same sib-
lings.

[(A-B:Sister/Brother-Sister/Brother) ∧ (A-C:Sister/Brother-Sister/Brother)]
⇒ (B-C:Sister/Brother-Sister/Brother)

• There should not be kinship
between father and mother.

[(A-B:Father-Daughter/Son) ∧ (C-B:Mother-Daughter/Son)] ⇒
(A-C:Non-kinship)

For the reliability of similarity analysis, face images need to be aligned before

the feature extraction step. To this end, eye corners are located using the facial

landmarking method proposed in [137]. Based on the eye locations, faces are

aligned (in terms of roll rotation, translation, and scale) and cropped. The size of

the resulting images are 64×64 pixels. Figure 6.2 shows samples of the normalised

faces.

To describe the facial appearance, we use Local Binary Pattern (LBP) fea-

tures [138]. Following [133], LBP features are extracted from each cell in a 7× 5

grid that is imposed over the normalised face. In addition to LBP appearance

features, we also extract gender and age features from the face images.

In order to estimate a gender feature fgender(Ii) ∈ {−1,+1} for a given face image

Ii, we classify LBP and bio-inspired features (BIF) [139] using a binary support

vector machine (SVM) classi�er (with radial basis function kernel). Additionally,

we extract an age feature fage(Ii, Ij) ∈ {−1, 0,+1} that describes the relative age
of the given face images Ii and Ij:

fage(Ii, Ij) =


−1 : a(Ii) < a(Ij)

0 : a(Ii) ∼= a(Ij)
+1 : a(Ii) > a(Ij)

, (6.1)

where a denotes the true age of the given subject. For the estimation of fage,

we employ a three-class SVM classi�er using BIF features. To obtain the �nal

feature vector for a pair of face images (Ii, Ij), all features are concatenated:

xij = [fLBP(Ii), fLBP(Ij), fgender(Ii), fgender(Ij), fage(Ii, Ij)] .

(B) Pairwise kinship classi�cation
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We model the resulting feature vectors to be able to distinguish between dif-

ferent kinship types. Moreover, we aim to predict the direction of these rela-

tions. For instance, the estimation for the given images will be that Ii is the

father of son Ij (father→son), instead of just indicating that Ii and Ij have

father-son relation. To this end, we de�ne 12 types of directional kinship re-

lations such as father→daughter, father←daughter, father→son, father←son,

mother→daughter, mother←daughter, mother→son, mother←son, brother→sister,

brother←sister, brother-brother, and sister-sister. By using these kinship types,

more distant kinship relationships such as grandparents↔grandchildren, cousins,

and uncle/aunt-nephew/niece may also be inferred if the family picture also con-

tains the �intermediate� people.

We use a multi-class linear logistic regressor (LR) as the classi�er in our system.

For a pair of face images, the predicted label y∗ is thus given by:

y∗ = argmax
y

y>
(
W>x + b

)
, (6.2)

where y is a 1-of-K label vector. W and b denote the classi�er weights and

bias, respectively. To train the multi-class logistic regressor, we de�ne the class-

conditional probability:

p(y|x) =
exp(y>(W>x + b))∑
y′ exp(y′>(W>x + b))

. (6.3)

In our application, this probability represents the likelihood of the kinship type

given a pair of faces. We aim to minimize the penalized conditional log-likelihood

L:

L(W,b) = argmax
W

(∑
x

log p(y|x)− λ‖W‖2
2

)
. (6.4)

Herein, the second term is an L2-norm regulariser that is employed to prevent

over�tting. The value of the regularisation λ is set based on the error measured

on a small, held-out validation set.

(C) Kinship graphs

A straightforward way to recognise kinship relations in a family photograph is

to classify each pair of faces individually. However, this approach does not share

information between the pairwise classi�cations: if the classi�er doubts between
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two kinship types, individual classi�cation cannot exploit the other kinship rela-

tions in the photo to resolve this ambiguity. Individual classi�cation may even

produce infeasible kinship graphs. For example, it may predict that two people

are brothers whilst predicting that they have di�erent parents. The graph-based

algorithm we propose aims to resolve these two problems by: (1) generating all

feasible kinship graphs and (2) selecting the kinship graph that obtains the high-

est score.

A kinship graph can be de�ned as G = (V,E) in which faces correspond to

vertices and edges to kinship relations. In other words, each edge (i, j) ∈ E has an

associated label yij. Two examples of kinship graphs using three faces are shown

in Figure 6.3. Note that the graph shown in Figure 6.3(b) is actually infeasible

since it violates the constraints on kinship relations that are given in Table 6.1.

In the �rst step, all possible kinship graphs that satisfy these constraints are

generated. It is important to note that the candidate graphs can actually be

generated o�ine. The resulting set of candidate kinship graphs are denoted by

G . Afterwards, we assign a score to each of the candidate kinship graphs that

measures the (log)likelihood of that kinship graph for the observed family picture.

Speci�cally, we de�ne the kinship graph score as the sum of the kinship classi�er

scores that correspond to each of the edges in the graph:

s(G|I) =
∑

(i,j)∈E

y>ij
(
W>xij + b

)
, (6.5)

where I is the family photo, G = (V,E) is the kinship graph that we are scor-

ing, xij is the feature vector extracted from the pair of faces associated to edge

(i, j) ∈ E, and yij is the corresponding kinship label. We perform kinship graph

prediction for family photo I by maximising the graph score over the set of all

candidate kinship graphs:

G∗ = argmax
G∈G

s(G|I), (6.6)

where graph G∗ is the predicted kinship graph.

6.1.4 New datasets

To evaluate our approach, we gathered two new kinship recognition datasets: (A)

a dataset with image pairs of siblings and (B) a dataset with family photographs.
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FACE #1

Father-Son

Father-Son Brother-Brother

FACE #3

FACE #2

(b) A legal kinship graph(a)

FACE #1

Father-Son

Father-Son Father-Son

FACE #3

FACE #2

(a) An illegal kinship graph(b)

Figure 6.3: Samples of (a) feasible and (b) infeasible kinship graphs.

Figure 6.4: Sample images from the Group-Face dataset.

Both datasets (except some copyrighted images in the �rst dataset) are made

available to the research community. One can �nd the dataset at https://pan.

baidu.com/s/1nvPxQ8D (pincode: e8if). Both datasets are described separately

below.

(A) Sibling-Face dataset

Existing large-scale kinship datasets (such as the KFW-II dataset [132]) do not
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Table 6.2: Distribution of kin pairs (image pairs) in the KFW-II, Sibling-Face and
Group-Face datasets.

KFW-II Sibling-Face Group-Face

Father-Daughter 250 - 69
Father-Son 250 - 69
Mother-Daughter 250 - 70
Mother-Son 250 - 62
Brother-Brother - 232 40
Sister-Sister - 211 32
Brother-Sister - 277 53

include sibling pairs. The UvA-NEMO dataset [133, 140] contains sibling pairs,

but it has a small number of subjects. We have gathered a new dataset that

contains more than 200 image pairs for each of three possible sibling relations

(brother-brother, sister-sister, and brother-sister). All sibling images have been

collected from websites such as Flickr; the sibling relations have been determined

based on the tags or descriptions of the images. The sibling faces have been

processed in the same way as done for the images in the KFW-II dataset: they

are aligned according to the position of eyes, and resized to a �xed size of 64×64

pixels. In our experiments, the Sibling-Face dataset is combined with the KFW-II

dataset to train kinship classi�ers. The distribution of kin pairs in the KFW-II

and Sibling-Face datasets is given in Table 6.2.

(B) Group-Face dataset

We have also gathered a collection of group photographs from publicly available

sources such as Flickr. Speci�cally, we have selected group pictures in which

the people are all frontally facing the camera. Some samples from the collected

dataset are shown in Figure 6.4. The dataset consists of 106 group photographs, of

which 82 contain group(s) of family members. To facilitate labelling of the kinship

relations, we have selected photographs of famous families (royalty, presidents,

Hollywood stars, etc.) and photographs of regular families with reliable kin labels.

The Group-Face dataset contains father-daughter (FD), father-son (FS), mother-

daughter (MD), mother-son (MS), brother-brother (BB), sister-sister (SS) and

brother-sister (BS) pairs. Table 6.2 shows the number of image pairs in each

kinship class. All the faces in the dataset have been cropped and aligned in the

same way as the faces in the Sibling-Face dataset.
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6.1.5 Experimental Results

In our experiments, the KFW-II and Sibling-Face datasets are combined and used

for training. We employ the family photos in our Group-Face dataset as the test

set. It is assumed that we know which pairs of faces in the family pictures have

kinship and which pairs of faces do not, i.e., we assume that we have access to a

perfect kinship veri�cation algorithm and focus solely on recognising what type of

kinship exists between two people. In our experiments, the maximum number of

family members is limited to four because, in our current (naive) implementation,

the total number of candidate kinship graphs and the required amount of memory

drastically increases when more than four faces are used. Speci�cally, when a

family photo contains two parents and four children, we manually split the family

into two groups which both have parents and two children. In this way, we

obtained 98 kinship groups (16 groups with two faces, 40 groups with three faces,

and 42 groups with four faces) that we use in our kinship recognition experiments.

The test set we used in our experiments is made publicly available (as part of the

Group-Face dataset).

As a baseline approach, we individually perform pairwise classi�cation on each

edge of the kinship graph to determine the type of kinship. We set the regulari-

sation parameter λ (see Equation 6.4) of the kinship classi�er by cross-validating

over a small held-out validation set.

To test the reliability and e�cacy of the proposed graph-based kinship recogni-

tion, we perform two di�erent experiments. In the �rst experiment, kinship recog-

nition performances of the graph-based and pairwise approaches are compared.

In the second experiment, we investigate the e�ect of age/gender estimation ac-

curacy on the robustness of the graph-based and pairwise methods. To this end,

we systematically perturb the gender and age features which are extracted from

the test data. The details and results of these experiments are given below.

(A) Graph-based versus pairwise classi�cation

In this experiment, the correct classi�cation rates of the graph-based and pairwise

approaches are compared. As shown in Table 6.3, the graph-based method pro-

posed in our study outperforms the pairwise kinship classi�cation by 16.77% (ab-

solute) on average. This result demonstrates the e�cacy of the graph-based kin-

ship recognition. The highest performance of the graph-based method is achieved

for the sister-sister relationship with an accuracy of 76.92%.
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Table 6.3: Kinship recognition accuracy of the pairwise (baseline) and the graph-
based approaches.

Relationship Pairwise (%) Graph-based (%) # Test Pairs

Father-Daughter 66.15 67.69 65
Father-Son 51.72 65.52 58
Mother-Daughter 57.81 71.88 64
Mother-Son 48.15 72.22 54
Brother-Brother 43.33 63.33 30
Sister-Sister 34.62 76.92 26
Brother-Sister 44.00 68.00 25

All 52.48 69.25 322

For further exploration of the results, the confusion matrices for both methods are

given in Figure 6.5. The results suggest that, unlike the pairwise classi�cation, the

graph-based approach is able to recover from errors in the age/gender estimations.

For instance, the baseline approach often confuses the father-son relation with the

brother-brother relation, presumably due to errors in the relative age estimation1.

By contrast, the graph-based approach corrects most of such misclassi�cations

by incorporating other relations in the graph, and by ensuring that the predicted

kinship graph is feasible. This is con�rmed by the number of kinship graphs

which are correctly predicted (completely) on the Group-Face dataset. Whilst

the graph-based approach correctly predicts 56 of 98 kinship graphs, only 29

kinship graphs are correctly recognised by the baseline method.

(B) E�ect of age and gender estimation accuracy

The results presented in the previous subsection illustrate the potential merits of

our graph-based algorithm, which mainly stem from its ability to correct errors

in the age and gender estimations. We further investigate the e�ect of age and

gender estimation accuracy in our method. To this end, we randomly generate

labels for the relative age classes and gender by systematically changing the error

rate. Both the graph-based and pairwise methods are tested using these labels.

1The correct classi�cation rate of the gender classi�er, used in our experiments, is approx-
imately 90% based on 10-fold cross-validation. Combination of the KFW-II, Sibling-Face, and
UvA-NEMO datasets is used for the evaluation. 10-fold cross-validation accuracy of the relative
age estimator is approximately 65% on the combination of KFW-II and Sibling-Face datasets.
Higher error rate in age estimation is mostly due to small size (low resolution) of the face
images, which makes facial wrinkles nearly invisible.
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Figure 6.5: Confusion matrices for (a) the pairwise and (b) graph-based ap-
proaches.
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Figure 6.6: Kinship recognition accuracy (%) as a function of the error level
in age and gender estimation for (a) pairwise and (b) graphical model of kinship
recognition.

Figure 6.6 shows the kinship recognition accuracy as a function of the error level

in age and gender estimation. As shown in Figure 6.6, both methods achieve

100% classi�cation accuracy when the age and gender ground truths are used:

age and gender completely determine the type of kinship relation between two

people, if we assume that the given pair has kinship.

The results show that both pairwise and graph-based approaches perform worse

when the perturbation rate is increased for gender and age. However, our graph-

based method is more robust to gender and age estimation errors than to the

pairwise approach. In particular, the graph-based algorithm is less sensitive to
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incorrect age prediction. This is bene�cial because age estimation is a di�cult

task in real-life conditions, in particular, because age estimates are strongly in-

�uenced by changes in resolution, illumination, gender [141], and facial expres-

sion [142]. Our graph-based algorithm is more robust to the resulting errors in

the age estimates. As shown in Figure 6.6 (see top right side of the accuracy

maps), graph-based approach performs much better than the pairwise classi�er

in such conditions.

6.1.6 Section conclusions and future work

In this section, we have proposed a novel graph-based method to recognise kinship

relations in family photos. It partially answers RQ 6: To what extent is it possible

that the classi�cation models (or regression models) are able to validate the per-

formance of the image features to characterise the phenotypes in support of shape

analysis? Our approach models the kin relationships using a fully connected

graph in which faces are represented by vertices and edges represent kinship re-

lations. The overall score of each feasible kinship graph is computed by summing

classi�er scores over the edges of the graph. The graph with the highest overall

score is selected as the prediction. The results of our experiments demonstrate

that our graph-based outperforms the pairwise kinship classi�cation approach.

Moreover, the proposed method guarantees consistency of the predicted kinship

graphs.

We consider that RQ 6 is partially answered that the graphical model and a classi-

�cation model, i.e., the logistic regression, have cooperated to validate the perfor-

mance of the LBP features in the application of image based kinship recognition.

It turns out that the well-designed image features will be able to characterise the

subtle variation of the phenotypes such as shape and texture.

As a future direction, we aim to develop a graph-based method to train our kin-

ship classi�er as well by framing the task as a structured prediction problem.

Also, we aim to improve the speed of our current (naive) implementation by ex-

ploiting redundancies in the score computations (like in dynamic programming).

Moreover, we plan to include a kinship veri�cation step prior to the classi�cation

of relations. Finally, we will apply the method in the applications which use the

zebra�sh as model system.
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6.2 Image based taxonomy using CNN

Phenotypes including shape and texture represented in appearance are essential

in image based taxonomic classi�cation of biological specimens. This presents a

challenge to the choice of features to generalise these phenotypes. We are moti-

vated to investigate representative features for the task of image based taxonomy

using the convolutional neural networks (CNN). We �rst present three dataset

with a taxonomic structure, which include orchids, butter�ies as well as intro-

duce an open source for wood species (in fact, the kinship addressed in Section

6.1 is a special category of the taxonomic structure). We adapt a popular CNN

architecture, the VGGNet-16, to learn representative features for these tasks in

a supervised manner. We implement a multi-output layer of which each output

corresponds to a �at classi�er for each level in the taxonomy. In this manner, we

can introduce multi-supervision to the training time of the networks. This avoids

to learn individual classi�ers on each level or each node which is commonly used

in conventional hierarchical classi�cation. We use a �ne-tuning strategy to ac-

celerate and stabilise the training process. Experimental results show that the

proposed approach achieves better performance compared to the methods using

hand-crafted features and pre-trained networks. From our observation, represen-

tative features are of great importance to a well-performing recognition system

for taxonomy. Importantly, in our method the prediction for each level in the

taxonomy can be performed in one forward pass.

6.2.1 Image based taxonomy

A feasible and convenient manner for categorisation gives rise to digitization,

reuse and e�cient management for the large amount of the collection of cultural

heritage. Under these circumstances, taxonomic categories are commonly used,

which formally use a hierarchical ranking i.e., Kingdom, Phylum, Class, Order,

Family, Genus and Species to categorise and annotate the specimens [1, 143].

This manner also facilitates an e�cient top-to-bottom data retrieval. In practice,

a taxonomic recognition system will also facilitate many applications such as

recognition of endangered species [144].

Using imaging of specimens makes image based taxonomy possible. It aims to

learn a model to recognise each rank in the taxonomy for a specimen using images

which represent that specimen as a whole or microscopic structure. In practice,
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researchers in life-sciences make use of their expertise to identify the species of

a specimen [145]. However, some species, for example, the ones in the same

genus, present rather similar shapes; subsequently, their textures such as special

patterns on the specimen surface should be emphasised. Therefore, the image

based taxonomy requires comprehensive investigation of phenotypes including

shape and texture in the whole appearance of the specimen.

Image based taxonomy is, in fact, a typical hierarchical classi�cation problem

[146]. Each level in the hierarchy represents a rank in the taxonomy. In a task

of image based taxonomy, it is usually easy to recognise a higher rank due to the

remarkable dissimilarity of appearance for the specimens from di�erent classes;

and it is usually di�cult to recognise a lower rank due to the dramatic similar-

ity of appearance for the specimens of which the classes share the same parent

rank. Therefore, a proper choice of feature representation for phenotypes can

result in a well-performed taxonomic recognition system. For example, experts

can accurately recognise a wood species through a careful investigation on micro-

scopic features such as shape and size of vessels and �brous structure of tissues

[147].

In practice, we have multiple options of image features. For the last decades,

many local features have been increasingly used for image recognition, such as

Histograms of Oriented Gradients (HOG) [24], Local Binary Patterns (LBP) [138]

and Scale Invariant Feature Transform (SIFT) [109]. There are also many avail-

able shape features, such as shape context [148], the angular radial transform

[149] and projective invariant contexts [150]. Some of these features are generic

and suitable to the problem of image based taxonomy; some are well-designed

for a particular domain. With the fast development of deep convolutional neu-

ral networks (CNN) [25, 151, 152, 153], successful applications have been made

in many �elds like computer vision [64, 154, 155] and gaming [156]. The read-

out of a deep CNN architecture is, in fact, a feature engineering which learns

discriminative features from images in a supervised manner. This makes the

deep CNN architecture very �exible for learning representative features for cor-

responding applications. The current development has inspired us to apply the

CNN architecture in the image based taxonomy due to the diversity of taxonomic

categorisation as for each speci�c taxonomic category, di�erent features should

be emphasised.
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Here, we �rst present three taxonomic structured datasets with expert tags; Ja-

vanese butter�ies, slipper orchids and wood species. The �rst one is obtained

from a collection of Dutch National Natural History Museum (Naturalis Biodi-

versity Center http://www.naturalis.nl/) for the family of Papilionidae. The

second one is obtained from some public sources such as ImageNet [157] for the

family of Cypripedioideae. Both datasets are labelled by a two level taxonomy:

genus and species. The third dataset is a public source for microscope images

of wood species [158]. This dataset contains a more speci�c taxonomic struc-

ture from class to species. In this work, we only employ two level annotations

including class and species.

We are motivated to present a CNN architecture based on the VGGNet [151]

which is extended with a multi-output layer for the image based taxonomy. Each

output corresponds to a local classi�er for each level in the taxonomy. We train

the whole networks considering all the taxonomic annotations for each example

to be trained. This means that the multi-supervision jointly contributes to the

training phase. We use a �ne-tuning strategy for the training of the networks.

We �rst introduce a pre-trained model using a large dataset such as ImageNet

and then use our datasets to enhance the representability of the networks for our

application. This operation largely stabilises and accelerates the training of the

network.

In an hierarchical classi�cation, the proposed method can be categorised as a

local classi�cation per level approach, which is also referred to as top-down strat-

egy [159]. This method may introduce the problem of label inconsistency. For

instance, a testing example may be assigned labels that not refer to a reasonable

parent-child routine. This procedure can be improved by post processing. An-

other possible solution is to use the �at classi�cation approach. Such an approach

only trains a classi�er for the bottom level and a bottom-top strategy can be used

to back-propagate the labels on higher level according the deterministic property

of the parent-child mode [160]. Other attempts concern global classi�cation mod-

els [161, 162, 163, 164]. We should note that all these methods mainly focus on

a classi�cation model to generalise the hierarchical classi�cation problem. The

method can be considered to improve the output layer in our application of image

based taxonomy. Here, we would like to focus on the contribution of features in

our particular problem. Therefore, we �rst use a simple classi�cation strategy

e.g., softmax [33], as a local classi�er for each level to validate the performance

of our representative features.
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Actually, the hierarchical classi�cation problem can be considered as a special

case of multi-label classi�cation [165]. Many deep CNN architectures have been

reported to solve this problem [166, 167, 168]. Recently, a hierarchical deep

CNN (HD-CNN) architecture has been reported, which presented a coarse-to-�ne

strategy for a large scale of visual recognition [169]. This enables the so-called

local classi�er per node approach with a CNN architecture. Here, we stress the

importance of features in our image based taxonomy of biological specimens. So,

we propose to extend the CNN architecture with a multi-output layer, of which

each output corresponds to a level in the taxonomy. This will provide a good

understanding of the performance of the features for each level. In future work,

we can consider to introduce a dedicated architecture such as the HD-CNN in

our problem.

6.2.2 Image based taxonomy using CNN architecture

We �rst present (A) the datasets used in this work, and (B) elaborate in details

the CNN architecture we have adapted.

(A) Datasets

Below we brie�y discuss the datasets, i.e., Butter�ies, Orchids and Woods.

The dataset of Butter�ies are obtained from a large collection for the family of

Papilionidae, a category of Javanese butter�ies caught in the 1930s. With the

development of digitalisation of cultural heritage, images have been made for

these specimens. Some examples can be seen in Fig. 6.7 (A). In the images,

the specimens are well-positioned on their pro�le-view and most of the features

such as the texture and patterns on their wings are clearly presented. In this

manner, we avoid the e�ects of shape misalignment and scaling. This dataset is

structured in a two taxonomic categories, i.e., genus and species. Until now, the

dataset consists of 1829 images which are from 18 genera and 45 species.

The dataset of Orchids are obtained for the family of Cypripedioidea. The orchid

experts annotated 1117 images with 5 genera and 116 species [170]. Examples

can be seen in Fig. 6.7 (B). One should note that the datasets of Butter�ies and

Orchids have the problem of data imbalance. Some classes only contains a small

number of examples and some others contain much more. This will present a

challenge to a classi�cation model which may result in over�tting for the classes

with a large number of examples.
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Genus:   Appias
Species: Leptis

Genus:   Graphium
Species: Adonarensis

Genus:   Appias
Species: Nero

Genus:   Graphium
Species: Agamemnon

(A) Examples of Butterflies

Genus:   Cypripedium
Species: Franchetii

Genus:   Cypripedium
Species: Reginae

Genus:   Paphiopedilum
Species: Acmodontum

Genus:   Paphiopedilum
Species: Appletoniaum

(B) Examples of Orchids

Class:     Angiosperms
Species: Brosmum alicastrum

Class:     Angiosperms
Species: Cabralea canjerana

Class:     Gymnosperms
Species: Abies vejari

Class:     Gymnosperms
Species: Agathis becarii

(C) Examples of Woods

Figure 6.7: Examples of the images from dataset (A) Butter�ies (B) Orchids
and (C) Woods. For each dataset, we select four examples from four species,
two of which are from the same genus (class). One can observe that, the
phenotypes, such as the colour and patterns on butter�y's wings, the shape
and the texture of orchid's pedals, the shape and structure of wood's vessel
and tissue, show signi�cant similarity from the species which share the same
genus (class).

Input layer Convolution layer Maxpooling layer Fully-connected layer

Output layer

Genus: Acraea

Species: Adamas

Figure 6.8: The CNN architecture with a multi-output layer. Only one �lter
is shown for the convolution and pooling layers.
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The dataset of Woods was originally presented in [158]. It contains 2240 wood

images from 2 classes and 112 species. This dataset has an even distribution

as each species contains 20 examples. The images from stained wood slices are

acquired using a microscope (Olympus Cx40) with a 100x objective. The size of

the acquired RGB images is 1024x768. Examples of the images can be found in

Fig. 6.7 (C).

From the datasets, we can see a remarkable diversity of the task to design the

image based taxonomy. It is di�cult to design a type of generalised feature for

this application with diverse objectives. For example, the HOG features works

�ne in the butter�ies and orchids but totally fails in the woods. This requires a

generalised framework for feature engineering to obtain more discriminative and

representative features for each task. We can also observe that the datasets of

Butter�ies and Woods are produced in speci�c imaging conditions. The acquired

images are all standard, for example, the orientation and position of the specimen

represented in the images is stable. The dataset of Orchids is more challenging

because the examples are collected in a natural setting.

(B) VGGNet with a multi-output layer

A standard CNN architecture consists of one input layer, a set of convolution

layers, several pooling layers, one or two fully-connected layers and one or multiple

outputs layer. In Fig. 6.8, we show a schematic representation of the CNN

architecture with a multi-output layer.

The input layer is also referred to as data layer which converts the input image

into the format a CNN architecture requires. The convolution layer generates a

set of feature maps through convolving the previous feature maps using di�erent

�lters. The weights of a �lter are shared by the whole convolution which produces

one feature map. This means each element in a feature map corresponds to

a receptive �eld from the original image. One should note that a non-linear

operation of recti�cation such as ReLU [25] is performed after each convolution

layer. The pooling layer aims to subsample a feature map, to an extent holding

good spatial property in the feature representation. Similar to the conventional

multi-layer perceptron [171], the fully-connected layer connects all the elements in

previous layer to each of the neurons in the fully-connected layer. This operation

converts the feature map into a one-dimensional feature vector. The output layer

can be a fully-connected layer which can be followed by a loss in training time.

The supervision of the network training is implemented in this process. In this
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supervised manner, the parameters in a CNN architecture can be obtained using a

standard algorithm such as gradient back-propagation. As a result, a well-trained

CNN architecture can largely �t the training data and the extracted feature maps

can be discriminative and representative to our task, i.e., image based taxonomic

recognition.

We have adapted the VGGNet-16 in our CNN architecture. In order to produce

taxonomic categories, we adapted the last layer of VGGNet-16, i.e., the out-

put layer, with a multi-output layer. Each output corresponds to a level in the

taxonomy. The networks consists of 14 convolutional layers, 5 pooling layers, 2

fully-connected layers and 1 multi-output layer. More concrete, the con�guration

is depicted as follows: Input image (224×224×3)→ 2 (3×3) convolution layers

(64 feature maps)→ maxpooling layer→ 2 (3×3) convolution layers (128 feature

maps) → maxpooling layer → 3 (3× 3) convolution layers (256 feature maps) →
maxpooling layer→ 3 (3× 3) convolution layers (512 feature maps)→ maxpool-

ing layer → 3 (3× 3) convolution layers (512 feature maps) → maxpooling layer

→ fully-connected layer (4096) → fully-connected layer (4096) → multi-output

layer (softmax).

We use the library of Ca�e [172] in our implementation. Both for the training

and testing, we re-scale all the images into a size of 256× 256 pixels. At training

time, we use a pre-trained model to initialise the weight layers including all the

convolution layers and the 2 fully-connected layers. For the last fully-connected

layer, i.e., the multi-output layer, we initialise the weights using a Gaussian dis-

tribution with the mean as 0 and the standard deviation as 0.01. We use the

statistical gradient descent strategy to train the networks and we set the batch

size as 64. We set the total iterations as 2000 and the learning rate as 5× 10−3.

We decay the learning rate as half of the original value after 1000 iterations. We

train and test our model using two NVIDIA TITAN X GPUs.

6.2.3 Experiments

In this subsection, we apply our CNN architecture on the datasets to evaluate

the its performance in the task of image based taxonomy. (A) We compare

the performance by di�erent methods. (B) We discuss the classi�cation results

using confusion matrix and visualise the representative features from our CNN

architecture using the t-SNE map [173].
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(A) Performance evaluation with di�erent features

In this experiment, we perform cross validation on the datasets using di�erent

methods. Due to the data imbalance in the datasets of Butter�ies and Orchids,

we leave out the classes with less than 3 examples and �nally we use 3-fold

cross validation. For the dataset of Woods, we use 5-fold cross validation. We

randomize the partition of the folds and repeat the whole process for 5 times to

obtain a statistical representation for the accuracy. In Table 6.4, we separately

report the accuracy for the two levels in the taxonomy of the datasets. In each

row of Table 6.4, the upper value corresponds to the accuracy for the prediction

of genus (class), and the lower value represents the accuracy for the prediction of

species.

A1. Con�guration We use two popular features, the rotation-invariant uniform

LBP and HOG, as comparisons in this experiment. In order to obtain the identical

feature dimensions in each dataset, we rescale the images from Butter�ies and

Orchids to 256 × 256 pixels; and we keep the original image size for the Woods,

i.e., 1024× 768.

For the LBP, we con�gure the sampling radius and the number of sampling points

as (2,8) for the Butter�ies and Orchids ; (3,24) for the dataset of Woods due to

its large image size. The former results in a 59-dimensional feature vector; the

latter produces a 555-dimensional feature vector.

For the HOG, we con�gure the cell size and block size as (32,4) for the Butter�ies

and Orchids ; (8,2) for the Woods to capture its microscopic structure. Due to the

high-dimensional of the obtained HOG features, we apply principal component

analysis (PCA) for feature dimensionality reduction. We keep 99% components

of the decomposed principal components, which dramatically reduce the obtained

feature size.

For the classi�cation model, we use the polynomial kernel SVM. We set the

regularisation term as 10 to prevent over�tting of the model.

We also use a shallow CNN architecture i.e., the AlexNet [25] for comparison.

In Table 6.4, a CNN architecture without an indication of ∗ denotes that we use
a pre-trained network based on a large image datasets which does not include

our datasets to extract features. We consequently use the polynomial SVM for

classi�cation. The notation ∗ means that we use the strategy presented in this
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Table 6.4: Accuracy (%) of di�erent methods on taxonomic datasets

LBP HOG AlexNet AlexNet∗ VGGNet VGGNet∗

Butter�ies
91.6±0.3 96.9±0.3 97.8±0.1 99.5±0.1 98.2±0.2 99.6±0.1
82.2±0.2 93.5±0.2 95.1±0.2 98.7±0.1 95.5±0.2 98.9±0.2

Orchids
86.0±0.4 88.4±0.5 91.6±0.2 98.4±0.2 92.4±0.2 98.8±0.2
9.4±0.5 41.8±0.7 51.1±1.0 82.7±0.7 50.8±0.4 86.1±0.5

Woods
97.2±0.2 75.7 ±0.4 99.2±0.2 100 ±0.0 99.8±0.02 100±0.0
88.4±0.4 30.1±0.5 85.9±0.4 95.6±0.4 90.7±0.2 95.6±0.3

chapter. Namely, we use our datasets to �ne-tune the pre-trained network and

extend the network with a multi-output layer for prediction.

A2.Results First, from the results, we can see that the taxonomic recognition on

a higher rank is relatively more easy than that of a lower rank. This is re�ected

by a much higher classi�cation accuracy on the level of genus(class) than that on

the level of species for all the datasets, using di�erent methods.

Second, if we focus on the well-designed features in the �rst two columns, we can

observe that the LBP can obtain higher recognition accuracy for the Woods and

the HOG can obtain higher recognition accuracy for the Butter�ies on both levels.

The LBP is advantageous in capturing textural structures and the HOG is capable

of holding the whole appearance in an image. Accordingly, the characteristics of

the woods are represented as important patterns on the shape and structure of

the vessels and tissues; the characteristics of the butter�ies are represented in

larger scale patterns on butter�y's wings. Those can be separately stressed by

the LBP and HOG. For the Orchids, the LBP and HOG features obtain similar

results on level 1, both of which, however, failed in the species recognition. This

is caused by the diverse patterns for the orchids. One should integrate colour,

texture, shape as well imaging conditions to characterise orchid's patterns. It is

di�cult for the LBP and HOG to generalise all these characteristics.

Third, we can �nd that a simple and pre-trained CNN architecture like AlexNet

can obtain better performance on the three datasets than the well-designed fea-

tures, but it fails to compete with the LBP features on the species recognition of

the Woods. This is because the pre-trained CNN architectures do not have su�-

cient training images similar to theWoods. This leads the CNN cannot su�ciently

generalise the microscopic tissular patterns.
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Fourth, after a �ne-tuning, both of the shallow and deeper CNN architectures can

obtain very accurate recognition on the three datasets. This again illustrates the

power of the CNN architecture on representative feature learning for image based

taxonomy. In addition, although a small di�erent performance can be found for

the two CNN architectures on Butter�ies and Woods, a large improvement is

made by the VGGNet for the species classi�cation on the Orchids. From the

observation, we may conclude that for a relatively simple image base taxonomy

which introduces less variant conditions can be solved by a simple CNN archi-

tecture such as AlexNet, while the complication of a task, e.g., the taxonomic

recognition for the Orchids, requires a deeper CNN architecture.

(B) Results visualisation

In this experiment, we further explore the results obtained by the proposed

method with the manners of confusion matrix and feature visualisation.

B1. Confusion matrix In Fig. 6.9 (a1) to (a3), we present the confusion

matrix for the genus recognition of each dataset obtained from the proposed

method, i.e., the VGGNet with a multi-output layer.

In each confusion matrix of Fig 6.9, we use orange lines to indicate the grouping of

the species. The species separated by the lines are from the same genus (class).

We have left out the species with less than 3 examples and the corresponding

result is shown as zero on the diagonal in the confusion matrix. Due to the

limited space, we show the names of some selected species.

First, one can observe in the confusion matrices that the recognition accuracy

for the three datasets is high which corresponds to the result shown in Table 6.4.

Although data imbalance is occurring in the datasets of Butter�ies and Orchids,

it is hardly to see serious over�tting for the species with more examples. This

can be re�ected by the high recall and precision for all the species.

Second, we can �nd an important phenomenon that the classi�cation errors of the

species are mainly distributed within the same genus. One can see the squares

associated with the diagonals in Fig. 6.9 (a2) and (a3) for this message. Accord-

ing to this observation, we can conclude that, in the image based taxonomy for

biological specimens, it is more di�cult to recognise the species which share the

same genus. The prediction on a higher level, e.g. genus and class, probably does

not help to improve the recognition accuracy on the level of species.
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B2. Feature visualisation In Fig. 6.9 (b1) to (b3), we produce the so-called

t-SNE map [173] for the visualisation of the representative features obtained in

our method. From this visualisation, we can clearly see the separation among

di�erent species in each dataset according to the representative features. This

is shown as the separated clusters. A relatively sparse t-SNE map is obtained

for the Orchids and Woods due to their large number of species. Another reason

resulting in the sparse t-SNE map is that the learned representative features in

the same species are very similar for di�erent specimens. This produces rather

dense overlap among specimens from the same genus (class). In fact, in each

clustering center a dense overlapped with the features extracted from di�erent

specimens. Yet, obvious clustering centers can be found for each species in these

two datasets.

6.2.4 Section conclusions and future work

For the task of image based taxonomy, we have presented a CNN architecture

which extends the conventional VGGNet with a multi-output layer. This makes

the prediction on each level in the taxonomy possible. We have proposed to

apply the �ne-tuning strategy to accelerate and stabilise the training of the net-

works. We also present two taxonomic structured datasets of biological speci-

mens. Compared to the well-designed image features, i.e., LBP and HOG, the

proposed method can obtain discriminative and representative features for each

task, yielding much better taxonomic recognition accuracy.

This section answers RQ 6: To what extent is it possible that the classi�cation

models (or regression models) are able to validate the performance of the image

features to characterise the phenotypes in support of shape analysis? It conveys

us the message that the CNN architecture is very helpful to characterise the

phenotypes including shape and texture from macroscopic to microscopic imaging

scale. Importantly, we �nd that a good estimation on a higher level in a taxonomy

probably is not helpful to improve the recognition accuracy on the level of species.

In order to further explore this, we can apply a structured prediction model

such as the popular CNN+RNN architecture [174]. Regarding the application

of phenotype characterisation using microscopy, we need to solve the problem of

limited availability of annotated training data. In this context, semi-supervised

or weakly supervised learning algorithms should be taken into account. Moreover,

an increasing size of the dataset will also help.
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(a1) (b1)

(a2) (b2)

(a3) (b3)

Figure 6.9: (a1)-(a3) Confusion matrix and (b1)-(b3) t-SNE map of Butter�ies,
Orchids and Woods obtained from the proposed method.
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In this thesis we have developed an architecture for multi-modal high-throughput

axial-view imaging (MM-HTAI) including six new computational approaches for

shape analysis in support of phenotype characterisation in life-sciences research.

The shape analysis is conditioned by good 2D and 3D shape descriptions. The

3D shape description are further interpreted as 3D measurements represented as

volume and surface area. Speci�cally, the 3D measurements are derived from our

3D modelling approaches and can serve as an assessment for size and shape in a

biological model system, e.g., zebra�sh. The proposed approaches are developed

for high-throughput (HT) applications such as HT compound screening which

requires massive and reproducible evaluations. In addition, we have developed a

pipeline which incorporates well-designed image features and a graphical model

to predict the kinship. This represents a particular example of taxonomy applied

to a group of faces. We have extended our analysis with a CNN architecture

for accurate taxonomy prediction in di�erent datasets. These provide an insight

into the behaviour of our system that can be transferred to shape analysis using

popular model systems such as zebra�sh. In this chapter, we summarise our

answers to the six research questions (RQs) (Section 7.1). In the after we address

the problem statement (PS) (Section 7.2). Next we discuss limitations of our

current methods and subsequently propose possible solutions to address these

new challenges (Section 7.3). Finally, we formulate recommendations for future

research (Section 7.4).

7.1 Answers to the six research questions

In Chapter 2, we answered RQ 2: To what extent is it possible to obtain an ac-

curate 2D shape description for the zebra�sh from the MM-HTAI architecture?

We stressed that an accurate 2D shape description for a zebra�sh larva is of im-

portance for both shape and phenotype analysis as well as for the subsequent 3D

reconstruction method. A good 2D shape representation should clearly present

the object as a whole. In this manner, we can accurately evaluate the shape vari-

ations of the object and identify anomalies. However, in the case of the zebra�sh,

the transparent part of an object especially challenges almost all the current seg-

mentation methods. So, in this chapter, we focussed on the development of an

e�cient and robust hybrid method for zebra�sh segmentation. With the devel-

oped method we are able to obtain a whole shape representation for the zebra�sh

from bright-�eld microscopy. Instead of investigating very complex systems, we
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combined the merits of the unsupervised learning method i.e., mean shift and

the edge based level set method. The mean shift algorithm is able to obtain an

approximation for the whole shape of the zebra�sh whereas the edge based level

set method are able to retain the clear contour. The 2D shape approximation

obtained by the mean shift algorithm also provides the level set method with a

good initialization thereby accelerating the convergence for curve evolution. The

implementation of this idea made our method suitable in bright �eld microscopy

in HTI. Furthermore, we developed a process to split, align and stitch the two

segmentation candidates. In addition, we also developed an e�cient re�nement

on the hybrid result and obtained better 2D shape representations suitable for

axial-view zebra�sh imaging.

In Chapter 3, we answered RQ 1: To what extent is it possible to develop an

MM-HTAI architecture for the zebra�sh larvae? and RQ 3: To what extent is it

possible to obtain precise 3D shape description and derive accurate 3D measure-

ments that are statistically relevant for the zebra�sh from the MM-HTAI architec-

ture? Taking the 3D nature of the shape for an organism, the 3D shape analysis

using 3D measurements of volume and surface area can obtain a more robust

and stable assessment. This is only available with the help of a good 3D shape

representation. The conventional 3D imaging modalities can obtain 3D images,

while the low imaging e�ciency of and complicated post processing should be ad-

dressed. So, we have implemented the MM-HTAI architecture based on the VAST

BioImager and light microscopy to acquire axial-view images for the zebra�sh.

Next we have developed the shape-based 3D reconstruction method using a few

amounts of axial-view images. This method is inspired by the multi-view stereo,

and as such the 3D reconstruction was e�ciently implemented. To guarantee a

good shape-based 3D reconstruction, we have presented the voxel residual volume

maximisation algorithm for camera calibration. From the 3D modelling, we have

obtained the 3D measurements for the zebra�sh larvae in three larval stages and

reported the 3D measurements as statistical representations. The �rst merit of

this work is providing an accurate shape reference to normalise the assessment in

phenotype analysis. In addition, the statistical representations for the 3D mea-

surements enables rapid shape screening for applications using zebra�sh larvae.

The other merit in this work is that we have obtained natural 3D visualisations

for the zebra�sh larvae which can be used as a shape basis for an integrated

zebra�sh atlas [175].
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In Chapter 4, we answered RQ 4: How can we e�ciently deal with the translu-

cency and transparency of specimen in light microscopy and still obtain a good 3D

shape description from the MM-HTAI architecture? We addressed the challenge

that the shape-based 3D reconstruction method requires accurate 2D shapes for

the zebra�sh. However, in some cases, the boundaries for the specimen are not

well-de�ned, which prevents the production of an accurate 2D shape representa-

tion. In Chapter 2, we have developed a new approach for accurate segmentation

of zebra�sh, though, this is not always feasible in all applications. In addition

to our earlier work, we therefore have developed a two-phase method to address

the problem. We �rst developed an improved volumetric representation as a

con�dence map which takes a con�dence score for each voxel in 3D space. The

con�dence map is estimated from the textures of the original axial-view images.

Next we have applied the region based level set method to explore the optimal 3D

shape description over the con�dence map. In comparison with the 3D measure-

ments obtained from the shape-based 3D reconstruction which can be regarded

as approximations of groundtruth, we have found that the proposed two-phase

method can produce su�ciently accurate 3D measurements. We also have shown

the feasibility of the method in high-resolution imaging settings.

In Chapter 5, we answered RQ 5: How can we obtain a multi-modal 3D descrip-

tion and the corresponding measurements for the zebra�sh from the MM-HTAI

architecture? We indicated that an accurate 3D shape description for organ de-

velopment provides important measurements for toxicology. For example, quan-

titative endpoints like organ size or growth retardation are very much desired for

a good assessment. As a result, we have developed a multi-modal 3D reconstruc-

tion for the zebra�sh larvae combining whole-mount bright-�eld with organ scale

modelling. With the help of our MM-HTAI architecture described in Chapter 3,

we acquired the bright-�eld images representing the whole zebra�sh and the �uo-

rescent images representing the organs under study (e.g. liver). We have adapted

our previous shape-based 3D reconstruction method to obtain the multi-modal

3D reconstruction and developed an alignment to fuse the 3D multi-models. We

have reported the 3D measurements for the zebra�sh and its liver and found a

trend that a larger organism tend to have a larger liver.

In Chapter 6, we answered RQ 6: To what extent is it possible that the clas-

si�cation models (or regression models) are able to validate the performance of

the image features to characterise the phenotypes in support of shape analysis?

We have demonstrated that if we use higher magni�cations and resolution in our
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imaging e.g., tissue or cellular scale, the textures in images can convey informa-

tive features for shape analysis. Therefore, we made a pipeline which integrates

various types of image features and classi�cation models to validate feasibility of

the image features in our application. In Subsection 6.1, we used local binary

patterns (LBP) on human faces as present in images. From the extracted fea-

tures, we trained a multi-class logistic regressor for kinship recognition according

to the facial appearance similarity. A set of semantic kinship graphs were learned

o�ine and applied at testing time to estimate the kinship in a group of people. In

Subsection 6.2, we have proposed a CNN architecture which is suitable for tax-

onomy prediction for di�erent datasets including butter�ies, orchids and wood

species. In order to accelerate the training process, we have presented a �ne-tune

strategy using the CNN models trained on a large scale of images. The results

show the accuracy of the proposed methods compared to the baseline methods.

This provides a good understanding for the performance of our methods in a large

scale of texture based classi�cation problems.

7.2 Answers to the general problem statement

From the answers to the six RQs, we will address the PS.

PS: To what extent can we develop a stable HTI architecture and

produce a robust and accurate shape analysis for phenotype character-

ization from the HTI architecture?

A feasible HTI architecture is necessary to ensure an e�cient and su�cient sam-

pling size for model system. However, in life-sciences, e�cient acquisition of

images is limited by the complicated manipulation of a small specimen like ze-

bra�sh larvae. The zebra�sh are always positioned along their longitudinal axis;

multiple axial-views are commonly used to depict the zebra�sh larvae. The VAST

BioImager has been developed for the purpose that one can easily manipulate a

zebra�sh larva in any arbitrary axial-view. This leads the HTI architecture to

the HTAI architecture. In practice, the VAST BioImager can be mounted on

various types of microscopes, such as bright-�eld, �uorescence and confocal, so

we can use the VAST BioImager to manipulate the zebra�sh and have the micro-

scope produce the images. If we employ di�erent types of microscopes, the HTAI

architecture is translated into the MM-HTAI architecture. This architecture is

able to obtain multi-modal images for a specimen presented to the observer in
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an e�cient manner. Of course, proper adaptions for the imaging software are

required. Therefore, we have handled the problem of the development of a sta-

ble HTI architecture by constraining the imaging in axial-view. In addition, the

employment of multi-modal microscopy extends the architecture to the MM-HTAI

architecture.

Actually, a complete shape analysis requires delicate shape features, such as shape

context [148], statistical shape models [60] and other features including convexity,

compactness, curvature, moments etc. [176]. All the shape features should be

investigated from the geometrical primitives of a shape. As a result, the prereq-

uisite for shape analysis lies in available and accurate 2D/3D shape description.

With the help of the MM-HTAI, we have su�cient data for unbiased shape anal-

ysis. However, existing methods fail to generalise the shape description for the

zebra�sh. So, we have developed the six new approaches towards a reliable shape

analysis both in 2D and 3D: (1) the hybrid segmentation method for zebra�sh

segmentation, (2) the shape-based 3D reconstruction method, (3) the two-phase

3D reconstruction method in light microscopy, (4) the multi-modal 3D recon-

struction, (5) the graphical model for kinship recognition, and (6) the adapted

CNN architecture for image based taxonomy.

Now the question is: How can we validate the robustness and accuracy of the

obtained shape descriptions? We have designed three strategies to answer this

question. In Chapter 2, the �rst strategy is the employment of the groundtruth

shape description as manually annotated contours in 2D. We have found that

the shape description obtained by our method matches well with its groundtruth

counterpart. In Chapter 3, the second strategy is to compute the scalar primitives

for a shape including volume and surface area in 3D. We have introduced a known-

size calibration particle and our method have yielded very accurate diameter,

volume and surface area for these particles. This knowledge can be transferred to

validate the 3D shape description of the zebra�sh. In Chapter 6, the last strategy

is developed to validate the performance of visual features through classi�cation

models. This resembles the behaviours of the visual features for the phenotype

characterisation. Therefore, we have handled the problem of robust and accurate

shape analysis for phenotype characterisation by the production of robust and

accurate shape descriptions and 3D measurements. The research community could

use our results for further shape analysis as required in their �elds.
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7.3 Limitations and possible solutions

We believe that the methods proposed in this thesis will be able to handle the

six RQs and address PS. However, we have to concern the limitations of our

approaches.

(1) From the hybrid segmentation method, we can obtain very accurate zebra�sh

segmentation results in bright-�eld imaging and we have measured such with

segmentation accuracy and F1 score. We have to realise that in our application,

there is always only one subject which is oriented in its longitudinal direction.

It is also important for our method that the imaging condition should be well

controlled such that the zebra�sh in the images is depicted as a whole. This

is an example which is di�cult to be generalised by conventional methods. In

this context, we can consider our method as a dedicated exploration for the

conventional methods. However, we have not yet validated the performance of

our approach under more challenged circumstance, such as the images (A) with

serious lighting variation and (B) with multiple objects which are positioned

in di�erent orientations. To address these new challenges, we may incorporate

orientation detection and multi-initialisation to our current method.

(2) We have indicated that the shape-based 3D reconstruction approach depends

on good 2D shape representations. The visibility of a point on the zebra�sh sur-

face to an image plane e.g. pro�le-view is ambiguous. This will complicate the

segmentation and subsequently result in an inaccurate 3D shape. We should note

that in the case of zebra�sh, for some axial-views, e.g., ventral and dorsal, the

2D shapes are more observable. In our shape-based 3D reconstruction method,

we have to investigate a proper threshold for the visibility of each 3D point to

estimate the optimal 3D surface. (A) The �rst limitation of the method lies in a

trivial investigation for a proper threshold. Furthermore, the camera calibration

model is somewhat sensitive to initialisation. From our imaging architecture, we

can obtain good estimations for the intrinsic con�gurations including focal length,

CCD sensor size and pixel size from the camera of the camera speci�cation. We

can also provide an approximate estimation for the extrinsic con�gurations i.e.,

the camera poses according to the pinhole camera projection model. Indeed, the

operations have su�ciently improved our camera calibration which has been suc-

cessfully applied to our setup. (B) We have admit that if a good initial estimation

for the camera parameters is unavailable, especially for the camera pose, we can-

not any more guarantee a good performance of the method. In our applications,
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the shape of our organism system is longitudinal and holds a convex surface. Our

method can obtain an accurate convex-hull for an organism. (C) However, we

have to realise that the method cannot deal with estimations for concave parts on

the object surface. Although most of the biological models own a convex surface,

we should consider to address this challenge in our method.

(3) In addition to our previous shape-based 3D reconstruction method, the im-

proved two-phase method is less dependent on 2D shape representation. We

should realise that this approach needs a 2D shape approximation for a su�-

cient texture sampling for the object and background in the original axial-view

zebra�sh images. This can, however, easily be addressed by the mean shift algo-

rithm in our application. (A) We still need to test our method in diverse model

systems which probably are di�cult to handle with the mean shift algorithm.

Another important issue is to investigate a proper c-level set for the optimal 3D

surface estimation. We know that the sampling size of our dataset is su�ciently

large i.e., 60 subjects using our imaging condition. We can use this dataset for

a good estimation of the optimal c-level set. When a various lighting condition

is employed, the colour distribution will be quite di�erent. (B) It will be dif-

�cult to generalise the texture distribution using our current dataset. To solve

this problem, we have to sample more subjects in more complex imaging condi-

tion to enlarge our dataset, so that we may obtain a more generalise estimation.

In Chapter 4, we have evaluated the method on our dataset and a supplement

dataset produced from the microscope. Both evaluations show accurate 3D mea-

surements in comparison with the baseline method. (C) However, we have not

validated the method for other model organisms, i.e., daphnia, etc..

(4) In principle, the confocal laser scanning microscope (CLSM) is widely used to

acquire 3D images in plan-parallel slices. However, with standard equipment, this

imaging method is very time-consuming and the image quality is subjected to the

strength of the �uorescent markers. Our multi-modal 3D reconstruction method

takes the shape-based 3D reconstruction as the basis and produces natural 3D

modelling on the scale of organs using a regular �uorescence microscope. The

developed method is e�cient, which is, however, to a certain extent hampered

by the quality of the �uorescent images. Some axial-view images for the organ,

zebra�sh liver in this work, fail to depict a whole shape. This is caused by by the

self-occlusion (the thick yolk occludes the liver from the view of dorsal). As stated

in previous section, we have to investigate a proper threshold for the estimation

of the optimal 3D surface in our method.
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(5) We have proved the feasibility of the features and graphical models in our

current taxonomical datasets on detailed texture scale. (A) We, however, realise

that for each dataset the amount of examples was still limited. On the one hand,

we need more data to ensure a more general and robust �tting model; on the

other hand, we probably need to consider a weakly supervised strategy to obtain

a good model from a small number annotated instances. This is signi�cant in life-

science research in which collecting carefully labelled dataset is very expensive and

sometimes cumbersome. (B) In addition, further application of the approaches

will require an evaluation of the experimental settings of our method with respect

to zebra�sh imaging which is, at the moment, not available yet.

7.4 Future research

Based on the discussion of our current work, we provide six recommendations for

future research.

We have separately developed several new approaches for corresponding tasks i.e.,

2D shape representation acquisition, 3D shape reconstruction, multi-modal 3D

reconstruction on multiple scales. Our �rst recommendation is to integrate all the

individual modules into one framework (software) in support of shape and pheno-

type analysis. The framework should be able to communicate with the imaging

architecture. In fact, the user only needs to prepare specimens and load the spec-

imens in the imaging device. The whole system will capture axial-view images,

pre-process the acquired images, obtain 2D shape for the subject, optimise the

camera con�guration and generate 3D shape representation for the whole-mount

and organ scale of the zebra�sh larvae. In the end, accurate 3D measurements of

volume and surface area are done for each 3D modelling task.

In our current platform, the imaging process for the zebra�sh larvae is accom-

plished in a sequential fashion. Once the imaging is done, the 3D reconstruction

can be performed o�ine. Our second recommendation is to accelerate the whole

pipeline by parallelisation. A straightforward manner is to accelerate the compu-

tation by distributing the computations for each subject to di�erent CPU cores.

Importantly, the most computationally expensive process is to keep track of the

projection for each voxel in 3D space to each of the axial-view images. This is

densely operated especially for the camera system calibration due to the massive

evaluations of the objective function. Our third recommendation is to employ a
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parallelization scheme by accelerating the computation under the condition that

all the voxels in 3D space are independent. This can also be accomplished by the

employment of GPU.

Our fourth recommendation is to apply our uni�ed framework on diverse model

organisms and subsequently evaluate its performance of a generalization. We

have shown the successful application of our methods on the zebra�sh larvae. We

believe that similar results may be achieved on di�erent model systems.

Currently, we have acquired the 3D models for whole-mount zebra�sh larvae and

some of its organs, i.e., the liver and cartilage. Our �fth recommendation is to

apply our method for more organ systems 3D modelling like the zebra�sh blood

vessels and heart. We hope to �nally integrate all the 3D models to comply with

the zebra�sh [19] and with other modalities like OPT [22]. Then, the zebra�sh

atlas can be used for accurate modelling and visualisation of gene expression and

the development of various diseases.

In addition, our last recommendation refers to the imaging for the zebra�sh un-

der experimental conditions. With the control group we have collected, we will

evaluate features and classi�cation models on the zebra�sh images enabling real

texture based phenotype analysis.
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Summary

In this thesis we have studied shape with a particular focus on the zebra�sh model

system. The shape is an essential appearance of the phenotype of a biological

specimen and it can be used to read out a current state or response or to study

gene expression. Therefore, accurate shape analysis requires a precise shape de-

scription of a model system such as the zebra�sh. Moreover, a su�ciently large

sampling size of the specimens is necessary to ensure a justi�ed and unbiased

shape analysis. The latter is, for instance, very important for high-throughput

in compound screening. All in all, top performance in zebra�sh analysis requires

high-throughput imaging (HTI).

In order to deal with high-throughput imaging, we aim to design an elaborate and

well-performing HTI architecture. For the essential operations we need compu-

tational approaches to obtain the 2D/3D shape representations that are precise

and yet can be acquired fast. The quality of the obtained shape descriptions will

be validated in a straightforward manner with scalar primitives, i.e., the volume

and surface area of a 3D shape. These primitives serve as 3D measurements for a

robust primary shape assessment in the phenotype characterisation. Using only

shape description is not su�cient, e.g., for high-resolution imaging on tissue and

cellular level, so texture should be considered to complement and enhance the

shape analysis.

The work in this thesis is divided in 5 research chapters that each have their own

research question. The overall problem we are addressing is:

To what extent can we develop a stable HTI architecture and produce a

robust and accurate shape analysis for the phenotype characterisation

from the HTI architecture?

In Chapter 2, we focus on methods to obtain accurate 2D shape information

from microscope images. For our particular case these images result from high-
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7. SUMMARY

throughput imaging. So we need to extract the object, i.e. the zebra�sh, from

these images and this must be done as precise as possible, as the shape from the

2D images is required to construct the 3D image. In this manner we can provide

the basis for a fast and accurate 3D measurement. The method will be embedded

in the high-throughput axial-view imaging (HTAI) architecture that we propose.

So, a hybrid segmentation method is developed which integrates (a) the mean

shift algorithm and (b) the improved level set method. This method enables us

to achieve an accurate 2D shape description of the zebra�sh larvae.

In Chapter 3 we elaborate the 3D reconstruction of shape from axial views of

the object. We investigate the architecture for axial-view imaging and question if

accurate 3D measurements can be obtained from the imaging architecture. The

imaging architecture, the VAST-BioImager, is the basis for the development of

a new shape-based 3D reconstruction method. We demonstrated that with this

method we can obtain accurate 3D shape descriptions in an e�cient manner.

From the 3D models, we obtain the volume and surface area. This is applied in

an experiment with a large collection of zebra�sh larvae of di�erent developmental

stages. For three larval stages we have produced a statistical representation of

shape from the 3D measurements of the zebra�sh.

In Chapter 4, the same input as in Chapter 3 is considered. However, we specif-

ically focus on some characteristics with the objects which complicate 3D re-

construction in a direct manner. In our speci�c case the objects, i.e. zebra�sh

larvae, are partially transparent and translucent. To that end we elaborate a

probabilistic approach with probabilistic models from the image textures. In this

manner we are less limited by the accuracy of the segmentation; this is especially

true for some sub-optimal illumination conditions. This new approach for 3D

reconstruction from axial views is referred to as the two-phase 3D reconstruction

approach (2-3DLA). The evaluations demonstrate a good performance at the cost

of a higher computation time.

Initially, the 3D reconstructions were built from bright-�eld microscopy images.

In high-throughput imaging other modalities are equally important. In particular

�uorescence microscopy, as it allows to speci�cally visualise parts of the object.

Therefore, in Chapter 5, we further develop the imaging architecture to be able

to obtain 3D reconstructions from di�erent imaging modalities and fuse these

modalities in one model. We demonstrate this with an application of modelling of
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the zebra�sh liver using �uorescence while the shape is reconstructed from bright-

�eld microscopy. Our results demonstrate a multi-modal 3D reconstruction from

the fusion of 3D models on the organism- and organ-level.

Besides pure shape analysis, in Chapter 6, we investigate the application of classi-

�cation models (or regression models) with the help of image features in annotated

datasets. We question if in this manner we can be able to validate the perfor-

mance of the features in shape analysis. We use completely di�erent material

compared to the previous chapters. We use four annotated datasets including

human faces, butter�ies, orchids and woods. From the human faces we develop

graphical model for the kinship recognition of a group of faces in images. For

the butter�y, orchid and wood datasets we have adapted a convolutional neural

networks (CNN) architecture, a.k.a. deep learning, for learning representative fea-

tures and developing a classi�cation for prediction of the taxonomy of the species

in the datasets. For all datasets we have demonstrated very good results.

Finally, in Chapter 7 we enumerate the conclusions of the research presented in

this thesis by summarising the answers of the research questions that we have

introduced in Chapter 1. We then provide a balanced discussion on the proposed

approaches. Finally, we o�er recommendations for further research.
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Samenvatting

In dit proefschrift wordt beschreven hoe we vorm hebben bestudeerd, in het

bijzonder van het zebravis model systeem. Vorm is een essentiële uiting van het

fenotype van een organisme en het kan worden gebruikt als meting met betrekking

tot de status van het organisme na een ingreep of voor de studie van de expressie

van genen. Daarom is het van belang voor de meting van vorm een exacte vorm-

beschrijving van het model systeem, zoals de zebravis, te hebben. Bovendien is

een voldoende monstergrootte van belang om er zeker van te zijn een evenwichtige

en juiste vormanalyse te kunnen doen. Dit laatste is vooral van groot belang

voor �high-throughput� analyse van bijvoorbeeld grote hoeveelheden chemische

componenten. Alles welbeschouwd, voor superieure prestaties in zebravis (beeld-)

analyse is een �high-throughput� imaging systeem nodig.

Om goed met high-throughput imaging te kunnen werken, stellen we ons ten

doel een system te ontwerpen en te implementeren dat goede prestaties heeft

voor �high-througput� imaging. Voor de kern-operaties is een computationele

aanpak nodig waarmee 2D en 3D representaties van de vorm op een precize en

snelle wijze kunnen worden verkregen. De kwaliteit van vorm representaties zal

worden gevalideerd op een eenvoudige wijze door gebruik te maken van scalaire

primitieven, te weten het volume en de oppervlakte van de 3D vorm. Deze primi-

tieven dienen als 3D metingen voor een robuuste eerste inschatting van de vorm

voor de karakterisering van het fenotype. Beperking tot alleen het gebruik van

vormbeschrijving is niet voldoende; voor beeldvorming op een hogere resolutie,

bijvoorbeeld op weefsel- en celniveau, zou ook textuur in aanmerking moeten

worden genomen teneinde de vormanalyse te complementeren en ver�jnen.

Het onderoek in dit proefschrift is verdeeld in 5 hoofdstukken met een verschil-

lende onderzoekfocus, elk hoofdstuk heeft daarmee een eigen onderzoeksvraag.

Het omvattende thema dat wordt onderzocht in dit proefschrift is:
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7. SAMENVATTING

Kunnen we een stabiel systeem voor high-throughput imaging ontwik-

kelen waarmee op robuuste en accurate wijze vormanalyse voor feno-

type karakterisering kan worden uitgevoerd?

In hoofdstuk 2 ligt de nadruk op methoden waarmee accurate 2D vorm informa-

tie uit microscoopbeelden kan worden verkregen. Voor onze speci�eke toepassing

komen deze beelden van een high-throughput imaging systeem. Het onderzoeks-

object, de zebravis, moet uit deze beelden worden gehaald en dit moet zo precies

mogelijk omdat de vorm die uit deze beelden wordt gehaald nodig is voor het

construeren van een 3D beeld. Op deze wijze voorzien we in de basis voor snelle

en nauwkeurige 3D meting. De methode zal worden ingebed in een, door ons

voorgesteld, systeem voor high-throughput axiale beeldvorming. Een hybride

segmentatie methode is ontwikkeld dewelke twee benaderingen integreert, (a) het

�mean-shift� algoritme en (b) een verbeterde versie van de �level-set� methode.

Dit hybride algoritme stelt ons in staat een nauwkeurige 2D beschrijving van het

zebravis object te verkijgen.

In hoofdtuk 3 wordt de 3D-reconstructie van een object vanuit axiale aanzichten

uitgewerkt. We onderzoeken een speci�eke architectuur voor beeldvorming uit

axiale aanzichten en stellen de vraag of nauwkeurige 3D metingen met dit systeem

kunnen worden verkregen. Het beeldvormende systeem, de VAST-BioImager,

vormt de basis voor de ontwikkeling van een nieuwe vorm-gebaseerde 3D recon-

structie methode. We laten zien dat met deze methode nauwkeurige 3D vorm-

beschrijvingen kunnen worden verkregen op een e�ciente wijze. Van de 3D mo-

dellen verkrijgen we metingen voor volume en oppervlakte. Dit is toegepast in

een experiment met een grote verzameling zebravis larven van verschillende ont-

wikkelingsstadia. Voor 3 larvale ontwikkelingsstadia is een statische representatie

van de vorm gemaakt uit de 3D metingen van de zebravissen.

In hoofdstuk 4 wordt dezelfde invoer als hoofdstuk 3 gebruikt. Echter, hier richten

we ons speci�ek op eigenschappen van de objecten die de 3D reconstructie op een

directe wijze compliceren. In ons speci�eke geval zijn de objecten, de zebravis

larven, gedeeltelijk transparant en doorzichtig. Om die reden ontwikkelen we een

probabilistische benadering waarbij gebruik gemaakt wordt van probabilistische

modellen van de textuur uit het beeld. Op deze wijze zijn we minder beperkt

door de nauwkeurigheid van de segmentatie; dit is speci�ek het geval bij sub-

optimale belichtingscondities. Deze nieuwe benadering voor 3D reconstructie uit

axiale aanzichten wordt de twee-fase 3D reconstructie genoemd (2-3DLA). De

172



evaluaties laten zien dat de methode goed presteert waarbij wel meer rekentijd

nodig is.

De 3D reconstructies zijn initieel gemaakt uit helderveld beelden. In high through-

put imaging zijn andere beeldmodaliteiten evenzo belangrijk. Fluorescentie mi-

croscopie in het bijzonder, daar dit toestaat speci�eke delen van het object te

visualiseren. In hoofdstuk 5 besteden we daarom aandacht aan het verder ont-

wikkelen van het beeldvormende systeem teneinde in staat te zijn 3D reconstruc-

ties van verschillende beeldmodaliteiten te verkrijgen en deze te fuseren in een

model. We laten dit zien aan de hand van een toepassing waarin de lever van

de zebravis wordt gemodelleerd met gebruik van �uorescentie terwijl de gehele

vorm wordt gereconstrueerd uit helderveld beelden. Onze resultaten demonstre-

ren een multi-modale 3D reconstructie door fusie van 3D modellen op orgamisme-

en orgaanniveau.

Naast strikte vormanalyse onderzoeken we in hoofdstuk 6 de toepassing van clas-

si�catie modellen (regressie modellen) met behulp van kernmerken uit beelden

van geannoteerde datasets. We stellen ons de vraag of langs deze wijze de kracht

van de kenmerken uit de vormanalyse kan worden gevalideerd. In vergelijking met

de voorgaande hoofdstukken gebruiken we geheel verschillend materiaal; te weten

vier geannoteerde datasets waaronder menselijke gezichten, vlinders, orchideeën

en hout. Vanuit de dataset met menselijke gezichten hebben we een gra�sch mo-

del ontwikkeld voor verwantschapsherkenning van groepen gezichten binnen een

beeld. Voor de vlinder-, orchidee- en hout-datasets hebben we een convolutioneel

neuraal netwerk (CNN) architectuur, ook wel bekend als �deep learning�, aan-

gepast. Hiermee kunnen we inzicht krijgen in de representatieve kenmerken van

de respectievelijke datasets en een classi�catie ontwikkelen voor de voorspelling

van de taxonomie van de soorten (afgebeeld in het beeld) in de dataset. Voor

alle datasets laten we zien dat we met deze aanpak zeer goede resultaten hebben

bereikt.

In hoofdstuk 7 sluiten we af met het opsommen van de conclusies uit het on-

derzoek gepresenteerd in dit proefschrift door het geven van antwoorden op de

onderzoeksvragen die we geïntroduceerd hebben in hoofdstuk 1. Vervolgens voor-

zien we in een evenwichtige discussie van de voorgestelde benaderingen. Tenslotte

geven we onze aanbevelingen voor verder onderzoek.
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