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Chapter 6

Elastic waves in �exible
strings

I
n this chapter we study the elastic waves induced by an abrupt impact

at a point. The impact has a constant velocity, and the string is initially

straight and tensionless.

6.1 Introduction

The theory of �exible strings has been intensively developed in classic studies

by Navier, Poisson, Stokes, Rayleigh and Kelvin, to name but a few [86]. The

conceptual success of this classical �eld theory not only provides the general

principle for the description of the mechanical behavior of strings, but also

makes it possible to perform rational analysis in many physics and engineering

problems [87–96]. Typically the linear theory only considers in�nitesimal

displacements and omits the coupling between transverse and longitudinal

displacements. This approximation is, however, no longer accurate when

the e�ect of nonlinearities becomes dominant, e.g., when the motion of the

string has a large amplitude. Such studies of nonlinear dynamics of elastic

waves in �exible strings are motivated by engineering challenges such as the

deformation of yarns in weaving machines, the strength of ropes of parachutes

or cables in mechanical structures like cranes and bridges [97–100].
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84 Chapter 6. Elastic waves in �exible strings

In this chapter, we consider the case of a �exible string which is initially

straight and tensionless. In this case, no linear transverse waves propagate. In

general, such media are said to be in “sonic vacuum”[101], meaning that the

velocity of linear waves vanishes. As a consequence, any small disturbance will

generate a strongly nonlinear e�ect and dominate the dynamics. We consider

a constant impact velocity, in which case nonlinear shock waves are generated.

We study the nonlinear dynamics and obtain the shock velocity which scales

with the impact velocity to a fractional exponent. This result has been obtained

in literature as a special case [93, 102], but our interpretation articulates its

mechanism, which hopefully can help explain similar types of shear shocks in

mechanical models for solids in higher dimensions. Furthermore, we perform

simulations that demonstrate this phenomenon in a simple model of wide

applicability.

6.2 Lattice model and simulation

We start by considering the classical model of the 1D lattice of identical masses

m con�ned in a plane (see Fig. 6.1a). The masses are coupled with their nearest

neighbours by identical Hookean springs with the spring constant k and the

rest length a. In linear theory the model supports elastic waves along both the

longitudinal and the transverse direction and the two waves are decoupled.

In the long-wave limit, the velocity of linear transverse waves is [103]

vh =
√
τ/ρ. (6.1)

where τ is the constant tension in the springs and ρ the linear density. The

nonlinear e�ect of the in�nitesimal perturbation of longitudinal and transverse

waves on τ is omitted. For the special case in which the spring rest length

equals the equilibrium lattice spacing, τ goes to 0. In this case, the linear

transverse wave has a vanishing speed and the e�ect of nonlinearities becomes

dominant.

The perturbation that we choose to study in this chapter is an abrupt

impact upon the mass at origin with constant velocity vE along the transverse

direction at time 0. This impact will generate a longitudinal front with velocity

vl = a
√
k/m (6.2)
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Figure 6.1. (a) The 1D lattice model within a plane, subject to an abrupt transverse

impact of constant velocity vE at time 0. (b) The impact results in two shocks: a

transverse shock of speed vh and a longitudinal shock of speed vl. The lattice has

the shape of a kink at the transverse shock.

as well as a nonlinear transverse shock whose velocity vh is what we aim

to derive. Because vh is zero to linear order, we assume that the actual vh is

also smaller than vl when the external impact vE � vl. In other words, the

impact generates a fast longitudinal stress wave as well as a slow transverse

displacement wave. The abrupt stimulus causes abrupt responses, i.e., the

deformed structure takes the shape of a kink. This kink is a sharp transition

in the direction of the spatial arrangement of the masses, which happens right

at the transverse wave front.
1

Now let us relate the shape and the propagation speed of the kink. We

make use of the result that transverse waves do not in�uence longitudinal

strain [93, 96–98]. In other words, the spring tensions in front of and behind

the kink are the same. This suggests that transverse shocks propagate due

to the tension induced by the longitudinal shock. We assume that behind

1
The longitudinal wave also has a sharp wave front, but since the displacement is along

the same direction of propagation there is no change of shape.
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the longitudinal shock, all of the springs experience approximately the same

tension. From Eq. (6.1), this implies that vh is also nonzero and constant. This

in turn suggests that the kink shape consists of two rectilinear parts, as shown

in Fig. 6.1b.

Next, we derive vh. At time t, the longitudinal wave propagates a distance

ofL0 = vlt. The number of springs in this region is L0/a. The contour length

of the lattice behind the front of longitudinal wave is L. Then, the uniform

tension along the contour is

τ =
k(L−L0)

L0/a
. (6.3)

The mass at the origin subject to the impact moves a distance vEt in the y-

direction and the transverse shock propagates a distance vht in the x-direction.

Using the geometry of the con�guration, we �nd

L =
√
(vEt)2 + (vht)2 + L0 − vht. (6.4)

Combining Eq. (6.4) and Eq. (6.3), we �nd

τ = ka

(√(
vE
vl

)2
+

(
vh
vl

)2
− vh
vl

)
. (6.5)

Furthermore, combining Eq. (6.1), Eq. (6.2), Eq. (6.5) and using ρ = m/a, we

obtain the desired relation(
vE
vl

)2
=

(
vh
vl

)4
+ 2

(
vh
vl

)3
. (6.6)

If the external impact velocity vE vanishes, vh vanishes as well. Then, the last

term in Eq. (6.6) dominates the right-hand side. Thus, we obtain the result

vh
vl

=
1

21/3

(
vE
vl

)2/3
. (6.7)

This power-law relation between vE and vh with a fractional exponent is a

remarkable result of nonlinear dependence. This result has been obtained in

Ref. [93, 102], and supported by experimental data [104].
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Figure 6.2. The velocity of the nonlinear transverse wave vh vs the impact velocity

vE , with both velocities rescaled by the speed of sound vl.

To check the relation (6.7) numerically, we performed Newtonian dynam-

ics simulations on the lattice model to con�rm the theoretical result, see

Fig. 6.2. The theory �ts well for small vE . At higher ratios vE/vl the e�ect of

higher-order nonlinearities cause deviations from this power law.

6.3 Continuum theory

In this section we derive vh in the rectilinear �exible string – the continuum

counterpart of the 1D lattice. We obtain the equations of motion and analyse

them directly. Let l and h be the continuum �elds of the longitudinal and

transverse displacements and x the Lagrangian coordinate along the string.

From the geometry shown in Fig. 6.3, we obtain the strain
∂s
∂x , which to the

lowest order is given by:

∂s

∂x
=

∂l

∂x
+

1
2

(
∂h

∂x

)2
. (6.8)
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The �exible string has only stretching potential energy V = κ
2 (

∂s
∂x )

2
is

quadratic in
∂s
∂x . Using this, we write down the Lagrangian density

L =
1
2ρ
(
ḣ2 + l̇2

)
− κ

2

(
∂l

∂x
+

1
2

[
∂h

∂x

]2)2
(6.9)

where κ is the elastic modulus of the string. The Euler-Lagrange equations

are

ρl̈− κ ∂
∂x

(
∂l

∂x
+

1
2

[
∂h

∂x

]2)
= 0, (6.10)

ρḧ− κ ∂
∂x

{(
∂l

∂x
+

1
2

[
∂h

∂x

]2) ∂h

∂x

}
= 0. (6.11)

δs

δh

δl
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Figure 6.3. An in�nitesimal element δx (thick line) subject to longitudinal and

transverse displacements. This geometry lets us calculate
∂s
∂x in terms of

∂l
∂x and

∂h
∂x ,

Eq. (6.8).

The external impact acts on the string transversely with constant velocity

vE at the origin starting at time 0. Eq. (6.10) is a linear wave equation for the

longitudinal wave with a “source” term of second order in the transverse �eld
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h. We seek steady-state solutions in which the displacement �elds change

at constant speed, i.e., l̈ = 0 and ḧ = 0. The condition l̈ = 0 together with

Eq. (6.10) requires that the tension
∂l
∂x +

1
2

(
∂h
∂x

)2
should be constant elsewhere

except for the longitudinal wave front where there is a sharp jump of l. Then,

Eq. (6.11) turns into the form of the linear wave equation in the tensioned

region behind the longitudinal wave front:

ρḧ− κ∂s
∂x

∂2h

∂x2 = 0, for x < vlt. (6.12)

To obtain the tension
∂s
∂x , we integrate the strain at time t along the string

and use the boundary conditions to get the total deformation of the string in

the tensioned region [0, vlt]. The strain is this deformation divided by vlt.
The boundary conditions of l are l(x = 0, t) = 0 and l(x = vlt, t) = 0.

The boundary conditions of h at the origin are ḣ(x = 0, t) = vE and h(x =
0, t) = vEt. Because vh is smaller than vl, the boundary condition of h at the

longitudinal wave front is h(x = vlt, t) = 0. In addition, we assume that h
has a traveling-wave solution of the form h(x− vht), so

∂h
∂x = − 1

vh

∂h
∂t , and

the steady-state solution requires
∂2h
∂x2 = 1

v2
h

∂2h
∂t2 = 0.

The total deformation along the string at time t is equal to the integral of

the strain:

ˆ vlt

0

∂l

∂x
+

1
2

(
∂h

∂x

)2
dx (6.13)

= l

∣∣∣∣∣
vlt

x=0
+

1
2h
∂h

∂x

∣∣∣∣∣
vlt

x=0
−
ˆ vlt

0

1
2h
∂2h

∂x2 dx (6.14)

= −1
2h
∂h

∂x

∣∣∣∣∣
x=0

(6.15)

=
v2
Et

2vh
. (6.16)

Therefore, the strain is

∂s

∂x
=
v2
Et

2vh
/(vlt) =

v2
E

2vhvl
. (6.17)
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In addition, the linear transverse-wave equation Eq. (6.12), with traveling-wave

solution h(x− vht), gives

ρv2
h − κ

∂s

∂x
= 0. (6.18)

From Eq. (6.17) and (6.18), we obtain

vh
vl

=
1

21/3

(
vE
vl

)2/3
. (6.19)

In principle, the method used in this section provides insight into the

governing di�erential equations of the string dynamics.

6.4 Outlook

In this chapter, we have demonstrated the propagation mechanism of the

transverse shock waves in a tensionless �exible string under a constant impact.

One may expect to discover nonlinear waves of the same nature in many

classical mechanical models for solids, e.g., marginally-rigid random spring

networks [105] and some isostatic lattice networks like kagome. For untwisted

kagome lattices, the shear moduli vanish along special directions, along which

there are zero-frequency transverse modes of all wave numbers across the

Brillouin zone [53]. This situation is analogous to a tensionless string, where

even in�nitesimal perturbations will generate nonlinear responses. But for

such two-dimensional lattices with more complex unit cells, the coupling

between degrees of freedom in transverse and longitudinal directions will not

be as simple as that in strings. Besides, we have only studied the response of a

string to a perturbation of a constant impact at a single point. So, extending the

analysis from this chapter to general cases will require further investigations.

Moreover, for some inhomogeneous structures in toplogical mechanical

lattices, e.g., dislocations [13], and interfaces between di�erent phases [25],

there are topological zero modes associated. How do these zero modes behave

in the context of nonlinear motions? Do any of them also propagate in forms of

solitons like vortices or skyrmions, as high-dimensional counterpart of kinks

in topological rotor chains. If so, how does the boundary condition in�uence
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the behavior of such nonlinear objects. Or do they all remain localized and

oscillate with large amplitudes? These are the open questions that we hope

to get answers in future works.




