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Chapter 5

Defects in twisted kagome
lattices: gap modes

N THE PREVIOUS CHAPTER, we have studied the perfect twisted kagome

I lattices. In this chapter, we study the effect of defects on lattice vibrations
in the framework of lattice dynamics [[79, 82| [83]. As in chapter[3] we
model a defect by changing the stiffness constant of one spring (Fig. [5.1).

As we shall see, such defects can induce localized and spectrally isolated
modes inside the bulk band gap. We investigate such gap modes in detail for
varying twisting angles. Remarkably, when several defects are present, the
resulting vibrational modes can be understood in terms of the hybridization
of single-defect modes. We investigate this situation through an effective

tight-binding theory.

5.1 A single defect: localized gap modes

In this section we study a lattice where the stiffness of a single spring is
changed from the uniform value kg to k. Due to the lattice symmetry, all
springs in a perfect kagome lattice are equivalent, so we can modify any of
them and get the same system. When a spring is removed, i.e. when &k / kg = 0,
the phonon spectrum is modified, going from Fig.[4.7]to Fig.

When the twisting angle 6 is low and the phonon spectrum is not gapped,
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7/

Figure 5.1. The twisted kagome lattice that has a defect of a single spring (dashed
red line) whose stiffness constant kg is changed from the uniform value k of all other
springs (solid gray lines).

there is no visible change. However, when the gap opens, for a twisting angle
0 > 22°, then we see that a vibrational mode appears inside the bulk band gap.
Notably, this gap mode, due to the existence of the defect, is exponentially

localized around the defect (see Fig. , ie ¢(r) ~ e~ "/¢ where ¢ is the
vibrational amplitude, 7 is the distance from the defect and £ is a decay length.

The frequency of the defect mode slightly depends on the twisting angle and
reaches its maximum at the critical twisting angld] 6 = 45° (see Fig. [5.4).
Interestingly, the maximum frequency w/wp = 1 is the frequency for a simple
harmonic oscillator with the same spring and mass as those of the perfect
kagome lattice. The underlying reason for this has yet to be understood.

The same effect can be observed when the defect spring stiffness k/ kg < 1 is
finite, see Fig. When k/ kg > 1, the defect mode leaves the optical band
from its top. See the treatise by Maradudin for the explanation of this
behavior.

1Seefor a discussion on the critical twisting angle.
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Figure 5.2. The phonon spectrum of the kagome lattice with varied twisting angle.

The opacity of the data points indicates the density of states at each frequency bin. A
band gap opens up at around § = 22°. The defect mode in the gap is emphasized via
big solid dots. The system has 20 x 20 unit cells with periodic boundary conditions.

5.2 A pair of defects: the tight-binding theory

We have studied the system with a single defect. We can also consider multiple
defects, and the most simple case is a pair of defects. When the two defects are
far away from each other, the corresponding defect modes can be considered

as single isolated defect modes, with the same frequency and mode pattern.

This is because the defect modes are exponentially localized. When the defects
are brought closer and closer, they hybridize, and the frequencies and mode
patterns of the defect modes change. Crucially, we can understand this change
through an effective tight-binding theory[]

*While several combinations of pairs of defects are possible, corresponding to different
removed springs in the unit cell, all of them have the same qualitative properties, and we focus
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Figure 5.3. The defect mode is localized. (a) The kagome lattice with one removed
spring indicated in the shaded blue region. The defect mode is depicted by arrows
representing the mode displacement of the masses. (b) The amplitude of the mode
displacement decays exponentially with the normalized distance r/|a1| from the
defect, where a1 is a lattice vector in Eq.|4.2| Here we find the decay length £/|a;| =
0.954. The twisting angle is § = 34.7°, and the system has 20 x 20 unit cells with
periodic boundary conditions.

When only one defect is present, there is a single-defect mode ¢ with
frequency ws. Let us now consider a lattice with two defects located respec-
tively at the x1th and the x5th unit cell along the same horizontal line and
separated by a distance d = |z — x| (see Fig.[5.6).

The dynamical matrix of the lattice D has two gap modes, which we
denote as ¥4 and i_. By definition, we have

Dy = wity, (5.1)

where w3 is the square of the gap-mode frequencies. ¢’s and 1’s are assumed
to be normalized.

Following the principle of tight-binding models?] we try to express ¢ as
a linear combination of the two single-defect modes ¢ and ¢, where ¢, (o)

on only one of them.
31t is also known as the Hiickel model or Linear Combination of Atomic Orbitals (LCAO)
approximation in the context of quantum chemistry.
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Figure 5.4. Zoom of Fig. The gap mode that has its maximum frequency of
w/wo =1atld = 45°,

corresponds to the single defect located at x;(5) (See Fig. . To do so, let us
write

Y1B = C1¢1 + cadho, (5-2)

where ¢; and ¢, are scalar constants. Multiplying both sides of Eq.[5.]by ¢;
and ¢ respectively, we get

c1(d1, Dor) + c2(¢1, Do) = wig(cr(dn, én1) +caldr, d2))  (53)
c1{pa, DP1) + ca(pa, Do) = wiy(c1{pa, ¢1) + c2(p2, $2)) (5.4)

or in the matrix form:

()6 e
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Figure 5.5. The spectrum with varying spring stiffness k. kg is the stiffness of the
spring stiffness in perfect lattices. The system parameters are the same as Fig.

where we defined @ = (1, D¢1) = (¢2, Dpa), B = (¢p1, Dd2) = (¢2, Dp1)
as D is hermitian, and the overlap integral S = (¢2, ¢1). The solution to the
above eigenvalue problem is:

a+f 2 a—p
1-g

When the defects are far away from each other, i.e. d > &, both the overlap
integral S and the matrix element [ vanish as ¢; and ¢ are localized. In this
case,

2 2 2
WiTp — W_TB — & = Wy, (5.7)

that is to say, the frequencies of both gap modes equal the single-defect gap
mode frequency.
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Figure 5.6. The twisted kagome lattice that has two defects located respectively at the
x1 and x9 along the same horizontal line and separated by a distance d = |z — z2|.
a1 is a lattice vector.
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Figure 5.7. The scheme of tight-binding models for gap modes.
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In Fig. we compare this result with the values directly obtained from
the diagonalization of D. We see that the tight-binding theory predicts the
hybridization frequency level quite well, even though it only keeps track of
only two degrees of freedom ¢; and ¢2. The reason why the theory works so
well is because the defect modes lie in the band gap and therefore are spectrally
isolated from the other vibrational modes. Notice there is a small discrepancy
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between the tight-binding prediction and the direct diagonalization values.
We also compute the eigenvectors 1_ and plot them in Fig.
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Figure 5.8. A comparison of the squared frequencies between the tight-binding the-
ory and the direct diagonalization of the dynamical matrix. The defects are separated
by a distance d. The system parameters are the same as Fig.

5.3 Towards multiple defects

For a system with multiple defects, we raise two specific questions about the
gap modes. While we do not include the results of these investigations in this
thesis, it is worth pointing out the directions.

First, since the tight binding theory works for a pair of defects, we can
wonder whether there is a hybridization of gap modes of multiple defects, just
like the formation of a molecule out of multiple atoms via chemical bonds.

Second, for a perfect system, the band gap in the spectrum forbids sig-
nals to propagate. But the gap mode associated with each defect can help
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Figure 5.9. Lowest frequency gap modes ¢_ for (a) d/|a1| = 2 and (b) d/|a1]

10. The shaded blue regions indicate the defects of removed springs. The system

parameters are the same as Fig.[5.3}

mediate the forbidden signal. As we keep introducing defects into the system,

there is presumably a percolation phenomenon in terms of the mechanical

signal at the band-gap frequencies. The same concepts have been realized

and investigated in the systems of continuum media like photonic and

phononic crystals

, but never in the discrete mechanical lattice systems

to the knowledge of the author.






