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Chapter 5

Defects in twisted kagome
lattices: gap modes

I
n the previous chapter, we have studied the perfect twisted kagome

lattices. In this chapter, we study the e�ect of defects on lattice vibrations

in the framework of lattice dynamics [79, 82, 83]. As in chapter 3, we

model a defect by changing the sti�ness constant of one spring (Fig. 5.1).

As we shall see, such defects can induce localized and spectrally isolated

modes inside the bulk band gap. We investigate such gap modes in detail for

varying twisting angles. Remarkably, when several defects are present, the

resulting vibrational modes can be understood in terms of the hybridization

of single-defect modes. We investigate this situation through an e�ective

tight-binding theory.

5.1 A single defect: localized gap modes

In this section we study a lattice where the sti�ness of a single spring is

changed from the uniform value k0 to k. Due to the lattice symmetry, all

springs in a perfect kagome lattice are equivalent, so we can modify any of

them and get the same system. When a spring is removed, i.e. when k/k0 = 0,

the phonon spectrum is modi�ed, going from Fig. 4.7 to Fig. 5.2.

When the twisting angle θ is low and the phonon spectrum is not gapped,
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74 Chapter 5. Defects in twisted kagome lattices: gap modes

Figure 5.1. The twisted kagome lattice that has a defect of a single spring (dashed

red line) whose sti�ness constant k0 is changed from the uniform value k of all other

springs (solid gray lines).

there is no visible change. However, when the gap opens, for a twisting angle

θ > 22◦, then we see that a vibrational mode appears inside the bulk band gap.

Notably, this gap mode, due to the existence of the defect, is exponentially

localized around the defect (see Fig. 5.3), i.e. φ(r) ∼ e−r/ξ
where φ is the

vibrational amplitude, r is the distance from the defect and ξ is a decay length.

The frequency of the defect mode slightly depends on the twisting angle and

reaches its maximum at the critical twisting angle
1 θ = 45◦ (see Fig. 5.4).

Interestingly, the maximum frequency ω/ω0 = 1 is the frequency for a simple

harmonic oscillator with the same spring and mass as those of the perfect

kagome lattice. The underlying reason for this has yet to be understood.

The same e�ect can be observed when the defect spring sti�ness k/k0 < 1 is

�nite, see Fig. 5.5. When k/k0 > 1, the defect mode leaves the optical band

from its top. See the treatise by Maradudin [79] for the explanation of this

behavior.

1
See 4.5 for a discussion on the critical twisting angle.
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Figure 5.2. The phonon spectrum of the kagome lattice with varied twisting angle.

The opacity of the data points indicates the density of states at each frequency bin. A

band gap opens up at around θ = 22◦. The defect mode in the gap is emphasized via

big solid dots. The system has 20× 20 unit cells with periodic boundary conditions.

5.2 A pair of defects: the tight-binding theory

We have studied the system with a single defect. We can also consider multiple

defects, and the most simple case is a pair of defects. When the two defects are

far away from each other, the corresponding defect modes can be considered

as single isolated defect modes, with the same frequency and mode pattern.

This is because the defect modes are exponentially localized. When the defects

are brought closer and closer, they hybridize, and the frequencies and mode

patterns of the defect modes change. Crucially, we can understand this change

through an e�ective tight-binding theory
2
.

2
While several combinations of pairs of defects are possible, corresponding to di�erent

removed springs in the unit cell, all of them have the same qualitative properties, and we focus
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Figure 5.3. The defect mode is localized. (a) The kagome lattice with one removed

spring indicated in the shaded blue region. The defect mode is depicted by arrows

representing the mode displacement of the masses. (b) The amplitude of the mode

displacement decays exponentially with the normalized distance r/|a1| from the

defect, where a1 is a lattice vector in Eq. 4.2. Here we �nd the decay length ξ/|a1| =
0.954. The twisting angle is θ = 34.7◦, and the system has 20× 20 unit cells with

periodic boundary conditions.

When only one defect is present, there is a single-defect mode φ with

frequency ωs. Let us now consider a lattice with two defects located respec-

tively at the x1th and the x2th unit cell along the same horizontal line and

separated by a distance d = |x1 − x2| (see Fig. 5.6).

The dynamical matrix of the lattice D has two gap modes, which we

denote as ψ+ and ψ−. By de�nition, we have

Dψ± = ω2
±ψ±, (5.1)

where ω2
± is the square of the gap-mode frequencies. φ’s and ψ’s are assumed

to be normalized.

Following the principle of tight-binding models
3
, we try to express ψ as

a linear combination of the two single-defect modes φ1 and φ2, where φ1(2)

on only one of them.

3
It is also known as the Hückel model or Linear Combination of Atomic Orbitals (LCAO)

approximation in the context of quantum chemistry.
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Figure 5.4. Zoom of Fig. 5.2. The gap mode that has its maximum frequency of

ω/ω0 = 1 at θ = 45◦.

corresponds to the single defect located at x1(2) (See Fig. 5.7). To do so, let us

write

ψTB = c1φ1 + c2φ2, (5.2)

where c1 and c2 are scalar constants. Multiplying both sides of Eq. 5.1 by φ1
and φ2 respectively, we get

c1〈φ1, Dφ1〉+ c2〈φ1, Dφ2〉 = ω2
TB
(c1〈φ1,φ1〉+ c2〈φ1,φ2〉) (5.3)

c1〈φ2, Dφ1〉+ c2〈φ2, Dφ2〉 = ω2
TB
(c1〈φ2,φ1〉+ c2〈φ2,φ2〉) (5.4)

or in the matrix form:(
α β
β α

)(
c1
c2

)
= ω2

TB

(
1 S
S 1

)(
c1
c2

)
(5.5)
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Figure 5.5. The spectrum with varying spring sti�ness k. k0 is the sti�ness of the

spring sti�ness in perfect lattices. The system parameters are the same as Fig. 5.3.

where we de�ned α = 〈φ1, Dφ1〉 = 〈φ2, Dφ2〉, β = 〈φ1, Dφ2〉 = 〈φ2, Dφ1〉
as D is hermitian, and the overlap integral S = 〈φ2,φ1〉. The solution to the

above eigenvalue problem is:

ω2
+TB

=
α+ β

1 + S
, ω2

−TB
=
α− β
1− S . (5.6)

When the defects are far away from each other, i.e. d� ξ, both the overlap

integral S and the matrix element β vanish as φ1 and φ2 are localized. In this

case,

ω2
+TB

= ω2
−TB

= α = ω2
s , (5.7)

that is to say, the frequencies of both gap modes equal the single-defect gap

mode frequency.



5.2. A pair of defects: the tight-binding theory 79
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Figure 5.6. The twisted kagome lattice that has two defects located respectively at the

x1 and x2 along the same horizontal line and separated by a distance d = |x1 − x2|.
a1 is a lattice vector.
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Figure 5.7. The scheme of tight-binding models for gap modes.

In Fig. 5.8, we compare this result with the values directly obtained from

the diagonalization of D. We see that the tight-binding theory predicts the

hybridization frequency level quite well, even though it only keeps track of

only two degrees of freedom φ1 and φ2. The reason why the theory works so

well is because the defect modes lie in the band gap and therefore are spectrally

isolated from the other vibrational modes. Notice there is a small discrepancy
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between the tight-binding prediction and the direct diagonalization values.

We also compute the eigenvectors ψ− and plot them in Fig. 5.9.

10 5 0 5 10

d/|a1|
0.85

0.90

0.95

1.00

1.05

1.10
ω

2
/ω

2 0

ω2
−TB

ω2
+TB

Direct diag. ω2
−

Direct diag. ω2
+

Figure 5.8. A comparison of the squared frequencies between the tight-binding the-

ory and the direct diagonalization of the dynamical matrix. The defects are separated

by a distance d. The system parameters are the same as Fig. 5.3.

5.3 Towards multiple defects

For a system with multiple defects, we raise two speci�c questions about the

gap modes. While we do not include the results of these investigations in this

thesis, it is worth pointing out the directions.

First, since the tight binding theory works for a pair of defects, we can

wonder whether there is a hybridization of gap modes of multiple defects, just

like the formation of a molecule out of multiple atoms via chemical bonds.

Second, for a perfect system, the band gap in the spectrum forbids sig-

nals to propagate. But the gap mode associated with each defect can help
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(a)

(b)

Figure 5.9. Lowest frequency gap modes ψ− for (a) d/|a1| = 2 and (b) d/|a1| =
10. The shaded blue regions indicate the defects of removed springs. The system

parameters are the same as Fig. 5.3.

mediate the forbidden signal. As we keep introducing defects into the system,

there is presumably a percolation phenomenon in terms of the mechanical

signal at the band-gap frequencies. The same concepts have been realized

and investigated in the systems of continuum media like photonic [84] and

phononic crystals [85], but never in the discrete mechanical lattice systems

to the knowledge of the author.




