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Chapter 3

Topological rotor chains with
impurities

In Sec.[3.1 we examine how kinks and antikinks interact with a spring

stiffness impurity in the lattice. In Sec.[3.2] we make a connection between
linear mode analysis and nonlinear dynamics of kink motion in the context
of spring length impurities.

IN THIS CHAPTER we investigate topological rotor chains with impurities.

3.1 Spring stiffness impurities

In this section we numerically explore whether the kink-antikink asymme-
try also manifests in the way these excitations interact with a single lattice
impurity, a natural starting point to study their propagation in disordered
lattices. For the conventional ¢* models, previous studies on kink-impurity
interactions (in both discrete models [[66]] and continuum field models [[67])
have shown that scattering can result in transmission, trapping or reflection of
kinks, depending on the type of the impurity, the attraction/repulsion strength
of the impurity and the kink’s initial velocity. Although similar scattering
also occurs in the topological rotor chain model, we also find other novel
phenomena, for instance, the kink can split into two kinks and one antikink.
Moreover as we will see, kinks and antikinks no longer scatter in the same way
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Chapter 3. Topological rotor chains with impurities

- a feature which underscores the kink-antikink asymmetry in our topological
rotor chain. Fig. [3.1] summarizes all the possible scattering scenarios that we
observe. In this chapter, we study impurities in properties of the springs,
which yield a richer set of effects on the response than mass impurities.
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Figure 3.1. lllustrated are the possible scenarios for how the kink and antikink
interact with a single impurity of spring stiffness. As indicated by the arrow, an initial
kink or antikink approaches the impurity site (indicated by the green star) from the
right. After scattering, the incident kink is either: (I) perfectly transmitted or (II)
splits into a reflected kink, a transmitted kink and an antikink that gets trapped at the
impurity site. The incident antikink is either: (I) perfectly transmitted, (II) trapped at
the impurity site or (III) perfectly reflected.

In this section, we model an impurity by changing the spring stiffness
constant at a single site (Fig. [2.1a). We study a topological chain with lattice
spacing @ = 1 and rotor length r/a = 0.8 and with equillibirum angle
0 = 0.28. We perform Newtonian dynamics simulation on a system with 6o
rotors using free boundary conditions, and for a range of impurity spring
stiffness constant k; and kink/antikink initial velocity vg. See Fig.|3.1 for a
table of the possible scattering scenarios that we observe.



3.1. Spring stiffness impurities

Consider first the kink-impurity interaction. For most k; and vy, the kink
simply passes through the impurity and may excite an impurity mode, which
can be seen in the form of small fluctuations in the middle of the chain as
shown in Fig. When the impurity spring is sufficiently soft, the incident
kink splits into three: a transmitted kink, an antikink that is trapped at the
impurity and a reflected kink. This is shown in Fig.
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Figure 3.2. A kink interacts with an impurity (different spring stiffness) and is
either (a) transmitted, shown here for vg = 4.0 and k;/k = 0.10 or (b) splits
into a transmitted kink, a reflected kink and an antikink trapped at the impurity,
shown here for vg = 9.6 and k;/k = 0.01. The non-dimensional parameters are

M =1,k = 10000,7/a = 0.8,0 = 0.28.

Antikink scattering results in an ever richer set of behaviors. Recall that
the springs near the location of an antikink are always stretched significantly,
see Fig. For k;/k near 1, the antikink gets transmitted with energy
dissipation and thus slows down (Fig. [3.3a). Softening the impurity spring
stiffness creates an attractive potential well for the antikink. The antikink
may then release a part of its potential energy and get trapped at such an
impurity site (Fig. [3.3b). If the impurity spring is made even softer, such that
an antikink can no longer transfer its kinetic energy forward or dissipate it
sufficiently quickly to be trapped, the incident antikink is completely reflected
(Fig. [3.3¢). For similar reasons, a stiffer impurity acts like a repulsive potential
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well that can reflect slow moving antikinks.
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Figure 3.3. An antikink interacts with an impurity and is either (a) transmitted,
shown here for vg = 4.0 and k; / k = 0.80, (b) trapped, shown here for vg = 4.0 and
ki/k = 0.70 or (c) reflected, shown here for vg = 4.8 and k;/k = 0.20. The system
parameters are the same as Fig.

These numerical results are summarized in the phase diagrams in the
space of k; and vg in Fig. First, note that a kink (Fig. [3.4a)) behaves quite
differently from an antikink (Fig.[3.4b). For instance, a kink is never completely



3.1. Spring stiffness impurities

trapped or reflected by an impurity. The reason is that it has zero intrinsic
potential energy and thus, no potential energy to lose during a scattering
event. As a collective object, the kink experiences a flat potential landscape
along the chain. It will always go through the impurity, unless k; is so soft
or vy is so large that the initial kinetic energy of the kink is sufficient to
stretch the impurity spring to form a pinned antikink. That is when scattering
results in the kink being split. This also explains the positive slope of the
boundary line between these two regimes. (The topological constraints of the
field require that the number of kinks minus the number of antikinks remains
constant [50]], which is one for our boundary conditions.)

For an antikink, the scattering phase diagram has more regimes (Fig. [3.4b).
The positive slope of the boundary curve at higher k; between the upper
reflection regime (square) and the transmission regime (circle) comes from
the fact that the higher the barrier is, the faster the antikink needs to be, to
get transmitted. The negative slope of the boundary between the transmis-
sion regime (circle) and the trapping regime (triangle), suggests that a softer
impurity spring causes the antikink to dissipate more energy. The antikink
then needs a sufficiently high initial velocity to avoid being trapped at such
an impurity site. The positive slope of the curve between the trapped regime
(triangle) and the lower reflection regime (square) suggests that if the impurity
spring is so soft such that it can no longer transform the kinetic energy into
other forms or channelize the kinetic energy to the other side of the impurity
sufficiently “quickly”, an antikink incident with sufficiently high energy will
then be completely reflected. (In simulations we find that the maximum initial
velocity with which we can launch an antikink is around vy = 12. Above this,
the antikink itself becomes unstable and tends to quickly disintegrate.)

For the topological rotor chain, the antikink scattering behaviour is there-
fore very similar to the ones reported for kinks and antikinks in previous
studies on the ¢* model [66, [67]. In addition, for normal ¢* kinks and an-
tikinks, one also observes resonance windows which are alternating regimes
of the excitation being reflected or trapped, along the axis of initial veloc-
ities for a given impurity strength. These have not been observed during
our simulations of the discrete topological chain. Instead, we only observe
a small range of alternating regimes where the antikink is transmitted or

trapped, around k;/k = 0.75 and vy = 3.6 in Fig. We leave a detailed
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Figure 3.4. The phase diagram of the scattering behavior in the parameter space of
normalized spring stiffness constant of impurity k; /k and kink initial velocity v for
(a) the kink and (b) the antikink. The system parameters are the same as Fig.[3.2] The
lower limit of vg for the antikink is around 0.7, below which even the PN barrier in a
perfect chain will capture the antikink.

characterization of the resonance energy exchange between these modes for
future studies.



3.2. Spring length impurities

3.2 Spring length impurities

In Sec. 2.4/ we perform linear mode analysis of the topological chain, and in
Sec.[3.1] we study the nonlinear motion of (anti)kinks with impurities. Here
in this section we will show in a qualitative way that there is a connection
between these two aspects. For convenience, we investigate another type of
impurity: the spring length.

3.2.1 Linear mode analysis

We start with a qualitative observation of the linear vibrational modes. For a
perfect topological rotor chain with free boundary conditions, there exists only
one zero mode — the translation mode of the kink. This is what the Maxwell-
Calladine counting predicts [57, [58]]: the chain has n rotors as degrees of
freedom and n — 1 springs as constraints, and the former quantity minus the
latter equals the number of zero modes minus the number of states of self
stress. (In a perfect chain there is no states of self stress.) This counting does
not depend on the geometrical parameters of the chain components.

Now we increase one geometrical parameter, namely the length of the
middle spring lo, so that it is an impurity in the system (Fig.[3.5). As long as no
state of self stress is created, there remains only one zero mode. However, as [
approaches a critical value l.,.;1;.q1, several qualitative changes take place: (1)
The profile of the chain varies significantly. There are two kinks, one on each
side of the impurity spring. (2) Eigenmode analysis shows that the amplitude
of the zero mode has two prominent parts that are spatially separated, each
of which is localized around a kink as an individual translation mode. Both
parts of the zero mode point towards the same direction. (3) An additional
soft vibrational mode appears, whose amplitude also has two separated parts
just like the zero mode. But the directions of these two parts are opposite
to each other. This soft mode has a frequency close to zero, much lower
than that of kink shape modes. (4) A soft tensional mode dual to the soft
vibrational mode emerges, being localized around the impurity spring. (A
tensional mode is a vector whose components are the infinitesimal spring
tensions caused by the infinitesimal motion of the dual vibrational mode. The
duality comes from the fact that the tensional mode is an eigenfunction of the
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supersymmetrical “partner” of the dynamical matrix, while the vibrational
mode is an eigenfunction of just the dynamical matrix. See [19} 25} [26] for
more details.)

These changes do not contradict the Maxwell-Calladine counting: only
one vibrational mode has strictly zero frequency, unless [y actually reaches
leritical- In that case, the frequencies of both the soft vibrational mode and the
soft tensional mode go to zero. By definition the tensional mode becomes a
state of self stress. Then the Maxwell-Calladine counting still holds as there
are now two zero modes and one state of self stress.

The above analysis only considers infinitesimal oscillations around zero-
energy equilibrium points. In the next section, we study qualitatively the
nonlinear motion of kinks with finite energy, providing a perspective comple-
mentary to the linear analysis.

3.2.2 Nonlinear dynamics: linkage limit
3.2.2.1 Setup: Hamiltonian

To simplify the problem, we consider the linkage limit, where all the springs
in a perfect chain are non-deformable rigid bars so that they are holonomic
constraints. There is only one degree of freedom which is the translational
motion of the kink. We choose the kink position « as a collective variable to
describe this degree of freedom.

Then we introduce the impurity by replacing the middle rigid bar with a
longer spring that is “soft” (i.e. with a finite spring stiffness constant) (Fig. [3.6a).
A soft spring does not strictly constrain the angles of the two rotors it connects
but rather gives a potential energy to deviations from its preferred length.
The chain then has one fewer constraint, which in turn means that it has two
degrees of freedom. We regard the whole chain as two linkage sub-chains,
then the two degrees of freedom are shared by the two kinks of the sub-chains,
which we call Kink 1 and Kink 2 with position z1 and x> respectively. The
coordinate system for the discrete chain model is illustrated in Fig. and
its precise definition is contained in Appendix We see that by taking the
linkage limit, the number of degrees of freedom is reduced from the number
of rotors (16 for the chain in Fig. to the number of kinks (2 for two kinks).



3.2.2.1. Setup: Hamiltonian
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Figure 3.5. The zero vibrational mode (a), the soft vibrational mode (b), and the
soft tensional mode (c) of a topological chain with a longer spring in the middle as
an impurity. The configuration parameters are 0 = 0.58, 7/a = 0.8, Z/a = 1.68,
lo/a = 2.30 and lopizicar/a = 2.31. The soft mode frequency is 7.7 x 107

the unit of (r/a)v/k/M, which means the mode is much “softer” than the kink
shape mode whose frequency is of the order 10~2. In (a) and (b), the arrows indicate
the mode amplitude of the displacement of each rotor. In (c), the thickness of the

green bars indicates the tensional mode amplitude on each spring. All the springs,

both normal ones and the impurity, have the same stiffness. (d) shows a LEGO
demonstration.
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Figure 3.6. (a) Illustration of the coordinate system of a topological rotor linkage
chain with § = 0.58,7/a = 0.8,1/a = 1.68 and l,yjjcar/a = 2.31. The linkage
bars are the solid lines and the impurity spring is the dashed line. In (b), the upper
panels show the potential functions in 2D configuration space for various /. One
corner of the function is trimmed for visualization. The red curve corresponds to the
potential for Kink 1 in the one d.o.f. case where Kink 2 is fixed at 29 = 0. The lower
panels show the phase portraits of Kink 1.



3.2.2.2. Individual kink: Phase portrait

Now we derive the Hamiltonian. Note that the potential energy only comes
from the deformation of the impurity spring, which in turn just depends upon
the angles of the head rotors ;. Since z; is the degree of freedom, it determines
the state of the sub-chain 4, including ;. Thus from the continuum theory

(Eq. Where u = 7sin ), we obtain f;(z;):

sin f;(x;) = sin § tanh <r81n9(|$i| — xl)), (3.1)

a2

where 0 is the equilibrium angle of a perfect chain, a is the lattice spacing, 7
is the rotor length, and Z; is the position of the head rotor.

Putting 0;(z;) into the Hookean spring potential V. = k(12 — lo)?
where [; 5 takes the form in Eq. and [y is the rest length of the impurity
spring, we obtain the potential function V (1, x2; o) as a function of the kink
positions (Fig. [3.6b). We formally define the effective kink momentum p and
mass m for the sub-chains in terms of the total kinetic energy of the rotors
T = 2?21 %mrQQJZ = ﬁp? Thus the Hamiltonian H (21, 2, p1,p2;lo) =
T(p1,p2) + V (21, 22; 1) is obtained.

3.2.2.2 Individual kink: Phase portrait

We first investigate a simple case where Kink 2 is fixed at x9 = 0 and only
Kink 1 is allowed to move. Then the chain has only one degree of freedom
21. With the Hamiltonian, we draw the phase portraits of z; for various [y
in Fig. We find that there is a critical value for the rest length of the
impurity spring

leritical = \/(27" sinf + a)2 4 (2rcos )2, (3.2)

which determines the pattern of the phase portrait and the qualitative behavior
of the dynamics of the chain.

When ly < l¢ritical, the dumbbell-shaped separatrix curve extends almost
across the whole reachable region of x1. The two equilibrium points at ; ~
+8 and 7 =~ —8 correspond to the kink being localized around the impurity
spring. x1 is either positive or negative depending on the orientation of the

end rotor. At these two equilibrium points the impurity spring is not stretched.
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The behavior of Kink 1 depends on whether E is above or below the
separatrix curve’s energy F, = %k‘(lo — lcritical)2- If £ < E, the trajectory
in the phase plane stays inside the region enclosed by separatrix and circu-
lates around one of the equilibrium points. In real space, Kink 1 makes small
oscillations around the impurity spring at either z; =~ —8 or z; =~ +8. If
E > E. the trajectory moves in the region outside of the separatrix. In real
space, Kink 1 is able to go over the sub-chain end and move back and forth
between r1 ~ —8 and =1 ~ +8.

When [y approaches l.;jticq; from below and exceeds l.pizicql, the sepa-
ratrix curve shrinks and disappears. The two equilibrium points merge into
one at z; = 0 at the end of the sub-chain[] In real space, the kink with finite
energy oscillates around the sub-chain end x; = 0.

3.2.2.3 Two kinks: Accessible configuration space

The phase space of a chain with two kinks is 4D. For the convenience of
visualization, we investigate the potential function V (z1, z2;lp) in the 2D
configuration space. The shape of the potential depends on [ and determines
the qualitative dynamics of the two kinks. We also perform simulations of
Newtonian dynamics to investigate the qualitative behavior of the nonlinear
motion of the kinks.

When ly < leritical (Fig.[3.7d), the potential looks like a square Mexican
hat. The bottom of potential valley is a square ring, on which all the points
are at zero energy. In linear mode analysis, we find a zero mode along the
valley and a soft mode along the transverse direction. We will show that the
nonlinear dynamics at finite energy possesses the traits that are closely related
to those in the linear analysis at zero energy.

Note that the impurity spring is maximally stretched at z; = 22 = 0,
and the corresponding potential maximum E, = %k(lo — lcm’tical)2- It is the
minimal energy for both kinks to move away from the impurity. If £ < E,
the two kinks take turns moving on their respective sub-chains. One kink
oscillates near the impurity spring, while the other kink moves away. The
nonlinear dynamics of the kinks is visualized as a trajectory going along the

'In the language of dynamical systems, this process is called a supercritical pitchfork
bifurcation.



3.2.2.3. Two kinks: Accessible configuration space

X1=4.6 Xo=-6.7 X1=-2.6 Xp=-2.2
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Figure 3.7. The trajectories of the chain generated by simulations of Newtonian
dynamics on the theoretical potential function in the configuration space at (a)
lo < leriticals B < Ee, (b) lo < lepiticats £ > Ee, (€) lo = leriticals £ = Ee =
0, and (d) lo > lcritical- In the top figures of (a) and (b), the color scale of the
trajectories indicates the potential energy of the chain in arbitrary units. The big red
dots correspond to the configuration of the real-space chains shown in the bottom
figures of each panel.
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bottom of the potential valley. The accessible region in the configuration
space is a square annulus, at the corner of which the major part of energy is
transferred from the one kink to another. In fact, this can be interpreted as
the motion of a single “split” kink through the system.

When E > E, (Fig.[3.7b), there is sufficient energy for both kinks to move
away from the impurity spring simultaneously. In the configuration space,
the trajectory gets out of the potential valley and climbs up to the 2D plateau
in the middle. The accessible region now is a square disk. In real space, the
kinks independently hit the impurity spring and get reflected.

When ly = lepiticar (Fig.[3.70), the linear mode analysis predicts that the
chain model in Fig. has two zero modes, each being localized around the
kink at the end of the respective sub-chain, and a state of self stress localized
around the impurity spring. From the viewpoint of nonlinear dynamics, the
potential function changes qualitatively: As ly approaches l.,;t;cql, the square
ring of the potential valley shrinks into one point at z; = z2 = 0, and E,
goes to zero. In other words, the Mexican hat transforms into a single basin.
In this shrinking process, the soft mode, which corresponds to the oscillation
transverse to the valley, transitions into a zero mode, because the depth of
the valley vanishes. In terms of nonlinear dynamics, this transition means
that no matter how small the total energy F is, the accessible region in the
configuration space is always a square disk rather than a square annulus.

When ly > l¢riticar (Fig.[3.7d), the impurity spring is compressed, which
gives a minimum potential energy E,,;, = %k(lo — leritical)? for the static
configuration. In a linear analysis, the two zero modes become normal modes
with finite frequency, as the impurity spring pushes the two kinks to the chain
ends, generating a finite restoring force for the motion of the modes. In the
nonlinear dynamics, the accessible region of the kinks is still a square disk.

Fig.[3.8| summarizes the above results with I and [y as parameters. When
lo < lepitical, the curve E, = %k(lo — leritical)® marks the transition of the
accessible region in configuration space from an annulus to a disk. Note that
we only investigate the case of [y > [, in which Fig. |3.8|is valid. For Iy < [
case, the potential landscape takes a different form, and so does the possible
transition. We do not cover this case in this paper, however, as we have made
the connection between linear mode analysis and nonlinear dynamics.



3.A. Convention of kink coordinates in discrete models

k
Ec =E(|0 -l ritical )2

| Icritical

Figure 3.8. The parameter space of the total energy F and the impurity spring
length ly. The critical energy FE. as a function of [y forms a parabola. The chain
shows different dynamical behaviors across the left branch of the parabola. The
vertical dashed line of lg = l.,jtjcq; is the boundary line across which the shape of
the potential function transitions qualitatively. The gray area below the right branch
of the parabola is energetically forbidden.

Appendix

3.A Convention of kink coordinates in discrete
models

The concept of kinks stems from the continuum ¢* theory. To extend this
concept to the discrete chain model, we define the coordinate system of a sub-
chain kink as follows (Fig. [3.6a): The absolute value of the position of a kink
equals the rotor’s integer index if the rotor is vertical, otherwise the position
is a real number interpolating between the indices of the two neighboring
rotors that are leaning opposite to each other. The positional interpolation is
proportional to the linear interpolation between the absolute values of the
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angles of two neighbor rotors. The rotor angles are the measured against the
vertical alternatively, as mentioned in Sec. When a kink approaches the
end points of the chain, the end rotor flips over. Here the kink profile from
the continuum theory ceases to be valid. Thus we take as our convention that
a kink is at the origin of the coordinate system when the end rotor is collinear
with the spring connecting to the next rotor, and its sign depends on whether
the end rotor leans upwards or downwards. The coordinate between 0 and 1
(or —2) is obtained by linear interpolation of the angles of the end rotor at 0
and 1 (or —2). In this ad hoc convention, the chain forms a state of self stress
when both kinks are at origin. The two sub-chains are aligned head-to-head,
and the two head rotors (|z;| = 8) are coupled by the impurity spring.



