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Chapter 3

Topological rotor chains with
impurities

I
n this chapter we investigate topological rotor chains with impurities.

In Sec. 3.1, we examine how kinks and antikinks interact with a spring

sti�ness impurity in the lattice. In Sec. 3.2, we make a connection between

linear mode analysis and nonlinear dynamics of kink motion in the context

of spring length impurities.

3.1 Spring sti�ness impurities

In this section we numerically explore whether the kink-antikink asymme-

try also manifests in the way these excitations interact with a single lattice

impurity, a natural starting point to study their propagation in disordered

lattices. For the conventional φ4
models, previous studies on kink-impurity

interactions (in both discrete models [66] and continuum �eld models [67])

have shown that scattering can result in transmission, trapping or re�ection of

kinks, depending on the type of the impurity, the attraction/repulsion strength

of the impurity and the kink’s initial velocity. Although similar scattering

also occurs in the topological rotor chain model, we also �nd other novel

phenomena, for instance, the kink can split into two kinks and one antikink.

Moreover as we will see, kinks and antikinks no longer scatter in the same way
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44 Chapter 3. Topological rotor chains with impurities

– a feature which underscores the kink-antikink asymmetry in our topological

rotor chain. Fig. 3.1 summarizes all the possible scattering scenarios that we

observe. In this chapter, we study impurities in properties of the springs,

which yield a richer set of e�ects on the response than mass impurities.
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Transmission TransmissionAfte r
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Figure 3.1. Illustrated are the possible scenarios for how the kink and antikink

interact with a single impurity of spring sti�ness. As indicated by the arrow, an initial

kink or antikink approaches the impurity site (indicated by the green star) from the

right. After scattering, the incident kink is either: (I) perfectly transmitted or (II)
splits into a re�ected kink, a transmitted kink and an antikink that gets trapped at the

impurity site. The incident antikink is either: (I) perfectly transmitted, (II) trapped at

the impurity site or (III) perfectly re�ected.

In this section, we model an impurity by changing the spring sti�ness

constant at a single site (Fig. 2.1a). We study a topological chain with lattice

spacing a = 1 and rotor length r/a = 0.8 and with equillibirum angle

θ = 0.28. We perform Newtonian dynamics simulation on a system with 60

rotors using free boundary conditions, and for a range of impurity spring

sti�ness constant ki and kink/antikink initial velocity v0. See Fig. 3.1 for a

table of the possible scattering scenarios that we observe.
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Consider �rst the kink-impurity interaction. For most ki and v0, the kink

simply passes through the impurity and may excite an impurity mode, which

can be seen in the form of small �uctuations in the middle of the chain as

shown in Fig. 3.2a. When the impurity spring is su�ciently soft, the incident

kink splits into three: a transmitted kink, an antikink that is trapped at the

impurity and a re�ected kink. This is shown in Fig. 3.2b.

(a) (b)

Figure 3.2. A kink interacts with an impurity (di�erent spring sti�ness) and is

either (a) transmitted, shown here for v0 = 4.0 and ki/k = 0.10 or (b) splits

into a transmitted kink, a re�ected kink and an antikink trapped at the impurity,

shown here for v0 = 9.6 and ki/k = 0.01. The non-dimensional parameters are

M = 1, k = 10000, r/a = 0.8, θ̄ = 0.28.

Antikink scattering results in an ever richer set of behaviors. Recall that

the springs near the location of an antikink are always stretched signi�cantly,

see Fig. 2.4b. For ki/k near 1, the antikink gets transmitted with energy

dissipation and thus slows down (Fig. 3.3a). Softening the impurity spring

sti�ness creates an attractive potential well for the antikink. The antikink

may then release a part of its potential energy and get trapped at such an

impurity site (Fig. 3.3b). If the impurity spring is made even softer, such that

an antikink can no longer transfer its kinetic energy forward or dissipate it

su�ciently quickly to be trapped, the incident antikink is completely re�ected

(Fig. 3.3c). For similar reasons, a sti�er impurity acts like a repulsive potential
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well that can re�ect slow moving antikinks.

(a) (b)

(c)

Figure 3.3. An antikink interacts with an impurity and is either (a) transmitted,

shown here for v0 = 4.0 and ki/k = 0.80, (b) trapped, shown here for v0 = 4.0 and

ki/k = 0.70 or (c) re�ected, shown here for v0 = 4.8 and ki/k = 0.20. The system

parameters are the same as Fig. 3.2.

These numerical results are summarized in the phase diagrams in the

space of ki and v0 in Fig. 3.4. First, note that a kink (Fig. 3.4a) behaves quite

di�erently from an antikink (Fig. 3.4b). For instance, a kink is never completely
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trapped or re�ected by an impurity. The reason is that it has zero intrinsic

potential energy and thus, no potential energy to lose during a scattering

event. As a collective object, the kink experiences a �at potential landscape

along the chain. It will always go through the impurity, unless ki is so soft

or v0 is so large that the initial kinetic energy of the kink is su�cient to

stretch the impurity spring to form a pinned antikink. That is when scattering

results in the kink being split. This also explains the positive slope of the

boundary line between these two regimes. (The topological constraints of the

�eld require that the number of kinks minus the number of antikinks remains

constant [50], which is one for our boundary conditions.)

For an antikink, the scattering phase diagram has more regimes (Fig. 3.4b).

The positive slope of the boundary curve at higher ki between the upper

re�ection regime (square) and the transmission regime (circle) comes from

the fact that the higher the barrier is, the faster the antikink needs to be, to

get transmitted. The negative slope of the boundary between the transmis-

sion regime (circle) and the trapping regime (triangle), suggests that a softer

impurity spring causes the antikink to dissipate more energy. The antikink

then needs a su�ciently high initial velocity to avoid being trapped at such

an impurity site. The positive slope of the curve between the trapped regime

(triangle) and the lower re�ection regime (square) suggests that if the impurity

spring is so soft such that it can no longer transform the kinetic energy into

other forms or channelize the kinetic energy to the other side of the impurity

su�ciently “quickly”, an antikink incident with su�ciently high energy will

then be completely re�ected. (In simulations we �nd that the maximum initial

velocity with which we can launch an antikink is around v0 = 12. Above this,

the antikink itself becomes unstable and tends to quickly disintegrate.)

For the topological rotor chain, the antikink scattering behaviour is there-

fore very similar to the ones reported for kinks and antikinks in previous

studies on the φ4
model [66, 67]. In addition, for normal φ4

kinks and an-

tikinks, one also observes resonance windows which are alternating regimes

of the excitation being re�ected or trapped, along the axis of initial veloc-

ities for a given impurity strength. These have not been observed during

our simulations of the discrete topological chain. Instead, we only observe

a small range of alternating regimes where the antikink is transmitted or

trapped, around ki/k = 0.75 and v0 = 3.6 in Fig. 3.4b. We leave a detailed
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Figure 3.4. The phase diagram of the scattering behavior in the parameter space of

normalized spring sti�ness constant of impurity ki/k and kink initial velocity v0 for

(a) the kink and (b) the antikink. The system parameters are the same as Fig. 3.2. The

lower limit of v0 for the antikink is around 0.7, below which even the PN barrier in a

perfect chain will capture the antikink.

characterization of the resonance energy exchange between these modes for

future studies.
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3.2 Spring length impurities

In Sec. 2.4 we perform linear mode analysis of the topological chain, and in

Sec. 3.1 we study the nonlinear motion of (anti)kinks with impurities. Here

in this section we will show in a qualitative way that there is a connection

between these two aspects. For convenience, we investigate another type of

impurity: the spring length.

3.2.1 Linear mode analysis

We start with a qualitative observation of the linear vibrational modes. For a

perfect topological rotor chain with free boundary conditions, there exists only

one zero mode – the translation mode of the kink. This is what the Maxwell-

Calladine counting predicts [57, 58]: the chain has n rotors as degrees of

freedom and n− 1 springs as constraints, and the former quantity minus the

latter equals the number of zero modes minus the number of states of self

stress. (In a perfect chain there is no states of self stress.) This counting does

not depend on the geometrical parameters of the chain components.

Now we increase one geometrical parameter, namely the length of the

middle spring l0, so that it is an impurity in the system (Fig. 3.5). As long as no

state of self stress is created, there remains only one zero mode. However, as l0
approaches a critical value lcritical, several qualitative changes take place: (1)

The pro�le of the chain varies signi�cantly. There are two kinks, one on each

side of the impurity spring. (2) Eigenmode analysis shows that the amplitude

of the zero mode has two prominent parts that are spatially separated, each

of which is localized around a kink as an individual translation mode. Both

parts of the zero mode point towards the same direction. (3) An additional

soft vibrational mode appears, whose amplitude also has two separated parts

just like the zero mode. But the directions of these two parts are opposite

to each other. This soft mode has a frequency close to zero, much lower

than that of kink shape modes. (4) A soft tensional mode dual to the soft

vibrational mode emerges, being localized around the impurity spring. (A

tensional mode is a vector whose components are the in�nitesimal spring

tensions caused by the in�nitesimal motion of the dual vibrational mode. The

duality comes from the fact that the tensional mode is an eigenfunction of the
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supersymmetrical “partner” of the dynamical matrix, while the vibrational

mode is an eigenfunction of just the dynamical matrix. See [19, 25, 26] for

more details.)

These changes do not contradict the Maxwell-Calladine counting: only

one vibrational mode has strictly zero frequency, unless l0 actually reaches

lcritical. In that case, the frequencies of both the soft vibrational mode and the

soft tensional mode go to zero. By de�nition the tensional mode becomes a

state of self stress. Then the Maxwell-Calladine counting still holds as there

are now two zero modes and one state of self stress.

The above analysis only considers in�nitesimal oscillations around zero-

energy equilibrium points. In the next section, we study qualitatively the

nonlinear motion of kinks with �nite energy, providing a perspective comple-

mentary to the linear analysis.

3.2.2 Nonlinear dynamics: linkage limit

3.2.2.1 Setup: Hamiltonian

To simplify the problem, we consider the linkage limit, where all the springs

in a perfect chain are non-deformable rigid bars so that they are holonomic

constraints. There is only one degree of freedom which is the translational

motion of the kink. We choose the kink position x as a collective variable to

describe this degree of freedom.

Then we introduce the impurity by replacing the middle rigid bar with a

longer spring that is “soft” (i.e. with a �nite spring sti�ness constant) (Fig. 3.6a).

A soft spring does not strictly constrain the angles of the two rotors it connects

but rather gives a potential energy to deviations from its preferred length.

The chain then has one fewer constraint, which in turn means that it has two

degrees of freedom. We regard the whole chain as two linkage sub-chains,

then the two degrees of freedom are shared by the two kinks of the sub-chains,

which we call Kink 1 and Kink 2 with position x1 and x2 respectively. The

coordinate system for the discrete chain model is illustrated in Fig. 3.6a, and

its precise de�nition is contained in Appendix 3.A. We see that by taking the

linkage limit, the number of degrees of freedom is reduced from the number

of rotors (16 for the chain in Fig. 3.6a) to the number of kinks (2 for two kinks).
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(a)

(b)

(c)

(d)

Figure 3.5. The zero vibrational mode (a), the soft vibrational mode (b), and the

soft tensional mode (c) of a topological chain with a longer spring in the middle as

an impurity. The con�guration parameters are θ = 0.58, r/a = 0.8, l/a = 1.68,

l0/a = 2.30 and lcritical/a = 2.31. The soft mode frequency is 7.7 × 10−9
in

the unit of (r/a)
√
k/M , which means the mode is much “softer” than the kink

shape mode whose frequency is of the order 10−2
. In (a) and (b), the arrows indicate

the mode amplitude of the displacement of each rotor. In (c), the thickness of the

green bars indicates the tensional mode amplitude on each spring. All the springs,

both normal ones and the impurity, have the same sti�ness. (d) shows a LEGO

demonstration.
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Figure 3.6. (a) Illustration of the coordinate system of a topological rotor linkage

chain with θ = 0.58, r/a = 0.8, l/a = 1.68 and lcritical/a = 2.31. The linkage

bars are the solid lines and the impurity spring is the dashed line. In (b), the upper

panels show the potential functions in 2D con�guration space for various l0. One

corner of the function is trimmed for visualization. The red curve corresponds to the

potential for Kink 1 in the one d.o.f. case where Kink 2 is �xed at x2 = 0. The lower

panels show the phase portraits of Kink 1.
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Now we derive the Hamiltonian. Note that the potential energy only comes

from the deformation of the impurity spring, which in turn just depends upon

the angles of the head rotors θ̃i. Since xi is the degree of freedom, it determines

the state of the sub-chain i, including θ̃i. Thus from the continuum theory

(Eq. 2.13 where u = r sin θ), we obtain θ̃i(xi):

sin θ̃i(xi) = sin θ tanh
(
r sin θ(|xi| − x̃i)

a2

)
, (3.1)

where θ is the equilibrium angle of a perfect chain, a is the lattice spacing, r
is the rotor length, and x̃i is the position of the head rotor.

Putting θ̃i(xi) into the Hookean spring potential V = 1
2k(l1,2 − l0)2

where l1,2 takes the form in Eq. (2.6) and l0 is the rest length of the impurity

spring, we obtain the potential function V (x1,x2; l0) as a function of the kink

positions (Fig. 3.6b). We formally de�ne the e�ective kink momentum p and

mass m for the sub-chains in terms of the total kinetic energy of the rotors

T =
∑8
j=1

1
2mr

2θ̇2
j ≡ 1

2mp
2
. Thus the Hamiltonian H(x1,x2, p1, p2; l0) =

T (p1, p2) + V (x1,x2; l0) is obtained.

3.2.2.2 Individual kink: Phase portrait

We �rst investigate a simple case where Kink 2 is �xed at x2 = 0 and only

Kink 1 is allowed to move. Then the chain has only one degree of freedom

x1. With the Hamiltonian, we draw the phase portraits of xi for various l0
in Fig. 3.6b. We �nd that there is a critical value for the rest length of the

impurity spring

lcritical =
√
(2r sin θ+ a)2 + (2r cos θ)2, (3.2)

which determines the pattern of the phase portrait and the qualitative behavior

of the dynamics of the chain.

When l0 < lcritical, the dumbbell-shaped separatrix curve extends almost

across the whole reachable region of x1. The two equilibrium points at x1 ≈
+8 and x1 ≈ −8 correspond to the kink being localized around the impurity

spring. x1 is either positive or negative depending on the orientation of the

end rotor. At these two equilibrium points the impurity spring is not stretched.
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The behavior of Kink 1 depends on whether E is above or below the

separatrix curve’s energy Ec =
1
2k(l0 − lcritical)

2
. If E < Ec, the trajectory

in the phase plane stays inside the region enclosed by separatrix and circu-

lates around one of the equilibrium points. In real space, Kink 1 makes small

oscillations around the impurity spring at either x1 ≈ −8 or x1 ≈ +8. If

E > Ec the trajectory moves in the region outside of the separatrix. In real

space, Kink 1 is able to go over the sub-chain end and move back and forth

between x1 ≈ −8 and x1 ≈ +8.

When l0 approaches lcritical from below and exceeds lcritical, the sepa-

ratrix curve shrinks and disappears. The two equilibrium points merge into

one at x1 = 0 at the end of the sub-chain
1
. In real space, the kink with �nite

energy oscillates around the sub-chain end x1 = 0.

3.2.2.3 Two kinks: Accessible con�guration space

The phase space of a chain with two kinks is 4D. For the convenience of

visualization, we investigate the potential function V (x1,x2; l0) in the 2D

con�guration space. The shape of the potential depends on l0 and determines

the qualitative dynamics of the two kinks. We also perform simulations of

Newtonian dynamics to investigate the qualitative behavior of the nonlinear

motion of the kinks.

When l0 < lcritical (Fig. 3.7a), the potential looks like a square Mexican

hat. The bottom of potential valley is a square ring, on which all the points

are at zero energy. In linear mode analysis, we �nd a zero mode along the

valley and a soft mode along the transverse direction. We will show that the

nonlinear dynamics at �nite energy possesses the traits that are closely related

to those in the linear analysis at zero energy.

Note that the impurity spring is maximally stretched at x1 = x2 = 0,

and the corresponding potential maximum Ec =
1
2k(l0 − lcritical)

2
. It is the

minimal energy for both kinks to move away from the impurity. If E < Ec,
the two kinks take turns moving on their respective sub-chains. One kink

oscillates near the impurity spring, while the other kink moves away. The

nonlinear dynamics of the kinks is visualized as a trajectory going along the

1
In the language of dynamical systems, this process is called a supercritical pitchfork

bifurcation.
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x1=4.6

↓

x2=-6.7

↓

(a)

x1=-2.6

↓

x2=-2.2
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(b)

x1=0.0
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x2=0.0
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(c)

x1=5.5
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x2=-2.2

↓

(d)

Figure 3.7. The trajectories of the chain generated by simulations of Newtonian

dynamics on the theoretical potential function in the con�guration space at (a)
l0 < lcritical, E < Ec, (b) l0 < lcritical, E > Ec, (c) l0 = lcritical, E = Ec =
0, and (d) l0 > lcritical. In the top �gures of (a) and (b), the color scale of the

trajectories indicates the potential energy of the chain in arbitrary units. The big red

dots correspond to the con�guration of the real-space chains shown in the bottom

�gures of each panel.
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bottom of the potential valley. The accessible region in the con�guration

space is a square annulus, at the corner of which the major part of energy is

transferred from the one kink to another. In fact, this can be interpreted as

the motion of a single “split” kink through the system.

WhenE ≥ Ec (Fig. 3.7b), there is su�cient energy for both kinks to move

away from the impurity spring simultaneously. In the con�guration space,

the trajectory gets out of the potential valley and climbs up to the 2D plateau

in the middle. The accessible region now is a square disk. In real space, the

kinks independently hit the impurity spring and get re�ected.

When l0 = lcritical (Fig. 3.7c), the linear mode analysis predicts that the

chain model in Fig. 3.7c has two zero modes, each being localized around the

kink at the end of the respective sub-chain, and a state of self stress localized

around the impurity spring. From the viewpoint of nonlinear dynamics, the

potential function changes qualitatively: As l0 approaches lcritical, the square

ring of the potential valley shrinks into one point at x1 = x2 = 0, and Ec
goes to zero. In other words, the Mexican hat transforms into a single basin.

In this shrinking process, the soft mode, which corresponds to the oscillation

transverse to the valley, transitions into a zero mode, because the depth of

the valley vanishes. In terms of nonlinear dynamics, this transition means

that no matter how small the total energy E is, the accessible region in the

con�guration space is always a square disk rather than a square annulus.

When l0 > lcritical (Fig. 3.7d), the impurity spring is compressed, which

gives a minimum potential energy Emin = 1
2k(l0 − lcritical)

2
for the static

con�guration. In a linear analysis, the two zero modes become normal modes

with �nite frequency, as the impurity spring pushes the two kinks to the chain

ends, generating a �nite restoring force for the motion of the modes. In the

nonlinear dynamics, the accessible region of the kinks is still a square disk.

Fig. 3.8 summarizes the above results with E and l0 as parameters. When

l0 ≤ lcritical, the curve Ec =
1
2k(l0 − lcritical)

2
marks the transition of the

accessible region in con�guration space from an annulus to a disk. Note that

we only investigate the case of l0 > l, in which Fig. 3.8 is valid. For l0 < l
case, the potential landscape takes a di�erent form, and so does the possible

transition. We do not cover this case in this paper, however, as we have made

the connection between linear mode analysis and nonlinear dynamics.
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0
l0

E

Ec=
k

2
(l0 - lcritical)2

lcritical

Figure 3.8. The parameter space of the total energy E and the impurity spring

length l0. The critical energy Ec as a function of l0 forms a parabola. The chain

shows di�erent dynamical behaviors across the left branch of the parabola. The

vertical dashed line of l0 = lcritical is the boundary line across which the shape of

the potential function transitions qualitatively. The gray area below the right branch

of the parabola is energetically forbidden.

Appendix

3.A Convention of kink coordinates in discrete
models

The concept of kinks stems from the continuum φ4
theory. To extend this

concept to the discrete chain model, we de�ne the coordinate system of a sub-

chain kink as follows (Fig. 3.6a): The absolute value of the position of a kink

equals the rotor’s integer index if the rotor is vertical, otherwise the position

is a real number interpolating between the indices of the two neighboring

rotors that are leaning opposite to each other. The positional interpolation is

proportional to the linear interpolation between the absolute values of the



58 Chapter 3. Topological rotor chains with impurities

angles of two neighbor rotors. The rotor angles are the measured against the

vertical alternatively, as mentioned in Sec. 2.2. When a kink approaches the

end points of the chain, the end rotor �ips over. Here the kink pro�le from

the continuum theory ceases to be valid. Thus we take as our convention that

a kink is at the origin of the coordinate system when the end rotor is collinear

with the spring connecting to the next rotor, and its sign depends on whether

the end rotor leans upwards or downwards. The coordinate between 0 and 1
(or −2) is obtained by linear interpolation of the angles of the end rotor at 0
and 1 (or −2). In this ad hoc convention, the chain forms a state of self stress

when both kinks are at origin. The two sub-chains are aligned head-to-head,

and the two head rotors (|xi| = 8) are coupled by the impurity spring.


