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Chapter 2

Kink-antikink asymmetry in
topological mechanical
chains

2.1 Introduction

chanics often inspired by the physics of electronic topological insula-

tors and the quantum Hall effect. In these electronic systems the basic
question is whether a material is an insulator or a conductor. The answer
depends on which portion of a topological insulator one examines: the bulk
is usually gapped and hence insulating while the edge displays gapless edge
modes whose existence is protected from disorder and variations in material
parameters by the existence of integer-valued topological invariants [54]. In
topological mechanical systems, the corresponding question is whether a
material is rigid or floppy. The ability to modulate the rigidity of a structure
in space allows to robustly localize the propagation of sound waves [[17, 29
42, 147,55, |56]], change shape in selected portions [13} 18| 19} [25} [26] [28] 4346l
or focus stress leading to selective buckling or failure [[i]].

TOPOLOGICAL IDEAS have led to recent advances in continuum me-

By translating the topological properties of bands of electronic states
into the classical setting of vibrational bands, one can identify topologically
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protected and hence robust properties of vibrational modes in both discrete
lattices and continuous media. For example, the concept of “topological polar-
ization” recently introduced by Kane and Lubensky [25] building on counting
ideas from Maxwell and Calladine [57,[58] determines the existence and the
position of zero-energy motions that are localized at edges and defects of a
marginally rigid mechanical lattice (one in which constraints and degrees of
freedom are exactly balanced).

Perhaps the simplest model of topological mechanical lattices is the rotor
chain proposed in Ref. [25]. The system consists of a chain of classical rotors
harmonically coupled with their nearest neighbours, as shown in Fig.
There are two distinct classes of ground state configurations, one with all
rotors leaning towards the left and the other where they lean towards the
right. Mathematically, these two states may not be deformed to each other
without the appearance of bulk zero modes; thus they may each be assigned
a different winding number, associated with the Fourier transform of the
compatibility matrix C'(¢q), which connects the linear displacement of rotors
with the extension of springs; see Ref. [26] for a detailed explanation.

The above considerations arise from band theory and thus concern only
the linearized zero-energy infinitesimal motions. Indeed, the vanishing of
the linear response implies that nonlinear effects dominate. By developing
a nonlinear theory of the rotor chain, it was shown in Ref. [18] that the in-
finitesimal zero-mode displacement integrates to a finite motion. This motion
can be described in the continuum limit by objects similar to “kinks” in the ¢*
field theory [50]], which connects the topological polarization invariant of the
linear vibrations to the study of topological solitons [18][19]. Although the two
appearances of the term “topology” in the linear and nonlinear theory stem
from different contexts, the latter encompasses the predictions of the former
and also explains additional features exclusive to the nonlinear dynamics [ig].

The nonlinear dynamics of this topological chain can be approximated by
the critical trajectories of a Lagrangian written in the following form [18] 9]

L:/dx@—($)2—2(2—1)2— \@%U—D

the kinetic term  the classical ¢* potential terms the topological boundary term

(2.1)




2.1. Introduction

The first term corresponds to the kinetic energy while the second and third
are the ones encountered for example in the Landau theory of the Ising model.
Note, however, that there is an additional boundary term that contributes
to the energy but does not enter the Euler-Lagrange equation. Hence, one
obtains static kink and antikink solitary wave solutions of the usual form [50]

T — X

V2

u = £ tanh

(2.2)

The boundary term gives new properties to the solutions and breaks the
symmetry between kinks and antikinks. For example, it predicts that the
static kink configuration costs zero potential energy while the static antikink
configuration has a finite potential energy. Previous work on this model has
been motivated by the kink’s zero-energy properties, and thus the shape and
stability of the antikink and its dynamical behavior were not studied.

In this Chapter we explore the physics of these finite-energy configu-
rations. We compare the dynamics of the kink and antikink sectors in the
topological rotor chain and study their interaction with a lattice impurity.
We find that differences arising from the topological boundary term are ap-
parent in all of these aspects. In Sec. we explain the discrete model and
develop a fixed-point analysis of the kink motion using a cobweb plot. In
Sec.|2.3] we review the continuum theory and compare the predictions for the
antikink with the discrete model. In Sec. we study the eigenmodes of the
chain around a single kink or antikink profile. We exploit the tangent stiffness
matrix approach developed by Guest [59] to analyze prestressed structures.
In Sec. we study the nonlinear transport properties. In a conventional
continuum ¢* field theory, owing to translation invariance, both the kink and
antikink propagate at uniform speed. However, lattice discreteness effects
breaks this invariance and generates the so-called Peierls-Nabarro (PN) bar-
rier [[60H62]]. For the topological rotor model, we find that only the antikink
has a finite PN barrier whereas the kink always propagates freely. We explain
this phenomenon as a consequence of the zero-energy cost associated with

the kink profile.
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Figure 2.1. A kink (a) and an antikink (b) configuration in a topological chain (TC)
model of rotors (blue) and springs (red dashed lines) in the presence of a single
impurity (green solid lines) modeled as a spring with a different stiffness. For the kink
profile, the springs in the chain are at their rest length, while for the antikink, they
are stretched. A sketch of kink and antikink profiles in terms of the continuum field
variable © = sin § (where 0 is the rotor angle) is shown below each configuration.
(c) A two-rotor system. The masses are the blue dots, the rigid rotors are the black
lines, the pivots are the crosses, and the spring is the dashed red line. Here, a is the

lattice spacing, r is the rotor length, [ is the rest length of the springs and 6, 3 are
the rotor angles with respect to the vertical.




2.2. Discrete model

2.2 Discrete model

The model we study consists of rotors of length r. The rotor pivots are placed
on a 1D lattice with spacing a. The angles 6; of the rotors are measured in an
alternating fashion along the lattice, from the positive y-axis at odd-numbered
sites and negative y-axis at even-numbered sites. The equilibrium angle is 6
for a uniform lattice configuration without a kink or antikink. The masses M
at the tips of the rotors are connected by harmonic springs with identical rest
lengths [ and spring constants k. The two-rotor unit cell of the topological
chain is illustrated in Fig.

We now construct the chain with a kink under free boundary conditions.
There are n rotors and n — 1 springs. If we assume that the springs are in-
finitely stiff (k — o0), the springs become n — 1 constraints and the system
only has a single independent degree of freedom. The angle of a single rotor
determines all the others iteratively. This degree of freedom manifests itself
as a mechanism which, as has been previously shown in [18], can be approxi-
mately described by the domain wall solution in a modified ¢* theory We
call this mechanism a “kink” and discuss its continuum theory in the following
sections.

We use a cobweb plot to display the kink in Fig. This is a tool for
visualizing the process of iteratively solving the nonlinear constraint equations
Eqn. cell by cell. We construct the cobweb plot by drawing (1) a diagonal
line 6; = 6,41 and (2) a curve of the implicit function given by the nonlinear
constraint equation that ensures the springs are not stretched,

(a+rsinf; —rsin;1)? + (rcosf; +rcosiq)? = . (2.3)

(An explicit relation between neighbouring rotor angles is derived analytically
with complex notation in Appendix [2.A])

Varying the parameters (a, 7, 0) yield other phases of the topological rotor chain. In this
thesis, we only consider the topological chain in the flipper phase [18] where the ot theory is
a valid approximation. The name flipper describes the back-and-forth motion of the rotors
as a kink propagates, in contrast to the spinner phase, where the rotors complete a full circle.
The continuum limit of the spinner phase can be approximately described by the sine-Gordon
theory
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Figure 2.2. The configuration (a) and the corresponding cobweb plot (b) for the kink
0] = 0.58. The springs are at their
rest lengths. In (b), the black curve is the constraint equation which ensures that the
springs are unstretched, the gray diagonal line satisfies 0,11 = 0;, the blue point
(6;,0;) represents rotor 7, the red point (6;, 6;11) represents the spring connecting
rotors ¢ and ¢ + 1, and the red dashed lines with arrows indicates the iterative process
that generates the kink profile. The iteration steps from 07 to 81¢ are shown.

The iteration steps are as follows:

1. Given the angle 0, of the first rotor at the left end, find the point on the



2.2. Discrete model

function curve with coordinates (61, 6).

2. Draw a horizontal line from (61, f2) to the diagonal line. This gives the
point (92, 92)

3. Draw a vertical line from (62, 62) to the function curve. This gives the
point (02, 63).

4. Repeat step 2 and 3 until the point (6,,—1, 6,,) is found.

In Fig. we illustrate steps 2 and 3 from 67 to 619, which are near the
kink center. The blue point with coordinates (6;, 6;) stands for the ith rotor
of angle 6;. The red point with coordinates (6;, 6; 1) represents the state of
the spring that connects the rotors of 6; and ;1.

Note that in Fig. the diagonal line and the function curve intersect at
two points. They are the fixed points of iteration. If all the red points (6;, 0;+1)
stay at one fixed point, the plot represents a uniform lattice. The iteration step
proceeds from the leftmost rotor of the chain to the rightmost. We see that
the flow proceeds outwards from one fixed point and then inwards towards
the other fixed point.

The cobweb plot may be used to graphically derive the decay lengths of
zero energy deformations, as they approach their uniform limits. As mentioned
above, a fixed point corresponds to an intersection between the line 6; = 6,4
and the function curve. Note that the behavior of 0; as it approaches a fixed
point resembles a "self-similar" zigzag motion between 6; = 6, and the
tangent line of the function curve. This motivates linearizing the function
curve around the fixed point as follows:

fiv1—0 = F'(0)(6; —0), (2.4)

where 0, the equilibrium angle, is also just the value of the fixed-point angle
and F’(6) is the slope of the function curve at that point (which could be
computed explicitly in terms of r, a,[). This equation yields that §; — 6 o
exp(log F'(0)i), or that the decay length is |1/ log F’(8)| (the sign of log F’
tells us whether the fixed point is attracting or repelling). This result recovers
the penetration depth of the boundary modes computed in Ref. [18] using

band theory.
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In the cobweb plot, the static kink appears as a sequence of points on the
function curve interpolating between a repelling and attracting fixed point.
The dynamics of the kink in the cobweb plot is therefore the flow of a cascade
of points between a pair of fixed points (Movie S1). While the kink propagates,
the points in the middle, such as (07, 63), (s, 69) and (6y, 610 ), corresponding
to the kink center, move more than those points close to the fixed points,
corresponding to the spatially localized nature of the kinetic energy.

Generating an antikink requires a few more steps, as it stretches springs,
and thus does not satisfy a constraint function that we could iteratively solve.
However, the continuum theory suggests that kinks and antikinks both have
the same functional profiles with only their signs reversed (see Sec.[2.3). As a
result, we use the same iterative procedure as that for the kink, and then simply
swap the appearances of 6; and ¢, in Eqn. to obtain an approximation
for the antikink profile. This method is equivalent to reflecting the red points
in Fig. across the diagonal line. The antikink constructed this way is not
an equilibrium configuration and has unbalanced stresses in the springs. This
is because generically, the profiles of the kink and antikink are not the same in
a discrete topological rotor chain. We next relax the springs using dissipative
Newtonian dynamics to remove the unbalanced stresses and obtain a stable
profile, which we show in the cobweb plot in Fig. [2.3] In that figure, the spring
connections (red dots) around the core of the antikink profile (rotors 8 and 9)
do not fall on the curve which corresponds to unstretched springs. This implies
large spring deformations which we show explicitly in Fig. The amount
by which the springs are stretched is symmetrical around the 8th spring,
which is in accordance with the fact that a stable antikink has balanced forces
on each rotor. Note that we have fixed the boundary conditions to ensure that
the antikink is in mechanical equilibrium, which is not generically true. As
discussed later in Sec. [2.5] this has important consequences for the PN barrier.

2.3 Continuum theory

In this section, we review the continuum approximation to the kink and
antikink profiles [18] and compare these with the discrete model developed in
the previous section. The discrete Lagrangian for the topological rotor chain
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Figure 2.3. The configuration (a) and the corresponding cobweb plot (b) for an
antikink profile in the topological rotor chain with r/a = 0.8, |§| = 0.58, where we
see that the springs are stretched. In (b) the same graphic notation as in Fig. [2.2]is
used except that we have not used an iterative process for constructing the antikink

profile, rather, depicted is only a visualization of the configuration of the rotor chain.

The red points are obtained by first reflecting the red points in Fig. across the

diagonal line, and then relaxing the springs using dissipative Newtonian dynamics.

Note that the two rotors at the edges need to be collinear with the springs to ensure
force balance. This results in the angles overshooting at the fixed points.

21



22 Chapter 2. Kink-antikink asymmetry in topological mechanical chains

@ Discrete model
— Continuum theory

.
12 3456 7 8 910111213141516
Rotor index i

(@)

o o
[N w

©
—

Spring stretching /;;,,-7

12 3 45 6 7 8 91011 12131415
Spring index i
(b)

Figure 2.4. (a) The 0 profile (rotor angles) for the antikink profile in Fig. and
the corresponding continuum prediction from Eqn. (2.13). Note that the two rotors
at the edges need to be collinear with the springs to ensure force balance and this
results in the rotor angles overshooting the equilibrium value § = +0.58. (b) The
amount of spring stretching for the antikink profile.



2.3. Continuum theory

(see also Fig. with free boundary conditions is

"1
S e (8] E e

Here, n is the total number of rotors, M is the mass at the tip of a rotor, r is
the rotor length, 0; is the angle that rotor ¢ makes with the vertical (measured
alternately as shown in Fig. , k is the spring constant, [ is the rest length
of the spring and /; ;11 is the instantaneous length of the spring that connects
rotor ¢ to rotor ¢ 4- 1. From geometry

liHl = a® + 2ar(sin b, 1 —sin6;) + 2r2 + 2r% cos(6; + 0;11).  (2.6)

which in the uniform limit §; = ;1 = 0 gives the rest length of the spring
7* = a2+ 4r2 cos? 0.

We make the working assumption that deformations do not stretch the
springs significantly and hence we can neglect (or add) terms higher than
quadratic order in l; ;41 — [ for all i. This is a reasonable approximation for
the system configuration with a kink profile but is not well-justified for an
antikink profile. However, in the limit that 6 < 1, we find this to be a good
approximation for both kinks and antikinks. Within this limit, we therefore
express the potential energy term in Eqn. as

2
1 - k -2
k(L1 —1)? =~ B =1 . (27)
9 ( A+l ) 81 ( +1 )

Substituting the expression for [ and Eqn. (2.6) into Eqn. (2.7), we express the

potential energy as

4 2
‘/i,i—t—l = k% <a(sin 91'4_1 — sin 091) — COS 2@ + COS(@i + 0i+l)> . (2-8)
200\T"

Now we take the continuum limit of the potential. First we define a
continuum field for the rotor angles 6(x ), where the spatial variable z = ia +
5 is located symmetrically between two rotors in the unit cell. To leading order,
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0; — 0(x) — (a/2)(d0/dz) and 0;+1 — 0(z) + (a/2)(d6/dx). Eqn.

can then be expressed as

2
2k (ad
Wi =2 (‘;dz v - u2) , (2.9)

where we have defined the projection of the rotor position on the x—axis as

a new field variable u(z) = rsin§(z) and = 7 sin 0.
The kinetic energy density term in Eqn. then assumes the form

. 1 Mr? (du ?
CLT[H] = 27“2—u2<dt> . (2.10)

Next we approximate the Lagrangian Eqn. (2.5) as

M (0u\?  ka® [Ou 2
LN/dx{za(at) ‘21<a)

(2.12)
2k ,_, 2)2 k:aau(72 2)}

—ﬁ(u —u Zanu —u

where we have taken the leading order of the Taylor series expansion of the
nonlinear kinetic term (in the variable u?/ 7“2), which is valid in the limit when
u < 1 or equivalently sin 6 < 1.

The first three terms in Eqn. constitute the normal ¢* theory. The
last term linear in Ou/ Oz, is an additional topological boundary term. Being
a total derivative, it does not enter the Euler-Lagrange equation of motion
and we obtain the usual nonlinear Klein-Gordon equation

il e e 7 u—l—%ug:(), (2.12)
al

whose kink and antikink solutions are given by

ug = £utanh m: To vt ) (2.13)
(a?/2u)V/1—v?/c?



2.4. Linear modes

where the £ denotes an (+)antikink and (-)kink respectively. Here, v is the
(anti)kink speed of propagation and ¢ = (a?/Iv/k/ M) is the speed of sound
in the medium. See Fig. for a comparison with the discrete profile.

Note how the additional boundary term makes the potential energy den-
sity V'[6] a perfect square, see Eqn. (2.9). For the kink configuration, V[6]
therefore vanishes as is the case in the discrete topological chain. For the
antikink however, V' [f] is nonzero and is in fact twice of what we would
expect in the normal ¢* theory (where both the kink and antikink configura-
tions have the same energy). This is an agreement with our discussion on the
discrete model in Sec.

Upon substituting the static (v = 0) antikink profile from Eqn. into
Eqn. and completing the integral, we obtain the potential energy of the
topological rotor chain with an antikink profile

16 (r/a)®sin®@
Vantirink / (ka”) 31+4(r/a)?cos?f

(2.14)

In Fig. we compare this expression with the predictions from the discrete
model. We see that the continuum theory agrees reasonably well with the
discrete model as long as @ is less than approximately 0.6, below which,
the width of the antikink is larger than the lattice spacing and therefore, a
continuum approximation well justified.

2.4 Linear modes

We now study small oscillations around the kink and antikink configurations,
first in the continuum limit, and next in the discrete model by developing the
tangent stiffness matrix approach. In the continuum limit, we make the ansatz
u = ug + du and substitute into Eqn. retaining only terms linear in ju:

2 3 92
%%_%@_%(EQ—&%)(M: 0 (2.15)

If we Fourier transform Eqn. (2.15) with respect to time, we obtain a Schédinger-
like equation with a solvable potential [[63} [64]]. This yields one continuous
spectral band as well as two discrete modes — one translation mode for the
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Figure 2.5. The normalized potential energy plotted against the equilibrium angle 6,
for a static antikink configuration in a topological rotor chain with with /a = 0.8.
The discrete model has 60 rotors. Note that the wobbler transition [18] is around
6 = sin! (%) = 0.67, which is close to where the continuum theory starts to
significantly deviate from the discrete model.

(anti)kink and one shape mode [[65]], which corresponds to small deformations
of the shape of the (anti)kink localized around the center of their profile. For
the topological rotor chain, the frequencies of the two discrete modes are:

wt = 0, for the translation mode (2.16)

ws = (r/a)V12k/ M sing/\/l +4(r/a)? cos?,

(2.17)
for the shape mode.

In Fig. and the kink and antikink are located in the middle of
the chain. The mode arrows (in green) that all point in the same direction,
correspond to a translation mode. In Fig. and[2.6d} the arrows on either
side of the (anti)kink, point in opposite directions and these correspond to
shape deformations of the (anti)kink.
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Figure 2.6. The configurations of (a) the kink translation mode, (b) the kink shape
mode, (c) the antikink translation mode and (d) the antikink shape mode. The green
arrows depict the mode component of each rotor.

In Appendix [2.B] we follow the approach proposed by Guest [59] to derive
the tangent stiffness matrix K for prestressed mechanical structures. With
K we numerically obtain the frequencies of localized modes for the discrete
chain model and compare them with the predictions of the continuum theory
(Eqn. and Eqn. (2.17)) in Fig. [2.7] We find that the translation mode w;
for the kink indeed vanishes (within machine-precision in our numerics) for
all values of # and is thus absent in the range of the log-log plot shown in
Fig. [2.7d). However, as seen in Fig. the translation mode (open circles)
for the antikink is nonzero.

For the shape mode w; (filled circles), we find the numerical results for
both the kink and antikink to be in good agreement with the continuum
theory at small #. Note that in Fig. although the antikink has a finite
nonzero wy, the value is still significantly smaller than ws.
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Figure 2.7. The frequencies w of localized mode(s) for (a) the kink and (b) the antikink
as a function of 6 for a rotor chain with /a = 0.8. The data points are numerically
obtained from the tangent stiffness matrix approach, filled circles correspond to
the shape mode (ws), while open circles correspond to the translation mode (wt) .
The curves are from the continuum theory. The frequencies for the kink translation
mode for all # and the frequencies for the antikink translation mode for § < 0.1 are
effectively zero at machine precision and thus, not visible in the figure.
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2.5 Nonlinear dynamics

In the previous section, we have seen that for the discrete topological chain,
the energy of the translation mode for the kink is zero, whereas that for the
antikink is non-zero. Note that the standard discretization of a ¢* field theory
leads to a non-zero translation mode for both the kink and antikink [62]]. Thus,
the kink here differs qualitatively from the antikink in that it has a zero mode
even when we consider the discrete model. We next numerically simulate the
propagation of a kink and antikink along the discrete chain and see how this
difference manifests in their dynamics.

We numerically integrate Newtons equation of motion for the rotors using
molecular dynamics simulations. (The simulation settings are described in
Appendix [2.C]) A stable chain configuration with a single kink or antikink is
used as the initial configuration (see Figs. for the initial conditions
used). An excitation is set in motion with a velocity along the direction of the
translation mode, but with variable amplitudes.

In Fig. we plot the kinetic energy (K.E.) of the chain as a function of
time for a set of parameters, for a kink excitation (solid curve) and an antikink
excitation (dashed curve). The K.E. of the kink remains nearly constant for
all times with some small fluctuations (as the springs have to slightly deform
to transport energy by simultaneously minimize the potential and kinetic
energy). However in comparison, the K.E. of the antikink for the same set of
initial parameters changes significantly as it propagates down the chain. The
key point is that the kink and antikink do not propagate in the same way.

The asymmetry between a static kink and antikink configuration was
discussed in [18]]. Further, we also know from Eqn. (and the ensuing
discussion) that in the continuum limit, the topological rotor chain is approx-
imately described by a ¢* theory with an additional topological boundary
term which ensures that the potential energy of the kink is zero while that
for the antikink is nonzero (see Ref. [ig] for an interpretation of this fact in
terms of supersymmetry breaking). However, the additional boundary term
does not affect the continuum equation of motion and thus, both the kink and
antikink should have translational invariance in this limit and their dynamics
should not have differed.

The reason for this asymmetrical behavior can be understood only if we
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examine the discrete model. The system with free boundary conditions has n
rotors and n — 1 springs, and the static kink does not require any of the springs
to be stretched. We can therefore interpret the springs as constraints. Thus,
the discrete kink’s equilibrium manifold is a continuous curve embedded in
the n-dimensional configuration space of the rotor angles 6; and the kink
can be positioned stably anywhere along the chain. By contrast, an antikink
requires the springs to be stretched. Forces on each of the rotors have to
be balanced for the system to be in mechanical equilibrium. So the possible
equilibrium configurations have to be symmetrical locally around the center
of the antikink, as shown in Fig. As a result, the equilibrium manifold for
an antikink is not a continuous curve but rather, consists of a set of discrete
points. These correspond to either saddle points or minima in the potential
landscape. Any locally asymmetrical configuration is therefore not stable and
will slide towards a minima.

The saddle points and their nearest minima can be connected by an “adi-
abatic trajectory” [61], which is a curve of steepest descent. The concept of
an adiabatic trajectory is useful in two ways. First, it describes the slow mo-
tion of the antikink through the chain. The position of the antikink center
can be defined by a coordinate along such a trajectory. Secondly, it helps to
rigorously define the so-called Peierls-Nabarro (PN) potential [[60-62]], which
is the effective periodic potential that the antikink feels as it moves along
the adiabatic trajectory. A saddle point in the full potential energy landscape
corresponds to a maximum along the adiabatic trajectory (while a minimum
is still a minimum). Note that although the antikink’s K.E. fluctuations in
Fig.[2.8/do not strictly equal its PN potential barrier, the former reveals the
existence of the latter.

In Appendix we derive the PN potential barrier from the continuum
theory

472 (7‘(’2 + (a/w)2>
3(1 +4(r/a)? - (a/w)Q) sinh(m2w/a) (2.18)

Veng =

—m2w/a

xe for large w/ a.

This shows that the PN barrier decays exponentially as the width w of the
antikink increases.
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Figure 2.8. Time evolution of the kinetic energy for a kink (Fig. and an antikink
(Fig. in a topological rotor chain with non-dimensional parameters M = 1,
k = 10000, 7/a = 0.8, 6 = 0.58. The magnitude of initial velocity in both cases is
vg = 2.4. The units of energy and velocity are determined by the aforementioned
physical parameters. The kink propagation only results in small oscillation of the
K.E. whereas we see significant fluctuations during the propagation of an antikink.
These can be traced to the Peierls-Nabarro potential as shown in Fig.

We next compare the theoretical results with numerical simulations. We
obtain the exact PN barrier by computing the difference in potential energy
between the two types of equilibrium points: a minima and a saddle point,
see Fig. where for a given set of parameters, we find the barrier height to
be 1359.75 — 1359.15 = 0.60, consistent with the magnitude of the K.E. fluc-
tuations shown in Fig. [2.8| for the same set of parameters. By repeating this
calculation for systems with various antikink widths w, we obtain the depen-
dence of the normalized PN barrier Vpyg/ (kaQ) on w/ a, which we show in
Fig. We compare these with the predictions from the continuum theory,
given by Eqn. (2.18). The numerical results (filled circles) obtained from the
discrete lattice and the theoretical predictions (continuous curve) follow a sim-
ilar trend, but differ by at least one order of magnitude. This can be explained
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Figure 2.9. Two equilibrium configurations in the potential energy landscape of a
static antikink: (a) a minimum and (b) a saddle point, respectively. The topological
chain has the same configuration parameters as in Fig.
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Figure 2.10. The dependence of the normalized PN barrier (Vpyp/ka?) on the
normalized antikink width (w/a), for both the discrete model (black circles) and
the continuum theory (solid line). The slope of the dashed line (fit to simulation) is

—10.6, in reasonable agreement with the predictions from the continuum theory in
Eqn. , which gives a slope —72 ~ —9.9.
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by the fact that the discreteness of the lattice is ignored in the theory when
we take the continuum limit in going from Eqn. to Eqn. (2.9). See [60] for
a thorough discussion of the effect of lattice discreteness on the single-kink
dynamics in a ¢* model.
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Figure 2.11. The finite-size effect on Vpyp. AVpnp is defined as Vpyp(L) —
Vpn (L = 60). The configuration parameters are 7/a = 0.8 and § = 0.40.

Further, we also investigate finite-size corrections to the PN barrier, or
more precisely, the difference between Vpyp for a system with a small finite
size and that for a system with a sufficiently larger size (60 rotors). We find
that finite size effects decay quickly as an exponential function with increasing

system size for a topological rotor chain with a central antikink (see Fig. [2.11).

This is because an antikink configuration is a localized object. The components
of its displacement, its translation mode, as well as its shape mode, decay
exponentially away from its center and therefore, so does the effect of any
boundaries.

To summarize, for the topological rotor chain that we study, the PN barrier
for a kink vanishes and that for an antikink is finite. This, not only affects
how their respective kinetic energies fluctuate over a lattice spacing, but also
affects their dynamics over long distances. It is well known that ¢* kinks and
antikinks are non-integrable solutions [64]. Although the kinks and antikinks
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are “topologically” robust objects, they still tend to dissipate energy into
phonons and into shape fluctuations as they propagate. Once an antikink has
lost too much kinetic energy to be able to overcome the PN barrier, it gets
trapped in a PN potential minimum, as shown in Fig. On the other hand,
for the topological rotor chain that we study, the kink never gets trapped,
since its PN barrier vanishes.

\Trapped antikink

0 20 40 ) 60
Rotor index i Incident antikink

Figure 2.12. Perspective view of a moving antikink trapped in its Peierls-Nabarro
barrier around Time = 20 near Rotor #35. The topological rotor chain has the same
configuration parameters as in Fig. [2.8|and the initial antikink velocity is vg = 1.1 in
non-dimensional units.



2.A. Complex notation

Appendix

2.A Complex notation

We use complex variables to derive the explicit relation between neighbouring
rotor angles. Adopting the notation in Fig. we put the pivot of rotor 1 at
the origin of complex plane and the pivot of rotor 2 at the coordinate (a,0).
The positions of the rotor tips are

z1 = ire_wl, (2.19)

02

29 = a—ire’ (2.20)

We have two constraints (where a bar represents complex conjugations):

(22— 21)(22 — 21) = 5, (2.21)

(22 —a)(z2 —a) = r°. (2.22)

Eliminating Zs from above two constraints, we find a quadratic equation

for z9,
Az3 + Bz +C =0, (2.23)
where
A=2=2 (2.24)
a— z1
2,292 _—
B = <l0+ar> —a <Z1 Zl) , (2.25)
a— 21 a— z1
2 2 _ 9,2
C=d>-r’—a <l0—|—ar> . (2.26)
a— 21

We have two branches of the solution for z9

_ —B+VB?—4AC

B 24 ’
which explicitly expresses the black curve in Fig.

zZ9 (2-27)
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2.B Vibrational modes of prestressed mechanical
structures

— _ rotor
v p

(@) (b)

Figure 2.13. Detailed configurations around a single spring p.

We demonstrate how to use to the method of tangent stiffness matrix to
calculate normal modes in prestressed mechanical structures [59].

Consider a single spring p in the configuration shown in Fig. (note
here, we are now specifying rotor angles 6 with respect to the positive z-axis).
From geometry, we find

b tf (2.28)
Jot1 = Upy1-1p tp.

S

fo=—10,-

Here, f, is the spring force projected along the tangent vector %, of rotor p

. [—sind,
Up = < cosf, ) . (2.29)

l,, is the vector along the length of the spring p and points from rotor p to
p+1

(2.30)

i - a-+rcosf,i 1 —1rcost, .
rsin@py 1 —rsind,



2.B. Vibrational modes of prestressed mechanical structures

fp is a scalar tension coefficient for spring p, defined as fp =t,/ |l; , where

tp = kp(\l;\ — 1) for a harmonic spring. Here, l_];] is the instantaneous length
of spring p, [ is the rest length of the spring, and k is the spring constant.

In order to find the tangent stiffness, we differentiate Eqn. with
respect to the rotor angles ¢, and 0,1

Afp _a(_ﬁp'l;) r = T Ity

= t ly —— .
o6, roe, "o (231
af,  O(=b,-L)p , . - 0i
— PR, S ,
r00p41 r00p41 Pl 700y 41 (2:32)
8fp+1 a(ﬁpﬂ l;) P - 7 ‘%p
= t - .
ro0, R S T (233)
O fpt1 8(171)+1 ) l;) 2 = 7 afp
= t Ay ———. 2.
’I”a(gp+1 T80p+1 P + Uprl r89p+1 ( 34)
To simplify Eqn. (2.31), we express
of, _ ai, ol
= 2.35
roby  d|l,| 706 (2.35)
ah A/ 1
- = > = = (9p —1p) = Gp/|lp], (2.36)
dlip| dlip| [yl

where g, = dt,/ d|l;| is defined as the axial stiffness and g, = g, — {, is
defined as the modified axial stiffness.
From Fig. we see that Al = rA6 (v, - 1,)/|l,| and therefore,

Ol _ (=T 1p)
rob, |1

(2-37)
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Substituting Eqn. (2.35/-|2.37) into Eqn. (2.31), we find

3fp 8(—6})-[;) 2 - 7 gp (-@ﬁ»)
= t, — (U, 1l,) S5 ~—F—2. 2.38
r00) 06, p= 0 h) |1yl |yl (239

Similarly, we simplify Eqns. -[2.34)
With the above derivatives, we can now define the tangent stiffness matrix.

For a single spring p, the tangent stiffness matrix, K,,, relates small changes
in rotor position to small changes in rotor forces

of _ rd6
<5fpil> =K, (7“59;1) (2:39)

and can be expressed as

n
_ p A
K, = (n ) gp} (np an) + Sp, (2.40)
p+1
where n, = =0, - lp/|lp|, np+1 = —Up11 - 1/ |lp| and the stress matrix s, is
_ O(Tp-lp) 7 _6(171? lp) ¢
rof, P r00p11 P
Sp = ) . . (2.41)
A(Tpr1-lp) f O(Upr1-lp) f
00, D 00,1 P

To derive the total tangent stiffness K for the rotor chain, we first represent
the tangent stiffness K, in a global coordinate system as an n X n matrix,
and then sum up all the K, for the n — 1 springs:

|
—

n—1 n n—1
K= Z K, = a, [Qp} a;;F + Z Sy, (2.42)
p=1 1 p=1

3
I
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where
0
0
_ | ™
ap = Np i1 (2.43)
0
0
and
(@) (@)
Sp: Sp11 Sp12 ' (2.44)
: Spll Sp12 :
(@) (@)

In a,, the nj, and ny 1 terms are in the pth and p + 1th row respectively, and
all the other terms are zero. In Sy, s;; is the (7, j) element of the 2 x 2 stress
matrix s, for a single spring p and is located in the (p — 1 +4,p — 1+ j)
position of S;, and all the other terms in S, are zero. Here S, has a simpler
form than that of Ref. [59] because we exploit the fact that only nearest
neighbours are coupled in the topological chain.

2.C Simulation methods

We carry out the molecular dynamics simulations in Mathematica. The ODEs
are solved by the function NDSolve, which uses a multi-step method (LSODA)
by default.

In the simulations, we set the lattice spacing a = 1, the rotor mass M =1,
and an arbitrary time unit ¢ = 1. The spring constant & is measured in units
of M /2. The linear velocity of a rotor is measured in units of a/t. The initial
velocity vy of a (anti)kink is defined as the velocity amplitude of the unit
translation mode e’ and e! is the mode component on the i-th rotor. Thus the

initial kinetic energy is X;1m(voel)? = imad.
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2.D Peierls-Nabarro potential barrier via
continuum theory

We derive the PN potential by discretizing the potential energy density in the
continuum theory, i.e. taking the quasi-continuum limit. The PN potential
is, by definition, the potential that the kink faces as it propagates along the
adiabatic trajectory (ad. tr.) :

VPN(X) - V(7 Up—1, Un, Un+1, ---)|X€ad.tr.' (245)

Here, X is the position of the (anti)kink center, w,, is the continuum field at
lattice site n, V' is a discretization of the potential energy density V() in
Eqn. (2.9) and is obtained by summing the potential f(n, X) of each lattice
site:

V("')un—l7unuun+lu ) - § f(n)X)a (246)
where
2k (a? du 2
X)=2( 2 n =2 _ 2 ) .
f(n, X) 2 <2 d(na) +u un> (2.47)

f(n, X) is the approximate potential at a single site n when the (anti)kink
center is at X. Here, we discretize the continuum potential energy density
rather than directly use the exact form of the lattice potential in Eqn. (2.8), so
that we can readily substitute u,,, the continuum field at site n, into f(n, X)
which results in an integrable solution. We choose the static solution (v = 0)
of Eqn. as the adiabatic trajectory:

— X
un(X) = +utanh (na > , (2.48)
w
where the “+” is for the antikink, “—” is for the kink, and the width of the

(anti)kink w = ﬁ [18]]. Substituting Eqn. (2.48) into Eqn. (2.47), we find

f(n,X)=0 for the kink,

kut - X
f(n,X)= 8; sech? (na

w

(2.49)

) for the antikink.



2.D. Peierls-Nabarro potential barrier via continuum theory

Thus Vpx (X) = 0 for the kink, in accordance with the fact that the kink

configuration does not stretch springs and hence costs zero potential energy.

For the antikink, we use the Poisson summation formula to express:

Ven ( Z f(n,X) Z fk, X)
n=-—00 k=—o00
. (250)
/ dnf(n X) —Qﬂzkn
k=—o00
To leading order, we only consider the first harmonic terms k = land k = —1
(k = 0 recovers the continuum approximation). For k = 1, we find
+o0 )
/ dnf(n, X)e 2™
—o0
(2.51)

-4 /
na Y, S
ech4 e 27rzn‘

w

. 400
e—27rz(X/a) / dn’ 81?;‘

The complex exponential suggests a sinusoidally varying potential along
the coordinate X of the adiabatic trajectory, with a period that is equal to
the lattice spacing a. We define the PN barrier (Vpy p) as the height of this
sinusoidal potential. The last integral in Eqn. can be completed using
residues to yield

2 (71'2 + (a/w)Q)
VpnB =
3(1 +4(r/a)? — (a/w)2> sinh(72w/a) (2.52)
x e~Tw/a for large w/ a.
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