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Chapter 2

Kink-antikink asymmetry in
topological mechanical
chains

2.1 Introduction

T
opological ideas have led to recent advances in continuum me-

chanics often inspired by the physics of electronic topological insula-

tors and the quantum Hall e�ect. In these electronic systems the basic

question is whether a material is an insulator or a conductor. The answer

depends on which portion of a topological insulator one examines: the bulk

is usually gapped and hence insulating while the edge displays gapless edge

modes whose existence is protected from disorder and variations in material

parameters by the existence of integer-valued topological invariants [54]. In

topological mechanical systems, the corresponding question is whether a

material is rigid or �oppy. The ability to modulate the rigidity of a structure

in space allows to robustly localize the propagation of sound waves [17, 29–

42, 47, 55, 56], change shape in selected portions [13, 18, 19, 25, 26, 28, 43–46]

or focus stress leading to selective buckling or failure [14].

By translating the topological properties of bands of electronic states

into the classical setting of vibrational bands, one can identify topologically
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14 Chapter 2. Kink-antikink asymmetry in topological mechanical chains

protected and hence robust properties of vibrational modes in both discrete

lattices and continuous media. For example, the concept of “topological polar-

ization” recently introduced by Kane and Lubensky [25] building on counting

ideas from Maxwell and Calladine [57, 58] determines the existence and the

position of zero-energy motions that are localized at edges and defects of a

marginally rigid mechanical lattice (one in which constraints and degrees of

freedom are exactly balanced).

Perhaps the simplest model of topological mechanical lattices is the rotor

chain proposed in Ref. [25]. The system consists of a chain of classical rotors

harmonically coupled with their nearest neighbours, as shown in Fig. 2.1a.

There are two distinct classes of ground state con�gurations, one with all

rotors leaning towards the left and the other where they lean towards the

right. Mathematically, these two states may not be deformed to each other

without the appearance of bulk zero modes; thus they may each be assigned

a di�erent winding number, associated with the Fourier transform of the

compatibility matrix C(q), which connects the linear displacement of rotors

with the extension of springs; see Ref. [26] for a detailed explanation.

The above considerations arise from band theory and thus concern only

the linearized zero-energy in�nitesimal motions. Indeed, the vanishing of

the linear response implies that nonlinear e�ects dominate. By developing

a nonlinear theory of the rotor chain, it was shown in Ref. [18] that the in-

�nitesimal zero-mode displacement integrates to a �nite motion. This motion

can be described in the continuum limit by objects similar to “kinks” in the φ4

�eld theory [50], which connects the topological polarization invariant of the

linear vibrations to the study of topological solitons [18, 19]. Although the two

appearances of the term “topology” in the linear and nonlinear theory stem

from di�erent contexts, the latter encompasses the predictions of the former

and also explains additional features exclusive to the nonlinear dynamics [19].

The nonlinear dynamics of this topological chain can be approximated by

the critical trajectories of a Lagrangian written in the following form [18, 19]

L =

ˆ
dx

(
∂u

∂t

)2

︸ ︷︷ ︸
the kinetic term

−
(
∂u

∂x

)2
− 1

2 (u
2 − 1)2︸ ︷︷ ︸

the classical φ4
potential terms

−
√

2 ∂u
∂x

(u2 − 1)︸ ︷︷ ︸
the topological boundary term

.

(2.1)
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The �rst term corresponds to the kinetic energy while the second and third

are the ones encountered for example in the Landau theory of the Ising model.

Note, however, that there is an additional boundary term that contributes

to the energy but does not enter the Euler-Lagrange equation. Hence, one

obtains static kink and antikink solitary wave solutions of the usual form [50]

u = ± tanh

x− x0√
2

. (2.2)

The boundary term gives new properties to the solutions and breaks the

symmetry between kinks and antikinks. For example, it predicts that the

static kink con�guration costs zero potential energy while the static antikink

con�guration has a �nite potential energy. Previous work on this model has

been motivated by the kink’s zero-energy properties, and thus the shape and

stability of the antikink and its dynamical behavior were not studied.

In this Chapter we explore the physics of these �nite-energy con�gu-

rations. We compare the dynamics of the kink and antikink sectors in the

topological rotor chain and study their interaction with a lattice impurity.

We �nd that di�erences arising from the topological boundary term are ap-

parent in all of these aspects. In Sec. 2.2, we explain the discrete model and

develop a �xed-point analysis of the kink motion using a cobweb plot. In

Sec. 2.3, we review the continuum theory and compare the predictions for the

antikink with the discrete model. In Sec. 2.4, we study the eigenmodes of the

chain around a single kink or antikink pro�le. We exploit the tangent sti�ness

matrix approach developed by Guest [59] to analyze prestressed structures.

In Sec. 2.5, we study the nonlinear transport properties. In a conventional

continuum φ4
�eld theory, owing to translation invariance, both the kink and

antikink propagate at uniform speed. However, lattice discreteness e�ects

breaks this invariance and generates the so-called Peierls-Nabarro (PN) bar-

rier [60–62]. For the topological rotor model, we �nd that only the antikink

has a �nite PN barrier whereas the kink always propagates freely. We explain

this phenomenon as a consequence of the zero-energy cost associated with

the kink pro�le.
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Figure 2.1. A kink (a) and an antikink (b) con�guration in a topological chain (TC)

model of rotors (blue) and springs (red dashed lines) in the presence of a single

impurity (green solid lines) modeled as a spring with a di�erent sti�ness. For the kink

pro�le, the springs in the chain are at their rest length, while for the antikink, they

are stretched. A sketch of kink and antikink pro�les in terms of the continuum �eld

variable u = sin θ (where θ is the rotor angle) is shown below each con�guration.

(c) A two-rotor system. The masses are the blue dots, the rigid rotors are the black

lines, the pivots are the crosses, and the spring is the dashed red line. Here, a is the

lattice spacing, r is the rotor length, l̄ is the rest length of the springs and θ1,2 are

the rotor angles with respect to the vertical.
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2.2 Discrete model

The model we study consists of rotors of length r. The rotor pivots are placed

on a 1D lattice with spacing a. The angles θi of the rotors are measured in an

alternating fashion along the lattice, from the positive y-axis at odd-numbered

sites and negative y-axis at even-numbered sites. The equilibrium angle is θ
for a uniform lattice con�guration without a kink or antikink. The masses M
at the tips of the rotors are connected by harmonic springs with identical rest

lengths l and spring constants k. The two-rotor unit cell of the topological

chain is illustrated in Fig. 2.1c.

We now construct the chain with a kink under free boundary conditions.

There are n rotors and n− 1 springs. If we assume that the springs are in-

�nitely sti� (k →∞), the springs become n− 1 constraints and the system

only has a single independent degree of freedom. The angle of a single rotor

determines all the others iteratively. This degree of freedom manifests itself

as a mechanism which, as has been previously shown in [18], can be approxi-

mately described by the domain wall solution in a modi�ed φ4
theory

1
. We

call this mechanism a “kink” and discuss its continuum theory in the following

sections.

We use a cobweb plot to display the kink in Fig. 2.2. This is a tool for

visualizing the process of iteratively solving the nonlinear constraint equations

Eqn. (2.3) cell by cell. We construct the cobweb plot by drawing (1) a diagonal

line θi = θi+1 and (2) a curve of the implicit function given by the nonlinear

constraint equation that ensures the springs are not stretched,

(a+ r sin θi − r sin θi+1)
2 + (r cos θi + r cos θi+1)

2 = l
2. (2.3)

(An explicit relation between neighbouring rotor angles is derived analytically

with complex notation in Appendix 2.A.)

1
Varying the parameters (a, r, θ) yield other phases of the topological rotor chain. In this

thesis, we only consider the topological chain in the �ipper phase [18] where the φ4
theory is

a valid approximation. The name �ipper describes the back-and-forth motion of the rotors

as a kink propagates, in contrast to the spinner phase, where the rotors complete a full circle.

The continuum limit of the spinner phase can be approximately described by the sine-Gordon

theory
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Figure 2.2. The con�guration (a) and the corresponding cobweb plot (b) for the kink

in a topological rotor chain with r/a = 0.8, |θ| = 0.58. The springs are at their

rest lengths. In (b), the black curve is the constraint equation which ensures that the

springs are unstretched, the gray diagonal line satis�es θi+1 = θi, the blue point

(θi, θi) represents rotor i, the red point (θi, θi+1) represents the spring connecting

rotors i and i+ 1, and the red dashed lines with arrows indicates the iterative process

that generates the kink pro�le. The iteration steps from θ7 to θ10 are shown.

The iteration steps are as follows:

1. Given the angle θ1 of the �rst rotor at the left end, �nd the point on the
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function curve with coordinates (θ1, θ2).

2. Draw a horizontal line from (θ1, θ2) to the diagonal line. This gives the

point (θ2, θ2).

3. Draw a vertical line from (θ2, θ2) to the function curve. This gives the

point (θ2, θ3).

4. Repeat step 2 and 3 until the point (θn−1, θn) is found.

In Fig. 2.2b, we illustrate steps 2 and 3 from θ7 to θ10, which are near the

kink center. The blue point with coordinates (θi, θi) stands for the ith rotor

of angle θi. The red point with coordinates (θi, θi+1) represents the state of

the spring that connects the rotors of θi and θi+1.

Note that in Fig. 2.2b, the diagonal line and the function curve intersect at

two points. They are the �xed points of iteration. If all the red points (θi, θi+1)
stay at one �xed point, the plot represents a uniform lattice. The iteration step

proceeds from the leftmost rotor of the chain to the rightmost. We see that

the �ow proceeds outwards from one �xed point and then inwards towards

the other �xed point.

The cobweb plot may be used to graphically derive the decay lengths of

zero energy deformations, as they approach their uniform limits. As mentioned

above, a �xed point corresponds to an intersection between the line θi = θi+1
and the function curve. Note that the behavior of θi as it approaches a �xed

point resembles a "self-similar" zigzag motion between θi = θi+1 and the

tangent line of the function curve. This motivates linearizing the function

curve around the �xed point as follows:

θi+1 − θ = F ′(θ)(θi − θ), (2.4)

where θ, the equilibrium angle, is also just the value of the �xed-point angle

and F ′(θ) is the slope of the function curve at that point (which could be

computed explicitly in terms of r, a, l). This equation yields that θi − θ ∝
exp(logF ′(θ)i), or that the decay length is |1/ logF ′(θ)| (the sign of logF ′
tells us whether the �xed point is attracting or repelling). This result recovers

the penetration depth of the boundary modes computed in Ref. [18] using

band theory.
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In the cobweb plot, the static kink appears as a sequence of points on the

function curve interpolating between a repelling and attracting �xed point.

The dynamics of the kink in the cobweb plot is therefore the �ow of a cascade

of points between a pair of �xed points (Movie S1). While the kink propagates,

the points in the middle, such as (θ7, θ8), (θ8, θ9) and (θ9, θ10), corresponding

to the kink center, move more than those points close to the �xed points,

corresponding to the spatially localized nature of the kinetic energy.

Generating an antikink requires a few more steps, as it stretches springs,

and thus does not satisfy a constraint function that we could iteratively solve.

However, the continuum theory suggests that kinks and antikinks both have

the same functional pro�les with only their signs reversed (see Sec. 2.3). As a

result, we use the same iterative procedure as that for the kink, and then simply

swap the appearances of θi and θi+1 in Eqn. (2.3) to obtain an approximation

for the antikink pro�le. This method is equivalent to re�ecting the red points

in Fig. 2.2b across the diagonal line. The antikink constructed this way is not

an equilibrium con�guration and has unbalanced stresses in the springs. This

is because generically, the pro�les of the kink and antikink are not the same in

a discrete topological rotor chain. We next relax the springs using dissipative
Newtonian dynamics to remove the unbalanced stresses and obtain a stable

pro�le, which we show in the cobweb plot in Fig. 2.3. In that �gure, the spring

connections (red dots) around the core of the antikink pro�le (rotors 8 and 9)

do not fall on the curve which corresponds to unstretched springs. This implies

large spring deformations which we show explicitly in Fig. 2.4b. The amount

by which the springs are stretched is symmetrical around the 8th spring,

which is in accordance with the fact that a stable antikink has balanced forces

on each rotor. Note that we have �xed the boundary conditions to ensure that

the antikink is in mechanical equilibrium, which is not generically true. As

discussed later in Sec. 2.5, this has important consequences for the PN barrier.

2.3 Continuum theory

In this section, we review the continuum approximation to the kink and

antikink pro�les [18] and compare these with the discrete model developed in

the previous section. The discrete Lagrangian for the topological rotor chain
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Figure 2.3. The con�guration (a) and the corresponding cobweb plot (b) for an

antikink pro�le in the topological rotor chain with r/a = 0.8, |θ| = 0.58, where we

see that the springs are stretched. In (b) the same graphic notation as in Fig. 2.2 is

used except that we have not used an iterative process for constructing the antikink

pro�le, rather, depicted is only a visualization of the con�guration of the rotor chain.

The red points are obtained by �rst re�ecting the red points in Fig. 2.2b across the

diagonal line, and then relaxing the springs using dissipative Newtonian dynamics.

Note that the two rotors at the edges need to be collinear with the springs to ensure

force balance. This results in the angles overshooting at the �xed points.
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Figure 2.4. (a) The θ pro�le (rotor angles) for the antikink pro�le in Fig. 2.3a and

the corresponding continuum prediction from Eqn. (2.13). Note that the two rotors

at the edges need to be collinear with the springs to ensure force balance and this

results in the rotor angles overshooting the equilibrium value θ = ±0.58. (b) The

amount of spring stretching for the antikink pro�le.
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(see also Fig. 2.2a) with free boundary conditions is

L =
n∑
i=1

1
2Mr2

(
dθi
dt

)2

−
n−1∑
i=1

1
2k(li,i+1 − l)2. (2.5)

Here, n is the total number of rotors, M is the mass at the tip of a rotor, r is

the rotor length, θi is the angle that rotor i makes with the vertical (measured

alternately as shown in Fig. 2.2a), k is the spring constant, l is the rest length

of the spring and li,i+1 is the instantaneous length of the spring that connects

rotor i to rotor i+ 1. From geometry

l2i,i+1 = a2 + 2ar(sin θi+1 − sin θi) + 2r2 + 2r2 cos(θi + θi+1). (2.6)

which in the uniform limit θi = θi+1 = θ̄ gives the rest length of the spring

l
2
= a2 + 4r2 cos2 θ.

We make the working assumption that deformations do not stretch the

springs signi�cantly and hence we can neglect (or add) terms higher than

quadratic order in li,i+1 − l for all i. This is a reasonable approximation for

the system con�guration with a kink pro�le but is not well-justi�ed for an

antikink pro�le. However, in the limit that θ � 1, we �nd this to be a good

approximation for both kinks and antikinks. Within this limit, we therefore

express the potential energy term in Eqn. (2.5) as

1
2k(li,i+1 − l)2 ≈ k

8l2

(
l2i,i+1 − l

2
)2

. (2.7)

Substituting the expression for l̄ and Eqn. (2.6) into Eqn. (2.7), we express the

potential energy as

Vi,i+1 =
kr4

2l2

(
a

r
(sin θi+1 − sin θi)− cos 2θ+ cos(θi + θi+1)

)2

. (2.8)

Now we take the continuum limit of the potential. First we de�ne a

continuum �eld for the rotor angles θ(x), where the spatial variable x = ia+
a
2 is located symmetrically between two rotors in the unit cell. To leading order,
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θi → θ(x)− (a/2)(dθ/dx) and θi+1 → θ(x) + (a/2)(dθ/dx). Eqn. (2.8)

can then be expressed as

aV [θ] =
2k
l
2

(
a2

2
du
dx + u2 − u2

)2

, (2.9)

where we have de�ned the projection of the rotor position on the x−axis as

a new �eld variable u(x) ≡ r sin θ(x) and u ≡ r sin θ.

The kinetic energy density term in Eqn. (2.5) then assumes the form

aT [θ̇] =
1
2
Mr2

r2 − u2

(
du
dt

)2

. (2.10)

Next we approximate the Lagrangian Eqn. (2.5) as

L ≈
ˆ

dx
{
M

2a

(
∂u

∂t

)2
− ka3

2l2

(
∂u

∂x

)2

− 2k
al

2 (u
2 − u2)2 − ka

l
2
∂u

∂x
(u2 − u2)

}
.

(2.11)

where we have taken the leading order of the Taylor series expansion of the

nonlinear kinetic term (in the variable u2/r2
), which is valid in the limit when

u� r or equivalently sin θ � 1.

The �rst three terms in Eqn. (2.11) constitute the normal φ4
theory. The

last term linear in ∂u/∂x, is an additional topological boundary term. Being

a total derivative, it does not enter the Euler-Lagrange equation of motion

and we obtain the usual nonlinear Klein-Gordon equation

M

a

∂2u

∂t2
− ka3

l
2
∂2u

∂x2 −
8k
al

2u
2u+

8k
al

2u
3 = 0, (2.12)

whose kink and antikink solutions are given by

u0 = ±u tanh

 x− x0 − vt
(a2/2u)

√
1− v2/c2

, (2.13)
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where the ± denotes an (+)antikink and (-)kink respectively. Here, v is the

(anti)kink speed of propagation and c = (a2/l
√
k/M) is the speed of sound

in the medium. See Fig. 2.4a for a comparison with the discrete pro�le.

Note how the additional boundary term makes the potential energy den-

sity V [θ] a perfect square, see Eqn. (2.9). For the kink con�guration, V [θ]
therefore vanishes as is the case in the discrete topological chain. For the

antikink however, V [θ] is nonzero and is in fact twice of what we would

expect in the normal φ4
theory (where both the kink and antikink con�gura-

tions have the same energy). This is an agreement with our discussion on the

discrete model in Sec. 2.2.

Upon substituting the static (v = 0) antikink pro�le from Eqn. (2.13) into

Eqn. (2.11) and completing the integral, we obtain the potential energy of the

topological rotor chain with an antikink pro�le

Vantikink/(ka2) =
16
3

(r/a)3 sin3 θ

1 + 4(r/a)2 cos2 θ
. (2.14)

In Fig. 2.5, we compare this expression with the predictions from the discrete

model. We see that the continuum theory agrees reasonably well with the

discrete model as long as θ is less than approximately 0.6, below which,

the width of the antikink is larger than the lattice spacing and therefore, a

continuum approximation well justi�ed.

2.4 Linear modes

We now study small oscillations around the kink and antikink con�gurations,

�rst in the continuum limit, and next in the discrete model by developing the

tangent sti�ness matrix approach. In the continuum limit, we make the ansatz

u = u0 + δu and substitute into Eqn. (2.12) retaining only terms linear in δu:

M

a

∂2δu

∂t2
− ka3

l
2
∂2δu

∂x2 −
8k
al

2 (u
2 − 3u2

0)δu = 0 (2.15)

If we Fourier transform Eqn. (2.15) with respect to time, we obtain a Schödinger-

like equation with a solvable potential [63, 64]. This yields one continuous

spectral band as well as two discrete modes – one translation mode for the
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Figure 2.5. The normalized potential energy plotted against the equilibrium angle θ,

for a static antikink con�guration in a topological rotor chain with with r/a = 0.8.

The discrete model has 60 rotors. Note that the wobbler transition [18] is around

θ = sin−1 ( a
2r
)
= 0.67, which is close to where the continuum theory starts to

signi�cantly deviate from the discrete model.

(anti)kink and one shape mode [65], which corresponds to small deformations

of the shape of the (anti)kink localized around the center of their pro�le. For

the topological rotor chain, the frequencies of the two discrete modes are:

ωt = 0, for the translation mode (2.16)

ωs = (r/a)
√

12k/M sin θ/
√

1 + 4(r/a)2 cos2 θ,
for the shape mode.

(2.17)

In Fig. 2.6a and 2.6c, the kink and antikink are located in the middle of

the chain. The mode arrows (in green) that all point in the same direction,

correspond to a translation mode. In Fig. 2.6b and 2.6d, the arrows on either

side of the (anti)kink, point in opposite directions and these correspond to

shape deformations of the (anti)kink.
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(a)

(b)

(c)

(d)

Figure 2.6. The con�gurations of (a) the kink translation mode, (b) the kink shape

mode, (c) the antikink translation mode and (d) the antikink shape mode. The green

arrows depict the mode component of each rotor.

In Appendix 2.B, we follow the approach proposed by Guest [59] to derive

the tangent sti�ness matrix K for prestressed mechanical structures. With

K we numerically obtain the frequencies of localized modes for the discrete

chain model and compare them with the predictions of the continuum theory

(Eqn. (2.16) and Eqn. (2.17)) in Fig. 2.7. We �nd that the translation mode ωt
for the kink indeed vanishes (within machine-precision in our numerics) for

all values of θ and is thus absent in the range of the log-log plot shown in

Fig. 2.7a). However, as seen in Fig. 2.7b, the translation mode (open circles)

for the antikink is nonzero.

For the shape mode ωs (�lled circles), we �nd the numerical results for

both the kink and antikink to be in good agreement with the continuum

theory at small θ. Note that in Fig. 2.7b, although the antikink has a �nite

nonzero ωt, the value is still signi�cantly smaller than ωs.
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Figure 2.7. The frequenciesω of localized mode(s) for (a) the kink and (b) the antikink

as a function of θ for a rotor chain with r/a = 0.8. The data points are numerically

obtained from the tangent sti�ness matrix approach, �lled circles correspond to

the shape mode (ωs), while open circles correspond to the translation mode (ωt) .

The curves are from the continuum theory. The frequencies for the kink translation

mode for all θ̄ and the frequencies for the antikink translation mode for θ < 0.1 are

e�ectively zero at machine precision and thus, not visible in the �gure.
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2.5 Nonlinear dynamics

In the previous section, we have seen that for the discrete topological chain,

the energy of the translation mode for the kink is zero, whereas that for the

antikink is non-zero. Note that the standard discretization of a φ4
�eld theory

leads to a non-zero translation mode for both the kink and antikink [62]. Thus,

the kink here di�ers qualitatively from the antikink in that it has a zero mode

even when we consider the discrete model. We next numerically simulate the

propagation of a kink and antikink along the discrete chain and see how this

di�erence manifests in their dynamics.

We numerically integrate Newtons equation of motion for the rotors using

molecular dynamics simulations. (The simulation settings are described in

Appendix 2.C.) A stable chain con�guration with a single kink or antikink is

used as the initial con�guration (see Figs. 2.6a- 2.6c for the initial conditions

used). An excitation is set in motion with a velocity along the direction of the

translation mode, but with variable amplitudes.

In Fig. 2.8, we plot the kinetic energy (K.E.) of the chain as a function of

time for a set of parameters, for a kink excitation (solid curve) and an antikink

excitation (dashed curve). The K.E. of the kink remains nearly constant for

all times with some small �uctuations (as the springs have to slightly deform

to transport energy by simultaneously minimize the potential and kinetic

energy). However in comparison, the K.E. of the antikink for the same set of

initial parameters changes signi�cantly as it propagates down the chain. The

key point is that the kink and antikink do not propagate in the same way.

The asymmetry between a static kink and antikink con�guration was

discussed in [18]. Further, we also know from Eqn. (2.11) (and the ensuing

discussion) that in the continuum limit, the topological rotor chain is approx-

imately described by a φ4
theory with an additional topological boundary

term which ensures that the potential energy of the kink is zero while that

for the antikink is nonzero (see Ref. [19] for an interpretation of this fact in

terms of supersymmetry breaking). However, the additional boundary term

does not a�ect the continuum equation of motion and thus, both the kink and

antikink should have translational invariance in this limit and their dynamics

should not have di�ered.

The reason for this asymmetrical behavior can be understood only if we
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examine the discrete model. The system with free boundary conditions has n
rotors andn− 1 springs, and the static kink does not require any of the springs

to be stretched. We can therefore interpret the springs as constraints. Thus,

the discrete kink’s equilibrium manifold is a continuous curve embedded in

the n-dimensional con�guration space of the rotor angles θi and the kink

can be positioned stably anywhere along the chain. By contrast, an antikink

requires the springs to be stretched. Forces on each of the rotors have to

be balanced for the system to be in mechanical equilibrium. So the possible

equilibrium con�gurations have to be symmetrical locally around the center

of the antikink, as shown in Fig. 2.9. As a result, the equilibrium manifold for

an antikink is not a continuous curve but rather, consists of a set of discrete

points. These correspond to either saddle points or minima in the potential

landscape. Any locally asymmetrical con�guration is therefore not stable and

will slide towards a minima.

The saddle points and their nearest minima can be connected by an “adi-

abatic trajectory” [61], which is a curve of steepest descent. The concept of

an adiabatic trajectory is useful in two ways. First, it describes the slow mo-

tion of the antikink through the chain. The position of the antikink center

can be de�ned by a coordinate along such a trajectory. Secondly, it helps to

rigorously de�ne the so-called Peierls-Nabarro (PN) potential [60–62], which

is the e�ective periodic potential that the antikink feels as it moves along

the adiabatic trajectory. A saddle point in the full potential energy landscape

corresponds to a maximum along the adiabatic trajectory (while a minimum

is still a minimum). Note that although the antikink’s K.E. �uctuations in

Fig. 2.8 do not strictly equal its PN potential barrier, the former reveals the

existence of the latter.

In Appendix 2.D, we derive the PN potential barrier from the continuum

theory

VPNB =
4π2

(
π2 + (a/w)2

)
3
(
1 + 4(r/a)2 − (a/w)2

)
sinh(π2w/a)

∝ e−π2w/a
for large w/a.

(2.18)

This shows that the PN barrier decays exponentially as the width w of the

antikink increases.
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Figure 2.8. Time evolution of the kinetic energy for a kink (Fig. 2.6a) and an antikink

(Fig. 2.6c) in a topological rotor chain with non-dimensional parameters M = 1,

k = 10000, r/a = 0.8, θ = 0.58. The magnitude of initial velocity in both cases is

v0 = 2.4. The units of energy and velocity are determined by the aforementioned

physical parameters. The kink propagation only results in small oscillation of the

K.E. whereas we see signi�cant �uctuations during the propagation of an antikink.

These can be traced to the Peierls-Nabarro potential as shown in Fig. 2.9

We next compare the theoretical results with numerical simulations. We

obtain the exact PN barrier by computing the di�erence in potential energy

between the two types of equilibrium points: a minima and a saddle point,

see Fig. 2.9, where for a given set of parameters, we �nd the barrier height to

be 1359.75− 1359.15 = 0.60, consistent with the magnitude of the K.E. �uc-

tuations shown in Fig. 2.8 for the same set of parameters. By repeating this

calculation for systems with various antikink widths w, we obtain the depen-

dence of the normalized PN barrier VPNB/(ka2) on w/a, which we show in

Fig. 2.10. We compare these with the predictions from the continuum theory,

given by Eqn. (2.18). The numerical results (�lled circles) obtained from the

discrete lattice and the theoretical predictions (continuous curve) follow a sim-

ilar trend, but di�er by at least one order of magnitude. This can be explained
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P.E.= 1359.15

(a)

P.E.= 1359.75

(b)

Figure 2.9. Two equilibrium con�gurations in the potential energy landscape of a

static antikink: (a) a minimum and (b) a saddle point, respectively. The topological

chain has the same con�guration parameters as in Fig. 2.8.
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Figure 2.10. The dependence of the normalized PN barrier (VPNB/ka2
) on the

normalized antikink width (w/a), for both the discrete model (black circles) and

the continuum theory (solid line). The slope of the dashed line (�t to simulation) is

−10.6, in reasonable agreement with the predictions from the continuum theory in

Eqn. (2.18), which gives a slope −π2 ≈ −9.9.
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by the fact that the discreteness of the lattice is ignored in the theory when

we take the continuum limit in going from Eqn. (2.8) to Eqn. (2.9). See [60] for

a thorough discussion of the e�ect of lattice discreteness on the single-kink

dynamics in a φ4
model.
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Figure 2.11. The �nite-size e�ect on VPNB . ∆VPNB is de�ned as VPNB(L) −
VPNB(L = 60). The con�guration parameters are r/a = 0.8 and θ = 0.40.

Further, we also investigate �nite-size corrections to the PN barrier, or

more precisely, the di�erence between VPNB for a system with a small �nite

size and that for a system with a su�ciently larger size (60 rotors). We �nd

that �nite size e�ects decay quickly as an exponential function with increasing

system size for a topological rotor chain with a central antikink (see Fig. 2.11).

This is because an antikink con�guration is a localized object. The components

of its displacement, its translation mode, as well as its shape mode, decay

exponentially away from its center and therefore, so does the e�ect of any

boundaries.

To summarize, for the topological rotor chain that we study, the PN barrier

for a kink vanishes and that for an antikink is �nite. This, not only a�ects

how their respective kinetic energies �uctuate over a lattice spacing, but also

a�ects their dynamics over long distances. It is well known that φ4
kinks and

antikinks are non-integrable solutions [64]. Although the kinks and antikinks
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are “topologically” robust objects, they still tend to dissipate energy into

phonons and into shape �uctuations as they propagate. Once an antikink has

lost too much kinetic energy to be able to overcome the PN barrier, it gets

trapped in a PN potential minimum, as shown in Fig. 2.12. On the other hand,

for the topological rotor chain that we study, the kink never gets trapped,

since its PN barrier vanishes.

Figure 2.12. Perspective view of a moving antikink trapped in its Peierls-Nabarro

barrier around Time = 20 near Rotor #35. The topological rotor chain has the same

con�guration parameters as in Fig. 2.8 and the initial antikink velocity is v0 = 1.1 in

non-dimensional units.
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Appendix

2.A Complex notation

We use complex variables to derive the explicit relation between neighbouring

rotor angles. Adopting the notation in Fig. 2.1c, we put the pivot of rotor 1 at

the origin of complex plane and the pivot of rotor 2 at the coordinate (a,0).

The positions of the rotor tips are

z1 = ire−iθ1 , (2.19)

z2 = a− ireiθ2 . (2.20)

We have two constraints (where a bar represents complex conjugations):

(z2 − z1)(z̄2 − z̄1) = l20, (2.21)

(z2 − a)(z̄2 − a) = r2. (2.22)

Eliminating z̄2 from above two constraints, we �nd a quadratic equation

for z2,

Az2
2 +Bz2 +C = 0, (2.23)

where

A =
z̄1 − a
a− z1

, (2.24)

B =

(
l20 + a2 − 2r2

a− z1

)
− a

(
z̄1 − z1
a− z1

)
, (2.25)

C = a2 − r2 − a
(
l20 + a2 − 2r2

a− z1

)
. (2.26)

We have two branches of the solution for z2

z2 =
−B ±

√
B2 − 4AC
2A , (2.27)

which explicitly expresses the black curve in Fig. 2.2b.
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2.B Vibrational modes of prestressed mechanical
structures
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rΔθ
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Figure 2.13. Detailed con�gurations around a single spring p.

We demonstrate how to use to the method of tangent sti�ness matrix to

calculate normal modes in prestressed mechanical structures [59].

Consider a single spring p in the con�guration shown in Fig. 2.13a (note

here, we are now specifying rotor angles θ with respect to the positive x-axis).

From geometry, we �nd

fp = −~vp ·~lp t̂p
fp+1 = ~vp+1 ·~lp t̂p.

(2.28)

Here, fp is the spring force projected along the tangent vector ~vp of rotor p

~vp =

(
− sin θp
cos θp

)
. (2.29)

~lp is the vector along the length of the spring p and points from rotor p to

p+ 1,

~lp =

(
a+ r cos θp+1 − r cos θp
r sin θp+1 − r sin θp

)
. (2.30)
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t̂p is a scalar tension coe�cient for spring p, de�ned as t̂p ≡ tp/|~lp|, where

tp ≡ kp(|~lp| − l) for a harmonic spring. Here, |~lp| is the instantaneous length

of spring p, l is the rest length of the spring, and k is the spring constant.

In order to �nd the tangent sti�ness, we di�erentiate Eqn. (2.28) with

respect to the rotor angles θp and θp+1

∂fp
r∂θp

=
∂(−~vp ·~lp)
r∂θp

t̂p − ~vp ·~lp
∂t̂p
r∂θp

(2.31)

∂fp
r∂θp+1

=
∂(−~vp ·~lp)p
r∂θp+1

t̂p − ~vp ·~lp
∂t̂p

r∂θp+1
(2.32)

∂fp+1
r∂θp

=
∂(~vp+1 ·~lp)

r∂θp
t̂p + ~vp+1 ·~lp

∂t̂p
r∂θp

(2.33)

∂fp+1
r∂θp+1

=
∂(~vp+1 ·~lp)
r∂θp+1

t̂p + ~vp+1 ·~lp
∂t̂p

r∂θp+1
. (2.34)

To simplify Eqn. (2.31), we express

∂t̂p
r∂θp

=
dt̂p
d|~lp|

∂|~lp|
r∂θp

(2.35)

dt̂p
d|~lp|

=
d(tp/|~lp|)

d|~lp|
=

1
|~lp|

(gp − t̂p) = ĝp/|~lp|, (2.36)

where gp ≡ dtp/d|~lp| is de�ned as the axial sti�ness and ĝp ≡ gp − t̂p is

de�ned as the modi�ed axial sti�ness.
From Fig. 2.13b, we see that ∆l = r∆θ (−~vp ·~lp)/|~lp| and therefore,

∂|~lp|
r∂θp

=
(−~vp ·~lp)
|~lp|

(2.37)
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Substituting Eqn. (2.35 - 2.37) into Eqn. (2.31), we �nd

∂fp
r∂θp

=
∂(−~vp ·~lp)
r∂θp

t̂p − (~vp ·~lp)
ĝp

|~lp|
(−~vp ·~lp)
|~lp|

. (2.38)

Similarly, we simplify Eqns. (2.32 - 2.34)

With the above derivatives, we can now de�ne the tangent sti�ness matrix.

For a single spring p, the tangent sti�ness matrix, Kp, relates small changes

in rotor position to small changes in rotor forces

(
δfp
δfp+1

)
= Kp

(
rδθp
rδθp+1

)
(2.39)

and can be expressed as

Kp =

(
np
np+1

)[
ĝp

] (
np np+1

)
+ sp, (2.40)

where np ≡ −~vp ·~lp/|~lp|, np+1 ≡ −~vp+1 ·~lp/|~lp| and the stress matrix sp is

sp =


−∂(~vp·~lp)

r∂θp
t̂p −∂(~vp·~lp)

r∂θp+1
t̂p

∂(~vp+1·~lp)
r∂θp

t̂p
∂(~vp+1·~lp)
r∂θp+1

t̂p

 . (2.41)

To derive the total tangent sti�ness K for the rotor chain, we �rst represent

the tangent sti�ness Kp in a global coordinate system as an n× n matrix,

and then sum up all the Kp for the n− 1 springs:

K =
n−1∑
p=1

Kp =
n−1∑
p=1

ap
[
ĝp
]
aTp +

n−1∑
p=1

Sp, (2.42)
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where

ap =



0
.
.
.

0
np
np+1

0
.
.
.

0


(2.43)

and

Sp =


0 . . . 0
.
.
. sp11 sp12

.

.

.

.

.

. sp11 sp12
.
.
.

0 . . . 0

 . (2.44)

In ap, the np and np+1 terms are in the pth and p+ 1th row respectively, and

all the other terms are zero. In Sp, spij is the (i, j) element of the 2× 2 stress

matrix sp for a single spring p and is located in the (p− 1 + i, p− 1 + j)
position of Sp, and all the other terms in Sp are zero. Here Sp has a simpler

form than that of Ref. [59] because we exploit the fact that only nearest

neighbours are coupled in the topological chain.

2.C Simulation methods

We carry out the molecular dynamics simulations in Mathematica. The ODEs

are solved by the function NDSolve, which uses a multi-step method (LSODA)

by default.

In the simulations, we set the lattice spacing a = 1, the rotor massM = 1,

and an arbitrary time unit t = 1. The spring constant k is measured in units

ofM/t2. The linear velocity of a rotor is measured in units of a/t. The initial

velocity v0 of a (anti)kink is de�ned as the velocity amplitude of the unit

translation mode et and eti is the mode component on the i-th rotor. Thus the

initial kinetic energy is Σi 1
2m(v0e

t
i)

2 = 1
2mv

2
0 .
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2.D Peierls-Nabarro potential barrier via
continuum theory

We derive the PN potential by discretizing the potential energy density in the

continuum theory, i.e. taking the quasi-continuum limit. The PN potential

is, by de�nition, the potential that the kink faces as it propagates along the

adiabatic trajectory (ad. tr.) :

VPN (X) = V (...,un−1,un,un+1, ...)|X∈ad.tr.. (2.45)

Here, X is the position of the (anti)kink center, un is the continuum �eld at

lattice site n, V is a discretization of the potential energy density V (θ) in

Eqn. (2.9) and is obtained by summing the potential f(n,X) of each lattice

site:

V (...,un−1,un,un+1, ...) =
∑

f(n,X), (2.46)

where

f(n,X) =
2k
l
2

(
a2

2
dun

d(na) + u2 − u2
n

)2

. (2.47)

f(n,X) is the approximate potential at a single site n when the (anti)kink

center is at X . Here, we discretize the continuum potential energy density

rather than directly use the exact form of the lattice potential in Eqn. (2.8), so

that we can readily substitute un, the continuum �eld at site n, into f(n,X)
which results in an integrable solution. We choose the static solution (v = 0)

of Eqn. (2.13) as the adiabatic trajectory:

un(X) = ±u tanh
(
na−X
w

)
, (2.48)

where the “+” is for the antikink, “−” is for the kink, and the width of the

(anti)kink w = a2

2r sin θ [18]. Substituting Eqn. (2.48) into Eqn. (2.47), we �nd

f(n,X) = 0 for the kink,

f(n,X) =
8ku4

l
2 sech4

(
na−X
w

)
for the antikink.

(2.49)
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Thus VPN (X) = 0 for the kink, in accordance with the fact that the kink

con�guration does not stretch springs and hence costs zero potential energy.

For the antikink, we use the Poisson summation formula to express:

VPN (X) =
+∞∑

n=−∞
f(n,X) =

+∞∑
k=−∞

f̂(k,X)

=
+∞∑

k=−∞

ˆ +∞

−∞
dnf(n,X)e−2πikn.

(2.50)

To leading order, we only consider the �rst harmonic terms k = 1 and k = −1
(k = 0 recovers the continuum approximation). For k = 1, we �nd

ˆ +∞

−∞
dnf(n,X)e−2πin

= e−2πi(X/a)
ˆ +∞

−∞
dn′ 8ku

4

l
2 sech4

(
n′a

w

)
e−2πin′ .

(2.51)

The complex exponential suggests a sinusoidally varying potential along

the coordinate X of the adiabatic trajectory, with a period that is equal to

the lattice spacing a. We de�ne the PN barrier (VPNB) as the height of this

sinusoidal potential. The last integral in Eqn. (2.51) can be completed using

residues to yield

VPNB =
4π2

(
π2 + (a/w)2

)
3
(
1 + 4(r/a)2 − (a/w)2

)
sinh(π2w/a)

∝ e−π2w/a
for large w/a.

(2.52)




