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Chapter 1

Introduction

states of matters: a solid maintains both fixed volume and shape, a

liquid maintains a fixed volume but has a variable shape, and a gas
has both variable volume and shape [i]. In recent years, new forms of matter
called mechanical metamaterials appeared with unique properties [2H14]]. Such
metamaterials are artificial structures with effective mechanical properties
that qualitatively differ from those of their base materials. An example from
this thesis is the mechanical kagome lattice model shown in Fig. [r.1l This
model has a free mechanism for deformation so that it does not maintain
either shape or volume. This is a mechanical property that is independent of
the LEGO base materials of solid plastics.

Structure determines properties [15]]. The structure of mechanical metama-
terials begins with repeating unit cells as building blocks. Each unit cell can be
regarded as a tiny mechanical device transforming input forces and motions
into a designed set of output forces and motions. The unit cells are connected
to each other, forming a whole piece of material. In this way, the inputs and
outputs of the unit cells are synthesized into an ordered pattern, which is just
the macroscopic response of a metamaterial to a given macroscopic input.
This macroscopic response can be described by linear waves [16] [i7], solitary
waves [18-20]], or non-wavelike mechanical motions [4} [5} [} 21]. Theoreti-
cal understanding of this physical process is indispensable for designing the
structures and controlling the properties of metamaterials.

PEOPLE conventionally use simple mechanical properties to classify
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(b)

Figure 1.1. Model of a mechanical metamaterial: twisted kagome lattice. As all the
small triangles twist together, the whole structure in (a) contracts to the one in (b).

Mechanical metamaterials can affect the propagation of linear sound
waves. Such acoustic metamaterials (c.f., electromagnetic metamaterials) can
display special properties such as negative refractive indices that provide
functionalities in acoustic cloaking devices [16} 22} [23]. In contrast with these
linear-wave-based metamaterials, one can also consider mechanical metama-
terials that involve large nonlinear deformations[] When mechanical stimuli
are applied to the materials, their building blocks can display motions of
rotation, twist, etc., with large amplitudes, which lead to significant changes
of shape and volume of the whole system. This behavior of “large responses
for small perturbations” is a key feature of soft matter [24].

In the past few years, the concept of topological phases was introduced
into the field of mechanical metamaterials, leading to the so-called topological
mechanical metamaterials (25} [26]]. This concept not only merges the features
of both acoustic waves and large deformations into one system, but also
creates a link between the study of mechanical metamaterials and modern
condensed matter physics. This thesis will explore the interplay between
nonlinearities and the topological properties of mechanical metamaterials.
First, we explain the topological phases in the next section.

'Sometimes they are simply referred to as mechanical metamaterials in a narrower sense,
as opposed to acoustic metamaterials. In this thesis, we use the broader definition.
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1.1 Topological mechanical metamaterials

We focus on the topological rotor chain as an example of topological mechan-
ical metamaterials[’| It is a chain of classical rotors connected by springs (see
Fig.[1.2). The angles 6,, of the rotors are measured in an alternating fashion
along the lattice, from the negative y-axis at odd-numbered sites and positive
y-axis at even-numbered sites. The equilibrium angle 6 for a uniform lattice
configuration can be either positive or negative, corresponding to two equi-
librium states: all rotors leaning either to the right or to the left. We impose
periodic boundary conditions, so the system is forbidden to switch from one
equilibrium state to the other without deforming springs. In equilibrium states,
all springs are at their rest length /. When linear mechanical waves propagate
in the chain, the angles 6, oscillates around equilibrium. This causes spring
deformations ¢, that are determined by the displacements of the rotor angles
06,,. We will focus on §6,, and d¢,, to demonstrate the idea of topological
mechanics.

N E N A AP AP

(a) 0 > 0, right-leaning rotors (b) 6 < 0, left-leaning rotors

Figure 1.2. Topological rotor chains with (a) positive and (b) negative equilibrium
angles 6. The masses (blue dots) of rotors (black rods) rotate around fixed pivots (black
crosses) and are connected to each other by springs (red dashed lines). The lattice
spacing is a, the rotor length is r, and the spring equilibrium length is ¢. Periodic
boundary conditions are used, indicated by dangling springs at chain ends.

Because the rotors are in a one-dimensional lattice, their linear motion
can be described by lattice waves. The normal modes representing a 66 wave

% B. G. Chen pointed out that a topological mechanism (essentially a rotor chain with pin-
ning points displaced) was in one of Leonardo da Vinci’s notebooks. See Ref. [27], particularly
Fig. 5.
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and a §¢ wave with angular frequency w and wave vector k are

86 (n,t) o< exp [i(kna — wt)], (11)
dl(n,t) < exp [i(kna — wt + ¢(k))] (1.2)

where n is the nth rotor or spring along the chain, a is the lattice spacing, ¢ is
time, and ¢ (k) is a phase difference between a §6 wave and its corresponding
0¢ wave. ¢ is a crucial to the concept of topological mechanics, we will focus on
it shortly after. Note that the lattice waves with wave vector k and k + 27 /a
are equivalent, because the physical quantities like §6 and §/ take values only

i(2m/a)na i2mn — 1.

at lattice points na, and €’ =e
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(a) 6 > 0, right-leaning rotors (b) 8 < 0, left-leaning rotors

Figure 1.3. Contour plot in the complex plane of ¢@(k) for complete circuit of k from
k=0tok =27/a.In(a), ei#(k) goes back and forth on the arc and indeed forms a
closed loop.

As long as 66 and 6¢ do not vanish, the quotient 6¢(k)/30(k) o e'®(k)
is a non-zero complex number. When we tune the wave vector from k = 0
to k = 2m/a, in other words when we gradually decrease the wavelength
from infinity to a (see Fig. [L5|and Fig. [1.6), the phase shift between 66 and 6¢
waves €'?(F) runs through a closed loop on the complex plane (see Fig. .
The number of times this loop turns around the origin is a topological index,
and it has been shown [18] [25, [26] that this index is either 0 or 1, depending on
which equilibrium state the chain is in (see also Eq. (1.4)). In other words, the
phase of a ¢ wave shifts by either zero (Fig. |1.5) or one (Fig. [1.6) more period
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than its corresponding 66 wave. The correspondence between ¢ and 6 as
follows: we regard the 66 wave as exp[ikna| spatially and the §¢ wave as
explik(na+ ¢/k))],ie., the effect of the phase ¢ on the 6/ wave is a positional
shift of the 00 wave in real space. As we will discuss later, it is the difference
between the topological indices of the two equilibrium states of a rotor chain
that make it a model of a topological mechanical material. Note that Eq.
and make an arbitrary choice that §¢ waves have the phase shift ¢. We
can also have 6 take the extra phase shift, and the reasoning remains the
same.

In Fig.[r.5|and Fig.[1.6] we focus on spatial periods at n = 0 by thick colored
lines, in order to eliminate the direct contribution of k to the phases and single
out the effect of ¢ (k). The number of periods of extra wave shifts of 6/ is the
topological invariant.

The physical reason for this extra phase shift ¢ is the following: the
deformation 6¢(n, t) of a spring depends asymmetrically on the angular dis-
placement of its two neighbor rotors, say 06(n,t) and §0(n + 1,t). Indeed at
linear order

5(n,t) = —bdb(n,t) + cdb(n +1,t) (1.3)

where b and c are prefactors that are not equal for rotor chains with 8 # 0.
Combining this equation and Eq. and (1.2), 6¢ waves can be expressed

d4(n,t) < (cexp [ika] —b)db(n,t). (1.4)

We see that the complex term (cexp [ika] — b) is the origin of the phase
difference between d6 and d¢ waves. This term’s complex argument is just
& (k). It has been shown that the two states of right-leaning and left-leaning
rotors have their b and ¢’s values exchanged [18] 25, 26} 28]]. The topological
indices are defined only when b # ¢, i.e., the deformation depends asymmet-
rically on the displacements. When b = ¢, then the complex term goes to zero
at k = 0, so the phase ¢(k = 0) is not well defined, which in turn means
the topological index is not well defined either | The system corresponds to

3This is why a gapped band structure where this complex term never equals zero is
necessary for a system to be “topological”.
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0 = 0, which is clearly symmetrical, meaning that the rotors are vertically up
and down alternatively, leaning towards neither the left nor the right.

As mentioned in Ref. [25]], topological indices depend on how the labels of
rotors and springs are assigned. Our assignment shown in Fig. [1.5|and Fig.
produces topological indices O (right-leaning) and 1 (left-leaning). Other as-
signments may give different results. For instance, with the assignment that
the nth spring connecting the (n + 1)th and (n + 2)th rotors (see Fig.[r.4),
the same chain has topological indices 1 (right-leaning) and 2 (left-leaning).
This is intuitive, since the right-leaning state and the left-leaning state are
mirror symmetrical, so they cannot have intrinsic a priori preference in topo-
logical indices. While the topological indices depend on arbitrary choices,
their differences, for example at an interface, have a well-defined physical
meaning.

Figure 1.4. The same chain as in Fig. but with the assignment of the nth spring
connecting the (n + 1)th and (n + 2)th rotors. It has a topological index 2.

In the above example, the rotor chain with periodic boundary conditions
is forbidden to go from one equilibrium state to the other without deforming
springs. Strictly speaking, in such a case, the aforementioned assignments of
labels of rotors and springs lack global consistency, because it is not possible
to know whether the assignments are the same for the two states when one
state cannot be continuously translated into the other. In other words, we have
to make two assignments separately for the two states and cannot guarantee
that they are consistent with each other. To avoid this, we can consider a
system with positive energy so that finite spring deformation is allowed. We
can also use free boundary conditions so that the two equilibrium states can
be transformed into each other via zero-energy nonlinear waves, as we will
see in Chapter 2| Alternatively, we can have a system with two or multiple
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states put together with interfaces. In any such cases, we are able to make the
assignment only once so that it is guaranteed to be consistent for all different
states. Then the use of topological indices is rigorously valid.

Since Kane and Lubensky [25] introduced the concept of “band topology”
into classical mechanical systems, the research of topological mechanical
metamaterials has become a booming field. Many models have been pro-
posed [13} [i4}, {719} [26] 28H46]], and a universal classification of topological
phonons has been provided [[47]. One can map quantum mechanical problems
to classical mechanics, and using spring extensions and mass displacements
is not the only way of introducing topology into mechanical system. Still, we
hope that the interpretation of topological phase shift in rotor chains given
in this section will provide guidance in investigating wave propagation in
topological mechanical systems.

This thesis will focus on linear and nonlinear propagation of waves and
their interaction with impurities in mechanical metamaterials. In the next
section, we present the outline of this thesis.
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(c) Comparison of phases of 60 and §¢ waves in real space with varying k.

Figure 1.5. Topological phases of a rotor chain’s vibrational waves. In the configu-
ration (a) and (b), the arrows indicate directions and amplitudes of rotor vibrations,
i.e., 60 lattice waves, and the lines connecting rotors indicate spring deformations,
i.e., 6/ lattice waves. Dashed springs are stretched and solid springs are compressed,
with their thickness proportional to deformation. In (c), the dots are wave values at
lattice points, i.e., 60y, and 0¢,,. One spatial period in the 6 wave and its counterpart
in the 6¢ wave is emphasized by thick colored lines. The §¢ wave stays around the
same place in real space after k goes from 0 to 27t/ a. So the topological index of this
chain with right-leaning rotors is zero. The geometrical parameters are r/a = 0.8
and § = +0.15, i.e., the rotors are right-leaning.
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(c) Comparison of phases of 66 and d¢ waves in real space with varying k.

Figure 1.6. The same setup as Fig. [15 except for a negative § = —0.15, i.e., the
rotors are left-leaning. The §¢ wave drifts leftward by one period in real space after
the wave vector k goes from 0 to 27/ a. Thus the topological index of this chain is
one.
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1.2 Outline of this thesis

In mechanical metamaterials, large deformations can occur in systems which
are topological from the point of view of linear waves. The interplay between
such nonlinearities and topology affects wave propagation. Beyond perfectly
periodic systems, defects provide a way to modify and control the properties
of metamaterials, and can also interact with both nonlinearities and the bulk
topology [48| [49].

While the Kane-Lubensky rotor chain (see Sec.[r.1) is an archetypal topolog-
ical mechanical metamaterial, the kink and antikink solitons in the nonlinear
Klein-Gordon equation are archetypal examples of nonlinear behavior [[50H52]].
In Chapter 2] we study the full nonlinear dynamics of this rotor chain. In the
continuum description, we derive a nonlinear field theory which admits topo-
logical kinks and antikinks as nonlinear excitations. A topological boundary
term, however, breaks the symmetry between the two and favors the kink con-
figuration. Using a cobweb plot, we develop a fixed-point analysis for the kink
motion and demonstrate that kinks propagate without the Peierls-Nabarro
potential energy barrier typically associated with lattice models. Using contin-
uum elasticity theory, we trace the absence of the Peierls-Nabarro barrier for
the kink motion to the topological boundary term which ensures that only the
kink configuration, and not the antikink, costs zero potential energy. Further,
we study the eigenmodes around the kink and antikink configurations using
a tangent stiffness matrix approach appropriate for pre-stressed structures
to explicitly show how the usual energy degeneracy between the two no
longer holds. In Chapter 3], we show how the kink-antikink asymmetry also
manifests in the way these nonlinear excitations interact with impurities
introduced in the chain as disorder in the spring stiffness. Then we discuss
the effect of impurities in the spring length and build prototypes based on
simple linkages that verify our predictions.

To investigate similar nonlinear behavior in higher spatial dimensions,
we first need a detailed understanding at the linear level (where interest-
ing features already occur). Deformed kagome lattices are known to exhibit
topological phases [13} [25]], and as we shall see, may possess configurations
where nonlinear effects cannot be ignored. In Chapter [4] we examine the
linear mechanical waves in twisted kagome lattices, which are deformed from
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the standard kagome lattice by a zero-energy twisting mechanism. In the
perfect lattices, we find that this twisting mechanism tunes the phonon band
structure by opening a band gap. At a critical twisting angle, we observe a
surprising two-fold degeneracy of the phonon bands, which seems to be re-
lated to bonds becoming orthogonal. In Chapter 5} we introduce point defects
into the lattices. Defect modes, which are spatially localized and spectrally
isolated, appear in the band gap. We show that the hybridization of defect
modes can be described by tight-binding models.

When the kagome lattice is untwisted (Fig. [.1a), there are entire lines
of aligned bonds which lead to zero modes at linear level [53]. Similarly,
when the kagome lattice is twisted at the critical angle (Fig. [1.1b), neighboring
bonds become orthogonal, and the phonon spectrum is two-fold degenerate.
In both cases, such properties are related to a decoupling between some
degrees of freedom which only occurs at the linear level, and we expect
nonlinearities to change the picture. To prepare for a full nonlinear analysis of
the kagome lattices, we first focus on a simpler one-dimensional model which
should reproduce some of their key features. In Chapter [6| we investigate the
propagation of nonlinear transverse elastic waves induced by a point impact
of constant velocity in a tension-free flexible string. Transverse waves on
a tension-free string have vanishing velocity up to linear order. Waves in
the longitudinal and transverse directions are decoupled at linear level but
become coupled at the nonlinear level. Even though they become shock waves
when the string is under impact, they can be understood from the perspective
of linear transverse waves riding on the tensioned region behind longitudinal
wave fronts induced by the impact.
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