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Chapter 1

Introduction

P
eople conventionally use simple mechanical properties to classify

states of matters: a solid maintains both �xed volume and shape, a

liquid maintains a �xed volume but has a variable shape, and a gas

has both variable volume and shape [1]. In recent years, new forms of matter

called mechanical metamaterials appeared with unique properties [2–14]. Such

metamaterials are arti�cial structures with e�ective mechanical properties

that qualitatively di�er from those of their base materials. An example from

this thesis is the mechanical kagome lattice model shown in Fig. 1.1. This

model has a free mechanism for deformation so that it does not maintain

either shape or volume. This is a mechanical property that is independent of

the LEGO base materials of solid plastics.

Structure determines properties [15]. The structure of mechanical metama-

terials begins with repeating unit cells as building blocks. Each unit cell can be

regarded as a tiny mechanical device transforming input forces and motions

into a designed set of output forces and motions. The unit cells are connected

to each other, forming a whole piece of material. In this way, the inputs and

outputs of the unit cells are synthesized into an ordered pattern, which is just

the macroscopic response of a metamaterial to a given macroscopic input.

This macroscopic response can be described by linear waves [16, 17], solitary

waves [18–20], or non-wavelike mechanical motions [4, 5, 9, 21]. Theoreti-

cal understanding of this physical process is indispensable for designing the

structures and controlling the properties of metamaterials.
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(a) (b)

Figure 1.1. Model of a mechanical metamaterial: twisted kagome lattice. As all the

small triangles twist together, the whole structure in (a) contracts to the one in (b).

Mechanical metamaterials can a�ect the propagation of linear sound

waves. Such acoustic metamaterials (c.f., electromagnetic metamaterials) can

display special properties such as negative refractive indices that provide

functionalities in acoustic cloaking devices [16, 22, 23]. In contrast with these

linear-wave-based metamaterials, one can also consider mechanical metama-

terials that involve large nonlinear deformations
1
. When mechanical stimuli

are applied to the materials, their building blocks can display motions of

rotation, twist, etc., with large amplitudes, which lead to signi�cant changes

of shape and volume of the whole system. This behavior of “large responses

for small perturbations” is a key feature of soft matter [24].

In the past few years, the concept of topological phases was introduced

into the �eld of mechanical metamaterials, leading to the so-called topological
mechanical metamaterials [25, 26]. This concept not only merges the features

of both acoustic waves and large deformations into one system, but also

creates a link between the study of mechanical metamaterials and modern

condensed matter physics. This thesis will explore the interplay between

nonlinearities and the topological properties of mechanical metamaterials.

First, we explain the topological phases in the next section.

1
Sometimes they are simply referred to as mechanical metamaterials in a narrower sense,

as opposed to acoustic metamaterials. In this thesis, we use the broader de�nition.
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1.1 Topological mechanical metamaterials

We focus on the topological rotor chain as an example of topological mechan-

ical metamaterials
2
. It is a chain of classical rotors connected by springs (see

Fig. 1.2). The angles θn of the rotors are measured in an alternating fashion

along the lattice, from the negative y-axis at odd-numbered sites and positive

y-axis at even-numbered sites. The equilibrium angle θ for a uniform lattice

con�guration can be either positive or negative, corresponding to two equi-

librium states: all rotors leaning either to the right or to the left. We impose

periodic boundary conditions, so the system is forbidden to switch from one

equilibrium state to the other without deforming springs. In equilibrium states,

all springs are at their rest length `. When linear mechanical waves propagate

in the chain, the angles θn oscillates around equilibrium. This causes spring

deformations δ`n that are determined by the displacements of the rotor angles

δθn. We will focus on δθn and δ`n to demonstrate the idea of topological

mechanics.

θ

a

r

ℓ θ
(a) θ > 0, right-leaning rotors

θ

θ
(b) θ < 0, left-leaning rotors

Figure 1.2. Topological rotor chains with (a) positive and (b) negative equilibrium

angles θ. The masses (blue dots) of rotors (black rods) rotate around �xed pivots (black

crosses) and are connected to each other by springs (red dashed lines). The lattice

spacing is a, the rotor length is r, and the spring equilibrium length is `. Periodic

boundary conditions are used, indicated by dangling springs at chain ends.

Because the rotors are in a one-dimensional lattice, their linear motion

can be described by lattice waves. The normal modes representing a δθ wave

2
B. G. Chen pointed out that a topological mechanism (essentially a rotor chain with pin-

ning points displaced) was in one of Leonardo da Vinci’s notebooks. See Ref. [27], particularly

Fig. 5.
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and a δ` wave with angular frequency ω and wave vector k are

δθ(n, t) ∝ exp [i(kna− ωt)], (1.1)

δ`(n, t) ∝ exp [i(kna− ωt+ φ(k))] (1.2)

where n is the nth rotor or spring along the chain, a is the lattice spacing, t is

time, and φ(k) is a phase di�erence between a δθ wave and its corresponding

δ`wave. φ is a crucial to the concept of topological mechanics, we will focus on

it shortly after. Note that the lattice waves with wave vector k and k+ 2π/a
are equivalent, because the physical quantities like δθ and δ` take values only

at lattice points na, and ei(2π/a)na = ei2πn = 1.

-1.0 -0.5 0.5 1.0
Re[eiϕ (k)]

-1.0

-0.5

0.5

1.0

Im[eiϕ (k)]

(a) θ > 0, right-leaning rotors

-1.0 -0.5 0.5 1.0
Re[eiϕ (k)]

-1.0

-0.5

0.5

1.0

Im[eiϕ (k)]

(b) θ < 0, left-leaning rotors

Figure 1.3. Contour plot in the complex plane of eiφ(k) for complete circuit of k from

k = 0 to k = 2π/a. In (a), eiφ(k) goes back and forth on the arc and indeed forms a

closed loop.

As long as δθ and δ` do not vanish, the quotient δ`(k)/δθ(k) ∝ eiφ(k)

is a non-zero complex number. When we tune the wave vector from k = 0
to k = 2π/a, in other words when we gradually decrease the wavelength

from in�nity to a (see Fig. 1.5 and Fig. 1.6), the phase shift between δθ and δ`
waves eiφ(k) runs through a closed loop on the complex plane (see Fig. 1.3).

The number of times this loop turns around the origin is a topological index,

and it has been shown [18, 25, 26] that this index is either 0 or 1, depending on

which equilibrium state the chain is in (see also Eq. (1.4)). In other words, the

phase of a δ` wave shifts by either zero (Fig. 1.5) or one (Fig. 1.6) more period
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than its corresponding δθ wave. The correspondence between δ` and δθ as

follows: we regard the δθ wave as exp[ikna] spatially and the δ` wave as

exp[ik(na+φ/k)], i.e., the e�ect of the phase φ on the δ`wave is a positional

shift of the δθ wave in real space. As we will discuss later, it is the di�erence
between the topological indices of the two equilibrium states of a rotor chain

that make it a model of a topological mechanical material. Note that Eq. (1.1)

and (1.2) make an arbitrary choice that δ` waves have the phase shift φ. We

can also have δθ take the extra phase shift, and the reasoning remains the

same.

In Fig. 1.5 and Fig. 1.6, we focus on spatial periods at n = 0 by thick colored

lines, in order to eliminate the direct contribution of k to the phases and single

out the e�ect of φ(k). The number of periods of extra wave shifts of δ` is the

topological invariant.

The physical reason for this extra phase shift φ is the following: the

deformation δ`(n, t) of a spring depends asymmetrically on the angular dis-

placement of its two neighbor rotors, say δθ(n, t) and δθ(n+ 1, t). Indeed at

linear order

δ`(n, t) = −bδθ(n, t) + cδθ(n+ 1, t) (1.3)

where b and c are prefactors that are not equal for rotor chains with θ 6= 0.

Combining this equation and Eq. (1.1) and (1.2), δ` waves can be expressed

δ`(n, t) ∝ (c exp [ika]− b)δθ(n, t). (1.4)

We see that the complex term (c exp [ika] − b) is the origin of the phase

di�erence between δθ and δφ waves. This term’s complex argument is just

φ(k). It has been shown that the two states of right-leaning and left-leaning

rotors have their b and c’s values exchanged [18, 25, 26, 28]. The topological

indices are de�ned only when b 6= c, i.e., the deformation depends asymmet-

rically on the displacements. When b = c, then the complex term goes to zero

at k = 0, so the phase φ(k = 0) is not well de�ned, which in turn means

the topological index is not well de�ned either
3
. The system corresponds to

3
This is why a gapped band structure where this complex term never equals zero is

necessary for a system to be “topological”.
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θ = 0, which is clearly symmetrical, meaning that the rotors are vertically up

and down alternatively, leaning towards neither the left nor the right.

As mentioned in Ref. [25], topological indices depend on how the labels of

rotors and springs are assigned. Our assignment shown in Fig. 1.5 and Fig. 1.6

produces topological indices 0 (right-leaning) and 1 (left-leaning). Other as-

signments may give di�erent results. For instance, with the assignment that

the nth spring connecting the (n+ 1)th and (n+ 2)th rotors (see Fig. 1.4),

the same chain has topological indices 1 (right-leaning) and 2 (left-leaning).

This is intuitive, since the right-leaning state and the left-leaning state are

mirror symmetrical, so they cannot have intrinsic a priori preference in topo-

logical indices. While the topological indices depend on arbitrary choices,

their di�erences, for example at an interface, have a well-de�ned physical

meaning.

n=-1 1-3

-4 -2 0 2

n=0

1

2

3-1

-2

Figure 1.4. The same chain as in Fig. 1.6 but with the assignment of the nth spring

connecting the (n+ 1)th and (n+ 2)th rotors. It has a topological index 2.

In the above example, the rotor chain with periodic boundary conditions

is forbidden to go from one equilibrium state to the other without deforming

springs. Strictly speaking, in such a case, the aforementioned assignments of

labels of rotors and springs lack global consistency, because it is not possible

to know whether the assignments are the same for the two states when one

state cannot be continuously translated into the other. In other words, we have

to make two assignments separately for the two states and cannot guarantee

that they are consistent with each other. To avoid this, we can consider a

system with positive energy so that �nite spring deformation is allowed. We

can also use free boundary conditions so that the two equilibrium states can

be transformed into each other via zero-energy nonlinear waves, as we will

see in Chapter 2. Alternatively, we can have a system with two or multiple
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states put together with interfaces. In any such cases, we are able to make the

assignment only once so that it is guaranteed to be consistent for all di�erent

states. Then the use of topological indices is rigorously valid.

Since Kane and Lubensky [25] introduced the concept of “band topology”

into classical mechanical systems, the research of topological mechanical

metamaterials has become a booming �eld. Many models have been pro-

posed [13, 14, 17–19, 26, 28–46], and a universal classi�cation of topological

phonons has been provided [47]. One can map quantum mechanical problems

to classical mechanics, and using spring extensions and mass displacements

is not the only way of introducing topology into mechanical system. Still, we

hope that the interpretation of topological phase shift in rotor chains given

in this section will provide guidance in investigating wave propagation in

topological mechanical systems.

This thesis will focus on linear and nonlinear propagation of waves and

their interaction with impurities in mechanical metamaterials. In the next

section, we present the outline of this thesis.
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n=0

1

2

3-1

-2

(a) δθn for k = π
3a , rotors right-leaning.

n=0

1-1

-2

-3

2

3

(b) δ`n for k = π
3a , rotors right-leaning.

δθ k ϕ/2π δl

2 π/a 0.5

5 π
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/a 0.6

4 π
3
/a 0.56
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2 π
3
/a 0.44

π
3
/a 0.4

-3 -2 -1 0 1 2 3

n
0 0.5

-3 -2 -1 0 1 2 3

n

(c) Comparison of phases of δθ and δ` waves in real space with varying k.

Figure 1.5. Topological phases of a rotor chain’s vibrational waves. In the con�gu-

ration (a) and (b), the arrows indicate directions and amplitudes of rotor vibrations,

i.e., δθ lattice waves, and the lines connecting rotors indicate spring deformations,

i.e., δ` lattice waves. Dashed springs are stretched and solid springs are compressed,

with their thickness proportional to deformation. In (c), the dots are wave values at

lattice points, i.e., δθn and δ`n. One spatial period in the δθ wave and its counterpart

in the δ` wave is emphasized by thick colored lines. The δ` wave stays around the

same place in real space after k goes from 0 to 2π/a. So the topological index of this

chain with right-leaning rotors is zero. The geometrical parameters are r/a = 0.8
and θ = +0.15, i.e., the rotors are right-leaning.
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3-1
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(a) δθn for k = π
3a , rotors left-leaning.

n=0 2-2

-3 -1 1 3

(b) δ`n for k = π
3a , rotors left-leaning.
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(c) Comparison of phases of δθ and δ` waves in real space with varying k.

Figure 1.6. The same setup as Fig. 1.5 except for a negative θ = −0.15, i.e., the

rotors are left-leaning. The δ` wave drifts leftward by one period in real space after

the wave vector k goes from 0 to 2π/a. Thus the topological index of this chain is

one.
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1.2 Outline of this thesis

In mechanical metamaterials, large deformations can occur in systems which

are topological from the point of view of linear waves. The interplay between

such nonlinearities and topology a�ects wave propagation. Beyond perfectly

periodic systems, defects provide a way to modify and control the properties

of metamaterials, and can also interact with both nonlinearities and the bulk

topology [48, 49].

While the Kane-Lubensky rotor chain (see Sec. 1.1) is an archetypal topolog-

ical mechanical metamaterial, the kink and antikink solitons in the nonlinear

Klein-Gordon equation are archetypal examples of nonlinear behavior [50–52].

In Chapter 2, we study the full nonlinear dynamics of this rotor chain. In the

continuum description, we derive a nonlinear �eld theory which admits topo-

logical kinks and antikinks as nonlinear excitations. A topological boundary

term, however, breaks the symmetry between the two and favors the kink con-

�guration. Using a cobweb plot, we develop a �xed-point analysis for the kink

motion and demonstrate that kinks propagate without the Peierls-Nabarro

potential energy barrier typically associated with lattice models. Using contin-

uum elasticity theory, we trace the absence of the Peierls-Nabarro barrier for

the kink motion to the topological boundary term which ensures that only the

kink con�guration, and not the antikink, costs zero potential energy. Further,

we study the eigenmodes around the kink and antikink con�gurations using

a tangent sti�ness matrix approach appropriate for pre-stressed structures

to explicitly show how the usual energy degeneracy between the two no

longer holds. In Chapter 3 , we show how the kink-antikink asymmetry also

manifests in the way these nonlinear excitations interact with impurities

introduced in the chain as disorder in the spring sti�ness. Then we discuss

the e�ect of impurities in the spring length and build prototypes based on

simple linkages that verify our predictions.

To investigate similar nonlinear behavior in higher spatial dimensions,

we �rst need a detailed understanding at the linear level (where interest-

ing features already occur). Deformed kagome lattices are known to exhibit

topological phases [13, 25], and as we shall see, may possess con�gurations

where nonlinear e�ects cannot be ignored. In Chapter 4, we examine the

linear mechanical waves in twisted kagome lattices, which are deformed from
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the standard kagome lattice by a zero-energy twisting mechanism. In the

perfect lattices, we �nd that this twisting mechanism tunes the phonon band

structure by opening a band gap. At a critical twisting angle, we observe a

surprising two-fold degeneracy of the phonon bands, which seems to be re-

lated to bonds becoming orthogonal. In Chapter 5, we introduce point defects

into the lattices. Defect modes, which are spatially localized and spectrally

isolated, appear in the band gap. We show that the hybridization of defect

modes can be described by tight-binding models.

When the kagome lattice is untwisted (Fig. 1.1a), there are entire lines

of aligned bonds which lead to zero modes at linear level [53]. Similarly,

when the kagome lattice is twisted at the critical angle (Fig. 1.1b), neighboring

bonds become orthogonal, and the phonon spectrum is two-fold degenerate.

In both cases, such properties are related to a decoupling between some

degrees of freedom which only occurs at the linear level, and we expect

nonlinearities to change the picture. To prepare for a full nonlinear analysis of

the kagome lattices, we �rst focus on a simpler one-dimensional model which

should reproduce some of their key features. In Chapter 6, we investigate the

propagation of nonlinear transverse elastic waves induced by a point impact

of constant velocity in a tension-free �exible string. Transverse waves on

a tension-free string have vanishing velocity up to linear order. Waves in

the longitudinal and transverse directions are decoupled at linear level but

become coupled at the nonlinear level. Even though they become shock waves

when the string is under impact, they can be understood from the perspective

of linear transverse waves riding on the tensioned region behind longitudinal

wave fronts induced by the impact.




