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Chapter 1

Introduction

P
eople conventionally use simple mechanical properties to classify

states of matters: a solid maintains both �xed volume and shape, a

liquid maintains a �xed volume but has a variable shape, and a gas

has both variable volume and shape [1]. In recent years, new forms of matter

called mechanical metamaterials appeared with unique properties [2–14]. Such

metamaterials are arti�cial structures with e�ective mechanical properties

that qualitatively di�er from those of their base materials. An example from

this thesis is the mechanical kagome lattice model shown in Fig. 1.1. This

model has a free mechanism for deformation so that it does not maintain

either shape or volume. This is a mechanical property that is independent of

the LEGO base materials of solid plastics.

Structure determines properties [15]. The structure of mechanical metama-

terials begins with repeating unit cells as building blocks. Each unit cell can be

regarded as a tiny mechanical device transforming input forces and motions

into a designed set of output forces and motions. The unit cells are connected

to each other, forming a whole piece of material. In this way, the inputs and

outputs of the unit cells are synthesized into an ordered pattern, which is just

the macroscopic response of a metamaterial to a given macroscopic input.

This macroscopic response can be described by linear waves [16, 17], solitary

waves [18–20], or non-wavelike mechanical motions [4, 5, 9, 21]. Theoreti-

cal understanding of this physical process is indispensable for designing the

structures and controlling the properties of metamaterials.

1
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(a) (b)

Figure 1.1. Model of a mechanical metamaterial: twisted kagome lattice. As all the

small triangles twist together, the whole structure in (a) contracts to the one in (b).

Mechanical metamaterials can a�ect the propagation of linear sound

waves. Such acoustic metamaterials (c.f., electromagnetic metamaterials) can

display special properties such as negative refractive indices that provide

functionalities in acoustic cloaking devices [16, 22, 23]. In contrast with these

linear-wave-based metamaterials, one can also consider mechanical metama-

terials that involve large nonlinear deformations
1
. When mechanical stimuli

are applied to the materials, their building blocks can display motions of

rotation, twist, etc., with large amplitudes, which lead to signi�cant changes

of shape and volume of the whole system. This behavior of “large responses

for small perturbations” is a key feature of soft matter [24].

In the past few years, the concept of topological phases was introduced

into the �eld of mechanical metamaterials, leading to the so-called topological
mechanical metamaterials [25, 26]. This concept not only merges the features

of both acoustic waves and large deformations into one system, but also

creates a link between the study of mechanical metamaterials and modern

condensed matter physics. This thesis will explore the interplay between

nonlinearities and the topological properties of mechanical metamaterials.

First, we explain the topological phases in the next section.

1
Sometimes they are simply referred to as mechanical metamaterials in a narrower sense,

as opposed to acoustic metamaterials. In this thesis, we use the broader de�nition.
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1.1 Topological mechanical metamaterials

We focus on the topological rotor chain as an example of topological mechan-

ical metamaterials
2
. It is a chain of classical rotors connected by springs (see

Fig. 1.2). The angles θn of the rotors are measured in an alternating fashion

along the lattice, from the negative y-axis at odd-numbered sites and positive

y-axis at even-numbered sites. The equilibrium angle θ for a uniform lattice

con�guration can be either positive or negative, corresponding to two equi-

librium states: all rotors leaning either to the right or to the left. We impose

periodic boundary conditions, so the system is forbidden to switch from one

equilibrium state to the other without deforming springs. In equilibrium states,

all springs are at their rest length `. When linear mechanical waves propagate

in the chain, the angles θn oscillates around equilibrium. This causes spring

deformations δ`n that are determined by the displacements of the rotor angles

δθn. We will focus on δθn and δ`n to demonstrate the idea of topological

mechanics.

θ

a

r

ℓ θ
(a) θ > 0, right-leaning rotors

θ

θ
(b) θ < 0, left-leaning rotors

Figure 1.2. Topological rotor chains with (a) positive and (b) negative equilibrium

angles θ. The masses (blue dots) of rotors (black rods) rotate around �xed pivots (black

crosses) and are connected to each other by springs (red dashed lines). The lattice

spacing is a, the rotor length is r, and the spring equilibrium length is `. Periodic

boundary conditions are used, indicated by dangling springs at chain ends.

Because the rotors are in a one-dimensional lattice, their linear motion

can be described by lattice waves. The normal modes representing a δθ wave

2
B. G. Chen pointed out that a topological mechanism (essentially a rotor chain with pin-

ning points displaced) was in one of Leonardo da Vinci’s notebooks. See Ref. [27], particularly

Fig. 5.
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and a δ` wave with angular frequency ω and wave vector k are

δθ(n, t) ∝ exp [i(kna− ωt)], (1.1)

δ`(n, t) ∝ exp [i(kna− ωt+ φ(k))] (1.2)

where n is the nth rotor or spring along the chain, a is the lattice spacing, t is

time, and φ(k) is a phase di�erence between a δθ wave and its corresponding

δ`wave. φ is a crucial to the concept of topological mechanics, we will focus on

it shortly after. Note that the lattice waves with wave vector k and k+ 2π/a
are equivalent, because the physical quantities like δθ and δ` take values only

at lattice points na, and ei(2π/a)na = ei2πn = 1.

-1.0 -0.5 0.5 1.0
Re[eiϕ (k)]

-1.0

-0.5

0.5

1.0

Im[eiϕ (k)]

(a) θ > 0, right-leaning rotors

-1.0 -0.5 0.5 1.0
Re[eiϕ (k)]

-1.0

-0.5

0.5

1.0

Im[eiϕ (k)]

(b) θ < 0, left-leaning rotors

Figure 1.3. Contour plot in the complex plane of eiφ(k) for complete circuit of k from

k = 0 to k = 2π/a. In (a), eiφ(k) goes back and forth on the arc and indeed forms a

closed loop.

As long as δθ and δ` do not vanish, the quotient δ`(k)/δθ(k) ∝ eiφ(k)

is a non-zero complex number. When we tune the wave vector from k = 0
to k = 2π/a, in other words when we gradually decrease the wavelength

from in�nity to a (see Fig. 1.5 and Fig. 1.6), the phase shift between δθ and δ`
waves eiφ(k) runs through a closed loop on the complex plane (see Fig. 1.3).

The number of times this loop turns around the origin is a topological index,

and it has been shown [18, 25, 26] that this index is either 0 or 1, depending on

which equilibrium state the chain is in (see also Eq. (1.4)). In other words, the

phase of a δ` wave shifts by either zero (Fig. 1.5) or one (Fig. 1.6) more period
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than its corresponding δθ wave. The correspondence between δ` and δθ as

follows: we regard the δθ wave as exp[ikna] spatially and the δ` wave as

exp[ik(na+φ/k)], i.e., the e�ect of the phase φ on the δ`wave is a positional

shift of the δθ wave in real space. As we will discuss later, it is the di�erence
between the topological indices of the two equilibrium states of a rotor chain

that make it a model of a topological mechanical material. Note that Eq. (1.1)

and (1.2) make an arbitrary choice that δ` waves have the phase shift φ. We

can also have δθ take the extra phase shift, and the reasoning remains the

same.

In Fig. 1.5 and Fig. 1.6, we focus on spatial periods at n = 0 by thick colored

lines, in order to eliminate the direct contribution of k to the phases and single

out the e�ect of φ(k). The number of periods of extra wave shifts of δ` is the

topological invariant.

The physical reason for this extra phase shift φ is the following: the

deformation δ`(n, t) of a spring depends asymmetrically on the angular dis-

placement of its two neighbor rotors, say δθ(n, t) and δθ(n+ 1, t). Indeed at

linear order

δ`(n, t) = −bδθ(n, t) + cδθ(n+ 1, t) (1.3)

where b and c are prefactors that are not equal for rotor chains with θ 6= 0.

Combining this equation and Eq. (1.1) and (1.2), δ` waves can be expressed

δ`(n, t) ∝ (c exp [ika]− b)δθ(n, t). (1.4)

We see that the complex term (c exp [ika] − b) is the origin of the phase

di�erence between δθ and δφ waves. This term’s complex argument is just

φ(k). It has been shown that the two states of right-leaning and left-leaning

rotors have their b and c’s values exchanged [18, 25, 26, 28]. The topological

indices are de�ned only when b 6= c, i.e., the deformation depends asymmet-

rically on the displacements. When b = c, then the complex term goes to zero

at k = 0, so the phase φ(k = 0) is not well de�ned, which in turn means

the topological index is not well de�ned either
3
. The system corresponds to

3
This is why a gapped band structure where this complex term never equals zero is

necessary for a system to be “topological”.
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θ = 0, which is clearly symmetrical, meaning that the rotors are vertically up

and down alternatively, leaning towards neither the left nor the right.

As mentioned in Ref. [25], topological indices depend on how the labels of

rotors and springs are assigned. Our assignment shown in Fig. 1.5 and Fig. 1.6

produces topological indices 0 (right-leaning) and 1 (left-leaning). Other as-

signments may give di�erent results. For instance, with the assignment that

the nth spring connecting the (n+ 1)th and (n+ 2)th rotors (see Fig. 1.4),

the same chain has topological indices 1 (right-leaning) and 2 (left-leaning).

This is intuitive, since the right-leaning state and the left-leaning state are

mirror symmetrical, so they cannot have intrinsic a priori preference in topo-

logical indices. While the topological indices depend on arbitrary choices,

their di�erences, for example at an interface, have a well-de�ned physical

meaning.

n=-1 1-3

-4 -2 0 2

n=0

1

2

3-1

-2

Figure 1.4. The same chain as in Fig. 1.6 but with the assignment of the nth spring

connecting the (n+ 1)th and (n+ 2)th rotors. It has a topological index 2.

In the above example, the rotor chain with periodic boundary conditions

is forbidden to go from one equilibrium state to the other without deforming

springs. Strictly speaking, in such a case, the aforementioned assignments of

labels of rotors and springs lack global consistency, because it is not possible

to know whether the assignments are the same for the two states when one

state cannot be continuously translated into the other. In other words, we have

to make two assignments separately for the two states and cannot guarantee

that they are consistent with each other. To avoid this, we can consider a

system with positive energy so that �nite spring deformation is allowed. We

can also use free boundary conditions so that the two equilibrium states can

be transformed into each other via zero-energy nonlinear waves, as we will

see in Chapter 2. Alternatively, we can have a system with two or multiple
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states put together with interfaces. In any such cases, we are able to make the

assignment only once so that it is guaranteed to be consistent for all di�erent

states. Then the use of topological indices is rigorously valid.

Since Kane and Lubensky [25] introduced the concept of “band topology”

into classical mechanical systems, the research of topological mechanical

metamaterials has become a booming �eld. Many models have been pro-

posed [13, 14, 17–19, 26, 28–46], and a universal classi�cation of topological

phonons has been provided [47]. One can map quantum mechanical problems

to classical mechanics, and using spring extensions and mass displacements

is not the only way of introducing topology into mechanical system. Still, we

hope that the interpretation of topological phase shift in rotor chains given

in this section will provide guidance in investigating wave propagation in

topological mechanical systems.

This thesis will focus on linear and nonlinear propagation of waves and

their interaction with impurities in mechanical metamaterials. In the next

section, we present the outline of this thesis.
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n=0

1

2

3-1

-2

(a) δθn for k = π
3a , rotors right-leaning.

n=0

1-1

-2

-3

2

3

(b) δ`n for k = π
3a , rotors right-leaning.

δθ k ϕ/2π δl

2 π/a 0.5

5 π
3
/a 0.6

4 π
3
/a 0.56

π/a 0.5

2 π
3
/a 0.44

π
3
/a 0.4

-3 -2 -1 0 1 2 3

n
0 0.5

-3 -2 -1 0 1 2 3

n

(c) Comparison of phases of δθ and δ` waves in real space with varying k.

Figure 1.5. Topological phases of a rotor chain’s vibrational waves. In the con�gu-

ration (a) and (b), the arrows indicate directions and amplitudes of rotor vibrations,

i.e., δθ lattice waves, and the lines connecting rotors indicate spring deformations,

i.e., δ` lattice waves. Dashed springs are stretched and solid springs are compressed,

with their thickness proportional to deformation. In (c), the dots are wave values at

lattice points, i.e., δθn and δ`n. One spatial period in the δθ wave and its counterpart

in the δ` wave is emphasized by thick colored lines. The δ` wave stays around the

same place in real space after k goes from 0 to 2π/a. So the topological index of this

chain with right-leaning rotors is zero. The geometrical parameters are r/a = 0.8
and θ = +0.15, i.e., the rotors are right-leaning.
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n=0

1

2

3-1

-2

(a) δθn for k = π
3a , rotors left-leaning.

n=0 2-2

-3 -1 1 3

(b) δ`n for k = π
3a , rotors left-leaning.

δθ k ϕ/2π δl

2 π/a 1.

5 π
3
/a 0.73

4 π
3
/a 0.61

π/a 0.5

2 π
3
/a 0.39

π
3
/a 0.27

-3 -2 -1 0 1 2 3

n
0 0.

-3 -2 -1 0 1 2 3

n

(c) Comparison of phases of δθ and δ` waves in real space with varying k.

Figure 1.6. The same setup as Fig. 1.5 except for a negative θ = −0.15, i.e., the

rotors are left-leaning. The δ` wave drifts leftward by one period in real space after

the wave vector k goes from 0 to 2π/a. Thus the topological index of this chain is

one.
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1.2 Outline of this thesis

In mechanical metamaterials, large deformations can occur in systems which

are topological from the point of view of linear waves. The interplay between

such nonlinearities and topology a�ects wave propagation. Beyond perfectly

periodic systems, defects provide a way to modify and control the properties

of metamaterials, and can also interact with both nonlinearities and the bulk

topology [48, 49].

While the Kane-Lubensky rotor chain (see Sec. 1.1) is an archetypal topolog-

ical mechanical metamaterial, the kink and antikink solitons in the nonlinear

Klein-Gordon equation are archetypal examples of nonlinear behavior [50–52].

In Chapter 2, we study the full nonlinear dynamics of this rotor chain. In the

continuum description, we derive a nonlinear �eld theory which admits topo-

logical kinks and antikinks as nonlinear excitations. A topological boundary

term, however, breaks the symmetry between the two and favors the kink con-

�guration. Using a cobweb plot, we develop a �xed-point analysis for the kink

motion and demonstrate that kinks propagate without the Peierls-Nabarro

potential energy barrier typically associated with lattice models. Using contin-

uum elasticity theory, we trace the absence of the Peierls-Nabarro barrier for

the kink motion to the topological boundary term which ensures that only the

kink con�guration, and not the antikink, costs zero potential energy. Further,

we study the eigenmodes around the kink and antikink con�gurations using

a tangent sti�ness matrix approach appropriate for pre-stressed structures

to explicitly show how the usual energy degeneracy between the two no

longer holds. In Chapter 3 , we show how the kink-antikink asymmetry also

manifests in the way these nonlinear excitations interact with impurities

introduced in the chain as disorder in the spring sti�ness. Then we discuss

the e�ect of impurities in the spring length and build prototypes based on

simple linkages that verify our predictions.

To investigate similar nonlinear behavior in higher spatial dimensions,

we �rst need a detailed understanding at the linear level (where interest-

ing features already occur). Deformed kagome lattices are known to exhibit

topological phases [13, 25], and as we shall see, may possess con�gurations

where nonlinear e�ects cannot be ignored. In Chapter 4, we examine the

linear mechanical waves in twisted kagome lattices, which are deformed from
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the standard kagome lattice by a zero-energy twisting mechanism. In the

perfect lattices, we �nd that this twisting mechanism tunes the phonon band

structure by opening a band gap. At a critical twisting angle, we observe a

surprising two-fold degeneracy of the phonon bands, which seems to be re-

lated to bonds becoming orthogonal. In Chapter 5, we introduce point defects

into the lattices. Defect modes, which are spatially localized and spectrally

isolated, appear in the band gap. We show that the hybridization of defect

modes can be described by tight-binding models.

When the kagome lattice is untwisted (Fig. 1.1a), there are entire lines

of aligned bonds which lead to zero modes at linear level [53]. Similarly,

when the kagome lattice is twisted at the critical angle (Fig. 1.1b), neighboring

bonds become orthogonal, and the phonon spectrum is two-fold degenerate.

In both cases, such properties are related to a decoupling between some

degrees of freedom which only occurs at the linear level, and we expect

nonlinearities to change the picture. To prepare for a full nonlinear analysis of

the kagome lattices, we �rst focus on a simpler one-dimensional model which

should reproduce some of their key features. In Chapter 6, we investigate the

propagation of nonlinear transverse elastic waves induced by a point impact

of constant velocity in a tension-free �exible string. Transverse waves on

a tension-free string have vanishing velocity up to linear order. Waves in

the longitudinal and transverse directions are decoupled at linear level but

become coupled at the nonlinear level. Even though they become shock waves

when the string is under impact, they can be understood from the perspective

of linear transverse waves riding on the tensioned region behind longitudinal

wave fronts induced by the impact.





Chapter 2

Kink-antikink asymmetry in
topological mechanical
chains

2.1 Introduction

T
opological ideas have led to recent advances in continuum me-

chanics often inspired by the physics of electronic topological insula-

tors and the quantum Hall e�ect. In these electronic systems the basic

question is whether a material is an insulator or a conductor. The answer

depends on which portion of a topological insulator one examines: the bulk

is usually gapped and hence insulating while the edge displays gapless edge

modes whose existence is protected from disorder and variations in material

parameters by the existence of integer-valued topological invariants [54]. In

topological mechanical systems, the corresponding question is whether a

material is rigid or �oppy. The ability to modulate the rigidity of a structure

in space allows to robustly localize the propagation of sound waves [17, 29–

42, 47, 55, 56], change shape in selected portions [13, 18, 19, 25, 26, 28, 43–46]

or focus stress leading to selective buckling or failure [14].

By translating the topological properties of bands of electronic states

into the classical setting of vibrational bands, one can identify topologically

13
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protected and hence robust properties of vibrational modes in both discrete

lattices and continuous media. For example, the concept of “topological polar-

ization” recently introduced by Kane and Lubensky [25] building on counting

ideas from Maxwell and Calladine [57, 58] determines the existence and the

position of zero-energy motions that are localized at edges and defects of a

marginally rigid mechanical lattice (one in which constraints and degrees of

freedom are exactly balanced).

Perhaps the simplest model of topological mechanical lattices is the rotor

chain proposed in Ref. [25]. The system consists of a chain of classical rotors

harmonically coupled with their nearest neighbours, as shown in Fig. 2.1a.

There are two distinct classes of ground state con�gurations, one with all

rotors leaning towards the left and the other where they lean towards the

right. Mathematically, these two states may not be deformed to each other

without the appearance of bulk zero modes; thus they may each be assigned

a di�erent winding number, associated with the Fourier transform of the

compatibility matrix C(q), which connects the linear displacement of rotors

with the extension of springs; see Ref. [26] for a detailed explanation.

The above considerations arise from band theory and thus concern only

the linearized zero-energy in�nitesimal motions. Indeed, the vanishing of

the linear response implies that nonlinear e�ects dominate. By developing

a nonlinear theory of the rotor chain, it was shown in Ref. [18] that the in-

�nitesimal zero-mode displacement integrates to a �nite motion. This motion

can be described in the continuum limit by objects similar to “kinks” in the φ4

�eld theory [50], which connects the topological polarization invariant of the

linear vibrations to the study of topological solitons [18, 19]. Although the two

appearances of the term “topology” in the linear and nonlinear theory stem

from di�erent contexts, the latter encompasses the predictions of the former

and also explains additional features exclusive to the nonlinear dynamics [19].

The nonlinear dynamics of this topological chain can be approximated by

the critical trajectories of a Lagrangian written in the following form [18, 19]

L =

ˆ
dx

(
∂u

∂t

)2

︸ ︷︷ ︸
the kinetic term

−
(
∂u

∂x

)2
− 1

2 (u
2 − 1)2︸ ︷︷ ︸

the classical φ4
potential terms

−
√

2 ∂u
∂x

(u2 − 1)︸ ︷︷ ︸
the topological boundary term

.

(2.1)
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The �rst term corresponds to the kinetic energy while the second and third

are the ones encountered for example in the Landau theory of the Ising model.

Note, however, that there is an additional boundary term that contributes

to the energy but does not enter the Euler-Lagrange equation. Hence, one

obtains static kink and antikink solitary wave solutions of the usual form [50]

u = ± tanh

x− x0√
2

. (2.2)

The boundary term gives new properties to the solutions and breaks the

symmetry between kinks and antikinks. For example, it predicts that the

static kink con�guration costs zero potential energy while the static antikink

con�guration has a �nite potential energy. Previous work on this model has

been motivated by the kink’s zero-energy properties, and thus the shape and

stability of the antikink and its dynamical behavior were not studied.

In this Chapter we explore the physics of these �nite-energy con�gu-

rations. We compare the dynamics of the kink and antikink sectors in the

topological rotor chain and study their interaction with a lattice impurity.

We �nd that di�erences arising from the topological boundary term are ap-

parent in all of these aspects. In Sec. 2.2, we explain the discrete model and

develop a �xed-point analysis of the kink motion using a cobweb plot. In

Sec. 2.3, we review the continuum theory and compare the predictions for the

antikink with the discrete model. In Sec. 2.4, we study the eigenmodes of the

chain around a single kink or antikink pro�le. We exploit the tangent sti�ness

matrix approach developed by Guest [59] to analyze prestressed structures.

In Sec. 2.5, we study the nonlinear transport properties. In a conventional

continuum φ4
�eld theory, owing to translation invariance, both the kink and

antikink propagate at uniform speed. However, lattice discreteness e�ects

breaks this invariance and generates the so-called Peierls-Nabarro (PN) bar-

rier [60–62]. For the topological rotor model, we �nd that only the antikink

has a �nite PN barrier whereas the kink always propagates freely. We explain

this phenomenon as a consequence of the zero-energy cost associated with

the kink pro�le.
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Figure 2.1. A kink (a) and an antikink (b) con�guration in a topological chain (TC)

model of rotors (blue) and springs (red dashed lines) in the presence of a single

impurity (green solid lines) modeled as a spring with a di�erent sti�ness. For the kink

pro�le, the springs in the chain are at their rest length, while for the antikink, they

are stretched. A sketch of kink and antikink pro�les in terms of the continuum �eld

variable u = sin θ (where θ is the rotor angle) is shown below each con�guration.

(c) A two-rotor system. The masses are the blue dots, the rigid rotors are the black

lines, the pivots are the crosses, and the spring is the dashed red line. Here, a is the

lattice spacing, r is the rotor length, l̄ is the rest length of the springs and θ1,2 are

the rotor angles with respect to the vertical.
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2.2 Discrete model

The model we study consists of rotors of length r. The rotor pivots are placed

on a 1D lattice with spacing a. The angles θi of the rotors are measured in an

alternating fashion along the lattice, from the positive y-axis at odd-numbered

sites and negative y-axis at even-numbered sites. The equilibrium angle is θ
for a uniform lattice con�guration without a kink or antikink. The masses M
at the tips of the rotors are connected by harmonic springs with identical rest

lengths l and spring constants k. The two-rotor unit cell of the topological

chain is illustrated in Fig. 2.1c.

We now construct the chain with a kink under free boundary conditions.

There are n rotors and n− 1 springs. If we assume that the springs are in-

�nitely sti� (k →∞), the springs become n− 1 constraints and the system

only has a single independent degree of freedom. The angle of a single rotor

determines all the others iteratively. This degree of freedom manifests itself

as a mechanism which, as has been previously shown in [18], can be approxi-

mately described by the domain wall solution in a modi�ed φ4
theory

1
. We

call this mechanism a “kink” and discuss its continuum theory in the following

sections.

We use a cobweb plot to display the kink in Fig. 2.2. This is a tool for

visualizing the process of iteratively solving the nonlinear constraint equations

Eqn. (2.3) cell by cell. We construct the cobweb plot by drawing (1) a diagonal

line θi = θi+1 and (2) a curve of the implicit function given by the nonlinear

constraint equation that ensures the springs are not stretched,

(a+ r sin θi − r sin θi+1)
2 + (r cos θi + r cos θi+1)

2 = l
2. (2.3)

(An explicit relation between neighbouring rotor angles is derived analytically

with complex notation in Appendix 2.A.)

1
Varying the parameters (a, r, θ) yield other phases of the topological rotor chain. In this

thesis, we only consider the topological chain in the �ipper phase [18] where the φ4
theory is

a valid approximation. The name �ipper describes the back-and-forth motion of the rotors

as a kink propagates, in contrast to the spinner phase, where the rotors complete a full circle.

The continuum limit of the spinner phase can be approximately described by the sine-Gordon

theory
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Figure 2.2. The con�guration (a) and the corresponding cobweb plot (b) for the kink

in a topological rotor chain with r/a = 0.8, |θ| = 0.58. The springs are at their

rest lengths. In (b), the black curve is the constraint equation which ensures that the

springs are unstretched, the gray diagonal line satis�es θi+1 = θi, the blue point

(θi, θi) represents rotor i, the red point (θi, θi+1) represents the spring connecting

rotors i and i+ 1, and the red dashed lines with arrows indicates the iterative process

that generates the kink pro�le. The iteration steps from θ7 to θ10 are shown.

The iteration steps are as follows:

1. Given the angle θ1 of the �rst rotor at the left end, �nd the point on the
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function curve with coordinates (θ1, θ2).

2. Draw a horizontal line from (θ1, θ2) to the diagonal line. This gives the

point (θ2, θ2).

3. Draw a vertical line from (θ2, θ2) to the function curve. This gives the

point (θ2, θ3).

4. Repeat step 2 and 3 until the point (θn−1, θn) is found.

In Fig. 2.2b, we illustrate steps 2 and 3 from θ7 to θ10, which are near the

kink center. The blue point with coordinates (θi, θi) stands for the ith rotor

of angle θi. The red point with coordinates (θi, θi+1) represents the state of

the spring that connects the rotors of θi and θi+1.

Note that in Fig. 2.2b, the diagonal line and the function curve intersect at

two points. They are the �xed points of iteration. If all the red points (θi, θi+1)
stay at one �xed point, the plot represents a uniform lattice. The iteration step

proceeds from the leftmost rotor of the chain to the rightmost. We see that

the �ow proceeds outwards from one �xed point and then inwards towards

the other �xed point.

The cobweb plot may be used to graphically derive the decay lengths of

zero energy deformations, as they approach their uniform limits. As mentioned

above, a �xed point corresponds to an intersection between the line θi = θi+1
and the function curve. Note that the behavior of θi as it approaches a �xed

point resembles a "self-similar" zigzag motion between θi = θi+1 and the

tangent line of the function curve. This motivates linearizing the function

curve around the �xed point as follows:

θi+1 − θ = F ′(θ)(θi − θ), (2.4)

where θ, the equilibrium angle, is also just the value of the �xed-point angle

and F ′(θ) is the slope of the function curve at that point (which could be

computed explicitly in terms of r, a, l). This equation yields that θi − θ ∝
exp(logF ′(θ)i), or that the decay length is |1/ logF ′(θ)| (the sign of logF ′
tells us whether the �xed point is attracting or repelling). This result recovers

the penetration depth of the boundary modes computed in Ref. [18] using

band theory.
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In the cobweb plot, the static kink appears as a sequence of points on the

function curve interpolating between a repelling and attracting �xed point.

The dynamics of the kink in the cobweb plot is therefore the �ow of a cascade

of points between a pair of �xed points (Movie S1). While the kink propagates,

the points in the middle, such as (θ7, θ8), (θ8, θ9) and (θ9, θ10), corresponding

to the kink center, move more than those points close to the �xed points,

corresponding to the spatially localized nature of the kinetic energy.

Generating an antikink requires a few more steps, as it stretches springs,

and thus does not satisfy a constraint function that we could iteratively solve.

However, the continuum theory suggests that kinks and antikinks both have

the same functional pro�les with only their signs reversed (see Sec. 2.3). As a

result, we use the same iterative procedure as that for the kink, and then simply

swap the appearances of θi and θi+1 in Eqn. (2.3) to obtain an approximation

for the antikink pro�le. This method is equivalent to re�ecting the red points

in Fig. 2.2b across the diagonal line. The antikink constructed this way is not

an equilibrium con�guration and has unbalanced stresses in the springs. This

is because generically, the pro�les of the kink and antikink are not the same in

a discrete topological rotor chain. We next relax the springs using dissipative
Newtonian dynamics to remove the unbalanced stresses and obtain a stable

pro�le, which we show in the cobweb plot in Fig. 2.3. In that �gure, the spring

connections (red dots) around the core of the antikink pro�le (rotors 8 and 9)

do not fall on the curve which corresponds to unstretched springs. This implies

large spring deformations which we show explicitly in Fig. 2.4b. The amount

by which the springs are stretched is symmetrical around the 8th spring,

which is in accordance with the fact that a stable antikink has balanced forces

on each rotor. Note that we have �xed the boundary conditions to ensure that

the antikink is in mechanical equilibrium, which is not generically true. As

discussed later in Sec. 2.5, this has important consequences for the PN barrier.

2.3 Continuum theory

In this section, we review the continuum approximation to the kink and

antikink pro�les [18] and compare these with the discrete model developed in

the previous section. The discrete Lagrangian for the topological rotor chain
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Figure 2.3. The con�guration (a) and the corresponding cobweb plot (b) for an

antikink pro�le in the topological rotor chain with r/a = 0.8, |θ| = 0.58, where we

see that the springs are stretched. In (b) the same graphic notation as in Fig. 2.2 is

used except that we have not used an iterative process for constructing the antikink

pro�le, rather, depicted is only a visualization of the con�guration of the rotor chain.

The red points are obtained by �rst re�ecting the red points in Fig. 2.2b across the

diagonal line, and then relaxing the springs using dissipative Newtonian dynamics.

Note that the two rotors at the edges need to be collinear with the springs to ensure

force balance. This results in the angles overshooting at the �xed points.
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Figure 2.4. (a) The θ pro�le (rotor angles) for the antikink pro�le in Fig. 2.3a and

the corresponding continuum prediction from Eqn. (2.13). Note that the two rotors

at the edges need to be collinear with the springs to ensure force balance and this

results in the rotor angles overshooting the equilibrium value θ = ±0.58. (b) The

amount of spring stretching for the antikink pro�le.
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(see also Fig. 2.2a) with free boundary conditions is

L =
n∑
i=1

1
2Mr2

(
dθi
dt

)2

−
n−1∑
i=1

1
2k(li,i+1 − l)2. (2.5)

Here, n is the total number of rotors, M is the mass at the tip of a rotor, r is

the rotor length, θi is the angle that rotor i makes with the vertical (measured

alternately as shown in Fig. 2.2a), k is the spring constant, l is the rest length

of the spring and li,i+1 is the instantaneous length of the spring that connects

rotor i to rotor i+ 1. From geometry

l2i,i+1 = a2 + 2ar(sin θi+1 − sin θi) + 2r2 + 2r2 cos(θi + θi+1). (2.6)

which in the uniform limit θi = θi+1 = θ̄ gives the rest length of the spring

l
2
= a2 + 4r2 cos2 θ.

We make the working assumption that deformations do not stretch the

springs signi�cantly and hence we can neglect (or add) terms higher than

quadratic order in li,i+1 − l for all i. This is a reasonable approximation for

the system con�guration with a kink pro�le but is not well-justi�ed for an

antikink pro�le. However, in the limit that θ � 1, we �nd this to be a good

approximation for both kinks and antikinks. Within this limit, we therefore

express the potential energy term in Eqn. (2.5) as

1
2k(li,i+1 − l)2 ≈ k

8l2

(
l2i,i+1 − l

2
)2

. (2.7)

Substituting the expression for l̄ and Eqn. (2.6) into Eqn. (2.7), we express the

potential energy as

Vi,i+1 =
kr4

2l2

(
a

r
(sin θi+1 − sin θi)− cos 2θ+ cos(θi + θi+1)

)2

. (2.8)

Now we take the continuum limit of the potential. First we de�ne a

continuum �eld for the rotor angles θ(x), where the spatial variable x = ia+
a
2 is located symmetrically between two rotors in the unit cell. To leading order,
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θi → θ(x)− (a/2)(dθ/dx) and θi+1 → θ(x) + (a/2)(dθ/dx). Eqn. (2.8)

can then be expressed as

aV [θ] =
2k
l
2

(
a2

2
du
dx + u2 − u2

)2

, (2.9)

where we have de�ned the projection of the rotor position on the x−axis as

a new �eld variable u(x) ≡ r sin θ(x) and u ≡ r sin θ.

The kinetic energy density term in Eqn. (2.5) then assumes the form

aT [θ̇] =
1
2
Mr2

r2 − u2

(
du
dt

)2

. (2.10)

Next we approximate the Lagrangian Eqn. (2.5) as

L ≈
ˆ

dx
{
M

2a

(
∂u

∂t

)2
− ka3

2l2

(
∂u

∂x

)2

− 2k
al

2 (u
2 − u2)2 − ka

l
2
∂u

∂x
(u2 − u2)

}
.

(2.11)

where we have taken the leading order of the Taylor series expansion of the

nonlinear kinetic term (in the variable u2/r2
), which is valid in the limit when

u� r or equivalently sin θ � 1.

The �rst three terms in Eqn. (2.11) constitute the normal φ4
theory. The

last term linear in ∂u/∂x, is an additional topological boundary term. Being

a total derivative, it does not enter the Euler-Lagrange equation of motion

and we obtain the usual nonlinear Klein-Gordon equation

M

a

∂2u

∂t2
− ka3

l
2
∂2u

∂x2 −
8k
al

2u
2u+

8k
al

2u
3 = 0, (2.12)

whose kink and antikink solutions are given by

u0 = ±u tanh

 x− x0 − vt
(a2/2u)

√
1− v2/c2

, (2.13)
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where the ± denotes an (+)antikink and (-)kink respectively. Here, v is the

(anti)kink speed of propagation and c = (a2/l
√
k/M) is the speed of sound

in the medium. See Fig. 2.4a for a comparison with the discrete pro�le.

Note how the additional boundary term makes the potential energy den-

sity V [θ] a perfect square, see Eqn. (2.9). For the kink con�guration, V [θ]
therefore vanishes as is the case in the discrete topological chain. For the

antikink however, V [θ] is nonzero and is in fact twice of what we would

expect in the normal φ4
theory (where both the kink and antikink con�gura-

tions have the same energy). This is an agreement with our discussion on the

discrete model in Sec. 2.2.

Upon substituting the static (v = 0) antikink pro�le from Eqn. (2.13) into

Eqn. (2.11) and completing the integral, we obtain the potential energy of the

topological rotor chain with an antikink pro�le

Vantikink/(ka2) =
16
3

(r/a)3 sin3 θ

1 + 4(r/a)2 cos2 θ
. (2.14)

In Fig. 2.5, we compare this expression with the predictions from the discrete

model. We see that the continuum theory agrees reasonably well with the

discrete model as long as θ is less than approximately 0.6, below which,

the width of the antikink is larger than the lattice spacing and therefore, a

continuum approximation well justi�ed.

2.4 Linear modes

We now study small oscillations around the kink and antikink con�gurations,

�rst in the continuum limit, and next in the discrete model by developing the

tangent sti�ness matrix approach. In the continuum limit, we make the ansatz

u = u0 + δu and substitute into Eqn. (2.12) retaining only terms linear in δu:

M

a

∂2δu

∂t2
− ka3

l
2
∂2δu

∂x2 −
8k
al

2 (u
2 − 3u2

0)δu = 0 (2.15)

If we Fourier transform Eqn. (2.15) with respect to time, we obtain a Schödinger-

like equation with a solvable potential [63, 64]. This yields one continuous

spectral band as well as two discrete modes – one translation mode for the
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Figure 2.5. The normalized potential energy plotted against the equilibrium angle θ,

for a static antikink con�guration in a topological rotor chain with with r/a = 0.8.

The discrete model has 60 rotors. Note that the wobbler transition [18] is around

θ = sin−1 ( a
2r
)
= 0.67, which is close to where the continuum theory starts to

signi�cantly deviate from the discrete model.

(anti)kink and one shape mode [65], which corresponds to small deformations

of the shape of the (anti)kink localized around the center of their pro�le. For

the topological rotor chain, the frequencies of the two discrete modes are:

ωt = 0, for the translation mode (2.16)

ωs = (r/a)
√

12k/M sin θ/
√

1 + 4(r/a)2 cos2 θ,
for the shape mode.

(2.17)

In Fig. 2.6a and 2.6c, the kink and antikink are located in the middle of

the chain. The mode arrows (in green) that all point in the same direction,

correspond to a translation mode. In Fig. 2.6b and 2.6d, the arrows on either

side of the (anti)kink, point in opposite directions and these correspond to

shape deformations of the (anti)kink.
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(a)

(b)

(c)

(d)

Figure 2.6. The con�gurations of (a) the kink translation mode, (b) the kink shape

mode, (c) the antikink translation mode and (d) the antikink shape mode. The green

arrows depict the mode component of each rotor.

In Appendix 2.B, we follow the approach proposed by Guest [59] to derive

the tangent sti�ness matrix K for prestressed mechanical structures. With

K we numerically obtain the frequencies of localized modes for the discrete

chain model and compare them with the predictions of the continuum theory

(Eqn. (2.16) and Eqn. (2.17)) in Fig. 2.7. We �nd that the translation mode ωt
for the kink indeed vanishes (within machine-precision in our numerics) for

all values of θ and is thus absent in the range of the log-log plot shown in

Fig. 2.7a). However, as seen in Fig. 2.7b, the translation mode (open circles)

for the antikink is nonzero.

For the shape mode ωs (�lled circles), we �nd the numerical results for

both the kink and antikink to be in good agreement with the continuum

theory at small θ. Note that in Fig. 2.7b, although the antikink has a �nite

nonzero ωt, the value is still signi�cantly smaller than ωs.
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Figure 2.7. The frequenciesω of localized mode(s) for (a) the kink and (b) the antikink

as a function of θ for a rotor chain with r/a = 0.8. The data points are numerically

obtained from the tangent sti�ness matrix approach, �lled circles correspond to

the shape mode (ωs), while open circles correspond to the translation mode (ωt) .

The curves are from the continuum theory. The frequencies for the kink translation

mode for all θ̄ and the frequencies for the antikink translation mode for θ < 0.1 are

e�ectively zero at machine precision and thus, not visible in the �gure.
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2.5 Nonlinear dynamics

In the previous section, we have seen that for the discrete topological chain,

the energy of the translation mode for the kink is zero, whereas that for the

antikink is non-zero. Note that the standard discretization of a φ4
�eld theory

leads to a non-zero translation mode for both the kink and antikink [62]. Thus,

the kink here di�ers qualitatively from the antikink in that it has a zero mode

even when we consider the discrete model. We next numerically simulate the

propagation of a kink and antikink along the discrete chain and see how this

di�erence manifests in their dynamics.

We numerically integrate Newtons equation of motion for the rotors using

molecular dynamics simulations. (The simulation settings are described in

Appendix 2.C.) A stable chain con�guration with a single kink or antikink is

used as the initial con�guration (see Figs. 2.6a- 2.6c for the initial conditions

used). An excitation is set in motion with a velocity along the direction of the

translation mode, but with variable amplitudes.

In Fig. 2.8, we plot the kinetic energy (K.E.) of the chain as a function of

time for a set of parameters, for a kink excitation (solid curve) and an antikink

excitation (dashed curve). The K.E. of the kink remains nearly constant for

all times with some small �uctuations (as the springs have to slightly deform

to transport energy by simultaneously minimize the potential and kinetic

energy). However in comparison, the K.E. of the antikink for the same set of

initial parameters changes signi�cantly as it propagates down the chain. The

key point is that the kink and antikink do not propagate in the same way.

The asymmetry between a static kink and antikink con�guration was

discussed in [18]. Further, we also know from Eqn. (2.11) (and the ensuing

discussion) that in the continuum limit, the topological rotor chain is approx-

imately described by a φ4
theory with an additional topological boundary

term which ensures that the potential energy of the kink is zero while that

for the antikink is nonzero (see Ref. [19] for an interpretation of this fact in

terms of supersymmetry breaking). However, the additional boundary term

does not a�ect the continuum equation of motion and thus, both the kink and

antikink should have translational invariance in this limit and their dynamics

should not have di�ered.

The reason for this asymmetrical behavior can be understood only if we
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examine the discrete model. The system with free boundary conditions has n
rotors andn− 1 springs, and the static kink does not require any of the springs

to be stretched. We can therefore interpret the springs as constraints. Thus,

the discrete kink’s equilibrium manifold is a continuous curve embedded in

the n-dimensional con�guration space of the rotor angles θi and the kink

can be positioned stably anywhere along the chain. By contrast, an antikink

requires the springs to be stretched. Forces on each of the rotors have to

be balanced for the system to be in mechanical equilibrium. So the possible

equilibrium con�gurations have to be symmetrical locally around the center

of the antikink, as shown in Fig. 2.9. As a result, the equilibrium manifold for

an antikink is not a continuous curve but rather, consists of a set of discrete

points. These correspond to either saddle points or minima in the potential

landscape. Any locally asymmetrical con�guration is therefore not stable and

will slide towards a minima.

The saddle points and their nearest minima can be connected by an “adi-

abatic trajectory” [61], which is a curve of steepest descent. The concept of

an adiabatic trajectory is useful in two ways. First, it describes the slow mo-

tion of the antikink through the chain. The position of the antikink center

can be de�ned by a coordinate along such a trajectory. Secondly, it helps to

rigorously de�ne the so-called Peierls-Nabarro (PN) potential [60–62], which

is the e�ective periodic potential that the antikink feels as it moves along

the adiabatic trajectory. A saddle point in the full potential energy landscape

corresponds to a maximum along the adiabatic trajectory (while a minimum

is still a minimum). Note that although the antikink’s K.E. �uctuations in

Fig. 2.8 do not strictly equal its PN potential barrier, the former reveals the

existence of the latter.

In Appendix 2.D, we derive the PN potential barrier from the continuum

theory

VPNB =
4π2

(
π2 + (a/w)2

)
3
(
1 + 4(r/a)2 − (a/w)2

)
sinh(π2w/a)

∝ e−π2w/a
for large w/a.

(2.18)

This shows that the PN barrier decays exponentially as the width w of the

antikink increases.
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Figure 2.8. Time evolution of the kinetic energy for a kink (Fig. 2.6a) and an antikink

(Fig. 2.6c) in a topological rotor chain with non-dimensional parameters M = 1,

k = 10000, r/a = 0.8, θ = 0.58. The magnitude of initial velocity in both cases is

v0 = 2.4. The units of energy and velocity are determined by the aforementioned

physical parameters. The kink propagation only results in small oscillation of the

K.E. whereas we see signi�cant �uctuations during the propagation of an antikink.

These can be traced to the Peierls-Nabarro potential as shown in Fig. 2.9

We next compare the theoretical results with numerical simulations. We

obtain the exact PN barrier by computing the di�erence in potential energy

between the two types of equilibrium points: a minima and a saddle point,

see Fig. 2.9, where for a given set of parameters, we �nd the barrier height to

be 1359.75− 1359.15 = 0.60, consistent with the magnitude of the K.E. �uc-

tuations shown in Fig. 2.8 for the same set of parameters. By repeating this

calculation for systems with various antikink widths w, we obtain the depen-

dence of the normalized PN barrier VPNB/(ka2) on w/a, which we show in

Fig. 2.10. We compare these with the predictions from the continuum theory,

given by Eqn. (2.18). The numerical results (�lled circles) obtained from the

discrete lattice and the theoretical predictions (continuous curve) follow a sim-

ilar trend, but di�er by at least one order of magnitude. This can be explained
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P.E.= 1359.15

(a)

P.E.= 1359.75

(b)

Figure 2.9. Two equilibrium con�gurations in the potential energy landscape of a

static antikink: (a) a minimum and (b) a saddle point, respectively. The topological

chain has the same con�guration parameters as in Fig. 2.8.
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Figure 2.10. The dependence of the normalized PN barrier (VPNB/ka2
) on the

normalized antikink width (w/a), for both the discrete model (black circles) and

the continuum theory (solid line). The slope of the dashed line (�t to simulation) is

−10.6, in reasonable agreement with the predictions from the continuum theory in

Eqn. (2.18), which gives a slope −π2 ≈ −9.9.
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by the fact that the discreteness of the lattice is ignored in the theory when

we take the continuum limit in going from Eqn. (2.8) to Eqn. (2.9). See [60] for

a thorough discussion of the e�ect of lattice discreteness on the single-kink

dynamics in a φ4
model.
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Figure 2.11. The �nite-size e�ect on VPNB . ∆VPNB is de�ned as VPNB(L) −
VPNB(L = 60). The con�guration parameters are r/a = 0.8 and θ = 0.40.

Further, we also investigate �nite-size corrections to the PN barrier, or

more precisely, the di�erence between VPNB for a system with a small �nite

size and that for a system with a su�ciently larger size (60 rotors). We �nd

that �nite size e�ects decay quickly as an exponential function with increasing

system size for a topological rotor chain with a central antikink (see Fig. 2.11).

This is because an antikink con�guration is a localized object. The components

of its displacement, its translation mode, as well as its shape mode, decay

exponentially away from its center and therefore, so does the e�ect of any

boundaries.

To summarize, for the topological rotor chain that we study, the PN barrier

for a kink vanishes and that for an antikink is �nite. This, not only a�ects

how their respective kinetic energies �uctuate over a lattice spacing, but also

a�ects their dynamics over long distances. It is well known that φ4
kinks and

antikinks are non-integrable solutions [64]. Although the kinks and antikinks
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are “topologically” robust objects, they still tend to dissipate energy into

phonons and into shape �uctuations as they propagate. Once an antikink has

lost too much kinetic energy to be able to overcome the PN barrier, it gets

trapped in a PN potential minimum, as shown in Fig. 2.12. On the other hand,

for the topological rotor chain that we study, the kink never gets trapped,

since its PN barrier vanishes.

Figure 2.12. Perspective view of a moving antikink trapped in its Peierls-Nabarro

barrier around Time = 20 near Rotor #35. The topological rotor chain has the same

con�guration parameters as in Fig. 2.8 and the initial antikink velocity is v0 = 1.1 in

non-dimensional units.
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Appendix

2.A Complex notation

We use complex variables to derive the explicit relation between neighbouring

rotor angles. Adopting the notation in Fig. 2.1c, we put the pivot of rotor 1 at

the origin of complex plane and the pivot of rotor 2 at the coordinate (a,0).

The positions of the rotor tips are

z1 = ire−iθ1 , (2.19)

z2 = a− ireiθ2 . (2.20)

We have two constraints (where a bar represents complex conjugations):

(z2 − z1)(z̄2 − z̄1) = l20, (2.21)

(z2 − a)(z̄2 − a) = r2. (2.22)

Eliminating z̄2 from above two constraints, we �nd a quadratic equation

for z2,

Az2
2 +Bz2 +C = 0, (2.23)

where

A =
z̄1 − a
a− z1

, (2.24)

B =

(
l20 + a2 − 2r2

a− z1

)
− a

(
z̄1 − z1
a− z1

)
, (2.25)

C = a2 − r2 − a
(
l20 + a2 − 2r2

a− z1

)
. (2.26)

We have two branches of the solution for z2

z2 =
−B ±

√
B2 − 4AC
2A , (2.27)

which explicitly expresses the black curve in Fig. 2.2b.
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2.B Vibrational modes of prestressed mechanical
structures

θp>0

θp+1<0lp

vp

vp+1

rotor p

rotor p+1

spring p

(a)

Δθ

vp

lp

rΔθ
Δl

(b)

Figure 2.13. Detailed con�gurations around a single spring p.

We demonstrate how to use to the method of tangent sti�ness matrix to

calculate normal modes in prestressed mechanical structures [59].

Consider a single spring p in the con�guration shown in Fig. 2.13a (note

here, we are now specifying rotor angles θ with respect to the positive x-axis).

From geometry, we �nd

fp = −~vp ·~lp t̂p
fp+1 = ~vp+1 ·~lp t̂p.

(2.28)

Here, fp is the spring force projected along the tangent vector ~vp of rotor p

~vp =

(
− sin θp
cos θp

)
. (2.29)

~lp is the vector along the length of the spring p and points from rotor p to

p+ 1,

~lp =

(
a+ r cos θp+1 − r cos θp
r sin θp+1 − r sin θp

)
. (2.30)
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t̂p is a scalar tension coe�cient for spring p, de�ned as t̂p ≡ tp/|~lp|, where

tp ≡ kp(|~lp| − l) for a harmonic spring. Here, |~lp| is the instantaneous length

of spring p, l is the rest length of the spring, and k is the spring constant.

In order to �nd the tangent sti�ness, we di�erentiate Eqn. (2.28) with

respect to the rotor angles θp and θp+1

∂fp
r∂θp

=
∂(−~vp ·~lp)
r∂θp

t̂p − ~vp ·~lp
∂t̂p
r∂θp

(2.31)

∂fp
r∂θp+1

=
∂(−~vp ·~lp)p
r∂θp+1

t̂p − ~vp ·~lp
∂t̂p

r∂θp+1
(2.32)

∂fp+1
r∂θp

=
∂(~vp+1 ·~lp)

r∂θp
t̂p + ~vp+1 ·~lp

∂t̂p
r∂θp

(2.33)

∂fp+1
r∂θp+1

=
∂(~vp+1 ·~lp)
r∂θp+1

t̂p + ~vp+1 ·~lp
∂t̂p

r∂θp+1
. (2.34)

To simplify Eqn. (2.31), we express

∂t̂p
r∂θp

=
dt̂p
d|~lp|

∂|~lp|
r∂θp

(2.35)

dt̂p
d|~lp|

=
d(tp/|~lp|)

d|~lp|
=

1
|~lp|

(gp − t̂p) = ĝp/|~lp|, (2.36)

where gp ≡ dtp/d|~lp| is de�ned as the axial sti�ness and ĝp ≡ gp − t̂p is

de�ned as the modi�ed axial sti�ness.
From Fig. 2.13b, we see that ∆l = r∆θ (−~vp ·~lp)/|~lp| and therefore,

∂|~lp|
r∂θp

=
(−~vp ·~lp)
|~lp|

(2.37)
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Substituting Eqn. (2.35 - 2.37) into Eqn. (2.31), we �nd

∂fp
r∂θp

=
∂(−~vp ·~lp)
r∂θp

t̂p − (~vp ·~lp)
ĝp

|~lp|
(−~vp ·~lp)
|~lp|

. (2.38)

Similarly, we simplify Eqns. (2.32 - 2.34)

With the above derivatives, we can now de�ne the tangent sti�ness matrix.

For a single spring p, the tangent sti�ness matrix, Kp, relates small changes

in rotor position to small changes in rotor forces

(
δfp
δfp+1

)
= Kp

(
rδθp
rδθp+1

)
(2.39)

and can be expressed as

Kp =

(
np
np+1

)[
ĝp

] (
np np+1

)
+ sp, (2.40)

where np ≡ −~vp ·~lp/|~lp|, np+1 ≡ −~vp+1 ·~lp/|~lp| and the stress matrix sp is

sp =


−∂(~vp·~lp)

r∂θp
t̂p −∂(~vp·~lp)

r∂θp+1
t̂p

∂(~vp+1·~lp)
r∂θp

t̂p
∂(~vp+1·~lp)
r∂θp+1

t̂p

 . (2.41)

To derive the total tangent sti�ness K for the rotor chain, we �rst represent

the tangent sti�ness Kp in a global coordinate system as an n× n matrix,

and then sum up all the Kp for the n− 1 springs:

K =
n−1∑
p=1

Kp =
n−1∑
p=1

ap
[
ĝp
]
aTp +

n−1∑
p=1

Sp, (2.42)
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where

ap =



0
.
.
.

0
np
np+1

0
.
.
.

0


(2.43)

and

Sp =


0 . . . 0
.
.
. sp11 sp12

.

.

.

.

.

. sp11 sp12
.
.
.

0 . . . 0

 . (2.44)

In ap, the np and np+1 terms are in the pth and p+ 1th row respectively, and

all the other terms are zero. In Sp, spij is the (i, j) element of the 2× 2 stress

matrix sp for a single spring p and is located in the (p− 1 + i, p− 1 + j)
position of Sp, and all the other terms in Sp are zero. Here Sp has a simpler

form than that of Ref. [59] because we exploit the fact that only nearest

neighbours are coupled in the topological chain.

2.C Simulation methods

We carry out the molecular dynamics simulations in Mathematica. The ODEs

are solved by the function NDSolve, which uses a multi-step method (LSODA)

by default.

In the simulations, we set the lattice spacing a = 1, the rotor massM = 1,

and an arbitrary time unit t = 1. The spring constant k is measured in units

ofM/t2. The linear velocity of a rotor is measured in units of a/t. The initial

velocity v0 of a (anti)kink is de�ned as the velocity amplitude of the unit

translation mode et and eti is the mode component on the i-th rotor. Thus the

initial kinetic energy is Σi 1
2m(v0e

t
i)

2 = 1
2mv

2
0 .
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2.D Peierls-Nabarro potential barrier via
continuum theory

We derive the PN potential by discretizing the potential energy density in the

continuum theory, i.e. taking the quasi-continuum limit. The PN potential

is, by de�nition, the potential that the kink faces as it propagates along the

adiabatic trajectory (ad. tr.) :

VPN (X) = V (...,un−1,un,un+1, ...)|X∈ad.tr.. (2.45)

Here, X is the position of the (anti)kink center, un is the continuum �eld at

lattice site n, V is a discretization of the potential energy density V (θ) in

Eqn. (2.9) and is obtained by summing the potential f(n,X) of each lattice

site:

V (...,un−1,un,un+1, ...) =
∑

f(n,X), (2.46)

where

f(n,X) =
2k
l
2

(
a2

2
dun

d(na) + u2 − u2
n

)2

. (2.47)

f(n,X) is the approximate potential at a single site n when the (anti)kink

center is at X . Here, we discretize the continuum potential energy density

rather than directly use the exact form of the lattice potential in Eqn. (2.8), so

that we can readily substitute un, the continuum �eld at site n, into f(n,X)
which results in an integrable solution. We choose the static solution (v = 0)

of Eqn. (2.13) as the adiabatic trajectory:

un(X) = ±u tanh
(
na−X
w

)
, (2.48)

where the “+” is for the antikink, “−” is for the kink, and the width of the

(anti)kink w = a2

2r sin θ [18]. Substituting Eqn. (2.48) into Eqn. (2.47), we �nd

f(n,X) = 0 for the kink,

f(n,X) =
8ku4

l
2 sech4

(
na−X
w

)
for the antikink.

(2.49)
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Thus VPN (X) = 0 for the kink, in accordance with the fact that the kink

con�guration does not stretch springs and hence costs zero potential energy.

For the antikink, we use the Poisson summation formula to express:

VPN (X) =
+∞∑

n=−∞
f(n,X) =

+∞∑
k=−∞

f̂(k,X)

=
+∞∑

k=−∞

ˆ +∞

−∞
dnf(n,X)e−2πikn.

(2.50)

To leading order, we only consider the �rst harmonic terms k = 1 and k = −1
(k = 0 recovers the continuum approximation). For k = 1, we �nd

ˆ +∞

−∞
dnf(n,X)e−2πin

= e−2πi(X/a)
ˆ +∞

−∞
dn′ 8ku

4

l
2 sech4

(
n′a

w

)
e−2πin′ .

(2.51)

The complex exponential suggests a sinusoidally varying potential along

the coordinate X of the adiabatic trajectory, with a period that is equal to

the lattice spacing a. We de�ne the PN barrier (VPNB) as the height of this

sinusoidal potential. The last integral in Eqn. (2.51) can be completed using

residues to yield

VPNB =
4π2

(
π2 + (a/w)2

)
3
(
1 + 4(r/a)2 − (a/w)2

)
sinh(π2w/a)

∝ e−π2w/a
for large w/a.

(2.52)





Chapter 3

Topological rotor chains with
impurities

I
n this chapter we investigate topological rotor chains with impurities.

In Sec. 3.1, we examine how kinks and antikinks interact with a spring

sti�ness impurity in the lattice. In Sec. 3.2, we make a connection between

linear mode analysis and nonlinear dynamics of kink motion in the context

of spring length impurities.

3.1 Spring sti�ness impurities

In this section we numerically explore whether the kink-antikink asymme-

try also manifests in the way these excitations interact with a single lattice

impurity, a natural starting point to study their propagation in disordered

lattices. For the conventional φ4
models, previous studies on kink-impurity

interactions (in both discrete models [66] and continuum �eld models [67])

have shown that scattering can result in transmission, trapping or re�ection of

kinks, depending on the type of the impurity, the attraction/repulsion strength

of the impurity and the kink’s initial velocity. Although similar scattering

also occurs in the topological rotor chain model, we also �nd other novel

phenomena, for instance, the kink can split into two kinks and one antikink.

Moreover as we will see, kinks and antikinks no longer scatter in the same way

43
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– a feature which underscores the kink-antikink asymmetry in our topological

rotor chain. Fig. 3.1 summarizes all the possible scattering scenarios that we

observe. In this chapter, we study impurities in properties of the springs,

which yield a richer set of e�ects on the response than mass impurities.

Kink Antikink

Splitting

Reflection

Trapping

Before

Transmission TransmissionAfte r

Afte r

Afte r

I

III

II

Figure 3.1. Illustrated are the possible scenarios for how the kink and antikink

interact with a single impurity of spring sti�ness. As indicated by the arrow, an initial

kink or antikink approaches the impurity site (indicated by the green star) from the

right. After scattering, the incident kink is either: (I) perfectly transmitted or (II)
splits into a re�ected kink, a transmitted kink and an antikink that gets trapped at the

impurity site. The incident antikink is either: (I) perfectly transmitted, (II) trapped at

the impurity site or (III) perfectly re�ected.

In this section, we model an impurity by changing the spring sti�ness

constant at a single site (Fig. 2.1a). We study a topological chain with lattice

spacing a = 1 and rotor length r/a = 0.8 and with equillibirum angle

θ = 0.28. We perform Newtonian dynamics simulation on a system with 60

rotors using free boundary conditions, and for a range of impurity spring

sti�ness constant ki and kink/antikink initial velocity v0. See Fig. 3.1 for a

table of the possible scattering scenarios that we observe.
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Consider �rst the kink-impurity interaction. For most ki and v0, the kink

simply passes through the impurity and may excite an impurity mode, which

can be seen in the form of small �uctuations in the middle of the chain as

shown in Fig. 3.2a. When the impurity spring is su�ciently soft, the incident

kink splits into three: a transmitted kink, an antikink that is trapped at the

impurity and a re�ected kink. This is shown in Fig. 3.2b.

(a) (b)

Figure 3.2. A kink interacts with an impurity (di�erent spring sti�ness) and is

either (a) transmitted, shown here for v0 = 4.0 and ki/k = 0.10 or (b) splits

into a transmitted kink, a re�ected kink and an antikink trapped at the impurity,

shown here for v0 = 9.6 and ki/k = 0.01. The non-dimensional parameters are

M = 1, k = 10000, r/a = 0.8, θ̄ = 0.28.

Antikink scattering results in an ever richer set of behaviors. Recall that

the springs near the location of an antikink are always stretched signi�cantly,

see Fig. 2.4b. For ki/k near 1, the antikink gets transmitted with energy

dissipation and thus slows down (Fig. 3.3a). Softening the impurity spring

sti�ness creates an attractive potential well for the antikink. The antikink

may then release a part of its potential energy and get trapped at such an

impurity site (Fig. 3.3b). If the impurity spring is made even softer, such that

an antikink can no longer transfer its kinetic energy forward or dissipate it

su�ciently quickly to be trapped, the incident antikink is completely re�ected

(Fig. 3.3c). For similar reasons, a sti�er impurity acts like a repulsive potential
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well that can re�ect slow moving antikinks.

(a) (b)

(c)

Figure 3.3. An antikink interacts with an impurity and is either (a) transmitted,

shown here for v0 = 4.0 and ki/k = 0.80, (b) trapped, shown here for v0 = 4.0 and

ki/k = 0.70 or (c) re�ected, shown here for v0 = 4.8 and ki/k = 0.20. The system

parameters are the same as Fig. 3.2.

These numerical results are summarized in the phase diagrams in the

space of ki and v0 in Fig. 3.4. First, note that a kink (Fig. 3.4a) behaves quite

di�erently from an antikink (Fig. 3.4b). For instance, a kink is never completely
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trapped or re�ected by an impurity. The reason is that it has zero intrinsic

potential energy and thus, no potential energy to lose during a scattering

event. As a collective object, the kink experiences a �at potential landscape

along the chain. It will always go through the impurity, unless ki is so soft

or v0 is so large that the initial kinetic energy of the kink is su�cient to

stretch the impurity spring to form a pinned antikink. That is when scattering

results in the kink being split. This also explains the positive slope of the

boundary line between these two regimes. (The topological constraints of the

�eld require that the number of kinks minus the number of antikinks remains

constant [50], which is one for our boundary conditions.)

For an antikink, the scattering phase diagram has more regimes (Fig. 3.4b).

The positive slope of the boundary curve at higher ki between the upper

re�ection regime (square) and the transmission regime (circle) comes from

the fact that the higher the barrier is, the faster the antikink needs to be, to

get transmitted. The negative slope of the boundary between the transmis-

sion regime (circle) and the trapping regime (triangle), suggests that a softer

impurity spring causes the antikink to dissipate more energy. The antikink

then needs a su�ciently high initial velocity to avoid being trapped at such

an impurity site. The positive slope of the curve between the trapped regime

(triangle) and the lower re�ection regime (square) suggests that if the impurity

spring is so soft such that it can no longer transform the kinetic energy into

other forms or channelize the kinetic energy to the other side of the impurity

su�ciently “quickly”, an antikink incident with su�ciently high energy will

then be completely re�ected. (In simulations we �nd that the maximum initial

velocity with which we can launch an antikink is around v0 = 12. Above this,

the antikink itself becomes unstable and tends to quickly disintegrate.)

For the topological rotor chain, the antikink scattering behaviour is there-

fore very similar to the ones reported for kinks and antikinks in previous

studies on the φ4
model [66, 67]. In addition, for normal φ4

kinks and an-

tikinks, one also observes resonance windows which are alternating regimes

of the excitation being re�ected or trapped, along the axis of initial veloc-

ities for a given impurity strength. These have not been observed during

our simulations of the discrete topological chain. Instead, we only observe

a small range of alternating regimes where the antikink is transmitted or

trapped, around ki/k = 0.75 and v0 = 3.6 in Fig. 3.4b. We leave a detailed
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Figure 3.4. The phase diagram of the scattering behavior in the parameter space of

normalized spring sti�ness constant of impurity ki/k and kink initial velocity v0 for

(a) the kink and (b) the antikink. The system parameters are the same as Fig. 3.2. The

lower limit of v0 for the antikink is around 0.7, below which even the PN barrier in a

perfect chain will capture the antikink.

characterization of the resonance energy exchange between these modes for

future studies.



3.2. Spring length impurities 49

3.2 Spring length impurities

In Sec. 2.4 we perform linear mode analysis of the topological chain, and in

Sec. 3.1 we study the nonlinear motion of (anti)kinks with impurities. Here

in this section we will show in a qualitative way that there is a connection

between these two aspects. For convenience, we investigate another type of

impurity: the spring length.

3.2.1 Linear mode analysis

We start with a qualitative observation of the linear vibrational modes. For a

perfect topological rotor chain with free boundary conditions, there exists only

one zero mode – the translation mode of the kink. This is what the Maxwell-

Calladine counting predicts [57, 58]: the chain has n rotors as degrees of

freedom and n− 1 springs as constraints, and the former quantity minus the

latter equals the number of zero modes minus the number of states of self

stress. (In a perfect chain there is no states of self stress.) This counting does

not depend on the geometrical parameters of the chain components.

Now we increase one geometrical parameter, namely the length of the

middle spring l0, so that it is an impurity in the system (Fig. 3.5). As long as no

state of self stress is created, there remains only one zero mode. However, as l0
approaches a critical value lcritical, several qualitative changes take place: (1)

The pro�le of the chain varies signi�cantly. There are two kinks, one on each

side of the impurity spring. (2) Eigenmode analysis shows that the amplitude

of the zero mode has two prominent parts that are spatially separated, each

of which is localized around a kink as an individual translation mode. Both

parts of the zero mode point towards the same direction. (3) An additional

soft vibrational mode appears, whose amplitude also has two separated parts

just like the zero mode. But the directions of these two parts are opposite

to each other. This soft mode has a frequency close to zero, much lower

than that of kink shape modes. (4) A soft tensional mode dual to the soft

vibrational mode emerges, being localized around the impurity spring. (A

tensional mode is a vector whose components are the in�nitesimal spring

tensions caused by the in�nitesimal motion of the dual vibrational mode. The

duality comes from the fact that the tensional mode is an eigenfunction of the
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supersymmetrical “partner” of the dynamical matrix, while the vibrational

mode is an eigenfunction of just the dynamical matrix. See [19, 25, 26] for

more details.)

These changes do not contradict the Maxwell-Calladine counting: only

one vibrational mode has strictly zero frequency, unless l0 actually reaches

lcritical. In that case, the frequencies of both the soft vibrational mode and the

soft tensional mode go to zero. By de�nition the tensional mode becomes a

state of self stress. Then the Maxwell-Calladine counting still holds as there

are now two zero modes and one state of self stress.

The above analysis only considers in�nitesimal oscillations around zero-

energy equilibrium points. In the next section, we study qualitatively the

nonlinear motion of kinks with �nite energy, providing a perspective comple-

mentary to the linear analysis.

3.2.2 Nonlinear dynamics: linkage limit

3.2.2.1 Setup: Hamiltonian

To simplify the problem, we consider the linkage limit, where all the springs

in a perfect chain are non-deformable rigid bars so that they are holonomic

constraints. There is only one degree of freedom which is the translational

motion of the kink. We choose the kink position x as a collective variable to

describe this degree of freedom.

Then we introduce the impurity by replacing the middle rigid bar with a

longer spring that is “soft” (i.e. with a �nite spring sti�ness constant) (Fig. 3.6a).

A soft spring does not strictly constrain the angles of the two rotors it connects

but rather gives a potential energy to deviations from its preferred length.

The chain then has one fewer constraint, which in turn means that it has two

degrees of freedom. We regard the whole chain as two linkage sub-chains,

then the two degrees of freedom are shared by the two kinks of the sub-chains,

which we call Kink 1 and Kink 2 with position x1 and x2 respectively. The

coordinate system for the discrete chain model is illustrated in Fig. 3.6a, and

its precise de�nition is contained in Appendix 3.A. We see that by taking the

linkage limit, the number of degrees of freedom is reduced from the number

of rotors (16 for the chain in Fig. 3.6a) to the number of kinks (2 for two kinks).
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(a)

(b)

(c)

(d)

Figure 3.5. The zero vibrational mode (a), the soft vibrational mode (b), and the

soft tensional mode (c) of a topological chain with a longer spring in the middle as

an impurity. The con�guration parameters are θ = 0.58, r/a = 0.8, l/a = 1.68,

l0/a = 2.30 and lcritical/a = 2.31. The soft mode frequency is 7.7 × 10−9
in

the unit of (r/a)
√
k/M , which means the mode is much “softer” than the kink

shape mode whose frequency is of the order 10−2
. In (a) and (b), the arrows indicate

the mode amplitude of the displacement of each rotor. In (c), the thickness of the

green bars indicates the tensional mode amplitude on each spring. All the springs,

both normal ones and the impurity, have the same sti�ness. (d) shows a LEGO

demonstration.
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Figure 3.6. (a) Illustration of the coordinate system of a topological rotor linkage

chain with θ = 0.58, r/a = 0.8, l/a = 1.68 and lcritical/a = 2.31. The linkage

bars are the solid lines and the impurity spring is the dashed line. In (b), the upper

panels show the potential functions in 2D con�guration space for various l0. One

corner of the function is trimmed for visualization. The red curve corresponds to the

potential for Kink 1 in the one d.o.f. case where Kink 2 is �xed at x2 = 0. The lower

panels show the phase portraits of Kink 1.
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Now we derive the Hamiltonian. Note that the potential energy only comes

from the deformation of the impurity spring, which in turn just depends upon

the angles of the head rotors θ̃i. Since xi is the degree of freedom, it determines

the state of the sub-chain i, including θ̃i. Thus from the continuum theory

(Eq. 2.13 where u = r sin θ), we obtain θ̃i(xi):

sin θ̃i(xi) = sin θ tanh
(
r sin θ(|xi| − x̃i)

a2

)
, (3.1)

where θ is the equilibrium angle of a perfect chain, a is the lattice spacing, r
is the rotor length, and x̃i is the position of the head rotor.

Putting θ̃i(xi) into the Hookean spring potential V = 1
2k(l1,2 − l0)2

where l1,2 takes the form in Eq. (2.6) and l0 is the rest length of the impurity

spring, we obtain the potential function V (x1,x2; l0) as a function of the kink

positions (Fig. 3.6b). We formally de�ne the e�ective kink momentum p and

mass m for the sub-chains in terms of the total kinetic energy of the rotors

T =
∑8
j=1

1
2mr

2θ̇2
j ≡ 1

2mp
2
. Thus the Hamiltonian H(x1,x2, p1, p2; l0) =

T (p1, p2) + V (x1,x2; l0) is obtained.

3.2.2.2 Individual kink: Phase portrait

We �rst investigate a simple case where Kink 2 is �xed at x2 = 0 and only

Kink 1 is allowed to move. Then the chain has only one degree of freedom

x1. With the Hamiltonian, we draw the phase portraits of xi for various l0
in Fig. 3.6b. We �nd that there is a critical value for the rest length of the

impurity spring

lcritical =
√
(2r sin θ+ a)2 + (2r cos θ)2, (3.2)

which determines the pattern of the phase portrait and the qualitative behavior

of the dynamics of the chain.

When l0 < lcritical, the dumbbell-shaped separatrix curve extends almost

across the whole reachable region of x1. The two equilibrium points at x1 ≈
+8 and x1 ≈ −8 correspond to the kink being localized around the impurity

spring. x1 is either positive or negative depending on the orientation of the

end rotor. At these two equilibrium points the impurity spring is not stretched.
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The behavior of Kink 1 depends on whether E is above or below the

separatrix curve’s energy Ec =
1
2k(l0 − lcritical)

2
. If E < Ec, the trajectory

in the phase plane stays inside the region enclosed by separatrix and circu-

lates around one of the equilibrium points. In real space, Kink 1 makes small

oscillations around the impurity spring at either x1 ≈ −8 or x1 ≈ +8. If

E > Ec the trajectory moves in the region outside of the separatrix. In real

space, Kink 1 is able to go over the sub-chain end and move back and forth

between x1 ≈ −8 and x1 ≈ +8.

When l0 approaches lcritical from below and exceeds lcritical, the sepa-

ratrix curve shrinks and disappears. The two equilibrium points merge into

one at x1 = 0 at the end of the sub-chain
1
. In real space, the kink with �nite

energy oscillates around the sub-chain end x1 = 0.

3.2.2.3 Two kinks: Accessible con�guration space

The phase space of a chain with two kinks is 4D. For the convenience of

visualization, we investigate the potential function V (x1,x2; l0) in the 2D

con�guration space. The shape of the potential depends on l0 and determines

the qualitative dynamics of the two kinks. We also perform simulations of

Newtonian dynamics to investigate the qualitative behavior of the nonlinear

motion of the kinks.

When l0 < lcritical (Fig. 3.7a), the potential looks like a square Mexican

hat. The bottom of potential valley is a square ring, on which all the points

are at zero energy. In linear mode analysis, we �nd a zero mode along the

valley and a soft mode along the transverse direction. We will show that the

nonlinear dynamics at �nite energy possesses the traits that are closely related

to those in the linear analysis at zero energy.

Note that the impurity spring is maximally stretched at x1 = x2 = 0,

and the corresponding potential maximum Ec =
1
2k(l0 − lcritical)

2
. It is the

minimal energy for both kinks to move away from the impurity. If E < Ec,
the two kinks take turns moving on their respective sub-chains. One kink

oscillates near the impurity spring, while the other kink moves away. The

nonlinear dynamics of the kinks is visualized as a trajectory going along the

1
In the language of dynamical systems, this process is called a supercritical pitchfork

bifurcation.
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x1=4.6

↓

x2=-6.7

↓

(a)

x1=-2.6

↓

x2=-2.2

↓

(b)

x1=0.0
↓

x2=0.0
↓

(c)

x1=5.5

↓

x2=-2.2

↓

(d)

Figure 3.7. The trajectories of the chain generated by simulations of Newtonian

dynamics on the theoretical potential function in the con�guration space at (a)
l0 < lcritical, E < Ec, (b) l0 < lcritical, E > Ec, (c) l0 = lcritical, E = Ec =
0, and (d) l0 > lcritical. In the top �gures of (a) and (b), the color scale of the

trajectories indicates the potential energy of the chain in arbitrary units. The big red

dots correspond to the con�guration of the real-space chains shown in the bottom

�gures of each panel.
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bottom of the potential valley. The accessible region in the con�guration

space is a square annulus, at the corner of which the major part of energy is

transferred from the one kink to another. In fact, this can be interpreted as

the motion of a single “split” kink through the system.

WhenE ≥ Ec (Fig. 3.7b), there is su�cient energy for both kinks to move

away from the impurity spring simultaneously. In the con�guration space,

the trajectory gets out of the potential valley and climbs up to the 2D plateau

in the middle. The accessible region now is a square disk. In real space, the

kinks independently hit the impurity spring and get re�ected.

When l0 = lcritical (Fig. 3.7c), the linear mode analysis predicts that the

chain model in Fig. 3.7c has two zero modes, each being localized around the

kink at the end of the respective sub-chain, and a state of self stress localized

around the impurity spring. From the viewpoint of nonlinear dynamics, the

potential function changes qualitatively: As l0 approaches lcritical, the square

ring of the potential valley shrinks into one point at x1 = x2 = 0, and Ec
goes to zero. In other words, the Mexican hat transforms into a single basin.

In this shrinking process, the soft mode, which corresponds to the oscillation

transverse to the valley, transitions into a zero mode, because the depth of

the valley vanishes. In terms of nonlinear dynamics, this transition means

that no matter how small the total energy E is, the accessible region in the

con�guration space is always a square disk rather than a square annulus.

When l0 > lcritical (Fig. 3.7d), the impurity spring is compressed, which

gives a minimum potential energy Emin = 1
2k(l0 − lcritical)

2
for the static

con�guration. In a linear analysis, the two zero modes become normal modes

with �nite frequency, as the impurity spring pushes the two kinks to the chain

ends, generating a �nite restoring force for the motion of the modes. In the

nonlinear dynamics, the accessible region of the kinks is still a square disk.

Fig. 3.8 summarizes the above results with E and l0 as parameters. When

l0 ≤ lcritical, the curve Ec =
1
2k(l0 − lcritical)

2
marks the transition of the

accessible region in con�guration space from an annulus to a disk. Note that

we only investigate the case of l0 > l, in which Fig. 3.8 is valid. For l0 < l
case, the potential landscape takes a di�erent form, and so does the possible

transition. We do not cover this case in this paper, however, as we have made

the connection between linear mode analysis and nonlinear dynamics.
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0
l0

E

Ec=
k

2
(l0 - lcritical)2

lcritical

Figure 3.8. The parameter space of the total energy E and the impurity spring

length l0. The critical energy Ec as a function of l0 forms a parabola. The chain

shows di�erent dynamical behaviors across the left branch of the parabola. The

vertical dashed line of l0 = lcritical is the boundary line across which the shape of

the potential function transitions qualitatively. The gray area below the right branch

of the parabola is energetically forbidden.

Appendix

3.A Convention of kink coordinates in discrete
models

The concept of kinks stems from the continuum φ4
theory. To extend this

concept to the discrete chain model, we de�ne the coordinate system of a sub-

chain kink as follows (Fig. 3.6a): The absolute value of the position of a kink

equals the rotor’s integer index if the rotor is vertical, otherwise the position

is a real number interpolating between the indices of the two neighboring

rotors that are leaning opposite to each other. The positional interpolation is

proportional to the linear interpolation between the absolute values of the
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angles of two neighbor rotors. The rotor angles are the measured against the

vertical alternatively, as mentioned in Sec. 2.2. When a kink approaches the

end points of the chain, the end rotor �ips over. Here the kink pro�le from

the continuum theory ceases to be valid. Thus we take as our convention that

a kink is at the origin of the coordinate system when the end rotor is collinear

with the spring connecting to the next rotor, and its sign depends on whether

the end rotor leans upwards or downwards. The coordinate between 0 and 1
(or −2) is obtained by linear interpolation of the angles of the end rotor at 0
and 1 (or −2). In this ad hoc convention, the chain forms a state of self stress

when both kinks are at origin. The two sub-chains are aligned head-to-head,

and the two head rotors (|xi| = 8) are coupled by the impurity spring.



Chapter 4

Twisted kagome lattices: band
structure analysis

4.1 What is a kagome lattice

I
n this chapter we study the so-called kagome lattice. The name kagome

comes from Japanese, where “kago” means “basket”, and “me” means

“eye”. As shown in Fig. 4.1a, it is a pattern that has been used in Japanese

basketry for a long time [68, 69]. If we extend this pattern into an in�nite

lattice, and put a mass at each crossing point of the bamboo ribbons and a

spring between each pair of neighboring masses, then we obtain a mechanical

model of kagome lattice (see Fig. 4.1b). It can be seen as a network of corner-

sharing equilateral triangles. There are other ways of building a mechanical

kagome lattice, such as pin-jointing rigid triangular plaquettes (Fig. 4.2) or

rigid bars (Fig. 4.3).

The kagome lattice as a mechanical model has been studied quite exten-

sively in terms of phonon spectrum, elasticity, and rigidity [13, 14, 26, 28, 42, 69,

71–73]. It features an internal zero-energy motion, in which neighboring trian-

gles are twisted towards alternating directions [25, 43, 53, 74–77] (see Fig. 4.2

or Fig. 4.3). This is a �nite “collapsing” mechanism that changes the geometry

of the unit cell. We call it the twisting mechanism. Its in�nitesimal counterpart

is termed the twisting mode, which is known as a Guest-Hutchinson mode [74].

59
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(a) (b)

Figure 4.1. (a) A basket with kagome pattern. The �gure is from Ref. [70]. (b) A

mechanical kagome lattice of masses and springs.

The in�nitesimal vibrations of the lattice are described, in the harmonic

approximation, by a phonon band structure. This band structure is determined

by the content and geometry of the lattice unit cell. As the twisting mechanism

changes the geometry without costing any energy, it turns out to be an easy

way to tune the vibrational properties of the lattice. Although this idea has

been considered before [53], we investigate it in a more detailed way and

present the results in the following sections.

The twisting mechanism is the integrated version of the twist mode. As it

has only one degree of freedom, it can be described by the twisting angle θ of

each triangle around its center. We de�ne ϑ to be the angle between two lines

connecting two centers of adjacent triangles (see Fig. 4.4). Then θ is de�ned

as

θ = (180◦ − ϑ)/2 (4.1)

In this work, θ ranges from 0◦ to 60◦. When the lattice is untwisted, θ = 0◦
(Fig. 4.2a). When the twisted triangles touch each other, θ = 60◦ (Fig. 4.2d).

We choose a unit cell which has the shape of a rhombus with angle 60◦
and consists of two triangles (see Fig. 4.4). The Bravais lattice primitive vectors
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(a) (b)

(c) (d)

Figure 4.2. A mechanical kagome model made of triangular plaquettes. The frame-

work collapses through a zero-energy mechanism without deformation of its rigid

components.

are

a1 = (2` cos θ, 0), (4.2)

a2 = (` cos θ,
√

3` sin θ), (4.3)

where ` is the spring length.

The coordinates of the masses are

(x1, y1) =

{1
3` (sin (30◦ − θ) + cos θ) , 1

2`
(√

3 cos θ− sin θ
)}

, (4.4)

(x2, y2) =

{
`

(sin θ√
3

+ cos θ
)

, 0
}

, (4.5)

(x3, y3) =

{
−1

6`
(√

3 sin θ− 9 cos θ
)

, 1
2`
(
sin θ+

√
3 cos θ

)}
. (4.6)
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(a) (b)

(c) (d)

Figure 4.3. A mechanical kagome model made of LEGO. The yellow bars consist

of the kagome framework, while the gray bars provide the handle for the twisting

mechanism.

4.2 Lattice dynamics of kagome lattices

Since we study the vibrational properties of kagome lattices, we �rst brie�y ex-

plain the theory of lattice dynamics, and concept of the phonon band structure.

For rigorous details, we refer to the textbooks [78–80].

We study the harmonic oscillation of a lattice system of masses. Its equa-



4.2. Lattice dynamics of kagome lattices 63

a1

a2

(x2,y2)

(x3,y3)

(x1,y1)

ϑ

Figure 4.4. Our choice of the unit cell for the twisted kagome lattice. The masses

inside the unit cell are shown in red. ϑ is the angle between two lines connecting

two centres of adjacent triangles. The twisting angle θ = (180◦ − ϑ)/2.

tion of motion in real space can be written as:

Mü = −∂uΦ ≈ −
(
∂2

uΦ
) ∣∣∣∣

u=0
u, (4.7)

where M is the mass matrix, Φ is the total potential energy, and u is the

displacement vector of masses. We take the time Fourier transform of the

Eqn. (4.7) to obtain the secular equation

ω2û = Dû (4.8)

where D = −M−1 (∂2
uΦ
) ∣∣∣

u=0
is the dynamical matrix in real space, and ω

is the oscillation frequency.
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Since the lattice is spatially periodic, we can decompose all solutions in

terms of plane waves of the form

u(x, t) = ε exp [i(k · x− ωt)], (4.9)

where ε is a polarization vector giving the displacement of the masses in a

unit cell, k is the wave vector, x is a Bravais vector giving the position of unit

cells, and t is time. This allows us to de�ne the Fourier transformed dynamical

matrix D(k) such as

ω2ε = D(k)ε. (4.10)

The eigenvalues ω(k) and eigenvectors ε(k) of D(k) are called the dis-

persion relation and the polarization vectors. They form a complete set of

solutions of the equation of motion of the lattice called normal modes, which

describe the small oscillations of the lattice around its equilibrium con�gura-

tion.

The wave vector k also lives in a periodic space called the reciprocal space.

Its has a primitive cell in which the points are closer to the origin than any to

any other reciprocal lattice points. It is uniquely de�ned as the �rst Brillouin

zone. The �rst Brillouin zone of the kagome lattice is shown in Fig. 4.5. The

points of high symmetry are denoted.

Now we study the eigenvalue equation (4.10) carefully. Since it is Fourier

transformed, the dimension of ε(k) equals the number of degrees of freedom

in a unit cell. For the kagome lattice, each unit cell has six degrees of freedom.

This means that D(k) is a 6× 6 matrix. As it can be shown that D(k) is

Hermitian
1
, it has six real eigenvalues for each k. Since the wave vector

k can vary continuously, each eigenvalue ω(k) as a continuous function

forms a “band” in the reciprocal space. We plot ω(k) to show the six phonon

bands (see Fig. 4.6). Two bands whose frequencies equal zero at the Γ point in

the reciprocal space are conventionally called acoustic bands, while the other

four bands are optical bands.

We see that each of the six modes at the Γ point are identical in all unit

cells. Among them are the two global translation modes, the twisting mode,

1
With our convention, D(k) is only pseudo-Hermitian, but it is possible to de�ne a

Hermitian one. See Ref. [79].
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Figure 4.5. The �rst Brillouin zone of the kagome lattice, with its high symmetry

points of Γ = (0, 0), K = (2π/3, 2
√

3π/3), K ′ = (−2π/3,−2
√

3π/3) and M =
(π,
√

3π/3), in unit of |a1|−1
, and a path used for the band structure in the following.

and three others. Notice that the frequency of the twisting mode is not zero

for general twisting angle, which seems to be contradictory with what is said

in the previous section that the twisting mechanism is a zero-energy �nite

motion. The subtlety is that we have to allow the unit cell to deform to be

compatible with the changing framework along the �nite mechanism. In this

way the twisting mode is made to be a zero mode. This detail is well explained

in Ref. [74–76]. Here in the theory of lattice dynamics, we do not make this

assumption of deformable unit cell, so the twisting mode does not have zero

frequency.

The phonon spectrum is obtained by projecting all the phonon bands to

the ω axis. The density of states of phonons describes the number of states

per interval of frequency and shows directly important lattice vibrational

properties such as the band gaps, a frequency interval where no normal mode

lies in. To estimate it, we compute the histogram of the phonon modes with

respect to the frequency. We will show this in the next section in detail.
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4.3 In�uence of the twist: the band gap opens up

In the previous section, we show the linear theory of lattice motion, and

ultimately, the phonon band structure. Usually, a mechanical lattice with give

geometrical parameters of its component has �xed structure. If we forbid

any process that costs energy such as deforming springs, then the lattice

cannot change form. So the band structure associated with the lattice does

not change either. However, as we mentioned before, the kagome lattice has

a global zero-energy twisting mode. This enables us to deform the kagome

lattice in a certain way, keep it at equilibrium state all along, and study how

the band structure changes accordingly (see Fig. 4.6).
2
.

First we notice that a gap opens when the twisting angle goes above 22◦.
This is clearly shown in the phonon spectrum in Fig. 4.7. Looking at the band

structure, we see that the band associated with the twisting mode lifts up. It is

this process that opens up the gap, when the minimum of this band exceeds

the maximum of the acoustic bands. In the next chapter, we will see how the

band gap is used in studying the vibrational modes of the kagome lattice with

defects.

Second we see there are linear crossings at K point for small θ and at

Γ point for θ = 45◦. Such linear crossings are also related to the vanishing

density of states in the spectrum atω/ω0 = 2.0 for small θ and atω/ω0 = 1.7
for θ = 45◦.

Third we �nd that at both θ = 30◦ and θ = 60◦, one of the bands becomes

�at. The e�ect of �at bands on mechanical lattices has been studied in Ref. [81].

When the lattice is untwisted, the twisting mode has zero frequency. This

has to do with the fact that the straight lines of connected springs across

the unit cell form states of self stress. The twisting mode is just a linear

combination of all the zero modes corresponding to these states of self stress.

4.4 Symmetry of twisted kagome lattices

To better understand the in�uence of the twisting angle on the band structure,

it is useful to study the symmetry of the lattice. The plane symmetry group of

2
Similar work has been done in phononic material as continuous media, but so far as we

know, there is no such study on the discrete lattice network.
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Figure 4.6. The band structure of the kagome lattice with varying twisting angle θ.

The unit frequency ω0 equals

√
k0/m, where k0 is the spring sti�ness constant and

m is the mass.

the twisted kagome lattice is p31m. The point group symmetry is 31m, which

contains the identity, two three-fold rotation operation, and three mirror

opertions (see Fig. 4.8).

Now we consider the e�ect of point group symmetry on the lattice vibra-

tion modes u(k). When acting upon a two-dimensional vector (x, y) in real

space, the point group symmetry has the matrix representation:
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Figure 4.7. The phonon spectrum of the kagome lattice with varying twisting angle.

The opacity of the data points indicates the density of states at each frequency bin.

A band gap opens up at around θ = 22◦. The system has 20× 20 unit cells with

periodic boundary conditions.

R(1) =

(
1 0
0 1

)
,R(3+) =

(
−1

2 −
√

3
2√

3
2 −1

2

)
,

R(3−) =

(
−1

2

√
3

2
−
√

3
2 −1

2

)
,R(m−12) =

(
1 0
0 −1

)
,

R(m2−1) =

(
−1

2

√
3

2√
3

2
1
2

)
,R(m11) =

(
−1

2 −
√

3
2

−
√

3
2

1
2

)
.

(4.11)

For the three masses in the unit cell, the point group symmetry has the

representation
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m-12

m2-1

u1x

u1y

u2x

u2y

u3x

u3y

3+ 3-

p31m

m11

Figure 4.8. The unit cell of the twisted kagome lattice. The masses are the red dots.

The bonds are the blue lines. The point group symmetries – the three-fold rotational

axes and the mirrors – are labeled in black triangles and dashed lines respectively.

The six components of vibrational modes – (uix,uiy) for i = 1, 2, 3 – are also labeled

near each mass.

P (1) =

 1 0 0
0 1 0
0 0 1

 ,P (3+) =

 0 0 1
1 0 0
0 1 0

 ,

P (3−) =

 0 1 0
0 0 1
1 0 0

 ,P (m−12) =

 0 0 1
0 1 0
1 0 0

 ,

P (m2−1) =

 1 0 0
0 0 1
0 1 0

 ,P (m11) =

 0 1 0
1 0 0
0 0 1

 .

(4.12)
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Now the representationS of the point group symmetry on the six-dimensional

vector u(k) is just the direct product of R and P

S(g) = R(g)⊗ P (g), (4.13)

where g is a symmetry operation.

In general the e�ect of the symmetries on the dynamical matrix is

S(g)D(k)S(g−1) = D(R(g) · k). (4.14)

At high symmetry point k∗ such as Γ and K , where R(g) · k∗ − k∗ is

a reciprocal lattice vector, we �nd that S(g) commutes with the dynamical

matrix D(k)

S(g)D(k)S(g−1) = D(k). (4.15)

This explains the degeneracies at the high symmetry points observed in

Fig. 4.6.

4.5 Critical twisting angle: double degeneracy

When the twist angle θ = 45◦, the lattice dynamics shows very special

phenomena, which we will study in this section.

The �rst and the most obvious phenomenon is in the band structure.

The six phonon bands collapse into three pairs everywhere in the Brillouin

zone (see Fig. 4.9). In other words, the dynamical matrix D(k) has doubly

degenerate eigenvalues everywhere in the reciprocal space. Notice that a

four-band linear crossing occurs at the Γ point.

Besides the degenerate eigenvalues ω, we also investigate the eigenvec-

tors ε. The second special phenomenon is that all the eigenvectors ε(k) of

D(k) have equal mode amplitude on each of the three masses, i.e. the norm

of the vector (εix, εiy) is identical for i = 1, 2, 3.

When approaching the critical twisting angle, for θ → 45◦, we also �nd

that for each pair of the almost degenerate eigenvectors εa and εb which are or-

thogonal as they are have di�erent eigenvalues, the sub-vectors (εaix, εaiy) and

(εbix, εbiy) are also orthogonal for i = 1, 2, 3, namely 〈(εaix, εaiy), (εbix, εbiy)〉 = 0.
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Figure 4.9. The band structure of the kagome lattice with the twisting angle θ = 45◦.
The six bands are doubly degenerate everywhere in the reciprocal space, so only

three bands can be seen in the �gure. One of the �nite-frequency vibrational modes

at the four-band crossing at the Γ point is shown on the cover of this thesis.

All these phenomena together strongly imply that there is probably a

symmetry of the dynamical matrix relating the eigenvectors in a special way.

Currently we are still seeking the analytical form of this symmetry.

Mathematically, the expected symmetry operation with a matrix represen-

tation S in terms of the lattice vibration should commute with the dynamical

matrix D(k) for all k. This can be seen in the following. For each pair of

bands, its eigenvectors εa and εb are related by this symmetry S. Then we

have

D(k)Sεa = D(k)εb = λbεb (4.16)

and

SD(k)εa = Sλaεa = λaεb. (4.17)

Since D(k)S = SD(k), it means λa = λb, hence the degeneracy.
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We know that S cannot simply be any point group symmetry, because the

latter only commutes with D at certain high symmetry points, as we have

seen in Eqn. (4.15).



Chapter 5

Defects in twisted kagome
lattices: gap modes

I
n the previous chapter, we have studied the perfect twisted kagome

lattices. In this chapter, we study the e�ect of defects on lattice vibrations

in the framework of lattice dynamics [79, 82, 83]. As in chapter 3, we

model a defect by changing the sti�ness constant of one spring (Fig. 5.1).

As we shall see, such defects can induce localized and spectrally isolated

modes inside the bulk band gap. We investigate such gap modes in detail for

varying twisting angles. Remarkably, when several defects are present, the

resulting vibrational modes can be understood in terms of the hybridization

of single-defect modes. We investigate this situation through an e�ective

tight-binding theory.

5.1 A single defect: localized gap modes

In this section we study a lattice where the sti�ness of a single spring is

changed from the uniform value k0 to k. Due to the lattice symmetry, all

springs in a perfect kagome lattice are equivalent, so we can modify any of

them and get the same system. When a spring is removed, i.e. when k/k0 = 0,

the phonon spectrum is modi�ed, going from Fig. 4.7 to Fig. 5.2.

When the twisting angle θ is low and the phonon spectrum is not gapped,

73
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Figure 5.1. The twisted kagome lattice that has a defect of a single spring (dashed

red line) whose sti�ness constant k0 is changed from the uniform value k of all other

springs (solid gray lines).

there is no visible change. However, when the gap opens, for a twisting angle

θ > 22◦, then we see that a vibrational mode appears inside the bulk band gap.

Notably, this gap mode, due to the existence of the defect, is exponentially

localized around the defect (see Fig. 5.3), i.e. φ(r) ∼ e−r/ξ
where φ is the

vibrational amplitude, r is the distance from the defect and ξ is a decay length.

The frequency of the defect mode slightly depends on the twisting angle and

reaches its maximum at the critical twisting angle
1 θ = 45◦ (see Fig. 5.4).

Interestingly, the maximum frequency ω/ω0 = 1 is the frequency for a simple

harmonic oscillator with the same spring and mass as those of the perfect

kagome lattice. The underlying reason for this has yet to be understood.

The same e�ect can be observed when the defect spring sti�ness k/k0 < 1 is

�nite, see Fig. 5.5. When k/k0 > 1, the defect mode leaves the optical band

from its top. See the treatise by Maradudin [79] for the explanation of this

behavior.

1
See 4.5 for a discussion on the critical twisting angle.
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Figure 5.2. The phonon spectrum of the kagome lattice with varied twisting angle.

The opacity of the data points indicates the density of states at each frequency bin. A

band gap opens up at around θ = 22◦. The defect mode in the gap is emphasized via

big solid dots. The system has 20× 20 unit cells with periodic boundary conditions.

5.2 A pair of defects: the tight-binding theory

We have studied the system with a single defect. We can also consider multiple

defects, and the most simple case is a pair of defects. When the two defects are

far away from each other, the corresponding defect modes can be considered

as single isolated defect modes, with the same frequency and mode pattern.

This is because the defect modes are exponentially localized. When the defects

are brought closer and closer, they hybridize, and the frequencies and mode

patterns of the defect modes change. Crucially, we can understand this change

through an e�ective tight-binding theory
2
.

2
While several combinations of pairs of defects are possible, corresponding to di�erent

removed springs in the unit cell, all of them have the same qualitative properties, and we focus



76 Chapter 5. Defects in twisted kagome lattices: gap modes
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Figure 5.3. The defect mode is localized. (a) The kagome lattice with one removed

spring indicated in the shaded blue region. The defect mode is depicted by arrows

representing the mode displacement of the masses. (b) The amplitude of the mode

displacement decays exponentially with the normalized distance r/|a1| from the

defect, where a1 is a lattice vector in Eq. 4.2. Here we �nd the decay length ξ/|a1| =
0.954. The twisting angle is θ = 34.7◦, and the system has 20× 20 unit cells with

periodic boundary conditions.

When only one defect is present, there is a single-defect mode φ with

frequency ωs. Let us now consider a lattice with two defects located respec-

tively at the x1th and the x2th unit cell along the same horizontal line and

separated by a distance d = |x1 − x2| (see Fig. 5.6).

The dynamical matrix of the lattice D has two gap modes, which we

denote as ψ+ and ψ−. By de�nition, we have

Dψ± = ω2
±ψ±, (5.1)

where ω2
± is the square of the gap-mode frequencies. φ’s and ψ’s are assumed

to be normalized.

Following the principle of tight-binding models
3
, we try to express ψ as

a linear combination of the two single-defect modes φ1 and φ2, where φ1(2)

on only one of them.

3
It is also known as the Hückel model or Linear Combination of Atomic Orbitals (LCAO)

approximation in the context of quantum chemistry.
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Figure 5.4. Zoom of Fig. 5.2. The gap mode that has its maximum frequency of

ω/ω0 = 1 at θ = 45◦.

corresponds to the single defect located at x1(2) (See Fig. 5.7). To do so, let us

write

ψTB = c1φ1 + c2φ2, (5.2)

where c1 and c2 are scalar constants. Multiplying both sides of Eq. 5.1 by φ1
and φ2 respectively, we get

c1〈φ1, Dφ1〉+ c2〈φ1, Dφ2〉 = ω2
TB
(c1〈φ1,φ1〉+ c2〈φ1,φ2〉) (5.3)

c1〈φ2, Dφ1〉+ c2〈φ2, Dφ2〉 = ω2
TB
(c1〈φ2,φ1〉+ c2〈φ2,φ2〉) (5.4)

or in the matrix form:(
α β
β α

)(
c1
c2

)
= ω2

TB

(
1 S
S 1

)(
c1
c2

)
(5.5)
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Figure 5.5. The spectrum with varying spring sti�ness k. k0 is the sti�ness of the

spring sti�ness in perfect lattices. The system parameters are the same as Fig. 5.3.

where we de�ned α = 〈φ1, Dφ1〉 = 〈φ2, Dφ2〉, β = 〈φ1, Dφ2〉 = 〈φ2, Dφ1〉
as D is hermitian, and the overlap integral S = 〈φ2,φ1〉. The solution to the

above eigenvalue problem is:

ω2
+TB

=
α+ β

1 + S
, ω2

−TB
=
α− β
1− S . (5.6)

When the defects are far away from each other, i.e. d� ξ, both the overlap

integral S and the matrix element β vanish as φ1 and φ2 are localized. In this

case,

ω2
+TB

= ω2
−TB

= α = ω2
s , (5.7)

that is to say, the frequencies of both gap modes equal the single-defect gap

mode frequency.
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d

x1 x2

a1

Figure 5.6. The twisted kagome lattice that has two defects located respectively at the

x1 and x2 along the same horizontal line and separated by a distance d = |x1 − x2|.
a1 is a lattice vector.

ωs ωs

ϕ1 ϕ2

ψ-TB

ψ+TB

ω+TB

ω-TB

Figure 5.7. The scheme of tight-binding models for gap modes.

In Fig. 5.8, we compare this result with the values directly obtained from

the diagonalization of D. We see that the tight-binding theory predicts the

hybridization frequency level quite well, even though it only keeps track of

only two degrees of freedom φ1 and φ2. The reason why the theory works so

well is because the defect modes lie in the band gap and therefore are spectrally

isolated from the other vibrational modes. Notice there is a small discrepancy
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between the tight-binding prediction and the direct diagonalization values.

We also compute the eigenvectors ψ− and plot them in Fig. 5.9.
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Figure 5.8. A comparison of the squared frequencies between the tight-binding the-

ory and the direct diagonalization of the dynamical matrix. The defects are separated

by a distance d. The system parameters are the same as Fig. 5.3.

5.3 Towards multiple defects

For a system with multiple defects, we raise two speci�c questions about the

gap modes. While we do not include the results of these investigations in this

thesis, it is worth pointing out the directions.

First, since the tight binding theory works for a pair of defects, we can

wonder whether there is a hybridization of gap modes of multiple defects, just

like the formation of a molecule out of multiple atoms via chemical bonds.

Second, for a perfect system, the band gap in the spectrum forbids sig-

nals to propagate. But the gap mode associated with each defect can help
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(a)

(b)

Figure 5.9. Lowest frequency gap modes ψ− for (a) d/|a1| = 2 and (b) d/|a1| =
10. The shaded blue regions indicate the defects of removed springs. The system

parameters are the same as Fig. 5.3.

mediate the forbidden signal. As we keep introducing defects into the system,

there is presumably a percolation phenomenon in terms of the mechanical

signal at the band-gap frequencies. The same concepts have been realized

and investigated in the systems of continuum media like photonic [84] and

phononic crystals [85], but never in the discrete mechanical lattice systems

to the knowledge of the author.





Chapter 6

Elastic waves in �exible
strings

I
n this chapter we study the elastic waves induced by an abrupt impact

at a point. The impact has a constant velocity, and the string is initially

straight and tensionless.

6.1 Introduction

The theory of �exible strings has been intensively developed in classic studies

by Navier, Poisson, Stokes, Rayleigh and Kelvin, to name but a few [86]. The

conceptual success of this classical �eld theory not only provides the general

principle for the description of the mechanical behavior of strings, but also

makes it possible to perform rational analysis in many physics and engineering

problems [87–96]. Typically the linear theory only considers in�nitesimal

displacements and omits the coupling between transverse and longitudinal

displacements. This approximation is, however, no longer accurate when

the e�ect of nonlinearities becomes dominant, e.g., when the motion of the

string has a large amplitude. Such studies of nonlinear dynamics of elastic

waves in �exible strings are motivated by engineering challenges such as the

deformation of yarns in weaving machines, the strength of ropes of parachutes

or cables in mechanical structures like cranes and bridges [97–100].

83
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In this chapter, we consider the case of a �exible string which is initially

straight and tensionless. In this case, no linear transverse waves propagate. In

general, such media are said to be in “sonic vacuum”[101], meaning that the

velocity of linear waves vanishes. As a consequence, any small disturbance will

generate a strongly nonlinear e�ect and dominate the dynamics. We consider

a constant impact velocity, in which case nonlinear shock waves are generated.

We study the nonlinear dynamics and obtain the shock velocity which scales

with the impact velocity to a fractional exponent. This result has been obtained

in literature as a special case [93, 102], but our interpretation articulates its

mechanism, which hopefully can help explain similar types of shear shocks in

mechanical models for solids in higher dimensions. Furthermore, we perform

simulations that demonstrate this phenomenon in a simple model of wide

applicability.

6.2 Lattice model and simulation

We start by considering the classical model of the 1D lattice of identical masses

m con�ned in a plane (see Fig. 6.1a). The masses are coupled with their nearest

neighbours by identical Hookean springs with the spring constant k and the

rest length a. In linear theory the model supports elastic waves along both the

longitudinal and the transverse direction and the two waves are decoupled.

In the long-wave limit, the velocity of linear transverse waves is [103]

vh =
√
τ/ρ. (6.1)

where τ is the constant tension in the springs and ρ the linear density. The

nonlinear e�ect of the in�nitesimal perturbation of longitudinal and transverse

waves on τ is omitted. For the special case in which the spring rest length

equals the equilibrium lattice spacing, τ goes to 0. In this case, the linear

transverse wave has a vanishing speed and the e�ect of nonlinearities becomes

dominant.

The perturbation that we choose to study in this chapter is an abrupt

impact upon the mass at origin with constant velocity vE along the transverse

direction at time 0. This impact will generate a longitudinal front with velocity

vl = a
√
k/m (6.2)
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Figure 6.1. (a) The 1D lattice model within a plane, subject to an abrupt transverse

impact of constant velocity vE at time 0. (b) The impact results in two shocks: a

transverse shock of speed vh and a longitudinal shock of speed vl. The lattice has

the shape of a kink at the transverse shock.

as well as a nonlinear transverse shock whose velocity vh is what we aim

to derive. Because vh is zero to linear order, we assume that the actual vh is

also smaller than vl when the external impact vE � vl. In other words, the

impact generates a fast longitudinal stress wave as well as a slow transverse

displacement wave. The abrupt stimulus causes abrupt responses, i.e., the

deformed structure takes the shape of a kink. This kink is a sharp transition

in the direction of the spatial arrangement of the masses, which happens right

at the transverse wave front.
1

Now let us relate the shape and the propagation speed of the kink. We

make use of the result that transverse waves do not in�uence longitudinal

strain [93, 96–98]. In other words, the spring tensions in front of and behind

the kink are the same. This suggests that transverse shocks propagate due

to the tension induced by the longitudinal shock. We assume that behind

1
The longitudinal wave also has a sharp wave front, but since the displacement is along

the same direction of propagation there is no change of shape.
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the longitudinal shock, all of the springs experience approximately the same

tension. From Eq. (6.1), this implies that vh is also nonzero and constant. This

in turn suggests that the kink shape consists of two rectilinear parts, as shown

in Fig. 6.1b.

Next, we derive vh. At time t, the longitudinal wave propagates a distance

ofL0 = vlt. The number of springs in this region is L0/a. The contour length

of the lattice behind the front of longitudinal wave is L. Then, the uniform

tension along the contour is

τ =
k(L−L0)

L0/a
. (6.3)

The mass at the origin subject to the impact moves a distance vEt in the y-

direction and the transverse shock propagates a distance vht in the x-direction.

Using the geometry of the con�guration, we �nd

L =
√
(vEt)2 + (vht)2 + L0 − vht. (6.4)

Combining Eq. (6.4) and Eq. (6.3), we �nd

τ = ka

(√(
vE
vl

)2
+

(
vh
vl

)2
− vh
vl

)
. (6.5)

Furthermore, combining Eq. (6.1), Eq. (6.2), Eq. (6.5) and using ρ = m/a, we

obtain the desired relation(
vE
vl

)2
=

(
vh
vl

)4
+ 2

(
vh
vl

)3
. (6.6)

If the external impact velocity vE vanishes, vh vanishes as well. Then, the last

term in Eq. (6.6) dominates the right-hand side. Thus, we obtain the result

vh
vl

=
1

21/3

(
vE
vl

)2/3
. (6.7)

This power-law relation between vE and vh with a fractional exponent is a

remarkable result of nonlinear dependence. This result has been obtained in

Ref. [93, 102], and supported by experimental data [104].
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Figure 6.2. The velocity of the nonlinear transverse wave vh vs the impact velocity

vE , with both velocities rescaled by the speed of sound vl.

To check the relation (6.7) numerically, we performed Newtonian dynam-

ics simulations on the lattice model to con�rm the theoretical result, see

Fig. 6.2. The theory �ts well for small vE . At higher ratios vE/vl the e�ect of

higher-order nonlinearities cause deviations from this power law.

6.3 Continuum theory

In this section we derive vh in the rectilinear �exible string – the continuum

counterpart of the 1D lattice. We obtain the equations of motion and analyse

them directly. Let l and h be the continuum �elds of the longitudinal and

transverse displacements and x the Lagrangian coordinate along the string.

From the geometry shown in Fig. 6.3, we obtain the strain
∂s
∂x , which to the

lowest order is given by:

∂s

∂x
=

∂l

∂x
+

1
2

(
∂h

∂x

)2
. (6.8)
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The �exible string has only stretching potential energy V = κ
2 (

∂s
∂x )

2
is

quadratic in
∂s
∂x . Using this, we write down the Lagrangian density

L =
1
2ρ
(
ḣ2 + l̇2

)
− κ

2

(
∂l

∂x
+

1
2

[
∂h

∂x

]2)2
(6.9)

where κ is the elastic modulus of the string. The Euler-Lagrange equations

are

ρl̈− κ ∂
∂x

(
∂l

∂x
+

1
2

[
∂h

∂x

]2)
= 0, (6.10)

ρḧ− κ ∂
∂x

{(
∂l

∂x
+

1
2

[
∂h

∂x

]2) ∂h

∂x

}
= 0. (6.11)

δs

δh

δl

δx

δx

Figure 6.3. An in�nitesimal element δx (thick line) subject to longitudinal and

transverse displacements. This geometry lets us calculate
∂s
∂x in terms of

∂l
∂x and

∂h
∂x ,

Eq. (6.8).

The external impact acts on the string transversely with constant velocity

vE at the origin starting at time 0. Eq. (6.10) is a linear wave equation for the

longitudinal wave with a “source” term of second order in the transverse �eld



6.3. Continuum theory 89

h. We seek steady-state solutions in which the displacement �elds change

at constant speed, i.e., l̈ = 0 and ḧ = 0. The condition l̈ = 0 together with

Eq. (6.10) requires that the tension
∂l
∂x +

1
2

(
∂h
∂x

)2
should be constant elsewhere

except for the longitudinal wave front where there is a sharp jump of l. Then,

Eq. (6.11) turns into the form of the linear wave equation in the tensioned

region behind the longitudinal wave front:

ρḧ− κ∂s
∂x

∂2h

∂x2 = 0, for x < vlt. (6.12)

To obtain the tension
∂s
∂x , we integrate the strain at time t along the string

and use the boundary conditions to get the total deformation of the string in

the tensioned region [0, vlt]. The strain is this deformation divided by vlt.
The boundary conditions of l are l(x = 0, t) = 0 and l(x = vlt, t) = 0.

The boundary conditions of h at the origin are ḣ(x = 0, t) = vE and h(x =
0, t) = vEt. Because vh is smaller than vl, the boundary condition of h at the

longitudinal wave front is h(x = vlt, t) = 0. In addition, we assume that h
has a traveling-wave solution of the form h(x− vht), so

∂h
∂x = − 1

vh

∂h
∂t , and

the steady-state solution requires
∂2h
∂x2 = 1

v2
h

∂2h
∂t2 = 0.

The total deformation along the string at time t is equal to the integral of

the strain:

ˆ vlt

0

∂l

∂x
+

1
2

(
∂h

∂x

)2
dx (6.13)

= l

∣∣∣∣∣
vlt

x=0
+

1
2h
∂h

∂x

∣∣∣∣∣
vlt

x=0
−
ˆ vlt

0

1
2h
∂2h

∂x2 dx (6.14)

= −1
2h
∂h

∂x

∣∣∣∣∣
x=0

(6.15)

=
v2
Et

2vh
. (6.16)

Therefore, the strain is

∂s

∂x
=
v2
Et

2vh
/(vlt) =

v2
E

2vhvl
. (6.17)
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In addition, the linear transverse-wave equation Eq. (6.12), with traveling-wave

solution h(x− vht), gives

ρv2
h − κ

∂s

∂x
= 0. (6.18)

From Eq. (6.17) and (6.18), we obtain

vh
vl

=
1

21/3

(
vE
vl

)2/3
. (6.19)

In principle, the method used in this section provides insight into the

governing di�erential equations of the string dynamics.

6.4 Outlook

In this chapter, we have demonstrated the propagation mechanism of the

transverse shock waves in a tensionless �exible string under a constant impact.

One may expect to discover nonlinear waves of the same nature in many

classical mechanical models for solids, e.g., marginally-rigid random spring

networks [105] and some isostatic lattice networks like kagome. For untwisted

kagome lattices, the shear moduli vanish along special directions, along which

there are zero-frequency transverse modes of all wave numbers across the

Brillouin zone [53]. This situation is analogous to a tensionless string, where

even in�nitesimal perturbations will generate nonlinear responses. But for

such two-dimensional lattices with more complex unit cells, the coupling

between degrees of freedom in transverse and longitudinal directions will not

be as simple as that in strings. Besides, we have only studied the response of a

string to a perturbation of a constant impact at a single point. So, extending the

analysis from this chapter to general cases will require further investigations.

Moreover, for some inhomogeneous structures in toplogical mechanical

lattices, e.g., dislocations [13], and interfaces between di�erent phases [25],

there are topological zero modes associated. How do these zero modes behave

in the context of nonlinear motions? Do any of them also propagate in forms of

solitons like vortices or skyrmions, as high-dimensional counterpart of kinks

in topological rotor chains. If so, how does the boundary condition in�uence
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the behavior of such nonlinear objects. Or do they all remain localized and

oscillate with large amplitudes? These are the open questions that we hope

to get answers in future works.
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Samenvatting

Systemen van mechanische metamaterialen die topologisch zijn met betrek-

king tot lineaire golven kunnen grote niet-lineaire deformaties ondergaan. De

wisselwerking tussen deze niet-lineaire deformaties en de topologie van het

systeem beïnvloedt de geleiding van geluidsgolven door het materiaal. Defec-

ten in de orde van het systeem bieden de mogelijkheid om de eigenschappen

van het materiaal te beïnvloeden. Tevens kunnen deze defecten interactie

hebben met niet-lineairiteiten in het systeem en met de bulk topologie van het

systeem. Om dit beter te begrijpen bekijken we deze e�ecten in drie verschil-

lende mechanische systemen: eenling-golven in topologische rotorketens,

roostergolven in gedraaide Kagome netwerken en dwarse schokgolven in

�exibele snaren.

In hoofdstuk 2 bestuderen we de volledige niet-lineaire dynamica van

topologische rotorketens. Met behulp van de continuümbeschrijving, leiden

we een niet-lineaire veldentheorie af die topologische kinks, antikinks en

niet-lineaire excitaties toelaat. Een topologische grensterm in de Lagangriaan

breekt de symmetrie tussen de kink en antikink con�guratie. Deze asymmetrie

komt aan het licht als de propagatie van (anti)kinks wordt bekeken. In hoofd-

stuk 3 laten we zien hoe deze asymmetrie zich manifesteert als niet-lineaire

excitaties wisselwerken met onzuiverheden in de keten.

Om soortgelijke niet-lineaire gedragingen in hogere ruimtelijke dimensies

te kunnen onderzoeken, willen we eerst het gedrag in het lineaire regime

begrijpen. Gedeformeerde Kagome roosters staan er om bekend topologische

fases te vertonen en hebben con�guraties waar niet-lineaire e�ecten niet

achterwege gelaten kunnen worden. In hoofdstuk 4 bekijken we de lineaire

mechanische golven in gedraaide Kagome roosters. In het perfecte rooster
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blijkt dat het draaimechanisme de fononische bandenstructuur beïnvloedt

door de bandkloven te vergroten. Bij een kritische draaihoek zien we een

verrassende dubbele ontaarding in de fononische banden, wat gerelateerd

lijkt aan het orthogonaal worden van de roosterbindingen. In hoofdstuk 5

introduceren we puntdefecten in de roosters. Niet-lineaire eigentrillingen van

de defecten die ruimtelijk gelokaliseerd en spectraal geïsoleerd zijn verschij-

nen in de bandkloof. Met behulp van het “tight-binding”-elektronenmodel

beschrijven we de hybridisatie van deze eigentrillingen.

Voor het reguliere Kagome rooster zijn er volledige rijen van atomen die

gelijkgericht zijn wat nulwaardige eigentrillingen veroorzaakt. Deze nulwaar-

dige eigentrillingen zijn gerelateerd aan het ontkoppelen van de vrijheidsgra-

den die alleen voorkomen in het lineaire regime. Hierdoor verwachten we dat

de niet-lineairiteiten de materiaaleigenschappen veranderen. Om de volledige

niet-lineaire analyse van de Kagome roosters te doen, focusseren we eerst op

een simpeler één-dimensional model dat alle belangrijke eigenschappen repro-

duceert. In hoofdstuk 6 beschrijven we de geleiding van dwarse-schokgolven

in ongespannen �exibele snaren bij een punt-inslag. We formuleren een

theorie — voor het continue en discrete geval — die aanneemt dat de trage

transversale golven achterblijven in de regio die verstoord is door de snellere

longitudinale golven. Deze theorie voorspelt dat er een machtsverband is

tussen de snelheden van de schok en de inslag. Dit verband is bevestigd door

numerieke simulaties.
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