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Chapter 6

What Convnets Make for Image

Captioning?

Nowadays, a general pipeline for the image captioning task takes advantage of im-

age representation based on convolutional neural networks (CNNs) and sequence

modeling based on recurrent neural networks (RNNs). Captioning performance

closely depends on the discriminative capacity of CNNs. Our work aims to inves-

tigate the e�ects of di�erent Convnets (CNN models) on image captioning. We

train three Convnets based on di�erent classi�cation tasks: single-label, multi-

label and multi-attribute, and feed the image features from these Convnets into

a Long Short-Term Memory (LSTM) to model the sequence of words. Since the

three Convnets focus on di�erent visual contents in one image, we propose ag-

gregating them together to generate a richer visual representation. Furthermore,

during testing, we use an e�cient multi-scale augmentation approach based on

fully convolutional networks (FCNs). Extensive experiments on MS COCO 2014

dataset provide signi�cant insights into the e�ects of Convnets. Moreover, we

achieve comparable results to the state-of-the-art for both caption generation

and image-sentence retrieval tasks.
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6. WHAT CONVNETS MAKE FOR IMAGE CAPTIONING?

6.1 Introduction

Image captioning is a fundamental and important task in vision-to-language re-

search. It aims to describe an image with meaningful and sensible sentence-level

captions. The automatically generated descriptions should cover the salient con-

tent in images, including objects, actions and other relations. In early research of

image captioning, it has been converted to a retrieval-based task. Those retrieval-

based approaches [297�299] focus on mapping images to sentences based on pre-

de�ned captions. However, they fail to generate novel sentences for unseen scenes.

To address this issue, generative approaches are developed to estimate novel sen-

tences, such as Midge [300] and Baby Talk [301].

Recently, a new paradigm for image captioning is proposed in many state-of-the-

art approaches [266, 267, 302�304]. This paradigm mainly integrates a convolu-

tional neural network (CNN) and a recurrent neural network (RNN) together.

The CNN is used to capture high-level image features, while the RNN generates

a sequence of words based on the image features. In particular, a rich visual rep-

resentation contributes much to generating accurate image captions. However,

some Convnets (CNN models) are originally trained for image classi�cation, but

not for image captioning. It thus raises an important question: What Convnets

make for image captioning?

Our aim in this work is to fully investigate the e�ects of di�erent Convnets on

image captioning. We exploit three kinds of Convnets: single-label Convenet,

multi-label Convnet, and multi-attribute Convnet. (1) A single-label Convnet

indicates a CNN model pre-trained on ImageNet dataset [21], such as AlexNet [14]

and VGG-16 [24]. This Convnet can often o�er one generic image representation.

(2) A multi-label Convnet can predict multiple class labels given one image. It

is consistent with the observation that sentence-level captions often talk about

many salient objects jointly in images. Therefore, we �ne-tune a multi-label

Convnet on MS COCO 2014 [305] that consists of 80 object categories. Each

image is annotated with multiple object labels. (3) A multi-attribute Convnet

can not only re�ect multiple object classes, but also describe actions and other

relations about objects, for example jumping, sitting and interacting. Therefore,
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6.1 Introduction

a multi-attribute Convnet is able to narrow the gap between vision and language.

We �ne-tune a multi-attribute Convnet based on 300 attributes derived from MS

COCO captions [305].

By observing the feature maps learned in the three Convnets, we �nd that their

maps focus on di�erent visual �elds in images. Therefore, we propose aggregating

their features together to generate a richer representation.

In addition, during the test stage, we take advantage of the e�cient fully convo-

lutional networks (FCNs) [60] for multi-scale augmentation. We use two scales

of FCNs that are interpreted from one pre-trained CNN. This augmentation ap-

proach can be applied to both the single Convnet and multi-Convnet aggregation.

Finally, we employ the Long Short-Term Memory (LSTM) [277] to build the lan-

guage model. Figure 6.1 shows an image example from MS COCO 2014 [305].

Note that the visual feature is fed to the LSTM unit at each time step.

Single-label 

Multi-label Multi-attribute 

Multi-Convnet aggregation: A man and a dog on a small boat. 

Single-label Convnet: A man is sitting on the water with a surfboard.

Multi-label Convnet: A man sitting on a boat in front of a boat.

Multi-attribute Convnet: A man and a dog on a boat.

finetune

Ground truth: A man and a dog on a small yellow boat.

Figure 6.1: Example of image captioning using di�erent Convnets. Each Convnet

shows meaningful description. As compared to the human-written ground-truth,

the multi-Convnet can generate closer result than any single Convnet.

In a nutshell, our contributions can be summarized as follows:

• We present a full comparison among the three Convnets for the image cap-

tioning task. Furthermore, we study the bene�ts of each Convnet and then

integrate multiple Convnets for a richer visual representation. Our work

can provide promising insights into deeply diagnosing and understanding

Convnets for vision-to-language tasks.
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6. WHAT CONVNETS MAKE FOR IMAGE CAPTIONING?

• We employ an e�cient multi-scale augmentation approach using FCNs.

• We achieve comparable results to the state-of-the-art on MS COCO 2014

dataset, both for caption generation and image-sentence retrieval tasks.

6.2 Related Work

In this section, we summarize related image captioning approaches based on CNN-

RNN as below.

A prior work in NIC [267] employed a CNN-RNN scheme to model the image

captioning problem. CNNs are used as the �encoder� to visually represent the

input image with a �xed-length feature vector. Then RNNs, as the �decoder�, can

translate the feature vector into sentence-level captions. Similarly, other similar

approaches [266, 304, 306] followed this CNN-RNN paradigm. Instead of only

using CNN features, Jia et al. [307] added extra semantic information to each unit

of the LSTM block. Jin et al. [308] integrated scene-speci�c contexts in order to

highlight higher-level semantic information in images. In addition, Xu et al. [303]

introduced a visual attention based model inspired by human visual system. The

attention mechanism can automatically learn latent alignments between regions

and words. Apart from the whole image captioning, there were some works

focusing on image regions based captioning [302, 309, 310]. They �rst localized

salient regions in images and then described them with natural language.

Recent work in [268] began capturing attributes to represent visual content. No-

tably, Yao et al. [311] investigated the performance upper bounds based on at-

tributes for image and video captioning. However, both of these works did not

train a new CNN model based on attributes. The most similar work in [312] �ne-

tuned a CNN based on the task of image-attribute classi�cation. In comparison,

our work had several main di�erences from [312]:

First, we intended to add a multi-label Convnet as a bridge from a single-label to

a multi-attribute Convnet (see the two solid lines in Figure 6.1). Thus our multi-

attribute Convnet had two-stage �ne-tuning. In contrast, [312] directly �ne-

tuned a multi-attribute Convnet from a single-label Convnet (see the dash line
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6.3 Proposed Approach

in Figure 6.1), and failed to study the e�ects of a multi-label Convnet. Second,

we further evaluated the aggregation of multiple Convnets that has not been

studied previously in [312]. Third, we presented an e�cient multi-scale testing

approach as compared to using expensive region proposals in [312]. In addition,

their testing step was not end-to-end.

6.3 Proposed Approach

In this section, we will present our image captioning system in three aspects.

First, we show the usage of single Convnet for capturing visual representation.

Second, we �nd that integrating image features from the three Convnets is ben-

e�cial for a richer representation. Third, at the test stage, we use a multi-scale

testing approach based on FCNs.

6.3.1 Convnets for Image Captioning

This part introduces the training details about the three Convnets. Notably, the

multi-attribute Convnet also belongs to a multi-label classi�cation task, but it

has di�erent training from the multi-label Convnet.

Single-label Convnet. CNNs trained on ImageNet dataset [21] are widely used

as o�-the-shelf feature extractors, such as Alexnet [14] and VGG-16 [24]. We call

these CNNs as single-label Convnets, since they are originally trained for single-

label classi�cation, for example 1000 classes in ImageNet 2012. Here we use the

VGG-16 net as a single-label Convnet for our image captioning system. As the

left part in Figure 6.2, an image from MS COCO [305] is fed to a single-class

Convnet that outputs a 1000-Dim visual feature.

Multi-label Convnet. Image captions often focus on multiple objects in images,

instead of mentioning only one salient object. We thus train a multi-label Convnet

on MS COCO 2014 dataset [305] that consists of 80 object categories. Each image

in MS COCO is annotated by about 3 object labels on average. Instead of training

from scratch, we �ne-tune the single-label Convnet for a multi-label recognition
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6. WHAT CONVNETS MAKE FOR IMAGE CAPTIONING?

Single-label 

Convnet

1000-way 

Multi-label 

Convnet

80-way

Finetune

Multi-attribute 

Convnet

300-way

Finetune

ballplayer person, baseball bat,

baseball glove.

baseball, game, young, boy, 

player, stand, catch, …

Softmax Sigmoid CrossEntropy Sigmoid CrossEntropy

Figure 6.2: Illustration of the three Convnets for visual representations. The

multi-label Convnet is �ne-tuned from the pre-trained single-label Convnet. The

multi-attribute Convnet performs two-stage �ne-tuning.

task. Note that we replace the original 1000-way layer with 80-way layer. We use

a sigmoid cross-entropy function to compute the element-wise loss. Assume that

there are K classes (e.g. 80), the total cost sums up K of sigmoid losses by

l1(x) = −
K∑
k=1

yk(x) log pk(x) + (1− yk(x)) log(1− pk(x)), (6.1)

where yk ∈ {0, 1} is the ground-truth label indicating the absence or presence of

the category k in the input image x. Pk(x) indicates the prediction probability of

containing the category k. During �ne-tuning, the parameters of the last fully-

connected layer (i.e. the multi-class prediction layer) are initialized with gaussian

�lters. We initialize the learning rate of the last fully-connected layer with 0.01.

Instead, the learning rates of other convolutional layers and fully-connected layers

(i.e. fc6 and fc7) are initialized with 0.0001 and 0.001, respectively. The learning

rate is divided by 10 after 2×104 iterations. The whole training will be terminated

after 5 × 104 iterations. Besides, we use a weight decay of 0.0001, a momentum

of 0.9, and a mini-batch size of 100. The multi-label Convnet is shown in the

middle part in Figure 6.2.

Multi-attribute Convnet. Apart from object categories, a descriptive caption

should mention more information like actions (e.g. sit, run) and other relations
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6.3 Proposed Approach

(e.g. blue, small). Hence, using a Convnet that can re�ect more attributes is

bene�cial for narrowing the gap between visual features and language words.

Based on a multi-label Convnet, we further �ne-tune a multi-attribute Convnet.

First, we build an attribute dictionary based on MS COCO captions dataset.

In [311], they summarize three groups of atoms: entity, action and attribute. We

select top-100 atoms from each group, therefore, the attribute dictionary consists

of 300 words (or attributes) in total. Note that the atoms de�ned in [311] are

renamed as attributes in our work. Then, we remake the topmost layer with a

300-way fully-connected layer, as shown in the right part in Figure 6.2. Assume

that G denotes the number of attributes (e.g. G = 300). Similarly, the sigmoid

cross-entropy loss is computed by

l2(x) = −
G∑

g=1

yg(x) log pg(x) + (1− yg(x)) log(1− pg(x)), (6.2)

where yg ∈ {0, 1} is the ground truth; Pg(x) is the prediction probability. Since

each image in MS COCO has �ve human-written captions, we merge �ve captions

together to generate the ground-truth. During �ne-tuning the multi-attribute

model, we use the same hyper-parameters as the multi-label training.

To compare the visual features from the three Convnets, we visualize their most

activated feature maps learned in the �fth convolutional layer (i.e. conv5_3), as

illustrated in Figure 6.3. Here, we regard the feature map which has the largest

average activation value as the most activated feature map. It can be seen that

the three Convnets focus on di�erent visual �elds in images. This o�ers clear

insights into diverse characteristics of the three Convnets.

Input image Single-label Convnet Multi-label Convnet Multi-attribute Convnet

Figure 6.3: Visualization of feature maps for the three Convnets. We select the

most activated feature map in conv5_3. We can see that the three Convnets focus

on di�erent visual �elds in images due to their di�erent classi�cation objectives.
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6. WHAT CONVNETS MAKE FOR IMAGE CAPTIONING?

6.3.2 Multi-Convnet Aggregation

Since the three Convnets are trained for di�erent classi�cation objectives and can

represent di�erent features given the input image, we propose aggregating them

together to compensate the de�ciency of any single Convnet feature. Although

a multi-attribute Convnet may contain the same objects as in a single-label and

multi-label Convnet, the aggregation feature can further improve the accurate

prediction of object classes. Figure 6.4 illustrates the pipeline of generating image

captions based on multi-Convnet aggregation.

Single-label feature

Multi-label feature

Multi-attribute feature

LSTM LSTM LSTM LSTM…

Aggregation feature

ag(x) ag(x) ag(x) ag(x)

…

Figure 6.4: The pipeline of Image captioning based on multi-Convnet aggregation.

The three Convnet features are concatenated together to generate an aggregation

feature ag(x). At each time step, both a word xi and ag(x) are fed to the LSTM

unit whose output is a probability distribution for the next word.

First, the input image x is fed to three pre-trained Convnets to capture separate

visual features, denoted as sc(x),mc(x),ma(x). We then concatenate three kinds

of features to create an aggregation feature ag(x) (i.e. 1380-Dim vector), where

ag(x) = [sc(x),mc(x),ma(x)]. Then, we add this aggregation feature to the

following RNN unit at each time step. We employ one-layer Long Short-Term

Memory (LSTM) [277] that can alleviate the vanishing gradient problem due to

its gates mechanism. Finally, at the time step t, the formulation of LSTM units

with an aggregation feature can be summarized as below

it = σ(Wxixt +Wviag(x) +Whiht−1 + bi) (6.3)

ft = σ(Wxfxt +Wvfag(x) +Whfht−1 + bf ) (6.4)

ot = σ(Wxoxt +Wvoag(x) +Whoht−1 + bo) (6.5)
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6.3 Proposed Approach

gt = φ(Wxgxt +Wvgag(x) +Whght−1 + bg) (6.6)

ct = ft � ct−1 + it � gt (6.7)

ht = ot � φ(ct) (6.8)

pt+1 = Softmax(ht) (6.9)

where Wand b are the weight matrices and bias terms. We refer to xt as the

input word at time step t for image x. σ and φ are the sigmoid and tangent

activation functions. pt+1 is used to predict the probability distribution for the

next word. Finally, the objective in LSTMs for language modeling is to minimize

the following loss cost

−
T−1∑
t=0

log pt(xt+1|xt, ag(x)) + λ||W ||22 (6.10)

where T is the length of the input sequence of words, and λ indicates the weight

decay (In this work, we follow the con�guration of [266] and set λ equals 0). For

notational simplicity, we just give the computation of one input image and drop

the mini-batch size in the formulation. Following the hyper-parameters in [266],

both the word embedding size and hidden state size are set to 1000. We use

a mini-batch size of 100 image-sentence pairs. The learning rate is initialized

with 0.01 and decreases to one tenth of current rate after 20,000 iterations. The

whole training will be terminated after 80,000 iterations. In addition, we use a

momentum of 0.9 and clip gradients of 10.

6.3.3 Multi-scale Testing

During the test phase, we intend to use a multi-scale augmentation approach

to capture a more robust image representation, as shown in Figure 6.5. We

�rst extract a feature vector by inputting a 224×224 image to CNNs. Then, we

convert one CNN model to a fully convolutional networks (FCN) [60]. FCN is

quite e�cient to compute regions based predictions without decreasing the ease of

testing. Following [24], we set a smaller side to S and isotropically resize the other

side. Here we use two scales of images, including S = 256 and 320, and perform
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6. WHAT CONVNETS MAKE FOR IMAGE CAPTIONING?

average pooling over the topmost layer of FCN. Finally, the multi-scale feature

is computed by averaging one CNN feature and two FCN features. Notably,

the multi-scale testing can be used for both single Convnet and multi-Convnet

aggregation. We also test more scales such as S = 384, 512, but no signi�cant

improvement is obtained.

…

…

…

224

256

320

CNN

FCN

FCN

LSTM

xt

average

transfer

transfer

Caption generation

Figure 6.5: The pipeline of multi-scale testing approach. Apart from the basic

CNN feature, we use two extra scales based on FCNs. We compute the average

over three feature vectors and feed it to LSTM units for caption generation.

6.4 Experiments

In this section, we evaluate our approach on the well-knownMS COCO dataset [305].

MS COCO consists of 82783 training images, 40504 validation images and 40775

testing images. Each image is annotated by at least �ve human-written captions.

Following most recent works [266, 302, 306, 312] , we use 5000 images as valida-

tion set to tune hyper-parameters, and another 5000 images as test set to report

results. We use the vocabulary dictionary in [266] (containing 8800 words). This

dictionary is used to encode the input sequence of words. We implemented our

approach based on the Ca�e framework [218].

6.4.1 Evaluation Con�guration

We evaluate our approaches on two tasks: caption generation and image-sentence

retrieval. For caption generation task, we evaluate our method with four metrics:
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BLEU [313], METEOR [314], ROUGE-L [315] and CIDEr [316]. For image-

sentence retrieval task, we divide it into two parts: image-to-sentence retrieval

and sentence-to-image retrieval. Following previous works [266, 302], we adopt

the evaluation metrics: R@K and Med r. All metrics are computed with the MS

COCO evaluation code [317].

We denote the three single Convnets as SL-Net, ML-Net and MA-Net.

MA_ML-Net is the combination of MA-Net and ML-Net, andMA_ML_SL-

Net indicates the method that aggregates the three Convnets.

We utilize BeamSearch when generating the sentences: iteratively consider the k

best sentences up to timestep t when generating sentences of timestep t+1. Most

of our results use a beam search of size 1 for fast evaluating. For fair comparison

with the state-of-the-art, we give the results by using a beam of size 5.

6.4.2 Results on Caption Generation

We evaluate our approach on caption generation with 5000 test images. Table 6.1

shows the single-scale and multi-scale testing of the three Convnets. We list the

dimension of the feature since it is closely related with the number of LSTM pa-

rameters. It is interesting to see that, SL-Net, which utilizes the largest dimension

feature, performs the worst among the three Convnets. This demonstrates that

increasing the number of system parameters would not necessarily improve the

performance.

For single-scale testing, ML-Net brings about 1% boost over the SL-Net for most

evaluation metrics. This improvement is marginal compared to the MA-Net,

which outperforms the SL-Net signi�cantly over all the evaluation metrics. No-

tably, the increase of CIDEr reaches 0.093, from 0.703 to 0.796. On the other

hand, the multi-scale testing using FCN shows considerable improvement over

the corresponding single-scale testing, with the same feature dimension. This is

promising, especially considering the high e�ciency of FCN.

In addition to evaluating the three Convnets individually, we also explore the

e�ect of aggregating the Convnets, as shown in Table 6.2. We build the multi-
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6. WHAT CONVNETS MAKE FOR IMAGE CAPTIONING?

Table 6.1: MS COCO results on caption generation by comparing three Convnets.

Both single-scale and multi-scale testing are shown. Here we use a beam search of

size 1.

Method Dim B-1 B-2 B-3 B-4 M R C

Single-scale Testing:

SL-Net 1000 0.651 0.474 0.333 0.229 0.214 0.483 0.703

ML-Net 80 0.664 0.487 0.345 0.241 0.213 0.487 0.717

MA-Net 300 0.686 0.516 0.374 0.266 0.228 0.506 0.796

Multi-scale Testing:

SL-Net 1000 0.666 0.489 0.345 0.239 0.219 0.489 0.735

ML-Net 80 0.679 0.496 0.351 0.245 0.219 0.49 0.75

MA-Net 300 0.697 0.528 0.384 0.274 0.231 0.511 0.81

Convnet based on MA-Net since it is the best individual Convnet. Overall, both

MA_ML-Net and MA_MC_SC-Net perform better than the individual MA-Net,

indicating that aggregating the Convnet is bene�cial for the caption generation.

This is reasonable given the fact that di�erent Convnets would learn di�erent con-

tents, and aggregating them generally lead to a more comprehensive prediction.

Furthermore, we also evaluate the multi-scale performance using FCN. Similarly,

the multi-scale scheme improves the accuracy of the evaluation metric remark-

ably. Finally, MA_MC_SC-Net can yield a quite competitive result, such as

0.704 B-1 and 0.846 CIDEr.

Table 6.2: MS COCO results on caption generation by multi-Convnet aggregation.

The results are based on BLEU, METEOR (M), ROUGE-L (R) and CIDEr (C)

metrics. Here we use a beam search of size 1.

Method B-1 B-2 B-3 B-4 M R C

Single-scale Testing:

MA-Net 0.686 0.516 0.374 0.266 0.228 0.506 0.796

MA_ML-Net 0.687 0.519 0.376 0.268 0.229 0.507 0.797

MA_ML_SL-Net 0.688 0.52 0.379 0.27 0.229 0.507 0.803

Multi-scale Testing:

MA-Net 0.697 0.528 0.384 0.274 0.231 0.511 0.81

MA_ML-Net 0.703 0.537 0.393 0.282 0.234 0.516 0.846

MA_ML_SL-Net 0.704 0.54 0.398 0.287 0.236 0.519 0.848

Comparison with the state-of-the-art We compare our MA_MC_SC-Net
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result with current state-of-the-art methods in Table 6.3. It can be seen that our

results delivered better results than most existing methods. Compared to [303],

our method obtained the same result on Bleu-1 with the soft-attention model,

slightly worse than the more sophisticated hard-attention model. But for all the

other evaluation metrics, our method achieved considerably better results. Sim-

ilar situation comes with [268], with which we also achieved overall competitive

performance. It is worthwhile to say that, our method is not inherently con�icted

with these methods, and we can incorporate them together for a better achieve-

ment. Note that [312] further improved their results by extracting, clustering

and selecting a large number of region proposals. Therefore, their great gains

are achieved at the expense of algorithm complexity. In contrast, bene�ted from

the high e�ciency of FCN, our multi-scale testing strategy brings negligible extra

cost compared to the single-scale testing. We argue that a sophisticated region

detection approach [44] is also applicable to our system, but it is out of the scope

of this work. Figure 6.6 shows some captioning examples.

Table 6.3: Comparison with current state-of-the-art on MS COCO caption gen-

eration. Here we use a beam search of size 5.

Method B-1 B-2 B-3 B-4 M C

Karpathy et al. [302] 0.625 0.450 0.321 0.230 0.195 0.66

mRNN [304] 0.670 0.490 0.350 0.250 - -

NIC [267] - - - 0.277 0.237 0.855

LRCN [266] 0.669 0.489 0.349 0.249 - -

gLSTM [307] 0.670 0.491 0.358 0.264 0.227 0.813

Bi-LSTM [306] 0.672 0.492 0.352 0.244 0.208 0.666

VNet-ft-LSTM [312] 0.680 0.500 0.370 0.250 0.220 0.730

Soft-Attention [303] 0.707 0.492 0.344 0.243 0.239 -

Hard-Attention [303] 0.718 0.504 0.357 0.250 0.230 -

Jin et al. [308] 0.697 0.519 0.381 0.282 0.235 0.838

ATT-FCN [268] 0.709 0.537 0.402 0.304 0.243 -

Ours 0.707 0.548 0.410 0.304 0.238 0.895
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Ours: A man riding a wave in 

the ocean. 

GT: A man riding a wave on a 

surfboard in the ocean. 

Ours: A living room with a lot 

of furniture. 

GT: Living room with furniture 

with garage door at one end. 

Ours: A man riding a horse at a 

horse. 

GT: A horse that threw a man 

off  a horse. 

Ours:  A close up of an 

elephant with an elephant 

GT: A man getting a kiss on the  

neck from an elephant's trunk 

Figure 6.6: The caption generation results for some MS COCO examples by our

MA_MC_SC-Net method. We show both the positive and negative examples.

6.4.3 Results on Image-sentence Retrieval

We report the image-to-sentence and sentence-to-image results in Table 6.4.

There are 5000 test images and 25,000 captions in total. Overall, MA_MC_SC-

Net outperforms other state-of-the-art works on both R@K and Med r.

Table 6.4: Image-sentence retrieval results on MS COCO dataset. R@K: higher

is better; Med r: lower is better.

Image to Sentence Sentence to Image

Method R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Karpathy et al. [302] 16.5 39.2 52.0 9.0 10.7 29.6 42.2 14.0

Bi-LSTM [306] 16.6 39.4 52.4 9.0 11.6 30.9 43.4 13.0

Ours 16.9 39.8 53.1 8.0 12.4 31.5 44.0 12.0

6.5 Conclusion

In this work, we studied the e�ects of Convnets for the image captioning task. We

employed three Convnets based on single-label, multi-label, multi-attribute clas-

si�cation. In addition, we integrated the three Convnets for an richer aggregation

feature. During the test stage, we employed an e�cient multi-scale augmentation

approach. Experiments on MS COCO dataset demonstrated that our approach

achieved competitive results for both caption generation and image-sentence re-

trieval as compared to the state-of-the-art. In the future work, we will strive to

make use of the attention mechanism.
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