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Chapter 3

Force measurement from

sparse trajectories in

curved geometries

Abstract

The quantitative measurement of forces between microscopic particles is crucial
for understanding soft materials. Here, we describe three methods to extract a po-
tential energy landscape from the trajectories of thermally excited particles. We
study the measurement accuracy of these methods using simulated data and we
describe how to apply them to arbitrarily curved geometries. The �rst method
uses direct position sampling, for which we establish what determines the op-
timum sampling time. The second uses uses displacement sampling. We de-
vise selection rules that allow us to for instance isolate two-body interactions.
Then we study the accuracy of maximum likelihood estimation of a piecewise
interpolated interaction force using an approximate analytical form for the trans-
ition probability. The accuracy of this second method improves with increasing
sampling time up to a limiting value that is set by the gradient of the force. The
third method is derived from a master equation. This approach does not involve
an approximate analytical model for the transition probability, but instead �nds
a stationary solution from binned transition probabilities. With this chapter, we
provide a reference for how to extract forces from the trajectories of thermally
activated particles in arbitrary geometries.
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CHAPTER 3. FORCE MEASUREMENT FROM SPARSE TRAJECTORIES IN CURVED GEOMETRIES

3.1 Introduction

Soft materials such as food, ceramics, cosmetics, pharmaceutics, paints, and even liv-
ing organisms typically contain particles in the micrometer range. The properties of
these complex materials depend sensitively on the interaction forces between these
micrometer-sized constituents. Therefore, knowledge of the microscopic interaction
forces is crucial for understanding soft material properties. For example, the phase be-
haviour of colloidal suspensions is governed by the forces between individual particles,
which is described by DLVO theory∗. This theory has been established experimentally
using video microscopy: by following the thermal �uctuations in the positions of indi-
vidual particles, interaction forces were directly observed.65,98,99 This approach has also
been successful for measuring forces between colloidal particles and a wall,100 forces me-
diated by oil-water interfaces,101 by lipid membranes (see Chapter 5), and even forces
acting on single proteins in nerve cells.102

Throughout these works, several techniques have been employed to extract interac-
tion forces from particle trajectories. Here, we will summarize these methods and eval-
uate which is most accurate, using a Brownian dynamics simulation. We will extend
these methods for use in curved geometries, to be able to interpret particle movements
on the surface of curved lipid membranes. We restrict ourselves to Brownian motion at
low Reynolds number, which means that particle inertia does not play a role and particle
dynamics are completely described by the overdamped Langevin equation.

The problem is stated as follows: given N particle trajectories of length M and
sampling interval � , what is the interaction energy U (x⃗)? The meaning of the inde-
pendent coordinate x⃗ can vary from experiment to experiment: for instance, in the case
of particle-wall interaction,100 x⃗ is the distance between particle and wall, and for parti-
cles that interact via a radial force, x⃗ is the distance between two particles.99,103 As the
force measurement methods remain conceptually the same for all these cases, we will
�rst discuss the methods in one dimension only, and afterwards extend them to arbitrary
number of dimensions and curved geometries.

First we will describe the direct position sampling method, in which independent
observations of x⃗ are counted and U (x⃗) is induced by assuming the Boltzmann equi-
librium distribution.98 Second, we will discuss how to sample displacements instead of
positions and use these to induce local forces via either an analytic model of the trans-
ition probabilities103,104 or via a master equation.65,99 Finally, we will discuss how to
apply these methods in arbitrary geometries.

3.2 Methods

Particle trajectories were generated using a Brownian dynamics simulation implemented
in Python 3.4 and Numpy 1.11. Displacements of single particles in each dimension i

∗DLVO is an acronym for Derjaguin, Landau, Verweij, and Overbeek, who formulated the theory that
combines the Van der Waals and electrostatic interactions between liquid-immersed charged surfaces.
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3.3. POSITION-BASED FORCE MEASUREMENT

were drawn from a normal distribution with width � =
√
2D�S and mean �i = �FiD�S ,

where the di�usion coe�cient D was �xed at 0.5, the simulation time step �S at 0.001,
and the inverse thermal energy � at 1. The force Fi was given by −∇iU . We chose the
energy U as follows:

�U (r) =
5�
4 [5(

r
� )

4
− 4(

r
� )

2
].

Here, r denotes the distance to the origin, � the energy well depth, and � the extent of
the potential �eld. If not stated otherwise, we used � = 2 and � = 5. See Fig. 3.1c for the
shape of U (r).

3.3 Position-based force measurement

The most straightforward way to induce forces from particle trajectories involves direct
sampling of particle positions.98 For measuring interactions between particles, the result
of this technique is better known as the radial distribution function, which is typically
denoted as g(r). Starting from N independent observations, the number of occurrences
Ni inside bin i with centre xi and size �x are counted to estimate the probability density
�(x):

Ni
N

= ∫
xi+ �x2

xi− �x2
�(x)dx ≈ �(xi)�x. (3.1)

Assuming that the observations of x are sampled at equilibrium, �(x) can be related
directly to the interaction energy U (x) via the Boltzmann distribution:

U (xi) = U0 − kBT ln �(xi), (3.2)
in which the energy U is determined with respect to a reference value U0.

To analyse the accuracy of this technique, we sampledN = 2000 non-interacting par-
ticles in a radial potential �eld.† In Figures 3.1a–b two of these simulations are shown,
along with the employed radial potential wells U (r) in solid lines in Fig. 3.1c. From these
2000 particle positions we straightforwardly recovered the energy landscape U (r) that
we used in the simulation (see points in Fig. 3.1c). The precision of this measurement
is computed directly from the number of observations per bin: it can be shown that the
absolute standard error in energy equals N −1/2

i , in units of kBT (see Appendix 1 on page
46).

To assess the accuracy of this method for determining the potential energy, we de�ne
the squared deviation of the measured U (ri) with respect to the model U , averaged over
all bins: ⟨�2U ⟩. We will use this quantity throughout this chapter and call it “the aver-
age accuracy”. In Fig. 3.1d it can be seen that this ⟨�2U ⟩ is inversely proportional to the

†Two-dimensional radial coordinates are not directly described by Eq. 3.1. The Jacobian determinant of
this coordinate system needs to be incorporated, which in this case amounts to �x⃗ = r�r . See Section 3.5.
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CHAPTER 3. FORCE MEASUREMENT FROM SPARSE TRAJECTORIES IN CURVED GEOMETRIES

Figure 3.1. Interaction energy measurement of particles in a radial potential �eld at � = 5. (a, b)
Simulations of N = 2000 particles equilibrated in a radial potential �eld with a well depth � of (a)
4 kBT and (b) 1 kBT. The potential energy U (r) for four di�erent well depths (see legend in d) are
shown in (c) as solid lines. The energy was measured from the simulations and plotted as dots in
(c), with error bars that denote the 2� con�dence intervals. (d) The mean squared deviation of the
measured energy with respect to the model function, averaged over 200 independent simulations
and over all bins. We varied the number of positions in a single simulation N between 10 and
10000, and the bin width �x between 0.05 and 0.2. On the horizontal axis, the average number of
particles per bin is plotted, so that the measurements at di�erent �x collapse onto a single curve.
The observed precision follows the expected ⟨� 2U ⟩ ∝ 1/⟨N⟩ relation.

average number of particles per bin. The absolute value of this accuracy depends on
how the particles are distributed over the bins. Because the number of measurements
inside a particular bin scales with the Boltzmann factor, high values of U become ex-
ponentially less frequent and therefore, the average accuracy deteriorates rapidly for
increasing well depths �. This is demonstrated in Fig. 3.1d: for � = 1 kBT we need 140
independent observations per bin to reach an accuracy of 0.1 kBT, while for � = 4 kBT,
we already require several thousands. Thus, direct position sampling is only viable when
the involved energy di�erences do not exceed a few units of kBT.

Up to now, we have considered independent observations of particle positions. If
we however use positions on the same particle trajectory, these are only independent at
considerably long sample times, as positions only change with the square root of time.
We here ask the question: what is the average accuracy when coordinates are sampled
from a single trajectory with time di�erence � between measurements?

Theoretically, the correlation in particle positions is governed by the transition prob-
ability P(x, � |x′, 0), which depends on U (x) that is not known analytically. Therefore,
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3.3. POSITION-BASED FORCE MEASUREMENT

Figure 3.2. Direct sampling method applied to a single trajectory in a radial potential �eld. (a) to
(d) show simulations of N = 2000 time steps with di�erent sampling times � of 0.001, 0.01, 0.1, and
1, respectively. The extent of correlation in position can be observed by eye from these trajectories.
(e) We computed the corresponding U and averaged the deviations from the model potential over
200 independent trajectories, at a �xed ⟨N⟩ of 100, and for three bin widths �x ranging from 0.05
to 0.2 (plotted in the same colour). If we plot this against the dimensionless parameter 2D�/(��x),
we observe a collapse of the data onto a single curve.

we approach this question numerically: for a range of sampling times � , we simulated
200 independent trajectories of length 2000 in a radial potential �eld. See Figures 3.2a–
d of example trajectories with increasing sampling times. To probe the dependence of
the average accuracy on � , we �xed the average number of particles per bin ⟨N⟩ and
simulated trajectories for di�erent values of sampling time � , bin width �x , and poten-
tial range � . As can be seen in Figure 3.2e, we observe a data collapse when we plot
the average accuracy against 2D�/(��x). Naturally, this rescaling includes 2D� , which
is the squared typical distance that a particle displaces in time � . This is then divided
by two length scales: the range of the potential �eld � , and the bin width �x , yielding
a dimensionless number. From these observations we conclude that measurements are
uncorrelated if 2D�/(��x) ≫ 1. Such a dimensional analysis giving the minimum value
of � has been reported before,100 however they compared 2D� with a di�erent length
scale. With our simulations, we have proven that the optimum sampling time depends
on both the bin width and range of the interaction force.

When multiple particles are present in the measurement box, many-body e�ects
have to be taken into account. Extracting two-body forces from many-particle radial
distribution functions requires molecular dynamic simulations, and functions only un-
der assumption of pairwise force additivity.98,105 In the next section, we will show that
displacement-sampling based force measurement does not have this limitation.

To summarize, direct position sampling is a straightforward method that provides
interaction energies directly from independent equilibrium positions. However, the
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CHAPTER 3. FORCE MEASUREMENT FROM SPARSE TRAJECTORIES IN CURVED GEOMETRIES

method is only applicable for energy di�erences of up to a few kBT and particle traject-
ories need to be sampled at sampling times � ≫ ��x/(2D) in order to ensure independent
measurements.

3.4 Displacement-based force measurement

An entirely di�erent approach to induce local forces from particle trajectories makes use
of the fundamental Markov property of Brownian motion: as Brownian particles have
no memory, their displacements are uncorrelated in time. Therefore, particles can act as
local probes of the force �eld. As long as the sampling interval is above the Brownian
timescale of the particles, the measured displacements are uncorrelated. The advantage
of this approach is clear: the minimum sampling time is now set by the Brownian times-
cale, so that many independent measurements can be acquired within a limited time.
Also, we need not to assume equilibrium, which allows for the measurement of larger
energy di�erences.

3.4.1 Sampling

In literature, displacement sampling has been employed exclusively in combination with
optical tweezers.99,103 In these type of experiments, trajectories are typically of high
quality, meaning that particles are observed continuously and do not disappear. If we
however use displacement sampling to extract forces from particle trajectories in a lim-
ited �eld-of-view and with out-of-focus movement, we have to take care not to introduce
a bias in the measured forces. Here, we will describe sampling selection rules that e�ect-
ively remove this “sampling bias”. These selection rules allow the use of displacement
sampling techniques for analysing sparse trajectories.

Starting from observed particle trajectories, positions are rearranged into displace-
ment pairs (x0, x1) with a given lag time. If a particle is positioned initially in the middle
of the �eld of view, it will always be observed in the next frame (see triangle in Fig. 3.3).
This allows for complete sampling of the particle displacements. However, for a particle
that is positioned close to a �eld of view edge, we cannot sample all displacements, be-
cause we do not observe the particle if it steps outside (see diamond in Fig. 3.3). In this
case, the mean of this distribution will be biased away from the �eld of view edge, so
that there appears to exist an inwards force that acts on particles near a boundary.

To overcome this “sampling bias”, we include only displacement pairs in which the
initial position x0 is such that we are certain of observing it in the next frame. In this
example, we would not include x0 that is closer than L� to a boundary, in which L� is
the maximum distance a particle can move in the sampling interval. In this way, we
remove the sampling bias at the expense of ignoring part of the displacement data. This
displacement pair selection is crucial to employ displacement-based sampling methods
to sparse trajectories.
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3.4. DISPLACEMENT-BASED FORCE MEASUREMENT

Figure 3.3. Displacement sampling near an edge. (a) A measurement box (white) with two
Brownian particles. The circles denote 1, 2, and 3� contours of the probability to �nd particles in
the next frame. (b) Transition probability densities P(x1|x0) of the x coordinate of the two parti-
cles, with their initial positions x0 shown in dashed lines. The particle in the centre (triangle) will
remain visible in the next frame, while the particle at the edge (diamond) can step outside of the
�eld of view, in which case its mean displacement will be biased away from the edge. Therefore,
transitions starting close to the edge should be omitted to obtain unbiased displacement samples.

As long as we do not involve the �nal position x1 in the selection of displacement
pairs, we do not bias the measured distribution P(x1|x0). In other words: as long as
we base the selection on x0 only, we can apply any selection rule. This is for instance
useful in the case in which particles interact via forces that are not pairwise additive, in
which case we look at P(r1|r0), with r is the distance between two particles. To isolate
the two-body interaction, do not want to incorporate displacement pairs in which the
two particles between which r is measured have a third particle closer by than � , the
length scale of the interaction. The selection rule that excludes many-body interaction
is then formulated as follows: ignore displacement pairs in which r0 has more than one
particle closer than � + 2L� . Thus, displacement sampling can e�ectively isolate two-
body interactions by adopting an appropriate data selection rule, which poses a clear
advantage over the direct position sampling method.

3.4.2 Maximum likelihood estimation

To extract a local force from the sampled particle displacements, a model is required
that describes the probability of observing a particle at position x1 at time t + � , given a
certain initial position x0 at time t . This so-called transition probability P(x1, t + � |x0, t)
can be approximated analytically for su�ciently small times � , as follows [106, p. 73]:

P� (x1|x0) =
1

2
√
�D(x)�

exp [ −
(x1 − x0 − �F(x)D(x)� )2

4D(x)� ]. (3.3)
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CHAPTER 3. FORCE MEASUREMENT FROM SPARSE TRAJECTORIES IN CURVED GEOMETRIES

Here, we introduced P� (x1|x0) as a shorthand for P(x1, t + � |x0, t). F (x) and D(x) are both
allowed to vary as function of x , as long as they do not vary signi�cantly within a single
displacement.

To obtain the local force and di�usivity, we can straightforwardly compute a two-
dimensional histogram of the displacement pairs {xj , xj+1} and evaluate the mean and
spread of the distributions for each initial displacement.103 A more direct approach was
reported recently in ref. [104] and directly �ts a model for F (x) and D(x) to the dis-
placements. Here, we employ the latter approach using a constant D and a piecewise
interpolated force Fi = F(xi) on points xi spaced �x from each other. Given this model,
the maximum likelihood of the parameters can then be found by maximizing the log-
likelihood , which is the logarithm of the probability of observing all the displacements
{xj , xj+1} given model parameters D and Fi :

({xj , xj+1}|D, Fi) =
N
∑
j=1
log P� (xj+1|xj , D, Fi), (3.4)

where P� is given by Eq. 3.3. By maximizing this log-likelihood, the maximum likelihood
estimate (mle) ofD and Fi can be found. In Appendix 2 it is shown that the thus obtained
Fmle indeed equals the force, but thatDmle slightly underestimates the trueD. Therefore,
we chose to �xD to the known value that we used in the simulation and only optimize for
Fi . Using Eq. 3.4, a Bayesian approach was adopted to sample the piecewise interpolated
force. After numerical integration, the energy was obtained up to an arbitrary choice
of a reference energy. In Fig. 3.4a an example of this analysis is shown, obtained from
N = 10000 uniformly sampled displacement pairs in a radial potential �eld.

We observed that the average accuracy of this method is inversely proportional to the
number of observed displacements N , while it does not depend on the distance between
points on the piecewise interpolated force (�x). See Figure 3.4b. Below N = 1000, we
found that the numerical minimization of the log-likelihood has a high probability to
diverge.

The average accuracy is also inversely proportional to � , which can be understood by
comparing the di�usive displacement

√
2D� with the force-induced displacement �FD� .

For low values of � , the di�usive displacements dominate which makes the force meas-
urement less precise. This measurement precision in the estimated force can be derived
more precisely in the form of the Cramér-Rao lower bound (see Appendix 2). The en-
ergy is obtained through numerical integration of this force, so that this fundamental
precision limit propagates into the energy.

We numerically evaluated the average accuracy in the energy by changing the
sampling time � at �xed number of measurements, and found that the accuracy is in-
deed inversely proportional to � . See Fig. 3.4c. The numerical integration introduced a
dependence on the length scale of the potential �eld, as displayed in Fig. 3.4c. Here we
note that the analytical model for P� (Eq. 3.3) becomes inaccurate when the force changes
during a single particle displacement, e.g. due to a large gradient in the force. Approx-
imately, the corresponding condition is � ≪ (�D|F ′(xi)|)−1 (see Appendix 2). Because of
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3.4. DISPLACEMENT-BASED FORCE MEASUREMENT

Figure 3.4. Maximum likelihood estimation of the energy applied to a single trajectory in a radial
potential �eld. (a) Real (black line) and measured (points) potential energy curves for di�erent well
depths (see legend in b), each withN = 10000measured displacements at 2D� = 0.05. The dark and
light shaded regions denote the 1� and 2� con�dence intervals, respectively. The reference value
of U was chosen at the potential minimum, therefore the con�dence interval has zero width at
that point. (b) The average accuracy of the measured energy ⟨� 2U ⟩, averaged over 200 independent
simulations. We varied the number of displacements in a single simulation N between 100 and
100000, and the distance between the points in the piecewise interpolated force (�x) between 0.05
and 0.2, at a sampling time of 2D� = 0.05. We found that the accuracy does not depend on �x
and above a minimum sample size of N = 1000, the variance is inversely proportional to N , until
it levels o� due to the inaccuracy of the analytical model for P� . For increasing well depths, this
latter issue becomes increasingly more pronounced. (c) We varied the sampling time � for di�erent
potential length scales � and for �x between 0.05 and 0.2, at �xedN = 10000. The average accuracy
⟨� 2U ⟩ was inversely proportional to 2D�/� 2, up to a critical value of � after which it degrades due
to inaccuracy of the analytical model for the transition probability.

this e�ect, we observed in Fig. 3.4c that the average accuracy increases proportionally
to � for larger values of � .

Summarizing, we have shown that the maximum likelihood estimation is capable
of inducing accurate energy pro�les from particle displacement data. For optimal pre-
cision, sampling time as well as the number of observations should be chosen as high
as possible. There however exists an upper limit for � , which is due to the assump-
tion that F is constant during a displacement. Further re�nement of this model may
be possible by adapting the chosen model of the transition probability. For instance,
the transition probability in a parabolic potential can be derived analytically (the so-
called Ornstein-Uhlenbeck process106), which provides an analytical description up to
the second derivative of the energy. Additionally, a means of combining analyses at dif-
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CHAPTER 3. FORCE MEASUREMENT FROM SPARSE TRAJECTORIES IN CURVED GEOMETRIES

ferent lag times into a single log-likelihood function might further improve the precision
of this method.103

3.4.3 Master equation method

When the previously discussed conditions for the approximate model of the transition
probability does not hold, the maximum likelihood estimation becomes inaccurate. To
address this issue we will here discuss another approach that makes use of the mas-
ter equation of �. This approach to measuring interaction forces has been reported
by Crocker and Grier [65, 99], although not in combination with the here described
sampling selection rules, which make this method more widely applicable. Here, we
will shortly summarize the method and evaluate its accuracy.

In general, the evolution of a probability density can be described with a master
equation, as follows:

�(x, t + �) = ∫ P� (x|x′)�(x′, t)dx′, (3.5)

in which the transition probability P� (x|x′) is related to U (x), which we want to meas-
ure. To �nd U (x), we do not need to know this relation analytically, as we can use the
stationary solution of the master equation:

�s(x) = ∫ P� (x|x′)�s(x′)dx′. (3.6)

If this solution exists, then �s is also a stationary solution of the Smoluchowski equation,
which for constantD is equivalent to the Boltzmann distribution in Eq. 3.2. See Appendix
3 for the corresponding derivation. Thus, we can obtain U (x) by sampling the transition
probability matrix P� (x1|x0) from the measured displacement pairs {x0, x1} and �nding
the eigenvector of P� with eigenvalue 1.

Using our simulated data, we indeed recovered an accurate U (x) through this
method. See Figure 3.5a. The average accuracy ⟨�2U ⟩ is again inversely proportional
to the number of measurements, as can be seen in Fig. 3.5b. The lower boundary of
the number of observations N is determined by how the observed displacements pairs
{x0, x1} are distributed over the bins: every initial position bin must contain at least 1
observation to be able to compute the energy. We observed that the accuracy is inversely
proportional to ⟨N⟩, up to a certain point after which the spatial binning starts to play
a role.

In Figure 3.5c it can be seen that for low sampling time � , the average accuracy
improves for increasing 2D�/(��x). The reason for this is the same as for the maximum
likelihood method: for low � , random displacements dominate over the force-induced
displacements and therefore the force measurement is less precise. For very large � ,
we observed that the accuracy converges to a constant value. In that case, the master
equation method is equivalent to the direct position sampling method, because P� (x1|x0)
then directly equals �(x1), independent of x0.
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3.5. ESTIMATING FORCES IN CURVED GEOMETRIES

Figure 3.5. The master equation method applied to a single trajectory in a radial potential �eld.
(a) Four examples with N = 10000 measured displacements, with the model potential in a black
solid line and the measurement potential in coloured dots. (b) The average accuracy ⟨� 2U ⟩ was
quanti�ed by averaging the squared deviations of 200 independent simulations with the model
function. The sampling time was �xed at 2D� = 0.05, the length scale at � = 5, and the well depth
at � = 2kBT . The bin width was varied in between 0.02 and 0.2. The average accuracy is inversely
proportional to the number of measurements. (c) We measured the average accuracy for four bin
widths �x ranging from 0.02 to 0.2 (see legend in b) and four length scales � (plotted in the same
colour), at �xed ⟨N⟩ = 100 and well depth � = 2kBT . The accuracy improves with increasing
2D�/(��x). Contrary to the maximum likelihood method, it does not deteriorate at larger values
of � . This is because the master equation method does not use an approximation for the transition
probability.

3.5 Estimating forces in curved geometries

We have discussed three approaches for force measurement from trajectories in one
dimension. Most experiments are, however, performed in multiple dimensions. For ex-
ample, in sections 3.3 and 3.4, we analysed particle trajectories in a two-dimensional
potential �eld, in which the force was dependent on the distance to the origin r . There-
fore, it was useful to describe this system with radial coordinates r and � (see Figure
3.6a). As a radial force does not depend on the angle � , the dimensionality of the prob-
lem conveniently reduced to one.

However, it is important to note that in this curvilinear coordinate system, the in-
�nitesimal area element dA depends on the coordinates: dA = rdrd� . This has the
consequence that a particle has greater probability to move away from the origin, lead-
ing to an apparent force that is merely caused by the choice of coordinate system. In
this section, we will describe how to accurately extract forces present in such coordin-
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CHAPTER 3. FORCE MEASUREMENT FROM SPARSE TRAJECTORIES IN CURVED GEOMETRIES

ate system for the three discussed force measurement methods. Also, we will show how
to extend this to case that not only the coordinates are curvilinear, but also the geometry
itself is curved, for example when a particle is con�ned to a spherical surface (see Figure
3.6b).

Figure 3.6. Two examples of integration in a non-Euclidean coordinate system. (a) Two-
dimensional Euclidean space with a radial coordinate system y⃗ = {r, �}. The in�nitesimal area
element dA (shaded region) is given in radial coordinates by rd�dr . (b) An intrinsically curved
coordinate system y⃗ = {u, v} on the surface of a sphere with radius R. The origin of the co-
ordinate system is denoted with a dotted circle. The in�nitesimal area element (shaded region) at
coordinates {u, v} is given by R2 sin(u)dudv.

Position sampling When determining the probability density from the number of
observations, we need to take into account the proper area element. This can be seen
through substitution of variables when integrating the probability density:

Ni
N

= ∬
�Ai

�(x⃗)dx⃗ = ∬
�Ai

�(y⃗)J (y⃗)dy⃗, (3.7)

where Ni is the number of observations in the two-dimensional bin �Ai and J (y⃗) =
|dx⃗/dy⃗| the determinant of the Jacobian matrix. J (y⃗) = r in two-dimensional radial co-
ordinates (see Figure 3.6a). For su�ciently small bins we can approximate the probability
density and obtain:

Ni
N

≈ �(y⃗)J (y⃗)�A, (3.8)

where �A denotes the multiplication of the bin sizes in all dimensions. We can use
this expression to extract �(y⃗) from a series of observations. From this perspective, the
Jacobian determinant acts as a weighing function, as follows:

�(y⃗i) ≈
1

N�A
Ni
∑
j=1

1
J (y⃗j )

, (3.9)
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3.5. ESTIMATING FORCES IN CURVED GEOMETRIES

where the summation sign sums over the Ni observations inside bin i. For Euclidean
coordinate systems, J = 1, and this equation indeed reduces to Eq. 3.1.

Maximum likelihood estimation The extension of the maximum likelihood method
into multiple dimensions requires an analytical form of the multidimensional transition
probability. In an Euclidean geometry, this is achieved simply by multiplying the trans-
ition probabilities of the separate coordinates (Eq. 3.3). In curvilinear coordinate sys-
tems, however, we have to use a more complex expression instead, because the di�usion
constant becomes a matrix. As a reference, we here provide this expression which was
obtained from ref. [106, pp. 81–95].

P� (y⃗|y⃗′) =
1

2M
√
(��)M det[D̃(y⃗)]

×

exp [ −
1
4�
[D̃(y⃗)]−1ij (Δyi − F̃i(y⃗)� )(Δyj − F̃j (y⃗)� )],

(3.10)

in which repeated indices are summed and M denotes the number of dimensions. F̃i(y⃗)
and D̃ij (y⃗) are obtained from the di�usion constant D(x⃗) and force vectors Fi(x⃗) in a
Euclidean metric, as follows:

F̃i(y⃗) = ∑
j

)yi
)xj

�Fj (x⃗)D(x⃗) + ∑
j

)2yi
)x2j

D(x⃗), (3.11)

D̃ij (y⃗) = ∑
k

)yi
)xk

)yj
)xk

D(x⃗). (3.12)

In the example of a two-dimensional radial force, it follows that D̃rr = D, D̃�� = D/r2,
F̃r = D(�Fr + 1/r), and D̃�r = D̃r� = F̃� = 0. In the corresponding analysis of trajectories
in a two-dimensional radial potential (Fig. 3.4) we observed that this approach provided
the same results as when performing the analysis in Euclidean coordinates.

Master equation The transition probabilities in a curved geometry can be sampled in
a fashion similar to the direct position sampling method, as is shown conveniently from
the master equation (Eq. 3.5). If we transform from an Euclidean coordinate system (x⃗)
to another (y⃗), we obtain the following master equation:

�(y⃗, t + �)J (y⃗) = ∫ P� (y⃗|y⃗′)�(y⃗′, t)J (y⃗′)dy⃗′ (3.13)

�(y⃗, t + �) = ∫ [P� (y⃗|y⃗
′)
J (y⃗′)
J (y⃗) ]

�(y⃗′, t)dy⃗′. (3.14)
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Therefore, �s(y⃗) is not an eigenvector of the probability matrix P� (y⃗|y⃗′), but of the res-
caled probability matrix shown between brackets in Eq. 3.14. In our example of 2D
radial coordinates, we thus have to weigh a displacement from r0 to r1 with r0/r1 when
estimating the transition probability matrix. This approach is reminiscent of the projec-
tion method that is described in ref. [99], however by expressing this in the Jacobian
determinant, we extended the method into arbitrarily curved geometries.

Curved geometry Some processes not only require a curvilinear coordinate system,
but also take place on a geometry that has an intrinsic curvature. For example in
Chapter 5, we extract a two-body interaction force from particle trajectories that are
con�ned to a spherical surface. See Figure 3.6b for the corresponding coordinate system,
in which we �xed one of the particles in the origin. In this case the intrinsic curvature of
the geometry should be accounted for, which is possible through the embedding of the
curved surface into three-dimensional �at space. In the example of a spherical surface,
this embedding is formulated as follows:

⎧⎪⎪
⎨⎪⎪⎩

x1 = R cos v sin u
x2 = R sin v sin u
x3 = R cos u

(3.15)

Here, {x1, x2, x3} denote the three-dimensional Euclidean coordinates, R the curvature
of the sphere, and {u, v} the internal coordinates of the surface. An analytical model for
the transition probability on the curved geometry can be acquired directly from these
equations by evaluating the partial derivatives and substituting them in equations 3.10–
3.12.

For the direct position sampling (Eq. 3.9) and the master equation (Eq. 3.14) methods,
the in�nitesimal area element J on the surface needs to be evaluated. This can be done
through the metric tensor g�� as follows [107, pp. 88-90]:

g�� = ∑
i

)xi
)y�

)xi
)y�

, (3.16)

J =
√
det g�� . (3.17)

In the example of a spherical surface parametrized by y⃗ = {u, v}, it follows that g�� =
{{R2, 0}, {0, R2 sin2 u}}, so that J = R2 sin u.

3.6 Summary and Conclusion

We have discussed three di�erent techniques of measuring forces from the trajectories
of Brownian particles in arbitrary geometries.

The �rst approach samples the equilibrium positions and computes the energy pro-
�le directly through the Boltzmann factor. We found that this approach requires that
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particle positions are uncorrelated in time, with the condition 2D� ≫ ��x , with � the
sampling time, D the di�usion coe�cient, � the length scale of the potential, and �x the
bin width. Provided that particle positions are uncorrelated, the measurement precision
can be estimated directly from Ni , the number of particles per bin: �U ,i = kBT /

√
Ni .

If enough independent samples from an equilibrium distribution are available, this
straightforward approach is the method of choice.

A fundamentally di�erent method uses displacement pairs instead of positions. This
does not require the particle positions to be equilibrated, and as displacements are uncor-
related in time, higher sampling times are possible. This allows for force measurement
from sparse data sets as well as selection of particular parts of the trajectory if neces-
sary. Here presented data selection rules are able to remove artefacts such as three-body
interactions without introducing a bias.

Displacements can be �tted directly to an analytical model of the transition probabil-
ity. As this maximum likelihood approach is based on a log-likelihood maximization, we
can use Bayesian methods to estimate the con�dence intervals for the force. We found
that the accuracy of the method improves with increasing sampling time � , as long as
forces are constant during each observed displacement. The corresponding condition
for � was found to be � ≪ (�D|F ′(xi)|)−1, with � the reciprocal thermal energy, and F ′
the gradient of the force.

If this condition cannot be met, a master equation approach can be used. This method
is also based on the measurement of particle displacements, however it does not assume
a model for the transition probability. Although this is less constrained than the direct
�t to an analytical model of the transition probability, it does not provide a straightfor-
ward way to estimate the measurement precision. Therefore, when the sampling can be
performed su�ciently fast, the transition probability method is preferred.
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Appendix 1: Uncertainty in position sampling

The variance in the number of occurrences Ni inside a single bin is given by the Pois-
son distribution. For su�ciently large Ni , this is approximated by �2N = Ni . As � is
proportional to Ni , the relative standard deviation in � is given by:

��
�
=
�N
Ni

=
1√
Ni
. (3.18)

Using a Taylor series and Eq. 3.2, the standard deviation in U is then given as follows:

�U ≈ �� |
d
d� [

kBT ln (
�
�0)]

| = kBT
��
�
=
kBT√
Ni
. (3.19)

The average accuracy ⟨�2u⟩ is then directly given by Eq. 3.19 and depends on how the
particles are distributed over the bins:

⟨�2u⟩bins = kBT⟨N −1
i ⟩bins . (3.20)

Appendix 2: Uncertainty in maximum likelihood estimation

The log-likelihood given by Equations 3.3 and 3.4 provides a maximum likelihood estim-
ation of the parameters D and F . As Eq. 3.3 is a normal distribution with mean � = �FD�
and variance �2 = 2D� , the expected values of the maximum likelihood estimates of �
and �2 are given as follows:108

E[�mle] = �, (3.21)

E[�2mle] =
N − 1
N

�2, (3.22)

where N denotes the number of measurements. The expected value of �mle is unbiased,
in contrary to the expected value of �2mle . Therefore, we prefer to determine the di�u-
sion constant D separately and use this as a �xed constant in the maximum likelihood
estimation. In that case, the fundamental limit in the measurement precision of �mle is
given by the Cramér-Rao lower bound:108

var[�mle] =
�2

N
, (3.23)

from which the expected variance in the measured force is readily obtained:

var[�Fmle] = 2(ND�)−1. (3.24)
Using Eq. 3.24, we can estimate the precision in each point of the piecewise approx-

imation for F (x). The observed accuracies and precisions are plotted against the expec-
ted precision 2(NiD�)−1 in Figure 3.7. We observed that this expression systematically
underestimated the precision by a factor of 1.7.
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Figure 3.7. Accuracy and precision the maximum likelihood estimate of the piecewise interpol-
ated force, for each Fi = Fmle(xi) separately These were obtained from 200 independent simulations
with � ranging from 2 to 20, �x from 0.05 to 0.2, and � from 0.001 to 1. Ni is the number of observa-
tions within �x of xi . On average, the observed precision was 1.7 times the expected precision. The
observations are coloured based on the force gradient in xi , multiplied with the root mean squared
expected displacement in that point. For large force gradients, the accuracy clearly degrades.

In this �gure, it is also shown that this method becomes inaccurate if the local force
gradients become too large. From a Taylor expansion of F around xi , we estimate that
the inaccuracy due to a gradient in given by:

|⟨Fi⟩ − Fmodel | ≈ |ΔxF ′(xi)| =
√
2D� + (�F (xi)D�)2|F ′(xi)|. (3.25)

To �nd a useful expression for the upper limit of � , we take the approximation (�F )2 ≫
2/(D�). When looking for an upper limit for � , this approximation is often valid in at
least one point on the interaction curve. We then obtain the following expression for
the accuracy in Fi :

|||
⟨Fi⟩ − Fmodel

Fmodel
||| ≈ |�F (xi)D�F ′(xi)|, (3.26)

which provides an upper limit for the sampling time: � ≪ (�D|F ′(xi)|)−1.
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Appendix 3: Stationary solution of the Smoluchowski equation

We start with the Smoluchowski equation in a curved geometry:

)t� = ∇�(Dij)� − �DijF� )�. (3.27)

Here, )i denotes the partial derivative with respect to i, ∇� the covariant derivative, Dij
the di�usion matrix, and � the inverse of the thermal energy. As the di�usion matrix
is a contravariant tensor,106 we can replace Dij with Dg�� if di�usion is isotropic in an
Euclidean coordinate system. Here g�� is the inverse of the metric tensor. Therefore,
using the Einstein notation:

)t� = D∇�(g��)� − �g��F� )�. (3.28)

The force is related to the energy through di�erentiation, F� = −)�U . We now �nd a
stationary solution, using the identity ∇�g�� = 0 [107, p. 99]:

0 = ∇�(g��)� − �g��F� )�
= ()�∇�g�� + g��∇�)� − �F�∇�g�� − �g��∇�F� )�
= (g��∇�)� − �g��∇�F� )�
= g��∇�()�� + ��)�U )

� = �0 exp(−�U ).
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