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3
Calibration of weak-lensing shear in

the Kilo-Degree Survey

We describe and test the pipeline used to measure the weak lensing shear signal from
the Kilo Degree Survey (KiDS). It includes a novel method of ‘self-calibration’ that
partially corrects for the effect of noise bias. We also discuss the ‘weight bias’ that
may arise in optimally-weighted measurements, and present a scheme to mitigate that
bias. To study the residual biases arising from both galaxy selection and shear mea-
surement, and to derive an empirical correction to reduce the shear biases to . 1%,
we create a suite of simulated images whose properties are close to those of the KiDS
survey observations. We find that the use of ‘self-calibration’ reduces the additive and
multiplicative shear biases significantly, although further correction via a calibration
scheme is required, which also corrects for a dependence of the bias on galaxy proper-
ties. We find that the calibration relation itself is biased by the use of noisy, measured
galaxy properties, which may limit the final accuracy that can be achieved. We assess
the accuracy of the calibration in the tomographic bins used for the KiDS cosmic shear
analysis, testing in particular the effect of possible variations in the uncertain distri-
butions of galaxy size, magnitude and ellipticity, and conclude that the calibration
procedure is accurate at the level of multiplicative bias . 1% required for the KiDS
cosmic shear analysis.

I. Fenech Conti, R. Herbonnet, H. Hoekstra, J. Merten, L. Miller, M. Viola
MNRAS, Volume 467, Issue 2, p.1627-1651 (2017)
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3.1 Introduction

The matter distribution in the Universe changes the geometry of spacetime, thus alter-
ing the paths of light rays. As this mimics the effects of a lens, with the gravitational
potential taking the role of the index of refraction, this phenomenon is referred to as
gravitational lensing. If the deflector is massive and the light rays pass sufficiently
close, multiple images of the same source may be observed. More typically the source
position only appears shifted by an unknown amount. The variation in the deflection
across the image results, however, in a stretching (shear) and changes the observed
size (magnification). This regime is commonly referred to as weak gravitational lensing
(see e.g. Bartelmann & Schneider 2001, for an extensive introduction).

The original source properties are unknown, and thus the measurement of a single
galaxy does not provide meaningful information. However, sources that are close on the
sky have experienced similar deflections and consequently their observed orientations
are correlated. The changes in the shapes of the observed galaxies are small, typically
at the level of a few percent, much smaller than their intrinsic shapes. Hence, the
weak lensing signal can only be determined statistically by averaging the shapes of
many sources, under the assumption that there are no intrinsic correlations (but see
e.g., Joachimi et al. 2015, for a review on intrinsic alignments).

The ellipticity correlations can be related directly to the statistics of matter density
fluctuations (e.g. Blandford et al. 1991; Miralda-Escude 1991; Kaiser 1992) and can
thus be used to infer the cosmological model. This application, commonly known as
cosmic shear, is one of the most powerful ways to study the nature of dark energy and
constrain modified gravity theories (see Kilbinger 2015, for a recent review). Since
the first detections in 2000 (Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke
et al. 2000; Wittman et al. 2000) the precision of the measurements has improved
dramatically thanks to deep imaging surveys of ever larger areas (e.g. Hoekstra et al.
2006; Fu et al. 2008). Moreover, observations in multiple pass-bands allowed for the
determination of photometric redshifts, which are essential to improve constraints
on cosmological parameters (Schrabback et al. 2010; Heymans et al. 2013; Jee et al.
2015). The measurement of cosmic shear is also a major science driver for a number of
ongoing large imaging surveys, such as the Kilo Degree Survey (KiDS; de Jong et al.
2015; Kuijken et al. 2015), the Dark Energy Survey (DES; Becker et al. 2015; Jarvis
et al. 2015) and the Hyper-Suprime Cam Survey 1.

The increase in precision afforded by these surveys needs to be matched by a cor-
responding improvement in the accuracy with which galaxy shapes can be measured.
The main complications are (i) that the true galaxy image is convolved with a point
spread function (PSF) due to atmospheric effects and telescope optics; (ii) the re-
sulting image is pixelised by the detector; (iii) the images contain noise from various
sources. Each effect introduces systematic changes in the galaxy shapes, or affects
our ability to correct for it. Although shape measurement algorithms differ in their
sensitivity to some of the systematics, because of differences in their implementation
or the assumptions that are made, they are all affected by noise in the data.

Fortunately, it is well understood how the galaxy surface brightness is transformed
into an image, and this process can be emulated. Creating mock images of telescope
observations can thus be used to understand the impact of systematic effects and their
propagation throughout the shear measurements. Moreover, by comparing the output
shears to the input values the biases can be quantified. The biases themselves are

1http://www.naoj.org/Projects/HSC/surveyplan.html
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classified in additive and multiplicative bias. The former arises from an incomplete
correction for the convolution by the (typically) anisotropic PSF, or by residual errors
in the PSF model itself. The data themselves can be used to examine the presence
of additive biases (see e.g. Heymans et al. 2012). Multiplicative bias, a change in the
amplitude of the lensing signal, can only be reliably studied using simulated data.
The Shear TEsting Programme (STEP; Heymans et al. 2006; Massey et al. 2007)
represented the first community-wide effort to benchmark the performance of various
weak lensing pipelines using simulated images. Although simplistic in many regards,
the simulated data included some of the complexity of real data, such as blending
of objects. To examine the differences between algorithms more systematically, the
Gravitational LEnsing Accuracy Testing (GREAT; Bridle et al. 2010; Kitching et al.
2012; Mandelbaum et al. 2015) challenges focused on more idealised scenarios.

When applying an algorithm to actual data, evaluating the performance on realistic
mock data is essential (Miller et al. 2013; Hoekstra et al. 2015). An essential step in
this process is to ensure that the simulations are sufficiently realistic, such that the
inferred bias is robust given the uncertainties of the input parameters. One approach
is to match the observed properties of the simulated images to those of the real data
by modifying the input distributions in case differences are found (e.g. Bruderer et al.
2015). Alternatively, the simulated output can be used to account for differences with
the actual data by parameterising the bias as a function of observed galaxy properties.
In Kuijken et al. (2015) and Jarvis et al. (2015) the shear biases for KiDS DR1/2
and DES, respectively, were corrected using a function of size and signal-to-noise ratio
(hereafter SNR). Another option we explore is to re-weight the catalogue entries such
that they match the observations.

In this paper we focus on lensfit (Miller et al. 2013), a likelihood based algorithm,
which fits observed galaxy profiles with an elliptical surface brightness model that is
convolved with a model of the PSF. This algorithm has been used to measure the
lensing signal from CFHTLenS (Heymans et al. 2013) and RCSLens (Hildebrandt
et al. 2016a), as well as the initial release of KiDS (Kuijken et al. 2015). Like any
other method, the lensfit measurements are biased if the SNR is low (this is commonly
referred to as noise bias; e.g. Melchior & Viola 2012; Refregier et al. 2012; Miller
et al. 2013). In the latest of these challenges, GREAT3 (Mandelbaum et al. 2015) an
improved version of lensfit was introduced and tested: a new self-calibrating algorithm
was added to alleviate the effect of noise bias. This improvement reduced the biases
from tens of percents to a percent level. In this paper we expand on this formalism
and apply the algorithm to simulated images that are designed to mimic KiDS data.

The third public data release of KiDS (KiDS-450 hereafter; Hildebrandt et al.
2016b) comprises 360.3 square degrees of unmasked area with an effective number
density of 8.3 galaxies per square arcminute. Hildebrandt et al. (2016b) calculate
that the required level of bias in shape measurements that can be tolerated given
the precision afforded by KiDS-450 implies that the multiplicative bias needs to be
determined to better than ∼ 1%. In spite of the fact that the performance of the
self-calibrating version of lensfit is close to this requirement, a final adjustment is
nonetheless required to reduce the bias further. Although this is only a small correction
in absolute terms when compared to the improvement by self-calibration itself, we note
that the actual implementation can be rather complex .

To reduce the biases in the shear determination for KiDS-450 to the required
level of accuracy, we present SCHOol for KiDS, the Simulations Code for Heuristic
Optimization of lensfit for the Kilo Degree Survey, which was used to obtain a shear
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bias calibration for the latest KiDS-450 lensing catalogues obtained with a new version
of lensfit. SCHOol was designed to carry out the following: i) testing of the newest
version of the lensfit algorithm; ii) deriving bias calibration functions for the KiDS-450
data; iii) evaluating the robustness of the final calibration functions to the input of the
calibration data. The main modifications to lensfit are presented in §3.2. The image
simulations are described in detail in §3.3. These are used to quantify and account for
the residual bias in the self-calibrating lensfit algorithms in §3.4. In §3.5 we examine
how differences between the simulated and observed data can be accounted for using
a resampling of the the simulated measurements. In §3.6.3 we examine the robustness
of the results.

3.2 The shear measurement method

3.2.1 lensfit

The shear measurement method used in the analysis of KiDS data is lensfit (Miller et al.
2007; Kitching et al. 2008; Miller et al. 2013), which has also been used to measure
the lensing signal from CFHTLenS (Heymans et al. 2013), RCSLenS (Hildebrandt
et al. 2016a) and the initial release of KiDS (Kuijken et al. 2015). It is a likelihood
based algorithm that fits observed galaxy profiles with a surface brightness model
that is convolved with a model of the PSF. The PSF model is obtained from a fit
to the pixel values of stars, normalised in flux, with a polynomial variation across
individual CCD images and across the full field of each individual exposure. Galaxies
are modelled as an exponential disk plus a bulge (Sérsic index n = 4) component.
There are seven free parameters (flux, size, ellipticity, position and bulge-to-total flux
ratio). To reduce the model complexity, the ratio of disk and bulge scale lengths is a
fixed parameter and the ellipticities of the disk and bulge are set equal. The likelihood
for each galaxy, as a function of these parameters, is obtained from a joint fit to each
individual exposure, taking into account the local camera distortion. The measured
ellipticity parameters are deduced from the likelihood-weighted mean parameter value,
marginalised over the other parameters, adopting priors for their distribution. To
determine the lensing signal, the ellipticities of the galaxy models are combined with a
weight, which takes care of the uncertainty in the ellipticity measurement, to form an
estimate of the shear from the weighted average. The complexity of the galaxy model
has been designed to be sufficient to capture the dominant variation in galaxy surface
brightness distributions visible in ground-based data, without unduly overfitting a
model that is too complex to noisy data (SNR& 10). In principle, we may be concerned
that differences between the lensfit model and actual surface brightness distributions
may introduce model bias (e.g. Kacprzak et al. 2014; Zuntz et al. 2013), however
Miller et al. (2013) have argued that the possible model bias should be sub-dominant
in ground-based data analyses, an argument that is supported by the performance
of lensfit on simulated realistic galaxies in the great3 challenge (Mandelbaum et al.
2015).

We investigate the possible amplitude of such model bias in Appendix 3.A and
conclude that indeed the effect is expected to be small in the KiDS-450 analysis.

For the latest analysis of KiDS-450 data (Hildebrandt et al. 2016b) we use an up-
dated version of lensfit, which is based largely on the methods adopted for CFHTLenS
as described by Miller et al. (2013), but with some modifications and improvements to
the algorithms. The most prominent changes are the self-calibration for noise bias and



Calibration of weak-lensing shear in the Kilo-Degree Survey 49

the procedure to calibrate for weight bias, which are described in more detail below in
§3.2.2 and §3.2.3, respectively. Moreover, the handling of neighbouring objects, and
the sampling of the likelihood surface were improved.

In surveys at the depth of CFHTLenS or KiDS, it is essential to deal with con-
tamination by closely neighbouring galaxies (or stars). The lensfit algorithm fits only
individual galaxies, so contaminating stars or galaxies in the same postage stamp as
the target galaxy are masked out during the fitting process. The masks are generated
from an image segmentation and deblending algorithm, similar to that employed in
SExtractor (Bertin & Arnouts 1996). However, the CFHTLenS version rejected
target galaxies that were too close to its neighbours. For KiDS, a revised deblending
algorithm was adopted that resulted in fewer rejections and thus a higher density of
measured galaxies. The distance to the nearest neighbour was recorded in the cata-
logue output so that any bias as a function of neighbour distance could be identified
and potentially rectified by selecting on that measure. The sampling of the likelihood
surface was improved in both speed and accuracy, by first identifying the location of
the maximum likelihood and only then applying the adaptive sampling strategy de-
scribed by Miller et al. (2013). More accurate marginalisation over the galaxy size
parameter was also implemented.

In the following analysis, the identical version of lensfit, with the same data han-
dling setup, was used for the simulations as for the KiDS-450 data analysis of Hilde-
brandt et al. (2016b).

3.2.2 Self Calibration of Noise Bias

In common with other shear measurement methods, lensfit measurements of galaxy
ellipticity are biased by the presence of pixel noise: even if the pixel noise is Gaussian
or Poissonian in nature, the non-linear transformation to ellipticity causes a skewness
of the likelihood and a bias in any single-point estimate of individual galaxy ellipticity
that propagates into a bias on measured shear values in a survey (Refregier et al. 2012;
Melchior & Viola 2012; Miller et al. 2013). The bias is a complex function of of SNR,
size, ellipticity and surface brightness distribution of the galaxies, but also depends on
the point spread function (PSF) morphology. Given that we only have noisy estimates
of galaxy properties, it is difficult to predict the bias with sufficient accuracy, and
to date published shear surveys have used empirical methods to calibrate the bias,
typically by creating simulations that match the properties of the survey, measuring
the bias in the simulation as a function of observed (noisy) galaxy properties and
applying a calibration relation derived from those measurements to the survey data
(Miller et al. 2013; Kuijken et al. 2015; Jarvis et al. 2015; Hoekstra et al. 2015).

In the current analysis we first apply an approximate correction for noise bias that
is derived from the measurements themselves, which we refer to as self-calibration.
The method was first used for the “MaltaOx” submission in the great3 challenge
(Mandelbaum et al. 2015). When a galaxy is measured, a nominal model is obtained
for that galaxy, whose parameters are obtained from a mean likelihood estimate. The
idea of self-calibration is to create a simulated test galaxy with those parameters,
remeasure the test galaxy using the same measurement pipeline, and measure the
difference between the remeasured ellipticity and the known test model ellipticity. It
is assumed that the measured difference is an estimate of the true bias in ellipticity
for that galaxy, which may be subtracted from the data measurement. The estimate
of a galaxy’s size is also simultaneously corrected with the ellipticity. Ideally, when
the test galaxy is remeasured, we would like to add multiple realisations of pixel noise
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and marginalise over the pixel noise: however such a procedure is computationally
expensive, so in the current self-calibration algorithm we adopt an approximate method
in which the noise-free test galaxy model is measured, but the likelihood is calculated
as if noise were present. Mathematically we may represent the log likelihood of a
measurement, logL as

logL(p) = −
1
2

(~D − ~M(p))T C−1(~D − ~M(p))

= ( ~M0 + ~N − ~M(p))T C−1( ~M0 + ~N − ~M(p))
= ( ~M0 − ~M(p))T C−1( ~M0 − ~M(p))

+2( ~M0 − ~M(p))T C−1 ~N

+~NT C−1 ~N (3.1)

where we express the data as a vector ~D, the model obtained with parameters p as ~M(p)
and the pixel noise covariance matrix as C, and where we decompose the data into a
true model ~M0 and a noise vector ~N. Our self-calibration procedure corresponds to
generating a test galaxy whose model ~M0 is described by the parameters measured from
the data for that galaxy and where we only calculate the leading term in the likelihood,
equation 3.1, for this test galaxy, ignoring terms involving ~N, when estimating the
bias. In the case where the noise is uncorrelated with the galaxy, corresponding to the
background-limited case of a faint galaxy, the noise-model cross-term would disappear
if we were to marginalise logL over the noise, the final term would be a constant,
and the leading term would provide a good estimate of the expected distribution.
Unfortunately, when estimating the ellipticity, we are interested in the likelihood L
and not its logarithm, logL, and so ignoring the noise-model cross-term may lead
to an error in the derived bias. However, we also make the approximation that the
values of the model parameters measured from the data are close to the true galaxy
parameters, which at low SNR may not be true. Hence our procedure can only be
approximate.

However, self-calibration has the advantage that, unlike calibration from an exter-
nal simulation, it does not rely on an assumed distribution of galaxy parameter values:
the input model parameter values are taken from those measured on each individual
galaxy in the data analysis. The method appears particularly useful in removing PSF-
dependent additive bias, which is otherwise hard to mitigate using external simulations,
which typically do not reproduce the PSF for each observed galaxy.

In making the self-calibration likelihood measurements, we are careful to ensure
that the galaxy ellipticity and size parameters are sampled at the same values as
in the data measurement for each galaxy, so that sampling variations do not cause
an additional source of noise in the self-calibration. This procedure also makes self-
calibration computationally fast, as the step of identifying which samples to use is not
repeated.

The GREAT3 results (Mandelbaum et al. 2015) showed that the self-calibration
correction does, on average, reduce the shear bias to the percent level and that the
amplitude of the residual bias is almost independent of the morphology of the simulated
galaxies. Importantly, the reduction in noise bias improves both the multiplicative
and additive biases, and the self-calibration procedure therefore has been applied to
the survey data measurements presented in Hildebrandt et al. (2016b). The residual
bias, however, is still correlated with galaxy properties such as SNR and size. As the
distributions of those properties are redshift- and magnitude-dependent, the residual
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bias may be large enough to lead to a significant bias in tomographic shear analyses.
We therefore seek to empirically calibrate the residual bias using conventional methods,
employing realistic image simulations as described in §3.3.

3.2.3 Weight bias correction

In our standard analysis, we apply a weight to each galaxy that takes account of both
the shape noise variance and the ellipticity measurement noise variance, following
Miller et al. (2013). The ellipticity noise variance is measured from the ellipticity
likelihood surface for each galaxy, after marginalisation over other parameters, with a
correction for the finite support imposed by requiring ellipticity to be less than unity.
This contrasts with approaches such as that of Jarvis et al. (2015), where an average
correction as a function of galaxy parameters, such as flux signal-to-noise ratio, is
derived and applied.

Our scheme should result in optimal SNR in the final shear measurements, but
any bias in the weights would introduce a shear bias. Inspection of the distribution of
weight values shows that indeed there are two sources of weight bias that arise. First,
the measurement variance is a systematic function of the ellipticity of the galaxy,
with a tendency for galaxies to have smaller measurement variance, and hence higher
weight, at intermediate values of ellipticity, compared with either low or high ellipticity,
for galaxies of comparable isophotal area and SNR. This results in a tendency to
overestimate shear at intermediate and low values of SNR, to an extent that is sensitive
to the distribution of galaxy ellipticities.

A second bias that arises is correlated with the PSF anisotropy. Galaxies of a given
total flux that are aligned with the PSF tend to have a higher SNR than galaxies
that are cross-aligned with the PSF, and also tend to have a smaller measurement
variance. This orientation bias has the same origin as that discussed by Kaiser (2000)
and Bernstein & Jarvis (2002) and results in a net anisotropy in the overall distribution
of weights which, if uncorrected, would result in a net shear bias.

In the KiDS-450 analysis, we adopt an empirical correction for these effects by
determining the mean measurement variance for the full sample of galaxies as a func-
tion of their 2D ellipticity, e1, e2, and as a function of their SNR and isophotal area.
From that mean variance, a correction is derived that may be applied to the weights
to ensure that, on average, the distribution of weights is neither a strong function of
ellipticity nor of position angle. The anisotropic bias depends on the size and elliptic-
ity of the PSF, so to accommodate variations in the PSF across the survey, galaxies
from the entire completed survey are binned according to their PSF properties, and
the weights correction is derived in each PSF bin (Hildebrandt et al. 2016b). In the
simulations, we apply the equivalent weight bias correction to each of 13 sets of PSFs
that are simulated (see §3.3.4).

3.3 Image simulations

3.3.1 The simulation of galaxies

The performance of shape measurement algorithms can only be evaluated using simu-
lated images. To this end, a number of community-wide efforts have been undertaken
to benchmark methods. The self-calibrating version of lensfit performed well on simu-
lated images from GREAT3 (Mandelbaum et al. 2015), the latest of these challenges,
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with an average shear bias of about a percent. Whilst useful to test new algorithms
and to better understand common sources of bias in shape measurements, these gen-
eral image simulations cannot be used to evaluate the actual performance. First of
all, they ignore the effects neighbouring objects can have on the shape measurement,
which was shown to be important by Hoekstra et al. (2015). Moreover, to calibrate the
performance with high accuracy, the simulations should match the real data in terms
of survey depth, number of exposures, noise level, telescope PSF and pixelisation.

To quantify and calibrate the shear biases of the self-calibrating version of lensfit for
the new KiDS-450 dataset we created the SCHOol for KiDS pipeline, Simulations Code
for Heuristic Optimization of lensfit for the Kilo Degree Survey. We use it to generate
a suite of image simulations that mimic the r-band KiDS observations that were used
in Hildebrandt et al. (2016b) to measure the cosmic shear signal. As discussed below,
we match the dither pattern, instrument footprint, average noise level, seeing and
PSF properties. The simulated images are created using GalSim (Rowe et al. 2015),
a widely used galaxy simulation software tool developed for GREAT3. Note that we
do not aim to test the PSF modelling (this was presented in Kuijken et al. 2015).

3.3.2 Simulation volume

The precision with which biases are measured can be improved by creating and analysing
more simulated images. However, it is a waste of computational resources if the bi-
ases are already known sufficiently well compared to the statistical uncertainties of
the cosmic shear signal. Moreover, as a result of simplifications in the simulated data,
residual biases may remain. It is therefore useful to establish the level of accuracy
that is required, given the KiDS-450 data set, and use these results to determine the
simulation volume that is needed. Hildebrandt et al. (2016b) showed that the lensfit
shear multiplicative bias has to be known with an accuracy of at least 1% for the
error bars on cosmological parameters not to increase by more than 10% (see their
Appendix A3). Hildebrandt et al. (2016b) do not set requirements on the knowledge
of the additive bias from the simulations. In fact the residual additive bias is measured
from the data themselves (Heymans et al. 2012) as there are a number of steps in the
data acquisition, processing and analysis which are not simulated and might contribute
to amplitude of the additive bias (e.g. cosmic rays, asteroids, binary stars, imperfect
PSF modelling, non-linear response of CCD...). The observed level of residual bias
may be used to determine the maximum scale where the cosmic shear signal is robust,
in contrast to multiplicative shear bias, which affects all angular scales.

In our simulations we apply a shear with a modulus |g| = 0.04 to all galaxies. This is
a compromise between the small shears we aim to recover reliably, whilst minimising
the number of simulated images. For a fiducial intrinsic dispersion of ellipticities
σε = 0.25, the minimum required number of galaxies to reach a precision of 0.01 on
the multiplicative bias is then Ngal = (σε/(0.01|g|))2 ≈ 3.9×105. This number should be
considered the bare minimum, because in practice we wish to explore the amplitude
of the bias as a function of galaxy and PSF properties.

The dominant source of uncertainty is the intrinsic dispersion of ellipticities. This
source of noise can, however, be reduced in simulations using a shape noise cancellation
scheme (Massey et al. 2007). This results in a significant reduction in the number
of simulated galaxies, without affecting the precision with which the biases can be
determined. Previous studies have done so by introducing a copy of each galaxy,
rotated in position angle by 90◦ before applying a shear and convolution by the PSF,
such that the mean of the intrinsic ellipticity ε s satisfies 〈ε s〉 = 0 (e.g. Massey et al.
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2007; Hoekstra et al. 2015). Although this reduces the shape noise caused by galaxies,
such a scheme does not guarantee that the mean of the observed ellipticity values
〈ε〉 = g. That condition is only satisfied by a population of galaxies that are uniformly
distributed around circles of ε s. Fortunately, even a small number of rotated copies of
each galaxy suffices to meet this criterion to adequate accuracy.

In this work we create four copies of each galaxy, separated in intrinsic position
angle by 45◦. If we write the first copy as having intrinsic ellipticity ε s, we may write
the complex intrinsic ellipticity of each copy as ε s

n = inε s for each rotation, n = 0 . . . 3.
The relation between the sheared ellipticity εn, the reduced shear g and ε s

n, for each
rotation, is

εn =
ε s

n + g
1 + g∗ε s

n
=

inε s + g
1 + g∗inε s , (3.2)

where the asterisk denotes the complex conjugate. A shear estimate g̃ = 〈εn〉 then
reduces to

g̃ =
g − g∗3 (ε s)4

1 − (g∗ε s)4 . (3.3)

For the same fiducial values, |ε s| ' 0.25 and |g| = 0.04, this expression differs from g with
a relative error of order ∆g/g ' |g|2|ε s|4 ' 6×10−6, compared with ∆g/g ' |ε s|2 ' 0.06 for
the shape noise reduction achieved using only pairs of galaxies (Massey et al. 2007).
The four-rotation method has significantly higher accuracy relative to the two-rotation
method at the highest values of ε s.

Using a larger number of rotated galaxies reduces the shear measurement error
further, to ∆g/g ∼ 10−13 for 8 duplicated galaxies. However, for a given simulation vol-
ume, this reduces the diversity in other galaxy properties. Moreover, pixel noise in the
simulated images reduces the effectiveness of shape noise cancellation for galaxies with
low SNR, which are the most numerous. Furthermore, not all rotated galaxy copies
may be detected, thus breaking the assumed symmetry in the analytical estimate.
The weighted dispersion of the mean input ellipticities of the set of four catalogues is
0.084, a factor about 3 reduction compared to the case without shape noise cancella-
tion. This corresponds to a decrease of a factor about 9 in the number of simulated
galaxies required to achieve a fixed uncertainty in shear bias measurement.

3.3.3 Input object catalogue

To measure meaningful shear biases from the simulated data it is essential that the
properties of the simulated objects are sufficiently realistic. For instance, neighbouring
galaxies affect shape measurements (Dawson et al. 2014), and therefore the correct
number density of galaxies needs to be determined. Moreover, Hoekstra et al. (2015)
highlighted the importance of simulating galaxies well beyond the detection limit of
the survey in order to derive a robust shear calibration. Galaxies just below the
detection limit can still blend with brighter galaxies, directly affecting the measurement
of the object ellipticity, whereas even fainter galaxies affect the background and noise
determination by acting as a source of correlated noise. Hence we include in our
simulations galaxies as faint as 28th magnitude, which should be adequate given the
depth of KiDS.

We place the objects at random positions, and thus ignore the additional com-
plication from clustering. The fraction of blended objects in the simulations might
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Figure 3.1: r-band magnitude histograms of KiDS-450 data (black), GEMS survey data (blue)
and UVUDF survey (cyan), with uncertainties given by the Poisson errors of each point. The
red line is the best fit through KiDS-450 20 < mr < 23 points, GEMS 25 < mr < 26 points
and UVUDF 26 < mr < 29 datapoints and is used as the input magnitude distribution of the
simulations.

therefore be low compared to the true Universe. Alternatively, galaxies could be posi-
tioned in the simulations according to their positions in observations (e.g. Miller et al.
2013; Jarvis et al. 2015). This would naturally include realistic clustering, but cannot
be used for the galaxies below the detection limit, and thus unusable for our deep
magnitude distribution. However, we examined the impact of varying number density
and found the changes in bias to be negligible for the KiDS-450 analysis (see §3.4.4
for details).

To create a realistic magnitude distribution that extends to 28th magnitude, we
augment the measured KiDS-450 galaxy counts with measurements from deeper Hubble
Space Telescope (HST) images. We use the HST/ACS F606W counts from GEMS (Rix
et al. 2004) and UVUDF (Rafelski et al. 2015), because this filter resembles the KiDS
r filter fairly well. We remove objects classified as stars from all three data sets, and
exclude masked areas in the KiDS-450 data. Fig. 3.1 shows the magnitude distributions
of a subsample of KiDS-450 data (black), GEMS data (blue) and UVUDF data (cyan).
The error bars show the Poisson errors of the data points.

We fit a second order polynomial to the logarithm of the number counts, using
KiDS-450 data between 20 < mr < 23, GEMS data between 25 < mr < 26 and UVUDF
data between 26 < mr < 29. The resulting magnitude distribution for the simulated
galaxies is given by:

logN(mr) = −8.85 + 0.71mr − 0.008m2
r , (3.4)

where N(mr) is the number of objects with r-band magnitude mr per square degree.
The fit is mostly constrained by the KiDS data, with the ancillary data driving the
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Figure 3.2: Distributions of PSF parameters in the simulations (red) and KiDS-450 (black)
measured by lensfit using a 2.5 pixel weighting function. Shown are the distributions of
measured pseudo-Strehl ratio, size and the two components of the ellipticity. The constant
PSFs (for individual exposures) in the SCHOol images give rise to very peaky distributions,
but overall the range in properties in the data are matched by the image simulations.
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flattening of the curve at faint magnitudes. Magnitudes are converted to counts to
be used by GalSim using a magnitude zeropoint of 24.79, the median magnitude
zeropoint in the KiDS-450 data.

Creating images of large numbers of faint galaxies with m ≥ 25 by GalSim would be
rather time consuming. However, we are not interested in their individual properties,
because they are too faint to enter the sample used for the lensing analysis. Instead we
only need to ensure that their impact on shape measurements is captured, for which it
is sufficient that their number densities and sizes are realistic. To improve the speed of
the pipeline, we therefore create postage stamps for a representative sample of these
faint galaxies, and use these to populate the simulations by randomly drawing from
this sample, whilst ensuring that the magnitude distribution in equation 3.4 is obeyed.
These faint galaxies also have lensing shear applied.

Realistic galaxy morphologies, in particular the distribution of surface brightness
profiles, and consequently sizes and ellipticities, are another essential ingredient for
image simulations. The intrinsic ellipticity distribution for galaxies is the same as in
the CFHTLenS image simulations and the functional form is taken from Appendix B2
in Miller et al. (2013). It corresponds, as is the case for the size distribution, to the
prior used by lensfit to measure galaxy shapes. We model the galaxies as the linear
combination of a de Vaucouleur profile for the bulge and an exponential profile for the
disk. The bulge flux to total flux ratio, B/T , is randomly sampled from a truncated
Gaussian distribution between 0 and 1 with its maximum at 0 and a width of 0.1,
the same as was used for the CFHTLenS simulations presented in Miller et al. (2013).
Ten percent of all galaxies are set to be bulge-only galaxies with B/T = 1, and the rest
have a disk with random values for the bulge fraction.

The sizes of the galaxies are defined in terms of the scale length of the exponential
disk along the major axis, and are randomly drawn from the distribution

P(r) ∝ rexp(−(r/A)4/3), (3.5)

where A is related to the median of the distribution, rmed, by A = rmed/1.132 and where
the relationship between rmed and magnitude is given by rmed = exp(−1.31−0.27(mr−23)).
This distribution is the same as given by Miller et al. (2013) but with the rmed relation
shifted to be appropriate for observations in the KiDS r filter (see Kuijken et al.
2015). The distribution corresponds also to the lensfit prior used in the analysis of
the KiDS observations. For the bulge-plus-disk galaxies simulated here, the halflight
radius of the bulge component is set equal to the exponential scale length of the disk
component (see Miller et al. 2013, for details). Galaxies are simulated using GalSim,

which defines the size as rab =
√

ab, where a and b are the semi-major and semi-minor
axis of the object, respectively, so the sizes sampled from equation 3.5 were converted
to rab prior to simulation.

We also include stars in the simulations, as they might contaminate the galaxy
sample and blend with real galaxies (see Hoekstra et al. 2015, for a discussion of the
effect of stars on shear measurements). The simulated stars are perfect representations
of the PSF in the simulated exposure and we do not include realistic CCD features
around bright stars, such as bleeding, stellar spikes or ghosts, as these effects are
masked in the real data. The stellar r-band magnitude distribution is derived using
the Besançon model3 (Robin et al. 2003; Czekaj et al. 2014) for a right ascension

2There was an error in Appendix B1 of Miller et al. (2013): the factor 1.13 shown here was also
used for the CFHTLenS analysis, instead of the incorrectly reported value of 0.833.

3model.obs-besancon.fr
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Table 3.1: Overview and specifications of all simulated images created with the SCHOol
pipeline

Total simulated area 416 square degrees
Tile 5 exposures of ∼1 square degree

dithered by 25 arcsec, 85 arcsec
Exposure 32 chips of ∼ 2000x4000 pixels

with 70 pixel wide chip gaps in between
Applied shears (0.0,0.04) (0.0283,0.0283) (0.04,0.0) (0.0283,-0.0283)

(0.0,-0.04) (-0.0283,-0.0283) (-0.04,0.0) (-0.0283,0.0283)
The same shear is applied to all galaxies in a tile

Applied PSF 13 sets; each set contains 5 different PSF models
of KiDS-450 observations

Each PSF model is applied to all galaxies in an exposure
Shape noise reduction Each tile is copied with galaxies

rotated by 45, 90 and 135 degrees

α = 175◦ and a declination δ = 0◦, corresponding to one of the pointings in the KiDS-
450 footprint. We note that the star density in that pointing is higher than average.
This is not a concern for the bias calibration, as discussed in §3.4.4. We do not include
very bright (mr < 20) stars, because they would be masked in real observations and
we exclude stars fainter than mr > 25.

3.3.4 Simulation setup

As described in detail in de Jong et al. (2015) and Kuijken et al. (2015), lensfit measures
galaxy shapes using the five r−band exposures that make up a tile covering roughly
one square degree of the sky. The KiDS-450 data are analysed tile-by-tile, i.e. data
from the overlap of tiles is ignored. It is thus sufficient to simulate individual tiles.
Each VST/OmegaCam exposure is seen by a grid of 8 × 4 CCD chips, where each
chip consists of 2040 × 4080 pixels that subtend 0.′′214. There are gaps of around 70
pixels between the chips and to fill the gaps the exposures are dithered. To capture
the resulting variation in depth due to this dither pattern we simulate individual
tiles of data, using the same dither pattern described in de Jong et al. (2015), which
we incorporate by adding artificial astrometry. We also add a small random shift
in pointing between the exposures, so that the same galaxy is mapped on a slightly
different location in the pixel grid for each exposure. This extra shift is accounted for
when stacking the exposures. Gaussian background noise is added to the simulated
exposures, where the root mean square of the noise background σbg = 17.03 was
determined as the median value from a sub-sample of 100 KiDS-450 tiles. When
exposures are stacked, the noise level varies with position in the simulated tile as in
the real data, owing to the chip gaps.

The simulated images for each exposure are created using GalSim (Rowe et al.
2015) which renders the surface brightness profiles of stars and sheared galaxies using
the input catalogues detailed in §3.3.3. The five exposures for each tile are created
using the same input catalogue. The 32 individual chips in each of the five exposures
are coadded using SWARP4 (Bertin 2010). Finally we run SExtractor (Bertin &

4Note that we do not use the resampling option of SWARP to reduce the processing time. This
might introduce some incorrect sub-pixel matching of the pixels in the coadded image, but does not
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Arnouts 1996) to detect objects in the coadded image. We use the same version of
the software and configuration file as is used in the analysis of the KiDS-450 data (de
Jong et al. 2015) to ensure homogeneity. Only the magnitude zeropoint is set to the
value of 24.79 which was used to create the simulations.

Eight shear values are sampled isotropically from a circle of radius |g| = 0.04 and
using evenly spaced position angles (see Table 3.1 for the exact values). We apply the
same shear to each simulated galaxy in the five exposures in a simulated tile, using the
GalSim Shear function which preserves galaxy area, but vary the shear between tiles.
The sheared galaxies are convolved with an elliptical Moffat PSF, whose parameters
are representative of the ones measured in KiDS-DR1/2 (de Jong et al. 2015). To
obtain the PSF parameters, we ran PSFEx (Bertin 2013) on KiDS-DR1/2 data. As
the VST seeing conditions change over time, so that different exposures have different
PSFs, we mimic this temporal variation of the PSF in the SCHOol simulations. To this
end we selected a series of PSF parameters corresponding to 5 subsequently observed
dithered exposures of KiDS data. This gave us a set of Moffat parameters for the PSF
in each of the 5 exposures of a tile. All galaxies in a simulated exposure were convolved
with the same Moffat profile. All galaxies in the first simulated exposure thus have the
PSF in the first exposure of the observed KiDS tile. The second simulated exposure
has galaxies convolved with the observed PSF in the second exposure of the KiDS tile.
And so on for all five exposures of the simulated tile. This ensures that the PSFs in the
simulations are the same as in the KiDS observations. We used the PSF parameters
from 13 KiDS tiles, so that we have in total 65 different PSFs in the simulations. This
number of PSFs gave us enough statistical power to reach the required precision. The
13 tiles were chosen so that the distributions of PSF parameters in the simulations
would match the distribution of the full KiDS data. The distributions of simulated PSF
properties measured by lensfit on the SCHOol images are shown in the red histograms
in Fig. 3.2. We define the PSF size in terms of the weighted quadrupole moments Pi j

of the surface brightness of the PSF:

r2
PSF :=

√
P20P02 − P2

11, (3.6)

where we measure the moments employing a Gaussian weighting function with a size
of 2.5 pixels. The bottom panels show the two components of the weighted ε ellipticity.
Comparison with the distributions measured in the KiDS-450 data (shown in black)
shows that the simulations sample the range in PSF properties. The median full width
to half maximum (FWHM) of 0.′′64 in our sample is very similar to the value of 0.′′65
from the full KiDS sample. However, the lack of spatial variation in the simulations
produces very spiky distributions. This also leads to an over-representation of large
and elliptical PSFs in the simulations.

In total we have simulated 416 deg2 of KiDS observations, slightly more than the
unmasked area of the KiDS-450 dataset. However, the use of shape noise reduction
ensures that we have ample statistical power in the calibration, because the simulated
data are equivalent to an area of ∼ 3750 deg2 without the shape noise cancellation.
A summary of the set of simulations created with the SCHOol pipeline is provided in
Table 3.1.

affect the lensfit measurements, which are made by jointly fitting to the original individual exposures.
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Figure 3.3: Comparison of KiDS-450 data (black) and SCHOol simulations (red) for weighted
normalised distributions of galaxy properties. From left to right, top to bottom: magnitude,
size, SNR, modulus of the ellipticity |ε|, lensfit weights, bulge fraction. The inset shows a
zoom in of the ellipticity distributions for ε > 0.8.
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3.3.5 Comparison to data

Although our input catalogue is based on realistic prior distributions, it is important
to verify whether the simulated data are a good representation of the observations.
Differences with the actual KiDS-450 measurements may occur because of simplifying
assumptions or errors in the prior distributions. For instance, in the simulations the
PSF is constant over one square degree and the noise level does not vary. Therefore,
the resulting lensfit measurements are not identical to those in KiDS-450 data and the
average shear biases inferred from the simulations may differ from the actual shear
biases in the data. Rather than adjusting the input catalogue such that the agreement
with the data is improved (Bruderer et al. 2015), we instead aim to model the biases
as a function of observed properties (see §3.4). This approach does not require perfect
simulations, but does require that the simulations capture the variation in galaxy
properties seen in the data. To examine whether this is indeed the case, we compare
the measured galaxy properties in the simulations to those in the KiDS-450 data.

We run lensfit on the entire volume of the simulations, using the SExtractor de-
tection catalogue as input. For each detected object lensfit returns a measurements of
the ellipticities, weights as well as measurements of the galaxy properties such as SNR
and size. A measurement of the observed magnitude is provided by SExtractor. In
order for the comparison with the data to be meaningful the same cuts have to be ap-
plied to both datasets. In both cases we consider only measurements of galaxy shapes
for objects fainter than mr = 20. Moreover, to study selection biases (see §3.4.2) we
create a catalogue that contains for each detected object its input properties and those
measured by SExtractor and lensfit. This is done using a kD-tree based matching
routine which combines each lensfit output catalogue with the input catalogue used
to create the galaxy images.

For each object in a given lensfit catalogue we find its five nearest neighbours
in the input catalogue, according to the L2-norm spatial separation. We discard all
candidates with a separation larger than three pixels and select from the remainder
the one with the smallest difference in measured magnitude and input magnitude as
the final match. This last step introduces a sensible metric to discard by-chance close-
neighbour pairs of physically different objects. This matching process removes spurious
detections from the catalogue. This is not a problem for the bias characterisation, as
lensfit would have assigned a vanishing weight to such spurious detections.

After the matching we apply a series of cuts to the data, starting with the removal of
all objects with a vanishing lensfit weight to reduce the size of the analysis catalogues.
This does not have any effect on the recovered shear since this is calculated as a
weighted average of the measured ellipticities. This initial selection automatically
removes the following:

1. Objects identified as point sources (fitclass = 1)

2. Objects that are unmeasurable, usually because they are too faint (fitclass =
-3)

3. Objects whose marginalised centroid from the model fit is further from the SEx-
tractor input centroid that the positional error tolerance set to 4 pixels (fit-
class = -7).

4. Objects where insufficient data is found, for example an object at the edge of an
image or defect (fitclass = -1)
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Additionally, in order to match the cuts applied to the KiDS-450 data (see Ap-
pendix D in Hildebrandt et al. (2016b)), we also remove:

5. Objects with a reduced χ2 > 1.4 for their respective lensfit model, meaning that
they are poorly fit by a bulge plus disk galaxy model (fitclass = -4).

6. Objects whose lensfit segmentation maps contain more than one catalogue object
(fitclass = -10).5

7. Objects that are flagged as potentially blended, defined to have a neighbouring
object with significant light extending within a contamination radius > 4.25
pixels of the SExtractor centroid.

8. Objects that have a measured size smaller than 0.5 pixels.

After these cuts, considering all image rotations, shear and PSF realisations, we
obtain a sample of ∼ 16 million galaxies which are used in the analysis. Fig. 3.3 shows
the resulting weighted distributions of magnitude, scale length, modulus of ellipticity,
bulge fraction, SNR and weight measured from KiDS-450 data (black) and the SCHOol
simulations (red).

The distributions of the lensfit measurement weight and bulge fraction are in good
agreement with the data, although the measured bulge fractions are extremely noisy,
and are eliminated from the shear measurement by a marginalisation step. However,
the agreement in the simulated and observed distributions gives some reassurance that
the simple parametric galaxy profiles are an adequate representation of the KiDS-450
data. The simulated galaxy counts are in good agreement with the observations for
bright galaxies, but the magnitude and SNR distributions suggest that the simula-
tions lack faint, low SNR objects. The paucity in the simulated catalogues might be
attributed partly to the fixed noise level or the spatially constant PSF in the simula-
tions, which is not fully representative of KiDS-450 observations, but also partly to a
difference in intrinsic size distributions of the data and simulations, which may also
be seen in Fig. 3.3.

The shear measurement bias that we seek to calibrate depends primarily on galaxy
size and SNR (e.g. Miller et al. 2013), and differences in the distributions of these
quantities between the data and the simulations mean that we cannot simply measure
the total bias from the simulations and apply the result to the data. Furthermore, this
consideration applies to the bias for any sub-selection of the data, such as the analysis
of shear in tomographic bins of Hildebrandt et al. (2016b). Even if the data and sim-
ulations were a perfect match in Fig. 3.3, any dependence of bias on galaxy properties
would mean that a ‘global’ bias for the simulations might not be appropriate to the
galaxy selection in tomographic bins. Thus, in this paper we derive a shear calibration
that includes a dependence on size and SNR, but also investigate the sensitivity of
the final shear calibration to modifications of the assumed distributions, in §3.6.1 and
§3.6.2.

5 In order to remove contamination from nearby objects, lensfit builds a dilated segmentation map
that is used to mask out a target galaxy’s neighbours. It was found that a small fraction of targets
had two input catalogue target galaxies within a single segmented region associated with the target,
owing to differing deblending criteria being applied in the SExtractor catalogue generation stage
from the lensfit image analysis. When measured, this leads to two catalogue objects being measured
using the same set of pixels, and thus the inclusion of two correlated, high ellipticity values in the
output. As these accounted for a very small fraction of the catalogue, these instances were flagged in
the output and excluded from subsequent analysis.
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The ellipticity distributions also differ, both at low and high ellipticity. Both the
simulations and the KiDS-450 data contain very elliptical galaxies galaxies, as is clear
from the inset in the lower left panel of Fig. 3.3, which shows the high ellipticity tail
of the distribution. In the simulations these high ellipticities are caused by noise or
blending with neighbours, as there are no galaxies with an intrinsic ellipticity ε > 0.804.
However, in the data this is not necessarily the case. Differences in the ellipticity
distribution may lead to an incorrect estimate of the shear bias and this is especially
worrying for highly elliptical objects (Melchior & Viola 2012; Viola et al. 2014). In
§3.6.3 we investigate the (origin of the) discrepancy and also quantify the resulting
uncertainty in shear bias that arises from the differences between the data and the
simulations.

As noted above, the observed differences suggest that the simulations cannot be
used directly to infer the shear biases, and in the remainder of this paper we explore
calibration strategies that use observed properties to estimate the bias for a given
selection of galaxies (Miller et al. 2013; Hoekstra et al. 2015). For this to work, it is
important that the simulations at least cover the multi-dimensional space of relevant
parameters. Moreover, differences in selection effects should be minimal. Before we
explore these issues in more detail, we first examine the distributions of the two most
relevant parameters, namely the SNR and the ratio of the PSF size and the galaxy
size (e.g. Massey et al. 2013). The latter parameter, which we define as,

R :=
r2
PSF(

r2
ab + r2

PSF

) , (3.7)

quantifies how the shape is affected by the convolution by the PSF. For the analysis,
we adopt the rab size definition, because it has significantly lower correlation with the
measured ellipticity in noisy data (cf. §3.4.3).

Fig. 3.4, shows the ratio between the number of simulated and real galaxies on a
grid in SNR and R defined using the KiDS-450 data. The size of each data point is
proportional to the sum of the lensfit weight in each grid cell. The red stars indicate
the region where the ratio is 0; i.e. the simulations do not contain objects with that
SNR and resolution. The simulations are lacking very large objects (low R) and with
low SNR. Those objects contribute only 0.001 % of the total weight and hence the fact
that they are not present in the simulations can be safely ignored.

3.4 KiDS Calibration Method

3.4.1 The evaluation of shear bias

As our image simulations are a good, but not perfect representation of the KiDS-450
data, and as in our data analyses (e.g. Hildebrandt et al. 2016b) we select sub-samples
of galaxies with differing distributions of intrinsic properties, it would be incorrect to
simply compute the average multiplicative and additive bias from the simulations and
use the result as a scalar calibration of the KiDS-450 shear measurements. This is
because previous analyses (e.g. Miller et al. 2013; Hoekstra et al. 2015), and analytical
arguments (e.g. Massey et al. 2013) have demonstrated that the shear bias depends on
galaxy and PSF properties. In particular, we expect the bias to be a function of the
galaxy SNR and size, and to depend on the PSF size and ellipticity. Estimating those
functional dependencies is crucial in order to derive a shear calibration that may be
robustly applied to the data.
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Figure 3.4: Ratio between the number of galaxies in the simulation and the data on a SNR
and resolution grid defined using the real galaxies. The size of each data point is proportional
to the total lensfit weight in each grid cell. The red stars indicate the grid points with a ratio
of 0.

A practical procedure for estimating the bias and its dependences from the simula-
tions is to bin the simulated data, and compute the multiplicative and additive shear
bias in each bin. To do so, we use the lensfit measurements of the galaxy ellipticities
ε j in combination with the re-calibrated weights w j (see §3.2.3) to compute the two
components of the measured shear g j:

gmeas
j =

∑
i wiεi j∑

i wi
. (3.8)

Following Heymans et al. (2006) we quantify the shear bias in terms of a multiplicative
term m and an additive term c:

gmeas
j =

(
1 + m j

)
gtrue

j + c j , (3.9)

where we consider the biases for each of the ellipticity components separately. In our
analysis below, we designate m, c values for components evaluated in the original ‘sky’
co-ordinate frame by m1,2, c1,2. When investigating PSF-dependent anisotropy, we also
investigate biases on components where the ellipticity and shear values have been first
rotated to a co-ordinate frame that is aligned with the orientation of the major axis
of each galaxy’s PSF (c.f. Mandelbaum et al. 2015). We designate the latter linear
bias components as m||, c||,m×, c× for the components parallel to and at 45◦ to the PSF
orientation, respectively.

Several calibration binning schemes may be considered, such as fixed linear or
logarithmic bin sizes, or a scheme that equalises the number of objects in each bin. In
the following, we choose a binning scheme that equalises the total lensfit weight in each
bin and assign the median as the centre of each bin for each respective data sample.
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Figure 3.5: Multiplicative (left panel) and additive (right panel) selection bias, m and c, for
the components aligned (m||, c||) or cross-aligned (m×, c×) with the PSF major axis orientation,
as a function of galaxy magnitude, as discussed in §3.4.2. The grey band in the left panel
indicates the requirement on the knowledge of the multiplicative bias set by Hildebrandt et al.
(2016b) in the context of a cosmic shear analysis.

The multiplicative and additive biases for both shear components are then obtained
by a linear regression with intersection of all measured average ellipticity values 〈ε〉 j
against the true input reduced shear values gtruej .

We use two different methods to assign errors to the respective biases in m and c
in each bin. In the first method, the uncertainties are estimated from the scatter of
the measurements around the best fit line. The other method is to bootstrap resample
the sets of galaxies that share the same input shear values. The number of bootstrap
realisations is chosen to be large enough for the resulting errors to stabilise. We find
this to be the case after the creation of 20 bootstrap realisations.

3.4.2 Selection bias

Bias in the measurement of the shear arises from the combined processes of galaxy
detection or selection (‘selection bias’) and the shear measurement itself (‘model bias’
and ‘noise bias’). In this section, we inspect the individual selection bias contribu-
tions. Selection biases may occur if the intrinsic ellipticity distribution of galaxies is
anisotropic (Kaiser 2000; Bernstein & Jarvis 2002; Hirata & Seljak 2003), which may
happen if galaxies are preferentially detected when they are aligned with the shear or
the PSF, or if an anisotropic weighting function is employed in the measurement. Mul-
tiplicative shear bias may also arise if the distribution of ellipticities that are selected
is systematically biased with respect to the underlying distribution. Such anisotropic
or multiplicative selection effects may arise at two stages of the process. First, galax-
ies and stars are detected on stacked images using SExtractor. In principle, the
dependence of the SNR on galaxy size, ellipticity, orientation and PSF properties may
result in biases at this detection stage. Second, the lensfit shear measurement process
may not be able to measure useful ellipticity values for some galaxies, leading to an
additional contribution to selection bias.

We investigate these biases by inserting the ‘true’ sheared ellipticity value of each
simulated galaxy into our shear measurement framework, characterising a linear re-
lation between shear estimates formed from these quantities and the true shear. In
this approach, there is no contribution to the bias estimate, or to its measurement
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uncertainty, from noise bias. The only potential source of bias is sampling noise, but
in our simulations ellipticity shape noise has largely been ‘cancelled’ (see §3.3.2), apart
from the effect of galaxies that are not detected. In this test, we find a small bias,
m|| ' mx ' −0.005 ± 0.001, c|| ' 0.0002 ± 0.00004, cx ' 0.00005 ± 0.00004, as a result
of the SExtractor stage. However, if we measure the shear bias after the lensfit
stage by selecting those galaxies that are both detected by SExtractor and with
shear measurement weight greater than zero, we do find a significant multiplicative
bias, of 4.4 percent when averaged across the sample, with little difference between
biases whether the true shear values are unweighted or weighted by the lensfit weight,
for those galaxies with non-zero weight. As shown in Fig. 3.5 the bias is strongly
magnitude-dependent, with a maximum bias around 8 percent. By rotating galaxy
ellipticity and shear values to the coordinate frame aligned with the PSF major axis
(the PSF orientation varies in our simulations), we may also look for additive selection
bias that is correlated with the PSF: Fig. 3.5 also demonstrates the existence of such
an additive selection bias, with a significant aligned c term (there is no significant bias
detected in the cross-aligned c term).

The bias is caused by the inability to measure small galaxies: if an object has a
lensfit star-galaxy discrimination classification that favours the object being a star over
a galaxy (see Miller et al. 2013), it is classified as a star and given zero weight in the
subsequent analysis. This step introduces a significant selection bias, because galaxies
are more easily measured and distinguished from stars if they are more elliptical: thus
galaxies whose intrinsic ellipticity is aligned with its shear value are more likely to be
selected as measurable galaxies, than those whose intrinsic ellipticity and shear values
are cross-aligned. This results in a significant bias in the average intrinsic ellipticity
of the measured galaxies, and thus a significant shear bias.

This measurement selection bias should arise in both the data and the simulations,
and thus our calibration derived from the simulations should remove the effect from
the data. We note however that the selection bias is not small relative to our target
accuracy (grey band in Fig. 3.5), and is comparable to the noise bias that has received
more attention in the literature. We expect the selection bias to have some sensitivity
to the distributions of size and ellipticity and thus not to be precisely reproduced in
our fiducial simulations: as previously mentioned, in §3.5 we resample the simulations
to match the observed distributions in the KiDS tomographic bins, and in §3.6.2 we
further test the effect of modifying the size distribution. We also consider the possible
contribution of object selection bias to the PSF leakage in §3.4.6.

3.4.3 Calibration selection bias

In a conventional approach to shear calibration, the objective is to establish a shear
calibration relation, whose parameters are observed quantities, which may be applied
to the survey data. Ideally, to ensure that unbiased measurements of the cosmology are
obtained, after shear calibration has been applied, we should aim for a lack of residual
dependence on true, intrinsic galaxy properties (such as size or flux) in the simulations,
even though the calibration relation must be derived from observed quantities. The
absence of such dependencies would imply that the results are not sensitive to changes
in the input distributions.

However, if we attempt to deduce a shear calibration that depends on observed
quantities, the correlations between observed quantities may cause calibration relations
themselves to be biased, and may even mislead the investigator into believing that
their shear measurement is biased when it is not. In this section, we discuss biases in
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Figure 3.6: The apparent multiplicative (left panel) and additive (right panel) calibration
selection bias, m and c, deduced from the analysis of true, noise-free, sheared galaxy ellipticity
values, as a function of galaxy size. Relations are shown for five definitions of galaxy size:
(red) size r measured from true input major axis values; (magenta) size r measured from
noisy output major axis values; (blue) rab size, measured from true input, unsheared major
and minor axis values; (green) rab size, measured from true input, sheared major and minor
values; (black) rab size, measured from noisy output major and minor values. The additive
bias c is shown for the component aligned with the PSF major axis. See §3.4.3.

Figure 3.7: The multiplicative shear bias m (top) and additive shear bias c (bottom) as a
function of measured galaxy properties. The left panels shows the bias with and without
lensfit self-calibration as a function of measured model SNR. The right panels show the same
measurements as a function of R. The grey band in the top panels indicates the requirement
on the knowledge of the multiplicative bias set by Hildebrandt et al. (2016b) in the context
of a cosmic shear analysis.
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calibration relations that arise artificially as a result of correlations between size and
ellipticity, and thus shear, when following a calibration approach such as that adopted
for CFHTLenS (Miller et al. 2013) or Dark Energy Survey (Jarvis et al. 2015). We
distinguish this ‘calibration selection bias’ from the ‘galaxy selection bias’ discussed
above, in §3.4.2.

First, we consider the choice of size parameter. The definition of galaxy size mea-
sured by lensfit is the scale length, r, along the galaxy’s major axis: for disk galaxies,
where the ellipticity arises from the inclination of the disk to the line-of-sight, this
choice of size measure is the most invariant with the galaxy’s ellipticity. However, at
low SNR, pixel noise leads to a strong statistical correlation of the major axis size with
the ellipticity. The distribution of observed ellipticity directly affects the inferred shear
in a population, and thus a calibration relation that depends on major axis size causes
large, apparent size-dependent biases that in fact arise from the choice of observable.

This difficulty may be mitigated by adopting instead rab, the geometric mean of
the major and minor axis scale lengths. In noisy data rab has significantly lower
correlation with the measured ellipticity, but a bias on calibration relations still exists.
This selection bias is illustrated in Fig. 3.6. Here, we follow §3.4.2 and again calculate
the apparent shear bias that is deduced from using the true, noise-free sheared galaxy
ellipticity values. It is important to realise that the biases seen here do not arise from
any process in the noisy measurement of shear, other than through the correlation
between the size parameter and shear. The blue and red lines show the bias on the
input (true) galaxy size, for the rab and major axis r size definitions respectively: it
is this bias that we wish to minimise in order to achieve cosmological results that are
unbiased. It may be seen that the rab measure yields a somewhat lower apparent bias,
compared with r, which is a reflection of how the small, unmeasurable galaxies enter
each plotted bin. As a comparison, the green curve shows the results for the rab input
size definition, but where now the sheared major and minor axis values have been used
to calculate rab: a very large bias results.

However, any calibration relation that we adopt must instead be a function of the
noisy, measured galaxy size, rather than the true size, which is unknown in real data.
In Fig. 3.6 (magenta line), we also show that the correlation with the noisy, measured
r parameter has a bias that vastly exceeds the input size bias, and which is strongly
dependent on the size value. The rab size definition (black line in Fig. 3.6) is better
behaved in this regard, although the bias observed using output size still does not
reflect the bias on the input size. On the other hand, the r size definition should
be less correlated with ellipticity in the true, astrophysical joint distribution. Hence,
we continue to parameterise the lensfit models in terms of r, and marginalise over r
when estimating galaxy ellipticity as described in §3.2, but we adopt rab as the size
parameter in our calibration relation. We then test how well the bias as a function of
input parameters is corrected.

An alternative strategy that would mitigate the selection effects shown in Fig. 3.6
is to subtract the true, intrinsic ellipticity value from every galaxy, before forming any
shear estimates: this accurately compensates for the calibration selection bias. This
was the procedure adopted for the CFHTLenS shear calibration (Miller et al. 2013),
but it has the severe disadvantage that it also removes both the primary selection bias
described in §3.4.2 and the weight bias described in §3.2.3. As these are percent-level
effects, we must include them in our KiDS calibration, and accordingly do not use
this strategy here. We note in passing that neglect of these biases in CFHTLenS may
have resulted in larger amplitude shear values (and hence a larger value of the σ8
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Table 3.2: The total multiplicative and additive shear bias, both with (‘self-cal’) or without
(‘no-cal’) the lensfit self-calibration having been applied. Biases are quoted for components
measured either in the co-ordinate system of the sky simulations (upper Table section), or
where shear and ellipticity components have been rotated to be aligned, m||, c||, or cross-aligned,
m×, c×, with the PSF orientation (lower Table section).

sky-frame analysis m1 ∆m1(regr)/(BS) m2 ∆m2
[10−2] [10−2] [10−2] [10−2]

no-cal -4.09 0.33/0.25 -3.84 0.21/0.22
self-cal -1.90 0.33/0.25 -1.68 0.19/0.22
self-cal, no stars -1.40 0.30/0.29 -1.22 0.18/0.19
self-cal, low density, no stars -1.39 0.19/0.21 -0.93 0.18/0.26
sky-frame analysis c1 ∆c1 c2 ∆c2

[10−3] [10−3] [10−3] [10−3]

no-cal -0.73 0.09/0.07 3.32 0.06/0.05
self-cal 0.12 0.05/0.05 1.10 0.05/0.05
self-cal, no stars 0.15 0.09/0.08 1.26 0.05/0.05
self-cal, low density, no stars 0.09 0.05/0.06 0.80 0.05/0.06

PSF-frame analysis m|| ∆m||(regr)/(BS) m× ∆m×
[10−2] [10−2] [10−2] [10−2]

no-cal -3.96 0.22/0.43 -3.97 0.20/0.42
self-cal -1.78 0.18/0.21 -1.79 0.18/0.27
PSF-frame analysis ∆c|| c× ∆c×

[10−3] [10−3] [10−3] [10−3]

no-cal -2.51 0.06/0.10 -0.84 0.06/0.09
self-cal -0.55 0.05/0.07 -0.15 0.05/0.09

cosmological parameter), by a few percent, than reported by Heymans et al. (2013)
and other related cosmology analysis papers.

Finally, we note that Clampitt et al. (2016) found significant size-dependent shear
bias in their null test of Dark Energy Survey galaxy-galaxy lensing: this bias may
have been the result of the selection-induced size bias we have discussed here, and in
general, tests of the dependence of shear on measured galaxy size should be avoided
as a null test.

In the following sections, we investigate the full bias introduced by the noisy mea-
surement process: this bias includes the object selection bias discussed in §3.4.2 and
we should be mindful of the artificial biases of this section when investigating the size
dependence and when deriving a calibration relation: biases as a function of galaxy
size measured in noisy simulations may have a significant contribution from the cal-
ibration selection bias. Provided the simulated galaxy distributions match well the
data distributions, any derived calibration relation should correctly include such ef-
fects and should result in correctly calibrated data, but it makes sense to minimise
the effect of the choice of size definition by calibrating using rab rather than r, as this
should minimise the sensitivity to any mismatch between data and simulations.
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3.4.4 lensfit results

We start the analysis of the noisy measurement biases by quantifying the impact of
the lensfit self-calibration (see §3.2.2) on the recovered shear biases. This is done by
simply removing the self-calibration corrections (which are reported in the catalogue)
from the measured galaxy ellipticities before computing the shear. Without the self-
calibration we find that the average multiplicative bias for the full galaxy sample is
∼-4% in both components. This number reduces to ∼-2% in each component once we
use the lensfit self-calibration. We report the exact values, together with their errors,
in Table 3.2. Even more dramatic is the reduction of the additive bias when we use
the self-calibrated version of lensfit: it reduces by a factor five in c1 and by a factor
of three in c2. This is extremely encouraging, in particular for cosmic shear analysis,
where a large additive bias hampers the ability to measure the cosmological signal at
large angular separations (e.g. Heymans et al. 2013; Hildebrandt et al. 2016b).

We also explore the impact of misclassified stars on the average bias in the simu-
lations. In fact, lensfit occasionally classifies true stars as galaxies and assigns them
a non vanishing weight. As stars are not sheared, the net effect is a reduction of the
measured shear and hence a multiplicative bias. By measuring the shear bias either
including or excluding these misclassified stars, we quantify the effect of star misclassi-
fication on the multiplicative bias as approximately 5× 10−3. In the following analysis
we keep misclassified stars in the catalogue used to estimate the shear bias. We also
ran a set of simulations where the density was lowered by 50 % to explore the effect
of galaxy number density on the recovered biases. We found the multiplicative bias to
differ by only 2× 10−3, suggesting that at the current level of accuracy, simulating the
correct number density of galaxies is not crucial for shear calibration, which in turn
also implies that galaxy clustering should not impact the shear bias at the KiDS-450
measurement accuracy.

Despite the significant improvements of the self-calibrating lensfit, residual shear
bias remains, arising from both selection bias and from residual uncorrected noise
bias, and we now investigate how the total bias budget is distributed over bins of key
input and observed quantities. As discussed above, we expect the shear bias to depend
predominantly on the galaxy SNR and on the ratio of the PSF size and galaxy relative
size R, defined by equation 3.7 (Massey et al. 2013). This is confirmed by Fig. 3.7, which
shows the multiplicative and additive bias from the simulated data as a function of
lensfit model SNR and R with, and without, self-calibration. We notice that at low
SNR (and faint magnitude) the self-calibration reduces the multiplicative bias by more
than a factor of 2; similar improvements are seen as a function of R. However, even
with self-calibration, the residual multiplicative bias can still be substantially above
the 5% level for very faint (low SNR) and very small (large R) objects. This emphasises
the need for an additional, post measurement bias calibration based on the results of
the image simulations.

When the self-calibration corrections are included, the residual bias almost van-
ishes, within its errors, for c1 but remains significant for c2. Motivated by the difference
in the two components and in order to explore whether the residual additive bias de-
pends on PSF properties, we perform the same analysis in the PSF frame, by rotating
all ellipticity and shear values into a frame where the two axes of the PSF align with
the coordinate frame. Once we repeat the bias analysis in the PSF frame, we find
that the additive bias is now consistent with zero in the cross-aligned component and
that for the PSF-aligned component it has risen to the level we found for the second
component in the sky frame. This indicates a dependence of the measured bias on
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Figure 3.8: The multiplicative bias m (top) and additive bias c (bottom) as a function of
simulation input galaxy properties. The left panels shows the bias with and without lensfit
self-calibration as a function of input magnitude. The right panels shows the same measure-
ments as a function of input size. The grey band in the top panels indicates the requirement
on the knowledge of the multiplicative bias set by Hildebrandt et al. (2016b) in the context
of a cosmic shear analysis.

PSF properties and motivates a more detailed investigation in §3.4.6.
To explore the dependencies on input parameters, Fig. 3.8 shows the bias in m and

c as a function of input magnitude and size. Selection effects are clearly important for
the multiplicative bias for faint galaxies, although it should be noted that the most
dramatic effects arise at magnitudes m > 23, where the galaxy detection is incomplete
(Fig. 3.3) and where the weighted contribution to shear measurement is small. In the
case of the additive bias, in particular, the utility of self-calibration is evident, as the
dependences on input parameters are significantly reduced.

3.4.5 Multiplicative shear bias calibration

The self-calibrated lensfit already delivers excellent results in terms of total residual
shear bias, as shown in Table 3.2. However, emphasised by Fig. 3.7 and Fig. 3.8, mul-
tiplicative biases significantly larger than 5% are still possible, most prominently for
faint and small galaxies, although we must be cautious in interpreting any size de-
pendence, owing to the selection bias demonstrated in §3.4.3. We aim here to derive
a calibration for the residual multiplicative bias after self-calibration as a function of
lensfit-measured SNR and R. While R is a good choice for characterising the size of a
galaxy with respect to the PSF (Massey et al. 2013), one could consider flux-related
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Figure 3.9: The 2D bias surface as a function of model SNR and R. The top panels show the
multiplicative bias surface, m1 on the left and m2 on the right. The bottom panels show the
additive bias components, c1 on the left and c2 on the right. Each point in the plot has equal
lensfit weight.

calibration quantities other than SNR, for example the observed magnitude, to use as
a calibration parameter. However, as discussed in §3.3.5, the real KiDS imaging data
has quite some variation of the pixel noise rms, mostly owing to varying observing
conditions, while in the simulations we used a fixed value. As the shear bias depends
on the noise level and not on the actual flux of the object, it is not possible to derive
a robust calibration based on output magnitude.

We bin our simulated data according to the measured galaxy model SNR and R,
again requiring equal lensfit weight in each bin and we use the self-calibrated lensfit
measurements as the default. The two dimensional multiplicative bias surface as a
function of SNR and R is shown in Fig. 3.9. A crucial parameter in such analyses is
the total number of bins used to characterise the bias surface. On the one hand, we
would like to have a fine enough grid to capture every real feature in the bias surface,
but, on the other hand, we have to ensure that there is enough statistical power in
each bin so that measurements are not dominated by noise. We tried a variety of grids
ranging from only two up to 40 bins on each axis. A coarse 10 × 10 binning scheme
results in an average m-bias error of 2% in both components per bin and increases to
an average 10% per bin for the 40 × 40 scheme. This results in a vanishing signal-to-
noise ratio for bins with a small measured bias while using a very fine binning scheme.
We found that a 20×20 bin grid provides the best compromise with an average signal-
to-noise of 2.5 per bin over the full SNR-R surface and enough resolution to capture
the complicated structure of the bias surface in the low SNR, large R regime.

Fig. 3.9 reveals that the multiplicative bias surface is complex. Our initial char-
acterisation attempt is based on a fit of an analytic 2D function to the bias surface,
as was done for example in Miller et al. (2013); Hoekstra et al. (2015); Jarvis et al.
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(2015). Unfortunately, even a complex 16-parameter functional form

m1/2 = f0 + f1R−1 + f2R + f3R2, (3.10)

where the pre-factors fi depend on the 16 parameters and the lensfit SNR

fi = p4i+1 + p4i+2SNR−1 + p4i+3SNR−2 + p4i+4SNR−1/2, (3.11)

for i ∈ (0, 1, 2, 3) gave only a poor fit to the surface (χ2-values of 3.9 and 3.6 for m1 and
m2 respectively). From now on we will refer to this form of characterisation of the bias
surface as method A.

Our second attempt to characterise the surface, method B, is based on an inter-
polation of the bias surface. Simple spline interpolation fails to robustly interpolate
the bias due to its complicated structure in SNR and R space. We applied an inter-
polation scheme based on a Gaussian radial basis function with a spatially varying
shape parameter (see Merten 2014, and references therein). The interpolation was
trained beforehand using the best-fit analytic functional form of method A, to opti-
mally adapt its shape-parameters to the spatial structure of the SNR-R grid and the
general features of the bias surface. The resulting interpolation allowed us to query
the multiplicative bias in both components for any parameter pair, at least in the area
covered by the given SNR and R range shown in Fig. 3.9.

Finally, we tried a simpler calibration strategy, method C, which was to not fit or
interpolate the bias surface, but rather to assign the bias determined in each of the
20 × 20 bins to the galaxies that fall in each bin.

We test the differing calibration strategies, by investigating the derived multiplica-
tive bias as a function of SNR and R according to methods A, B or C, for all galaxies
with shape measurement in the simulation. In each bin of the analysis we calculate
the lensfit-weighted average multiplicative bias correction and apply it to the average
measured ellipticity in the bin according to equation 3.9. Afterwards, we recalculate
the bias. The results for each method are presented in Table 3.2 in terms of the total
bias and in Figs. 3.10 and 3.11 as a function of the key output and input quantities.
The total multiplicative bias after we apply the calibration is around or below the
percent level in both shear components for all three methods. It vanishes completely,
by construction, within its error bars for the bin-based calibration method C. In terms
of our 1% target window, method A fails to deliver a robust calibration over the full
R range. Methods B and C do clearly better and robustly calibrate the residual bias
over the full R range. An exception are extremely small, high R objects, which repre-
sent only a small population in the image simulations. The very last bin in R, where
methods B and C show a residual bias of 2%, accounts for 7% of the total lensfit
weight in the sample.

The picture is similar in terms of the calibration performance as a function of
SNR. Method C performs best and only marginally falls out of our target accuracy
for objects with SNR < 7. The reason why this method shows a residual bias at all, is
the fact that the binning scheme we used for this analysis differs in both the number
of bins and its 1-dimensional nature from the 20 × 20 SNR-R binning scheme that we
used to derive the calibration. The first SNR bin in Fig. 3.10, where methods B and
C show residual multiplicative biases of -3.5% and 1.5%, respectively, contributes 7%
to the lensfit weight in the full sample. In the extremely low SNR regime (∼ 10), the
interpolation based method B performs much worse than C, likely due to less robust
interpolation result near the edges of the initial bias surface. In the final analysis and
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considering all mentioned effects, we find that method C provides the most robust
calibration of the multiplicative bias and it will be our default method.

In order to test the dependence of this calibration on the number of bins used to
characterise the multiplicative bias surface, we investigated the measured bias as a
function of the number of 2D bins used. We find that if the number of bins is too
small, the calibration is not able to pick up all relevant features in the bias surface and
hence existing residual bias remains uncalibrated. Using more than ten bins starts to
remedy the problem and a 20 bin scheme is the first calibration that delivers a robust
calibration within 1% for the full range of SNR and R, with the exception of very
small objects with R > 0.9, which contribute only a small fraction of the sample’s total
lensfit weight.

We might hope that when the residual bias, after applying the calibration, is mea-
sured as a function of input magnitude and size, it should be consistent with zero.
However, this is not the case, as shown in Fig. 3.11. All the calibration schemes show
a small positive bias for objects with bright input magnitudes (m . 23) and small
galaxies (rab . 0.2′′), and a negative bias at faint magnitudes which becomes large for
galaxies below the selection completeness limit. The average weighted bias, however,
for the entire simulation, is consistent with zero. The cause of this effect is that the
calibration on noisy output quantities relies on there being a stationary correlation
between the true quantities and their measured, noisy counterparts. At magnitudes
below the completeness limit, the relationship between true size and measured size
in the selected galaxies changes, which in turn impacts the calibration relation. In
effect, there is a third axis of “magnitude” in our calibration space which has not been
included in the calibration relation. In fact, it is not possible to reliably include this
third axis, as the three quantities are highly correlated, and also correlated with galaxy
ellipticity, and correct calibration in this space would require the joint distributions in
the simulations and in the data to match precisely, which is difficult to achieve and is
not the case in our simulations.

As by construction, the net residual bias after calibration in the simulations is
zero, if the data that we seek to calibrate has the same distribution of true magnitude
and size as the simulations, application of the calibration relation should also result in
zero residual bias in the calibrated data. However, in reality the data and simulation
distributions differ, as shown in Fig. 3.3, and in the cosmic shear analysis (Hildebrandt
et al. 2016b) the data are divided into tomographic subsamples, with their own size
and magnitude distributions. We investigate the amount of residual bias that might
leak into the tomographic analysis presented in Hildebrandt et al. (2016b) via this
effect in § 3.5.

3.4.6 Additive shear bias calibration and PSF properties

We have identified the 20×20 grid, bin-based method C as the most robust to calibrate
for the remaining residual multiplicative bias. Using exactly the same methodology
and by again following equation 3.9 we also characterise the small remaining additive
bias not accounted for by lensfit’s self-calibration. When calibrating for both, multi-
plicative and additive bias, simultaneously, we find the residuals shown in the last line
of Table 3.3, which is our best and final result.

Fig. 3.12 shows the residual additive bias as a function of SNR and R before and
after calibration and Fig. 3.13 shows the remaining multiplicative and additive bias as a
function of PSF properties. This includes the two PSF ellipticity components, the PSF
size and “pseudo-Strehl ratio” (defined as the fraction of light contained in the central
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Table 3.3: The total multiplicative and additive bias after residual bias calibration.

method m1 ∆m1(regr)/(BS) m2 ∆m2
[10−3] [10−3] [10−3] [10−3]

A 3.80 3.35/4.62 4.90 1.88/1.90
B -1.99 3.35/3.72 -1.89 1.90/2.44
C -0.008 3.37/3.89 -0.01 1.91/2.49

C (m+c) -0.008 3.36/4.22 -0.005 1.90/2.72

method c1 ∆c1 c2 ∆c2
[10−5] [10−5] [10−5] [10−5]

A – – – –
B – – – –
C – – – –

C (m+c) -0.007 9.51/9.38 0.014 5.37/6.66

Figure 3.10: The multiplicative bias after empirical calibration using different methods.
Method A is based on a function form fit to the bias surface, method B performs an in-
terpolation of the bias surface and C assigns a constant bias correction in 2D bins. The left
panel shows the residual multiplicative bias after calibration as a function of model SNR and
the right panel as a function of R.The grey band indicates the requirement on the knowledge
of the multiplicative bias set by Hildebrandt et al. (2016b) in the context of a cosmic shear
analysis.

Figure 3.11: This plot is equivalent to Fig. 3.10, but shows the residual multiplicative bias as
a function of input magnitude in the left panel and as a function of input size in the right
panel.
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Figure 3.12: The residual additive shear bias before and after calibration using method C.
The left panel shows residual bias as a function of model SNR and the right panel in bins of
R.

pixel of the PSF). All the analyses show no systematic dependence of m -and c-bias
on PSF properties and all reported residual biases fulfil, within their errors, our target
of 1% residual bias. However, as summarised earlier in Table 3.3, we do detect bias
when performing the analysis in the PSF and not in the sky frame. This is expected
from the additive selection bias of §3.4.3 and should also have a contribution arising
from residual uncorrected noise bias (Miller et al. 2013). In order to characterise this
effect we extend our bias description by including a PSF ellipticity dependent term α,
following Jarvis et al. (2015):

gmeas
j =

(
1 + m j

)
gtruej + α jε

PSF
j + c j. (3.12)

We measure the two α components by subdividing the galaxy sample into bins of
the respective PSF ellipticity component. For the full sample, without any further
subdivision into bins of galaxy properties we determine α1 = −0.006 ± 0.002 and α2 =

0.005 ± 0.003 for the self-calibrated lensfit output. It is important to note that no
additional residual bias calibration, as described in §3.4.5 and §3.4.6 is applied here.
Fig. 3.14 shows the dependence of α, which is sometimes also called PSF leakage, on
measured galaxy properties and Fig. 3.15 shows it as a function of simulation input
quantities. Clearly, the measurement is significant over the full property range, but
is most significant for the low SNR and the small size regime. Fig. 3.14 also shows
the bias obtained when true, sheared ellipticity values are propagated through the
analysis, as in §3.4.2. We observe that the α-dependence on SNR is well explained
by the selection bias, but that there remains α-dependence on the relative galaxy size
that appears to have an additional contribution to the selection bias.

In summary, referring to our preferred calibration scheme (method C ), all m, c
-and α biases vanish for the galaxy sample in its entirety. When looking closer into
the biases as a function of measured galaxy properties we find small, of the order 2%
residual multiplicative biases for extremely low SNR and extremely high R objects.
All c-biases vanish after our calibration and while residual α terms are presented in the
self-calibrated lensfit output, they vanish after the additional residual bias calibration.
We do expect the PSF-dependent additive biases to be sensitive to the PSF properties,
and thus we recommend that the additive bias measured from the simulations is not
simply applied blindly to any science analysis. In Hildebrandt et al. (2016b), the
additive bias is investigated empirically in the data, and the results compared with
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Figure 3.13: The residual bias as a function of PSF properties. The solid lines refer to the
residual multiplicative bias with the scale given by the left y-axis. The dot-dashed lines
refer to residual additive bias with the scale on the right y-axis in each plot, respectively.
The four panels show the biases in clock-wise order starting on the top-right as a function
of: measured PSF size, PSF pseudo-Strehl ratio, second PSF ellipticity component and first
ellipticity component.
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Figure 3.14: The average of the two PSF leakage components, α, as a function of measured
galaxy properties, showing the leakage deduced from measured lensfit ellipticities (red curves
and points) and from true, sheared input ellipticities (blue curves and points), as a test of
selection bias. The left panel shows α as a function of model SNR, the right panel as a
function of R.

Figure 3.15: The PSF leakage for measured and true ellipticities as a function of simulation
input quantities. Input magnitude in the left panel and input size in the right panel.

those from the simulations, rather than relying on the simulations to be an exact
representation of the data regarding its PSF and noise properties.

3.5 Calibration by resampling the simulated catalogue

3.5.1 A resampling approach to calibration

Once the bias has been characterised in terms of relevant observed properties, it can
be applied to virtually any selection of the real galaxies used to measure shear. For
example, a tomographic cosmic shear analysis requires splitting the galaxy sample
into redshift bins; a galaxy-galaxy lensing analysis requires selecting a source sample
behind lenses at a given redshift. However, as we saw in §3.4, the bias surface may be
complex and thus difficult to characterize, and may itself be biased (see §3.4.3). This
may be a concern, given the tight requirements from current and especially future
lensing surveys.

The lensfit measurements are, however, made for individual objects, and as an
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alternative to the approach presented in §3.4, we may instead resample the output
from the image simulations, such that the measured galaxy parameter distributions
match those of any (sub-)selection of galaxies. The multiplicative and additive biases
may then be calculated from the resampled catalogues and applied to the galaxy
sample of interest. Note, however, that this approach will only give reliable results if
the multi-dimensional parameter space of simulated galaxy properties covers the full
parameter space of the real galaxies. Whilst this approach is less flexible than the
one described in §3.4, as the simulations need to be resampled for each galaxy sample
used to measure shear, it avoids having to characterise the bias as a function of galaxy
properties.

Comparison of the biases determined using the different schemes provides an im-
portant check on the robustness of the calibration. As described in more detail below,
we therefore implemented the resampling approach and applied it to the four tomo-
graphic bins used in the cosmic shear analysis presented in Hildebrandt et al. (2016b).

3.5.2 Application to the multiplicative bias in KiDS data

For a given selection of real galaxies, the population of simulated galaxies may be
resampled using a k-nearest neighbour search of an N-dimensional volume, defined by
a combination of N observed properties of the simulated galaxies. As the search is
done by minimising the Euclidian distance between the simulated and real galaxies in
that space, it is important to map the distributions of the chosen properties onto a
unit length vector. Moreover, there are two important points to consider in order to
successfully apply this technique:

• The galaxy properties that define the N-dimensional volume must be correlated
with the shear bias;

• The N-dimensional volume of the simulations has to be at least as large as the
corresponding volume defined using the properties of the real galaxy sample.

Motivated by the results presented in §3.4, we define the resampling volume based
on the galaxy SNR and the ratio of the PSF size and observed galaxy size (R), for which
the simulations cover the same space as the data, as we have shown in §3.3.5. We apply
the resampling technique to the selection of galaxies defined by the four tomographic
bins used for the cosmic shear analysis presented in Hildebrandt et al. (2016b). Our
simulations do not contain any simulated redshift information: we implicitly assume
that matching the size and SNR distributions of each tomographic bin is adequate,
and that there is no redshift dependence of the bias beyond that conveyed by the bias
as a function of SNR and size.

The tomographic bins are defined using the peak of the posterior photometric
redshift distribution zB as measured by BPZ (Beńıtez 2000) using observations in four
optical bands ugri (Kuijken et al. 2015). The KiDS-450 data are further divided in five
contiguous regions on the sky (designated G9, G12, G15, G23 and GS). We resample
the simulations using each region individually, in order to test the robustness of the
method, although we note that the SNR and R distributions are very similar between
the regions.

The top panels in Fig. 3.16 show the SNR and R distributions measured from the
KiDS-450 data (all regions combined) and those obtained from the resampled simula-
tions for the third tomographic bin, 0.5 < zB ≤ 0.7, used in Hildebrandt et al. (2016b).
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Figure 3.16: Top panels: SNR and R distributions measured from the KiDS-450 data (black
line) and using the resampled simulations (red histogram). Bottom panels: The distribution
of lensfit weight (left) and weighted ellipticity (right) measured from the KiDS-450 (black
line) and using the resampled simulations (red histogram). All distributions are computed
using galaxies in the redshift range 0.5 < zB ≤ 0.7, which corresponds to the third tomographic
bin used in the cosmic shear analysis presented in Hildebrandt et al. (2016b)

.
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The excellent agreement between them validates the resampling technique and con-
firms that the simulations are representative of the data. In the bottom panels of
Fig. 3.16 we show the distributions of the lensfit weight and the weighted distribution
of the modulus of the ellipticity. As those two quantities were not used in the resam-
pling, it is not surprising that the distributions differ slightly. However, the amplitude
of the noise bias depends on the galaxy ellipticity distribution (Viola et al. 2014): we
will assess the possible impact of this mismatch on the derived average biases in §3.6.3.

3.5.3 Robustness of the tomographic calibration

From the k-nearest neighbour search we can define a ‘resampling’ weight wres, which
is the number of times that a simulated object was matched to an object in the data.
We use this new weight in combination with the lensfit weight to measure the shear
from the resampled simulations:

gobs,res
j ≡

∑
i wiwres

i εi j∑
i wiwres

i
, (3.13)

and compute the multiplicative and additive bias using equation 3.9. We verified that
the estimate for the bias is robust against the choice of the number of nearest neigh-
bours. The errors on the biases are also unchanged for k > 4. Unless explicitly stated,
all the results quoted in this paper have been derived using k = 5.

The measured multiplicative bias does not depend on the PSF properties, in agree-
ment with what we found in §3.4. As an additional test we compared the average biases
derived from resampling each individual PSF set individually with the results derived
from resampling the whole simulation volume. Also in this case we found statistically
equivalent results. Fig. 3.17 shows the multiplicative bias derived using the resampling
technique and the calibration method presented in §3.4. The hatched regions, centered
on the bias measured using the resampling technique indicate the requirements in the
knowledge of the multiplicative bias as derived by Hildebrandt et al. (2016a). We
compare the results from the two calibration schemes for the four tomographic bins
used in Hildebrandt et al. (2016b). The average difference, combining all tomographic
bins, is ∆m = −0.001 ± 0.003.

3.6 Calibration sensitivity analyses

3.6.1 Sensitivity to the magnitude distribution

In §3.4.5 we noted that there might be a residual shear bias that arises from differences
between the magnitude distributions of the simulations and of the selection of galaxies
in the tomographic bins. We estimate this effect by first applying the method C
calibration scheme to the simulations. Then, a new resampling weight is derived for
each galaxy, by comparing the lensfit-weighted distributions of measured magnitudes
in the simulations and in the KiDS-450 data in each tomographic bin, and reweighting
the simulated galaxies so that those distributions match.

We measure the residual bias in these reweighted simulations, for each tomographic
bin. First, we confirm that the residual bias is consistent with zero in the absence of
any magnitude reweighting, as expected. Then, for each tomographic bin reweighting,
we find residual bias levels of approximately −0.001, 0.001, 0.0004,−0.012 in each of the
four bins. The residual bias is consistent with zero in the first three bins, but shows a
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percent-level residual in the highest-redshift bin. We cannot know whether this effect
is as large in the data as in the simulations, for two reasons: first, we have reweighted
using noisy, measured magnitudes rather than true magnitudes, and second we know
that the simulations become incomplete at a slightly brighter magnitude limit than
the data, so the residual bias effect is expected to be larger in the simulations than in
the data. However, this test does indicate the possible size of the residual bias, which
is either much smaller than (tomographic bins 1 − 3) or comparable to (tomographic
bin 4) our nominal requirement on calibration accuracy.

To explore further the effect of the simulation magnitude limit on the measured
shear bias we run another suite of simulations, which are identical to the reference
simulations described in Section 3.3, except that we change the noise level, such that
the magnitude limit increases by 0.3 magnitude. These simulations are 0.2 magnitude
deeper than the KiDS-450 data. We apply the method C to these new simulations and
we compute the multiplicative shear bias in the four tomographic bins. Compared to
the fiducial results we find a change in the bias of−0.008,−0.003,−0.006,−0.014 in each
of the four bins. We can use this result to estimate the sensitivity of the bias to the
magnitude limit from which we can calculate that the 0.1 magnitude limit different
between the reference simulations and the KiDS-450 data should result in sub-percent
residual biases of −0.003,−0.001,−0.002,−0.005 in the four bins.

3.6.2 Sensitivity to the galaxy size distribution

The output galaxy size distribution also differs between the data and the simulations,
as shown in Fig. 3.3, which might arise from a difference between the input size distri-
bution we used to create the simulations and the true size distribution of the KiDS-450
galaxies. To examine in more detail the impact of such a difference, we again reweight
the galaxies such that the output size distributions of data and simulations match.
However, in this case we cannot simply weight by the distribution of output size, as
that would not capture correctly the joint dependence of the correlated output size
and ellipticity measurements. Instead, we choose to reweight simulated galaxies as
a function of their true, input size. We first define an alternative target input size
distribution and calculate a ‘size weight’ that may be applied to each galaxy, such
that the fiducial input size distribution is transformed from the nominal distribution
to the target distribution. The size weight is just the ratio of the values of the target
and nominal distributions for each galaxy. The target distribution was varied until a
good match of output size distributions was found. The simplest target distribution
that was tried had the same functional form as the input size distribution, but with
a shift of the median relation by a constant factor to larger sizes, while preserving
the magnitude dependence. The factor was varied to obtain the best match between
the simulation and data size distributions (as measured by the Kolmogorov-Smirnov
statistic), however differences in the distributions remained.

Hence, we also tested a lognormal target distribution, where the median size was
again scaled by some factor and where the standard deviation of the distribution of the
logarithm was also varied to obtain the best match between data and simulations. This
produced a better match, but with some magnitude dependence: a final sophistication
then was to allow the slope of the rmed − m relation to vary. The new relation was
found to be rmed = exp(−1.07 − 0.19(m − 23)) with standard deviation of the logarithm
σ = 0.48. A good match was then found between the size distributions of the data
and the reweighted simulations. The size reweighting also causes some variation in
the measured distributions of other quantities, but does not on its own remove the
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Figure 3.17: Multiplicative bias calculated using the resampling technique and the bias cal-
culated employing the calibration scheme described in §3.4 as a function of the tomographic
bins used in the cosmic shear analysis described in Hildebrandt et al. (2016b). The hatched
area indicates the requirement on the knowledge of the multiplicative bias for KiDS-450.

discrepancies between the data and simulations in the distributions of magnitude and
SNR.

To test the possible effect on the deduced bias, we apply the size reweighting
globally to the entire simulation, repeat the bias estimation using method C, and then
deduce again the bias for each tomographic bin, as described above. The reweighted
bias values differ from the nominal values by −0.0011,−0.0014,−0.0013, 0.0085 in each
tomographic bin. The differences in the first three bins are again negligible, with only
a sub-percent level effect in the final tomographic bin. That effect has the opposite
sign to that found in the magnitude reweighting, which suggests that the joint effect
of magnitude- and size-reweighting may be close to zero in all tomographic bins. We
conclude that the effect of the uncertainty in either the size or magnitude distributions
does not impact our tomographic bin calibration at the level of accuracy required here.

3.6.3 Sensitivity to accuracy of the galaxy ellipticity distribution

A remaining concern is that the recovered ellipticity distribution in the simulations
does not match precisely those from the KiDS-450 observations. This may indicate
either that the intrinsic ellipticity distribution in the simulations is not the same as
in the real Universe, or that some other observed property that is correlated with
ellipticity is biasing the distribution. Such a discrepancy in the ellipticity distribution
may result in a bias measured from the simulations which may not be applicable to the
observations (Melchior & Viola 2012; Viola et al. 2014). To quantify how our results
change for different input ellipticity distributions, we perform a further resampling
sensitivity analysis, similar to those done by Bruderer et al. (2015) and Hoekstra et al.
(2015), that investigates the effect of possible variations in the ellipticity distribution
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Figure 3.18: Multiplicative bias (left panel) and additive bias (right panel) for bins in input
ellipticity for the four tomographic resampled catalogues with 1σ uncertainties. A redder
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on the resampling calibration, in tomographic bins (§3.5).

We first quantify the sensitivity of the shear measurement to the input ellipticity
distribution, by binning the simulated galaxies according to their input ellipticity, ε s,
and computing the multiplicative and additive bias in each ellipticity bin. The results
are presented in Fig. 3.18 for the resampled catalogues for the four tomographic bins
(see §3.5). Thanks to the resampling, these catalogues have the same observed SNR
and resolution distributions as the KiDS-450 data in each tomographic bin. The
multiplicative bias depends only weakly on the intrinsic ellipticity for objects with low
ellipticities, although the biases differ between tomographic bins. For the additive bias
we observe a clear trend with ε s, but we note that the amplitude is low and we do
not, in any case, apply our simulated additive bias measurements directly to the data.
These findings are in line with the expectations from Viola et al. (2014) and show that
modest changes to the input ellipticity distribution should result in at most a percent
level effect on the overall multiplicative bias.

The results for the four tomographic bins shown in Fig. 3.18 indicate that the
sensitivity of the multiplicative bias to the adopted intrinsic ellipticity distribution is
small. Nonetheless, we aim to quantify this further by considering possible variations
of the input ellipticity distributions in the simulations. To do so, we follow a similar
method to that in §3.6.2, by applying additional weights to the catalogue entries as
a function of their input intrinsic ellipticity, and then computing the new, reweighted
bias. The difficulty in this approach is that there may be many possible variations of
the true ellipticity distribution that result in the same, or similar, measured ellipticity
distributions. So, although the principle of resampling is analogous to that done in
§3.6.2, here we follow a Monte-Carlo approach to the reweighting, in which we test
many possible variations of the true ellipticity distribution, only selecting those that
produce a match with the KiDS-450 data. As the input ellipticity is uncorrelated to
any other input galaxy property in the simulations, the new weight does not introduce
any further bias due to selection effects in our measurements. Here we focus on the
ellipticity distribution, but note that this method could be used for other, or multiple,
distributions, provided that the simulated volume is large enough. The steps for our
sensitivity analysis procedure are as follows:
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• We bin the lensfit weighted input ellipticity distribution in equally spaced bins
Ps

i (|ε|).

• For each input ellipticity bin we determine the corresponding observed ellipticity
distribution P̃out

i (|ε|).

• We assign a weight w̃i to each input ellipticity bin, resulting in a modification of
both the input and output ellipticity distributions.

In this way we can mimic image simulations with differing input ellipticity distri-
butions, without the need to create and analyse such simulations. For our analysis we
have chosen to use 50 bins in input ellipticity. The weights w̃i are chosen such that the
simulated output ellipticity distribution matches the observed ellipticity distribution
in the KiDS-450 data. The intrinsic ellipticity distribution in the Universe varies due
to cosmic variance, which limits the precision with which the bias can be determined
from our sensitivity analysis. An estimate for cosmic variance can be obtained from
the variation in the observed ellipticity distributions between the KiDS-450 patches.
We found that these variations are very similar to the Poisson errors on the observed
ellipticity distribution. When comparing the ellipticity distributions from simulations
and data we therefore assign Poisson errors to the latter.

Matching the observed and simulated ellipticity distributions can only be done reli-
ably if the full range of ellipticities found in the data is encompassed by the simulations.
In the course of performing the analysis, we found that the KiDS-450 data contain a
small fraction of galaxies with ε > 0.8, which are absent in the simulations (see the
inset in the lower left panel of Fig. 3.3). In the simulations, such high ellipticities are
caused either by measurement noise or by blending of galaxies with close neighbours.
To check whether the objects in the data are also caused by noise or blending, we
inspected HST images of the COSMOS field (Scoville et al. 2007) for which we also
have VST r-band data. To ensure a fair comparison, we restricted the comparison to
images in the F606W filter, which is similar to the r-band.

Unfortunately, the F606W imaging in the COSMOS field only covers 240 arcmin2,
resulting in a comparison sample of only about 100 galaxies. We found that 70%
of these objects were genuinely high-ellipticity, edge-on galaxies, while the rest were
either spurious detections or blended objects. The likely cause is that there exists a
distribution of the ratio of galaxy disk scale-heights to their scale-lengths (e.g. Un-
terborn & Ryden 2008), with a tail of galaxies having very thin disks, which are not
represented by the nominal ellipticity prior that we assume. Even though the com-
parison sample is small, this test suggests that the high-ellipticity tail of the lensfit
prior is not representative of the Universe in this regime. However, the sample is too
small to allow us to derive an updated ellipticity prior. Instead, to compensate this
incompleteness, we augment our catalogues with very elliptical objects. We created
and analysed additional simulations with 2000 galaxies per exposure, adopting a flat
input ellipticity distribution with 0.5≤ |ε| ≤0.95. All other properties of the simulations
remained unchanged from what has been described in §3.3. Note that the number den-
sity of these very elliptical galaxies does not reflect reality, but rather was chosen to
provide adequate information for the sensitivity analysis.

We use Monte Carlo Markov Chains (MCMCs) to sample the w̃i parameter space.
We found that convergence was slow, and the resulting input ellipticity distribution
very irregular and spiky if no priors on w̃i were imposed. This result is not physical,
and does not agree with our limited knowledge of the ellipticity distribution based on
high quality data, which indicates a much smoother distribution. To speed up the
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Figure 3.19: Results from the sensitivity analysis based on 0.5 ≤ ZB < 0.7 galaxies in the G15
patch of the KiDS DR3 data. The intrinsic ellipticity distribution in the resampled catalogue
in blue and the distribution which best fits the measured KiDS data and the grey band shows
the possible variations from the MCMC tests. To suppress the spiky nature of the best fit
we demanded smoother intrinsic ellipticity distribution, finding a strength of the smoothness
prior K = 500 to be adequate, as indicated at the top of the plot. The bottom row shows
how similar the observed ellipticity distribution is to the KiDS-450 data for the resampled
catalogue in blue and the best fit in black. The textboxes show the difference in multiplicative
(top box) and additive (bottom box) bias between the blue and black distribution. The biases
change with K, but all biases are much smaller than the 1% required for cosmic shear.

MCMC runs in finding a more physical solution, we applied a prior to regularise the
result. The form of the prior is

π(K, |ε s|) := K ×
∣∣∣∣∣1 − Pi+1(|ε s|)

Pi(|ε s|)

∣∣∣∣∣ |ε s|i

|ε s|i+1
, (3.14)

which penalises a spiky distribution where subsequent bins have very different values.
The extra factor of |ε s|i/|ε

s|i+1 lessens the effect of the prior near |ε| = 0, where the
distribution turns over. The strength of the prior K should be chosen so that the prior
does not dominate. We explored several values of K and found a good compromise
for K = 500; this choice produced physical distributions in a reasonable amount of
computing time.

The third tomographic bin (0.5 < zB ≤ 0.7) shows the largest discrepancy between
the observed ellipticity distribution in the simulations and KiDS DR3 data and thus
serves as a worst case scenario for the sensitivity analysis. We use the ellipticity
distribution from patch G15 in the sensitivity analysis and use the 1σ variation between
the patches as the error on the distribution. The results of our sensitivity analysis
and the effect of the smoothing prior are shown in Fig. 3.19, which shows the input
ellipticity distribution of the SCHOol simulations P(|εs|) in blue and the best fit model∑

i w̃iP(|εs|)i from the MCMC results in black. The MCMC chains converged for every
run, so that the observed ellipticity distribution was identical to the KiDS ellipticity
distribution within the errorbars.

The MCMC framework was able to match the simulations to the data. For the
family of modified ellipticity distributions from the MCMC, we compute the standard
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deviation in input ellipticity for each bin and show this as the grey band. From
left to right the strength of the smoothness prior increases, resulting in smoother
distributions. Importantly, the unphysical spike around |ε s| = 0.75 is no longer present
in this case. For 1% of the ∼ 2 × 107 MCMC solutions we computed the shear bias
from the corresponding (observed) ellipticity distributions. The difference between the
average bias and that measured from the resampled catalogue is shown in the boxes
and the error is the 1σ spread of all the computed biases. The difference in ellipticity
distribution thus results in only a small change in bias. The biases also change very
little as a function of the applied smoothing; the change in multiplicative and additive
bias never exceeds 0.3% and 0.01%. These tests show that the shear measurement is
quite insensitive to changes in the intrinsic ellipticity distribution and any reasonable
variations are within the 1% errors. The discrepancy between the observed ellipticity
distribution in the simulations and the data is therefore not a concern for the cosmic
shear analysis.

3.7 Conclusions

The large areas covered by ongoing and future imaging surveys dramatically reduce
the statistical uncertainties in the measurement of the alignments of galaxies caused
by lensing by intervening large-scale structure. This increase in precision needs to be
matched by a corresponding improvement in the accuracy with which weak lensing
shear can be measured. This can only be achieved by evaluating the performance of
shear measurement algorithms on realistic mock data (e.g. Miller et al. 2013; Hoekstra
et al. 2015). In this paper we use extensive image simulations created using GalSim
(Rowe et al. 2015), to test and calibrate the lensfit algorithm used by Hildebrandt
et al. (2016b) to analyse 450 deg2 (360.3 deg2 after accounting for masking) of KiDS-
450 data. This large survey area implies that the multiplicative bias needs to be
determined to better than about 1 percent.

We have shown that the average multiplicative bias over the simulation volume
using the self-calibrating lensfit algorithm is ∼ 2%, and the average additive bias is
∼ 5× 10−4. Although this is close to the required level of accuracy, a final correction is
nonetheless required. We have investigated the behaviour of the bias as a function of
observed properties of galaxies, such as SNR and size. The measured bias as a func-
tion of galaxy properties is a combination of measurement bias, caused by noise, and
selection bias, caused by the inability to measure small galaxies and by the weighting
of galaxies in the shear measurement process. While it is possible to disentangle those
effects in the simulations, it is not possible to do the same in the data. In our analysis,
we find that selection bias is at least as important as measurement bias, which implies
that even shear measurement methods that are free from, or that perfectly correct for,
noise bias may still show shear biases that are present at the percent level or larger.

We have successfully derived a calibration relation that corrects for the dependence
of bias on galaxy properties, but we have also shown that this calibration itself may be
biased by its use of noisy, measured galaxy properties rather than their unobservable
true properties, and these ‘calibration bias’ effects need to be assessed when deriving
any new shear calibration. We have tested the accuracy of the application of the
calibration relation, including the effect of calibration bias, by a number of resampling
tests that were designed to test the accuracy in the four tomographic bins used in
the cosmic shear analysis presented by Hildebrandt et al. (2016b). Although there
are sub-percent uncertainties in the calibrations arising from the differences between
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the data and the simulations, and from the effects of calibration bias, the accuracy of
the calibration appears to satisfy the specification required for cosmic shear analysis
of the KiDS-450 data set, at 1 percent accuracy of multiplicative bias. In deriving
cosmological constraints it is therefore necessary to marginalise over the uncertainty
in the shear bias employing a gaussian prior with σm = 0.01. As the SNR and R
distributions in the four tomographic bins are very broad, the shear biases derived from
the simulations described in this paper are strongly correlated among tomographic
bins. For this reason we conservatively recommend to assume a correlation coefficient
of r=0.99 between all bins.
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images of faint galaxies and the shear recovered from a population of galaxies made
with synthetic bulge-plus-disk models whose distributions of sizes and shapes match
the HST galaxies.

First, a simulation was created using postage stamps of high resolution HST galax-
ies, with i-band magnitude between 20 and 24.5, which are available in GalSim. Each
galaxy was sheared and convolved with the median KiDS PSF (FWHM=0.64′′, Moffat
β=3.14, ε1=0.08, ε2=-0.05) and rendered to a pixel scale of 0.214′′. The flux is the same
for each object and set high enough with respect to the noise level, so that noise bias
in the measurements is small. The simulated images consist of a grid of approximately
50 000 isolated galaxies, so that blended galaxy isophotes do not influence the shape
measurement. As was done for the fiducial simulations (see §3.3), four rotations of
each galaxy were used to reduce shape noise and the same 8 shear values were tested.
Given the high SNR of the galaxies and the use of four rotations, the simulated volume
is large enough to achieve per mille precision in the shear bias determination.

SExtractor was run on the simulated images with the same configuration used
in the analysis of the KiDS-450 data. About 1% of the HST galaxies were incorrectly
segmented and flagged by lensfit in the subsequent analysis as blended. We visually
inspected several postage stamps and indeed confirmed that these HST images showed
unphysical features, such as a large number of negative pixels, creating problems for
SExtractor. Furthermore another ∼ 1% of objects were flagged by lensfit and
assigned a weight of zero. In order to retain the rotational symmetry we used in the
subsequent analysis only galaxies for which all the 32 renditions (4 rotations time 8
shears) have a weight larger than zero and are unflagged, as would be the case in a
survey of real galaxies.

We then reran the same simulation without applying the shear to the galaxies.
This was necessary to determine the distributions of intrinsic galaxy properties for
the input for the synthetic galaxy simulation. The modulus of the intrinsic ellipticity
of each HST galaxy was obtained by averaging the modulus of the measured lensfit
ellipticity of the four rotations. As before, only if all four rotations were properly
detected and had non-zero weight, were they included in the average. Similarly we
obtained the intrinsic scale lengths and bulge fractions.

The comparison set of simulations were created using synthetic galaxies, adopting
a bulge plus disk model. The modulus of the intrinsic ellipticity, the size and the bulge
fraction were drawn from the measured distribution in the real galaxy simulation. The
intrinsic position angle of galaxies was randomly assigned from a uniform distribution.
This procedure ensures that the distributions between the first and the second set of
simulations are the same and it also removes any bias in the lensfit measurements
correlated with the shear. These galaxies were sheared, in the same way as it was
done for the HST galaxy simulations, and convolved with the same PSF.

Finally, the same analysis was run as described in Section §3.4 on the two cat-
alogues and we compared the average biases. The HST galaxies showed an average
multiplicative bias m = −0.002 ± 0.002, while the bulge-plus-disk galaxy simulations
the average bias was m = −0.001 ± 0.002. We conclude that there is no evidence of
a lensfit multiplicative bias larger than couple of permille. This is in line with the
previous results achieved on the GREAT3 benchmark simulations.


