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2
Moment-based weak lensing

measurements with subpercent
noise bias

Current optical imaging surveys for cosmology cover large areas of sky. Exploiting
the statistical power of these surveys for weak lensing measurements requires shape
measurement methods with subpercent systematic errors.
We introduce a new weak lensing shear measurement algorithm, shear nulling after
PSF Gaussianisation (SNAPG), designed to avoid the noise biases that affect most
other methods.
SNAPG operates on images that have been convolved with a kernel that renders the
point spread function (PSF) a circular Gaussian, and uses weighted second moments
of the sources. The response of such second moments to a shear of the pre-seeing
galaxy image can be predicted analytically, allowing us to construct a shear nulling
scheme that finds the shear parameters for which the observed galaxies are consistent
with an unsheared, isotropically oriented population of sources. The inverse of this
nulling shear is then an estimate of the gravitational lensing shear.
We identify the uncertainty of the estimated centre of each galaxy as the source of
noise bias, and incorporate an approximate estimate of the centroid covariance into
the scheme. We test the method on extensive suites of simulated galaxies of increasing
complexity, and find that it is capable of shear measurements with multiplicative bias
below 0.5 percent.

R. Herbonnet, A. Buddendiek, K. Kuijken
A&A, Volume 599, id.A73, 13pp. (2017)

17



18 2. Shear nulling after PSF Gaussianisation

2.1 Introduction

The effect that masses can act as lenses and bend the path of light rays is called
gravitational lensing. In the weak lensing regime first considered by Tyson et al. (1990)
we statistically measure the slight distortion of the shapes of background galaxies by
foreground lenses, called the shear. The subtle effects of weak gravitational lensing on
galaxy shapes are an immensely powerful tool in observational astronomy. Amongst
other applications, weak lensing has been an invaluable tool for cosmology through
measurements of shear-shear correlations, called cosmic shear, which are connected to
the dark matter power spectrum. After its first detection 15 years ago (Bacon et al.
2000; Van Waerbeke et al. 2001; Wittman et al. 2000; Kaiser et al. 2000) cosmic shear
has been extensively used in cosmological studies (e.g. Kilbinger 2015; Hildebrandt
et al. 2016; Jarvis et al. 2016).

Currently, large (>1000 deg2) cosmic shear surveys are ongoing, such as the Kilo
Degree Survey (de Jong et al. 2013), the Dark Energy Survey (The Dark Energy
Survey Collaboration 2005), and Hyper Suprime-Cam (Miyazaki et al. 2012); more
hemisphere-sized missions are planned, such as LSST (Ivezic et al. 2008), WFIRST
(Spergel et al. 2015), and Euclid (Laureijs et al. 2011). These surveys will observe un-
precedented numbers of galaxies, pushing down statistical errors, and hence requiring
percent (for ongoing missions) to subpercent level accuracies (for future missions) on
the measured galaxy shapes.

In order to conduct weak lensing studies a crucial point is to measure the shapes
of faint background galaxies with high accuracy as well as high precision in the face
of inevitable noise, finite image resolution, and pixel effects. The first weak lensing
techniques used the moments of the galaxy’s image to estimate its shape and are
known as moment-based methods (e.g. Kaiser 1992; Kaiser et al. 1995 (hereafter
KSB); Rhodes et al. 2000). These techniques need to use a weighting function with
which to cut off the moment integrals so that the moments are not dominated by noise.
Having to correct for the effect of the weight function and the PSF convolution are the
main challenges for this class of techniques. The widely used KSB method employs an
approximate deconvolution scheme, which assumes that the PSF is nearly Gaussian.
Newer moment-based methods have improved upon the PSF correction (Melchior et al.
2011), and there have been methods that change the PSF to make the measurement
more exact (as explained in Hirata & Seljak 2003 and used by Mandelbaum et al.
2013; Okura & Futamase 2015, 2016).

An alternative class of techniques relies on models of galaxies which are convolved
with a PSF and then fit to the galaxy image and are hence known as model-fitting
methods (e.g. Kuijken 1999; Miller et al. 2013; Zuntz et al. 2013). These techniques
have the benefit of an accurate treatment of the PSF, but in return require realistic
models of galaxies. The model of a galaxy is usually a parametric model (e.g. a
linear combination of Sersic profiles) and if it does not resemble the intrinsic galaxy,
the results can be biased (Bernstein 2010; Voigt & Bridle 2010). A similar class of
techniques, known as shapelets methods (Bernstein & Jarvis 2002; Refregier & Bacon
2003; Kuijken 2006), use a set of basis functions which can, in theory, model any galaxy
morphology by invoking ever higher order functions. However, in practice the order
has to be truncated as the higher functions are dominated by noise, again leading to an
unrepresentative galaxy model. In addition, noise in the galaxy image biases all shape
measurement methods due to the non-linear dependence of the galaxy’s ellipticity (the
usual description of its shape) on the surface brightness (Refregier et al. 2012; Melchior
& Viola 2012; Viola et al. 2014).
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In order to quantify these uncertainties and to find ways of calibrating the differ-
ent techniques, the weak lensing community started shape measurement challenges in
which teams competed by using their methods to obtain the most unbiased shear esti-
mate. This started with a general census and benchmark tests in the STEP challenges
(Heymans et al. 2006; Massey et al. 2007) and continued with GREAT challenges (Bri-
dle et al. 2010; Kitching et al. 2012; Mandelbaum et al. 2015), which focused on the
understanding of different sources of bias. After the most recent GREAT3 challenge
it appears that the development in shape measurement algorithms is slowly reaching
the goals set by ongoing cosmic shear surveys.

The recent improvement in accuracy was mainly due to the advanced understand-
ing of noise bias. Several authors have introduced correction schemes into their shape
measurement methods which are able remove a large portion of the noise bias (Man-
delbaum et al. 2015). An alternative route is to avoid biased shear estimators by using
estimators with a linear response to the pixel data instead of traditional non-linear
variables, such as the ellipticity. Several authors have used the second moments of the
galaxy’s image brightness to estimate the shear (Zhang & Komatsu 2011; Bernstein
& Armstrong 2014; Viola et al. 2014). Recently, Bernstein et al. (2016) have reported
that their Bayesian method based on moments is able to reach subpercent accuracy
even with low signal-to-noise (S/N) galaxies. However, the drawback of any Bayesian
analysis is the requirement of accurate priors, for which external deep observations
would be required. This requirement also means that there is no shear estimate for
single galaxies, as then knowledge of the intrinsic galaxy profile would be needed, but
only a shear estimate for an ensemble of galaxies.

In this paper we propose a novel shape measurement method which may help to
reach the ambitious goals of future cosmic shear experiments. Shear nulling after PSF
Gaussianisation (SNAPG) is a moment-based method based on a circular Gaussian
PSF and weight function, and requires the images to be preprocessed with a PSF
Gaussianisation routine. For such galaxies we have an analytic relation between the
moments of the galaxy and the shear. Shearing a population of galaxies introduces
anisotropy to their ellipticity distribution. Using the analytic expressions, SNAPG
reintroduces isotropy to this population by applying a nulling shear to the weighted
second moments. The inverse of the nulling shear is then the shear estimate. Such
a nulling technique was first advocated by Bernstein & Jarvis (2002). We propose
an analytic correction to mitigate the bias due to centroid errors (Bernstein & Jarvis
2002), which is directly computed from the galaxy image.

SNAPG is similar to the Bernstein et al. (2016) method, but instead of a Bayesian
framework it uses a nulling technique extract the shear from the second moments of
a population of galaxies. It does not require a prior on the intrinsic moments of the
galaxy population, but instead relies on the more general requirement that galaxy
ellipticities are isotropic. Our novel method thus only produces a shear value for an
ensemble of galaxies, but has the benefit that no auxiliary data is needed.

In Sect. 2.2 we introduce the SNAPG concept and a correction for the bias due to
centroid errors. Section 2.3 describes the image simulations we use to test SNAPG,
and in Sect. 2.4 and Sect. 2.5 we present the results of the test runs. This is followed
by a detailed discussion in Sect. 2.6, and a summary in Sect. 2.7.
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2.2 Theory

2.2.1 Principles of SNAPG

Our novel method combines elements from a number of shear measurement methods.
It follows KSB and Luppino & Kaiser (1997) in its use of Gaussian-weighted second
moments, and uses a nulling technique to estimate the shear (Bernstein & Jarvis 2002).
We explain the basics of moment-based methods, such as KSB and Luppino & Kaiser
(1997) in Sec. 2.2.2.

Because the ellipticities used in KSB are non-linear functions of the pixel val-
ues, pixel noise makes them biased estimators. In SNAPG we work with the second
moments of galaxies instead, which even in the presence of pixel noise are unbiased
estimators as long as the pixel noise in the image is unbiased (as has been previ-
ously explored by Zhang & Komatsu 2011 and Viola et al. 2014). For mathematical
tractability we require that the PSF in the images is Gaussian and circular; this al-
lows us to work out analytically how the weighted moments respond to any pre-seeing
shear (Sec. 2.2.3). A similar exercise was done by Rhodes et al. (2000), but here we
do not make any simplifying assumptions and find an expression which is valid for
all values of the gravitational shear. Note that we do not try to find the intrinsic
unweighted moments as in Luppino & Kaiser (1997); instead, we are only interested
in the response of the weighted moments to a shear, similar to Bernstein et al. (2016).

The centroid of a source needs to be chosen before the second moments can be
calculated. As this position is determined from noisy data, there is a noise dependent
shift in the centroid. We show how to incorporate the uncertainty on the centroid
of the galaxy into the shear estimator in the approximation where this uncertainty is
distributed as a bivariate Gaussian in Sect. 2.2.4.

The response of the weighted second moments to shear can be used to find the
inverse shear which counteracts the gravitational lensing shear. Hence, given the true
shear, we can use the inverse shear to compute the second moments of the galaxy
before it was lensed. As the true gravitational lensing shear is unknown, we cannot
use each galaxy as an independent shear estimator. Rather, we use an ensemble of
sheared galaxies as a probe of systematic alignments and calculate the nulling shear
that needs to be applied to this ensemble to render their intrinsic ellipticity distribution
isotropic. The nulling shear is then the opposite to the true shear affecting these
galaxies (Sec. 2.2.5). Our approach differs from the approach of Viola et al. (2014)
and Zhang & Komatsu (2011), who average the numerator and denominator of the
ellipticity separately to avoid introducing biases. In SNAPG only the numerator of
the ellipticity is used as a measure of the isotropy of the ellipticity distribution, and
its response to shear calculated in order to null the signal.

Because real PSFs are not circular Gaussians, SNAPG can only be applied to
images that have been convolved with a suitable Gaussianisation kernel (Sec. 2.2.6).
Such a convolution is a linear operation on the pixels, so does not introduce noise bias
in the second moments. However, it does correlate the pixel noise, the effect of which
can be tracked and corrected for.

2.2.2 Lensing basics

Here we introduce the basic expressions regarding general shear estimation via the
ellipticity of a galaxy as we refer to them often throughout this section. For a more
detailed weak lensing review see Bartelmann & Schneider (2001).
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A gravitational potential changes the path of light rays moving through it, thereby
changing the observed direction of incoming light rays. For extended luminous objects
different light rays can be deflected differently and thus we will observe a distorted
image of a distant object. To the first order this distortion consists of a stretch
(shear) and a magnification (convergence). The deflection angle of light rays from the
source depends on the gradient of a suitably defined lensing potential, Ψ. The relation
between the position of the source βββ and the position of the observed image θθθ is known
as the lens equation

βββ = θθθ − ∇Ψ(θθθ). (2.1)

Given that the deflection angles in weak lensing are small, the distortion can be ex-
pressed in terms of a Jacobian matrix

A =
∂βi

∂θ j
=

(
δi j −

∂2Ψ(θθθ)
∂θi∂θ j

)
=

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
≡

1
1 − κ

(
1 − g1 −g2
−g2 1 + g1

)
. (2.2)

The parameters

κ =
1
2

∂2Ψ(θθθ)
∂θ2

1

+
∂2Ψ(θθθ)
∂θ2

2

 , (2.3)

γ1 =
1
2

∂2Ψ(θθθ)
∂θ2

1

−
∂2Ψ(θθθ)
∂θ2

2

 ,
γ2 =

∂2Ψ(θθθ)
∂θ1∂θ2

are the gravitational lensing convergence κ and the two components of the shear γ1,
γ2, respectively. Without information on the intrinsic size of the lensed source, only
the reduced shears g1, g2 can be measured.

The shear affects a galaxy’s polarisation according to

χi =
χ − 2g + g2χ∗

1 + |g|2 − 2<(gχ∗)
, (2.4)

where χ and χi are the observed and the intrinsic, unlensed polarisation. As the in-
trinsic shape of a galaxy cannot be measured and the weak lensing shear is very small,
the shear has to be statistically obtained from a large number of galaxies experienc-
ing the same distortion. Assuming that galaxies are randomly oriented, the intrinsic
polarisations should average out, 〈χi〉 = 0.

Moment-based methods construct the polarisation of an object from the second
moments of image brightness Qi j

χ =
Q11 − Q22 + 2iQ12

Q11 + Q22
. (2.5)

These moments are defined as the noiseless unweighted moments on the intrinsic
galaxy image Ii(x),

Qi
i j =

∫
dx Ii(x)xix jW(x), (2.6)
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with the weight function W(x) = 1. However, in practice a galaxy is observed convolved
with a PSF P(x),

Io(x) =

∫
dx′ Ii(x′)P(x − x′), (2.7)

and the weight function W(x) that goes to zero at large x is required for the moments
not to be dominated by the noise on the image. The aim of moment-based methods is
then to estimate the intrinsic polarisations by correcting for the weight function and
PSF.

2.2.3 Effect of pre-seeing shear on observed Gauss-weighted moments

In the case when the PSF is Gaussian, we can reconstruct what the second moments
would have been if the galaxy had been sheared.

The weighted second moments of the observed image are

Qo
i j =

∫
dx Io(x)xix jW(x) (2.8)

=

∫ ∫
dx dx′ Ii(x′)P(x − x′)xix jW(x),

with W(x) a weight function that depends only on |x|. The order of integration can be
swapped and Eq. 2.8 rewritten as

Qo
i j =

∫
dx′ Ii(x′)

[∫
dx P(x − x′)xix jW(x)

]
, (2.9)

and so relate the weighted second moments directly to the intrinsic galaxy shape as
an integral weighted by the expression in square brackets (which depends only on the
weight function and PSF).

A gravitationally lensed source has a distorted image: the intrinsic image Ii(x) is
transformed to

IA(x) = Ii(Ax) (2.10)

by the distortion matrix A.
In order to measure the gravitational shear, we need to know the weighted second

moments that we would observe if the galaxy had been distorted by a distortion matrix
A before PSF convolution; these can be written as

QA
i j =

∫
dx′′ IA(x′′)

[∫
dx P(x − x′′)xix jW(x)

]
(2.11)

=

∫
dx′

| det A|
Ii(x′)

×

[∫
dx P(x − A−1x′)xix jW(x)

]
by means of Eq. 2.10 and the transformation x′ = Ax′′. We now show how the moments
QA

i j of the sheared source can be derived from the observed, PSF-convolved image Io(x),
by constructing a new weight function WA

i j (x) which satisfies, for arbitrary x′,∫
dx
| det A|

P(x − A−1x′)xix jW(x) (2.12)

=

∫
dxP(x − x′)WA

i j (x).
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It is easy to see from Eq. 2.12 that integrating the observed (PSF-convolved but un-
sheared) image times the weight function WA

i j will give the moments QA
i j. Equation 2.12

shows that WA
i j can be constructed from the original weight function W and the PSF

P by the following sequence of operations:

1. Convolving xix jW with the PSF;

2. Distorting the result of the previous step with distortion matrix A and divide by
| det A|;

3. Deconvolving the result of the previous step by the PSF.

This recipe is valid as long as the deconvolution in the final step is well defined.
We do not attempt to solve the general problem, but concentrate on the simpler

case where both the PSF P and the weight function W are round Gaussians:

P(x) =
1

2πp2 e−|x|
2/2p2

(2.13)

and

W(x) = e−|x|
2/2w2

. (2.14)

In Appendix 2.A we derive an expression (Eq. 2.34) for the convolution of G1 with
xix jG2, where G1 and G2 are Gaussians of arbitrary covariance matrices P and V
respectively. By substituting V = w21, P = p21, and y = A−1x′ in Eq. 2.34, we can
write the left-hand side of Eq. 2.12 as∫

dx
| det A|

P(x − A−1x′)xix jW(x) (2.15)

=
w4

(w2 + p2)2

e−
1
2 |A

−1x′ |2/(w2+p2)

| det A|

×

[
p2δi j +

w2

w2 + p2

(
A−1x′

)
i

(
A−1x′

)
j

]
.

The final step is now to deconvolve this expression by the PSF in order to obtain
an expression for the weight function WA

i j that satisfies Eq. 2.12. We first calculate
the result of convolving with a general Gaussian PSF of covariance matrix P; the
deconvolution we seek is then obtained by setting P = −p21 (note the sign). The
first term (involving δi j) is straightforward: convolving two Gaussians results in a new
Gaussian with covariance matrix equal to the sum. The second term can be calculated
using the result of Eq. 2.34 in Appendix 2.A by setting the matrix V defined there to
V = (w2 + p2)A2.

After some work we find

WA
i j (x) = w4 e−

1
2 xT B−1x

| det B| 12
(2.16)

×

[
δi j + w2

((
AB−1x

)
i

(
AB−1x

)
j
−

(
AB−1A

)
i j

)]
with

B = (w2 + p2)A2 − p21. (2.17)
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The weight function WA
i j is only useful in practice if it tends to zero at large |x|.

This is the case as long as the distortions are small enough so that both eigenvalues
of B are positive, which is true when

κ + γ < 1 −
p√

w2 + p2
. (2.18)

As long as the weight function is wider than the PSF (w > p, a reasonable choice if
one wants to avoid unnecessarily noisy measurements), this means a useful WA

i j can be

constructed for κ + γ at least up to 0.3. We show the form of the weight function WA
i j

for a grid of (g1, g2, κ = 0) in Fig. 2.1.

2.2.4 Bias as a consequence of centroiding errors

Applying the filter WA
i j in Eq. 2.16 to an image yields unbiased estimates for the post-

seeing weighted second moments of the source about x = 0 as long as the noise on each
pixel is unbiased. However, in reality the true centre of the source is unknown, and
must be estimated from the image itself. The associated scatter in the centroid biases
the second moments. In this section we quantify that bias.

Suppose that xc is a noisy estimate of the centroid of the observed image Io. Then,
using this centroid our estimate for QA

i j is

Q̃A
i j =

∫
dx Io(x)WA

i j (x − xc). (2.19)

If the error distribution of the centroids is f (xc) then the expectation value of Q̃A
i j is〈

Q̃A
i j

〉
=

∫
dxc f (xc)Q̃A

i j (2.20)

=

∫
dx Io(x)

∫
dxc f (xc)WA

i j (x − xc),

i.e. the weight function that determines Q̃A
i j is the original weight function WA

i j con-
volved with the centroid error distribution f . Hence, conversely, an unbiased estimate
of QA

i j is obtained by using a weight function ŴA
i j obtained by deconvolving WA

i j by the
centroid error distribution f . We assume that f is Gaussian, of covariance C. Remem-
bering that expression 2.16 for WA

i j was itself obtained by deconvolving Eq. 2.15 by

the PSF, we see that ŴA
i j is the deconvolution of Eq. 2.15 by P⊗ f , i.e. by a Gaussian

of covariance matrix p21 + C. As noted under Eq. 2.17, this deconvolution is simply
accomplished by using Eq. 2.16 with a modified B matrix

B̂ = (w2 + p2)A2 − p21 − C. (2.21)

It remains for us to quantify the covariance matrix C of the centroid error for a
given source. This will depend on the recipe used to determine the centre.

We centre each source by finding the peak of the correlation of its (noisy) image
In(x) with a suitable centring kernel f , equivalent to finding the optimum positional
match between In and f . The centroid c found this way satisfies

0 =
∂

∂ci

∫
In(x) f (x − c)dx (2.22)

=

∫
In(x)( f,i(x) − c j f,i j(x) + ...)dx
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Figure 2.1: Example shear filter functions WA
i j , for filter and PSF size w = 3, p = 2, (κ = 0).

Integrating an image multiplied with the filter function for a particular shear (g1, g2) yields
the weighted second moments the image would have had if it had been sheared by that
amount before seeing convolution. The central box is 25 units on a side, and the dashed line
indicates the maximum shear value that can be applied for the given w and p (see Eq. 2.18).
Red is positive, blue is negative. Left: Filters corresponding to Qxx − Qyy. Right: Filters
corresponding to Qxy.
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where we used a Taylor expansion on f about c = 0, assumed to be the true centre of
our source. To derive the noise properties of c we first separate In(x) into the noise-free
observed image Io(x) and a noise field ∆(x), and obtain the first-order relation between
∆ and c:

c j

∫
Io(x) f,i jdx =

∫
∆(x) f,i(x)dx. (2.23)

To calculate the covariance ckcl we define Fi j as the integral on the left-hand side of
Eq. 2.23, and we assume the background-limited case in which pixel noise is stationary,
of constant covariance matrix N(x − x′) across a source image. Squaring Eq. 2.23 and
averaging over all possible noise realisations then yields

ckclFikF jl =

∫ ∫
f,i(x) f, j(x′)N(x − x′)dxdx′ ≡ Hi j, (2.24)

and hence the covariance matrix C needed in Eq. 2.21 is given by

C = F−1HF−1. (2.25)

Here, H depends only on the kernel function f and the pixel noise properties N, and
F can be estimated from the noisy image In. If the kernel f is circular and the noise
covariance matrix isotropic N(x − x′) = σ2

nδ(x − x′), where σn is the root mean square
of the noise background, then H becomes a scalar.

A convenient choice is a Gaussian

f (x) = e−|x|
2/2a2

(2.26)

for which

Hi j =
πσ2

nδi j

2
(2.27)

and

f,i j(x) =

(
xix j

a4 −
δi j

a2

)
e−|x|

2/2a2
. (2.28)

2.2.5 SNAPG shear nulling estimator

In the previous sections we constructed the filter WA
i j which, when applied to an ob-

served Gaussian-PSF smeared image, yields the Gauss-weighted second moments QA
i j

that would have been observed (with the same PSF) had the galaxy been distorted
by distortion matrix A. We have also quantified the noise bias on QA

i j due to cen-

troiding errors, and constructed a modified filter ŴA
i j that compensates for it. In what

follows we will drop the “hat” notation and assume that the centroid error correction
is applied.

The weight function WA
i j can be used to construct a shear estimator. If a galaxy is

sheared by some known distortion matrix A, then we can use the inverse of A to find the
intrinsic second moments of the galaxy. For a large ensemble of galaxies their combined
intrinsic ellipticities (or equivalently their Stokes parameters) average out to zero.
Then the search is for the distortion matrix A which can null the Stokes parameters
(QA

11 − QA
22, 2QA

12) of a sheared population of galaxies. The inverse of that distortion
matrix is a good estimator of the shear those galaxies experience. To efficiently search
for the distortion matrix we use a nulling scheme similar to one already used in shape
measurements (Bernstein & Jarvis 2002). In practice, a trial distortion matrix A is
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chosen and the corresponding weight function WA
i j is computed (see Fig. 2.1), with

which the Stokes parameters for the ensemble of galaxies are calculated. Based on
the (an)isotropy of the Stokes parameters a new distortion matrix is chosen, and the
previous steps are repeated to reassess the isotropy. This procedure converges in
roughly four trials, after which the inverse of the distortion matrix is taken as the
shear estimate.

Because galaxies have a wide range of brightness, the Stokes parameters of a galaxy
population have a large variance. This translates into a large variance in the nulling
shear and increasing precision would require large numbers of galaxies. Alternatively,
the moments could be weighted by flux or size to reduce the variance, but this would
introduce a bias in the shear. In our current tests such a weight is not required, but
we discuss possible solutions for future work in Sec. 2.6.5.

2.2.6 PSF Gaussianisation

As indicated in the beginning of Sec. 2.2.3, SNAPG relies on the assumption of a
circular Gaussian PSF. Such a PSF is never present in observational data and thus
we need to transform the actual observed PSF into the required PSF. We employ
a Gaussianisation process which creates a circular Gaussian PSF by convolving the
observed PSF with an appropriate kernel.

Gaussianisation starts by creating a shapelets model of the PSF. Shapelets are a
set of basis functions of Gauss-Hermite polynomials, which can be linearly combined
to model astronomical objects (Refregier 2003). Convolution in shapelet space is a
straightforward procedure, making shapelets an ideal basis for the Gaussianisation
process. We use the shapelet implementation of Kuijken (2006) to create a shapelet
model of the PSF. In practice, bright stars can be used to obtain a model of the PSF.
A best fit circular Gaussian of the shapelets model of the PSF is determined. Then
a convolution kernel is found that convolves the PSF into the best fit Gaussian. The
resulting kernel is applied to the whole image to create galaxies with circular Gaussian
PSFs. See Kuijken et al. (2015) for more detail on the process of PSF Gaussianisation.

It is worth noting that this procedure is different from the one presented by Hirata
& Seljak (2003). They assume a Gaussian form for the intrinsic shape of the galaxy
when calculating the corrections for PSF non-Gaussianity, whereas our procedure is
valid for any galaxy morphology. However, it does rely on well-sampled data and was
designed with only ground-based PSFs in mind. It is unclear how the procedure would
perform for diffraction-limited space telescopes.

The convolution mixes information from neighbouring pixels and hence introduces
a correlation between the noise on different pixel values. The resulting noise covariance
matrix N(x− x′) is given by the original image’s pixel variance, multiplied by the auto-
correlation function of the convolution kernel. It is important to propagate this noise
covariance into the centroid error estimate (Eq. 2.24).

2.3 Image simulations

To test the performance of SNAPG we create simulated images of galaxies with known
applied shear. Following the image simulations of the GREAT challenges, we create a
grid of isolated galaxies on postage stamps. This approach gives us a clean test of the
performance of SNAPG without introducing errors related to blended galaxy isophotes
(see Hoekstra et al. 2015 for a discussion on how blends affect shear measurements).
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Table 2.1: Overview and specifications of all simulated images used to test the performance
of SNAPG.

Set PSF Galaxy type
Well resolved Gaussian Exponential
Barely resolved Gaussian Exponential
GREAT08 RNK Gaussianised Moffat Exponential or de Vaucouleurs
GREAT08 LNK Gaussianised Moffat Exponential or de Vaucouleurs

Set PSF HLR Galaxy HLR S/N
Well resolved 1.76 pixels 2.5 pixels ∼5 - 100
Barely resolved 1.76 pixels 1.5 pixels ∼5 - 100
GREAT08 RNK 1.72 pixels 2.1 or 10 pixels ∼200
GREAT08 LNK 1.72 pixels 2.1 or 10 pixels ∼20

The images of the GREAT challenges do not have circular Gaussian PSFs, so for a
clean test of the SNAPG framework we use GalSim (Rowe et al. 2015) to create our
own image simulations with perfect circular Gaussian PSFs.

Our simulated galaxy images are a grid of 100 x 100 galaxies, all with exponential
profiles of the same size. The grid of postage stamps have a single galaxy randomly
offset from the centre of the stamp. The postage stamp is large enough to avoid any
bias due to truncation of the surface brightness profile. The half light radius (HLR)
of the galaxies is 2.5 pixels. The flux of all galaxies is the same, so that when noise is
added all galaxies will have the same S/N. The modulus of the ellipticity of a galaxy
is randomly drawn from a Rayleigh distribution of width 0.25, cut off at 0.6 to avoid
artificial truncation by the edge of the postage stamp. The position angle of the galaxy
is taken from a random uniform distribution between 0 and 180 degrees. The galaxy
models are convolved with a Gaussian PSF with a half light radius of 1.76 pixels. The
size of the galaxies is larger than the size of the PSF, so we call this set of images the
well resolved sample. Each image has a constant shear applied to all 10000 galaxies,
where the shear is taken from a grid of (−0.04,−0.035,−0.03, ..., 0.04) for each shear
component separately, resulting in 289 different g1, g2 pairs.

We also create a similar set of images where the galaxy half light radius is set to
1.5 pixels. The half light radius of the Gaussian PSF is 1.76 pixels, so that the PSF is
larger than the galaxy. We call this set of images the barely resolved sample. Fluxes
are fixed and the ellipticity is sampled in the same way as described above. Here too,
constant shears are applied to all galaxies on an image, and the shear is taken from
the same grid.

These two suites of image simulations contain a total of 5.78 · 106 galaxies. These
galaxy images do not contain any noise, instead Gaussian noise is added as required
for each test. Each set represents a different target for shape measurement. The
well resolved images present our fiducial dataset as the galaxy shapes are not badly
affected by the PSF and provide us with a benchmark test of the performance of
SNAPG. The barely resolved images present a challenging sample, as galaxy shapes
are heavily influenced by pixelisation and severely blurred by the PSF. These galaxies
are a difficult target for most shape measurement methods and are sometimes cut from
the sample owing to the uncertainty in the galaxy shapes. However, faint small galaxies
are abundant in observations and their removal presents a serious loss of statistical
power. Having a shear measurement technique able to reliably measure such objects
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Figure 2.2: Examples of the simulated galaxies at different noise levels to help visualise
varying S/N levels, and well resolved in contrast to barely resolved galaxies. Top: Cut-out
of the well resolved sample of images for S/N ≈ 100 (left) and S/N ≈ 10 (right). Bottom:
Cut-out of the barely resolved sample of images for S/N ≈ 100 (left) and S/N ≈ 10 (right).
The shape of the barely resolved galaxies is rounded by the PSF and for low S/N both well
resolved and barely resolved galaxies the shapes are very much affected by noise.

will be a huge advantage for future weak lensing experiments.

As a visual aid to interpreting the different sets of simulated galaxy images we show
some of our mock galaxy images in Fig. 2.2. The upper images show the fiducial well
resolved galaxies and the lower images show galaxies from the challenging set of barely
resolved galaxies. The images have Gaussian noise added so that the mean S/N ≈ 100
(left panel) and S/N ≈ 10 (right panel), where S/N is defined as the FLUX/FLUXERR

measured by SExtractor on default settings (Bertin & Arnouts 1996). A summary of
the image properties can be found in Table 2.1.

The images of the GREAT08 challenge (Bridle et al. 2010) provide us with a
test of the PSF Gaussianisation. In addition, we can compare the performance of
SNAPG to other tested methods. We use the 15 LowNoise Known (LNK) and 300
RealNoise Known (RNK) sets of images from the challenge, where each image has
10000 isolated galaxies in postage stamps of 40 pixels across. All 10000 galaxies in
an image have the same shear applied to provide ample statistics. The galaxies are
either an exponential or a de Vaucouleurs profile with a fiducial S/N = 200 for LNK
and S/N ≈ 20 for RNK. The sizes of galaxies are set so that the PSF convolved galaxy
size is 1.4 times larger than the PSF size. We use the PSF Gaussianisation algorithm
explained in Sec. 2.2.6 to outfit the GREAT08 images with a circular Gaussian PSF.
The Gaussianisation algorithm is applied to PSF set0001, which is a Moffat profile
of full width half maximum 2.85 truncated at 5.7 pixels and ellipticity components
e1 = −0.019 and e2 = −0.007. The main properties of the GREAT08 images are
summarised in Table 2.1.
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2.4 Test runs

The new shear nulling method is coded in python and we apply it to the image sim-
ulations described in the previous section. The code returns the shear value gi that
nulls the average distortion of each 10,000-galaxy image. First we test the SNAPG
formalism, then the centroid bias correction formalism, and finally a full implemen-
tation of SNAPG. Throughout this section we use a=3 and w=3 for the widths of
the centroid and moment weight functions, respectively. As noted above, none of the
images contains noise. Instead, we add noise for each test as storing each noise re-
alisation presented storage problems. For every level of added noise we calculate the
mean signal-to-noise ratio (S/N) using SExtractor with default settings and defined
as FLUX/FLUXERR. Each measurement we present was obtained by using the full set of
2.89 ·106 galaxies in each set of simulations described in the previous section.

The performance of SNAPG is measured by performing a linear fit using the func-
tional form gi,out = (1 + mi)gi,true + ci (Heymans et al. 2006) for each shear component
gi. This procedure quantifies the shear bias as a multiplicative term mi (e.g. arising
from method assumptions or noise) and an additive term ci (arising from imperfect
corrections for the elliptical PSF). Because our simulations are ideal with a circular
Gaussian PSF we do not expect any additive bias in these tests.

2.4.1 High signal-to-noise tests of SNAPG

We start by quantifying the performance of SNAPG on the fiducial set of images with
well resolved galaxies for S/N=100 for the true centroid of the galaxy. In the left panel
of Fig. 2.3 we show the measured residuals between the input shear and the measured
one, and the true input versus the measured shear. We find 〈m〉 = (+1.6 ± 1.9)10−4

and 〈c〉 = (−0.1 ± 0.1)10−4 for the average of the two components of the shear. We
also test the algorithm on the set of barely resolved galaxies and the result is plotted
in the right panel. Again SNAPG retrieves the applied shear without detectable bias:
〈m〉 = (−0.9 ± 2.3)10−4 and 〈c〉 = (−0.1 ± 0.1)10−4.

As expected SNAPG returns unbiased shear estimates for our ideal images with
circular Gaussian PSF with high S/N, showing that the pipeline works. These tests
also show the potential of SNAPG as a shear measurement method, regardless of the
size of the galaxy in relation to the size of the PSF. We note that at this high S/N the
results remain unchanged if the centroid is measured from the data.

2.4.2 Tests of centroid bias correction

We expect a bias in the shear estimate to originate from the random error on the
measured centroid due to image noise. In order to test the effectiveness of the centroid
bias correction proposed in Sec. 2.2.4, we perform a test with truly random centroid
values. The well resolved images are re-analysed with SNAPG, but the centroids are
artificially offset from the true centroid by a random Gaussian value. The error on the
centroid is taken from a normal distribution with a standard deviation of 0.5 pixels.
Such a distribution would occur for our simulated images with a S/N ≈ 5.5 for a = 3.

Besides introducing random centroid errors, we also add Gaussian noise to the
images before measuring the shear. The addition of noise, which is uncorrelated to
the centroid error, should not bias SNAPG as the moments are linear with respect
to the noisy surface brightness. Hence, we analyse the images with SNAPG several
times where each time Gaussian noise with a different root mean square is added to the
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Figure 2.3: Shear estimates gout measured by SNAPG on images with well resolved (left) and
barely resolved (right) galaxies of S/N ≈ 100 compared to the input shears gtrue of the images.
Each datapoint is the shear estimated from the 10000 isolated galaxies on an image. The
text in the figures shows the multiplicative bias m and the additive bias c of the measurement
obtained from the best linear fit shown in black. The potential of SNAPG as a shear mea-
surement method is clear as the true shears can be recovered to an accuracy of less than one
part per thousand.
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Figure 2.4: Galaxies in the well resolved image set are assigned random centroid errors,
then Gaussian noise is added, after which the shear is measured with SNAPG. Measured
multiplicative bias in the shear is plotted versus the mean S/N of all galaxies on the images,
with m1 in black and m2 in red. Each datapoint is based on the shear estimates of all
2.89 million galaxies in the well resolved image set. SNAPG results with the exact centroid
covariance matrix are shown as dashed lines and results without centroid error correction
as dotted lines. The bias from misplaced centroids can be reliably removed by SNAPG,
regardless of the noise added to the images.

images. The results of these tests are presented in Fig. 2.4 as the multiplicative bias m1
in black and m2 in red versus the mean S/N of all galaxies. The dotted lines show the
measured bias when no correction is applied. The dashed lines show the bias when the
covariance matrix is set to the correct centroid covariance C = 0.521. As we expected,
the application of the correction reduces the multiplicative bias from centroid errors
to subpercent levels regardless of the noise on the galaxy images. Higher levels of
noise increase the variance of the measurements but do not lead to a bias. The mean
corrected multiplicative bias over all S/N is 〈m〉 = −4.7 ·10−4 and the measured additive
bias is below 10−3 for all S/N.

2.4.3 Full test of SNAPG

We now add a centroid measurement algorithm to SNAPG and use it as input for
SNAPG. The centroids of each galaxy are estimated by nulling the first moments
of the galaxy and the centroid error covariance matrix is estimated using Eq. 2.25.
Gaussian noise is added to the well resolved images and SNAPG is run to obtain a
shear estimate. In contrast to the previous test, the noise is now directly related to
the centroid error. Again we repeat this exercise for different noise levels and show
the multiplicative bias as a function of the measured mean S/N in Fig. 2.5. The
dotted line shows the bias in g1 in black and g2 in red without applying the centroid
bias correction and the solid line shows the corrected bias. Centroid errors lead to a
bias of several percent for S/N ≈ 10, which is decreased to ∼ 1% by the centroid bias
correction. The measured additive bias is below 0.1% for all S/N. For very low S/N
the estimate for the covariance matrix becomes dominated by noise and the formalism
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Figure 2.5: Similar set-up to that in Fig. 2.4. Dotted lines show the SNAPG results without
using the centroid error correction and solid lines show the results for covariance matrices
measured from the data. The centroid bias algorithm breaks down for very low S/N, so that
the solid curves do not reach to S/N < 6. Dashed lines show the SNAPG results when the
mean centroid variance in each image is taken to be the covariance matrix for that image.
As the dashed and solid lines are almost indistinguishable, the measured covariance matrix
is a good estimate of the true centroid covariance. However, it is unable to remove all bias
caused by noise, leaving residual biases of percent level for very faint S/N < 10 galaxies.

breaks down.

The centroid error correction removes a large part of the noise bias, but does not
remove the bias completely. This can occur if the measured covariance matrix is
not a good representation of the true centroid variance. To check this hypothesis,
we compute the true centroid variance and compare its performance to our previous
results. First we measure the centroid from a noisy image and compare this to the true
centroid to compute the centroid error ∆x. We then estimate the centroid variance as
the average Ci j = 〈∆xi∆x j〉 over all 10000 galaxies in each image, square the centroid
error, and compute the centroid variance as the squared centroid error averaged over
all 10000 galaxies in an image Ci j = 〈∆xi∆x j〉. This true centroid error covariance is set
into Eq. 2.21 as the covariance matrix for all 10000 galaxies in the image and the shear
for the image is measured. We show these results as dashed lines in Fig. 2.5 and note
that they are very similar to our previous results (solid lines). These findings indicate
that the estimate of the centroid variance is good, but that there is unresolved noise
bias in SNAPG.

We have also analysed the set of barely resolved images and plotted the multiplica-
tive bias as a function of S/N in Fig. 2.6. These results sketch a similar picture: noise
bias can be reduced by roughly half, but not completely removed. However, even with
residual noise bias, SNAPG has only percent level biases for very faint, very small
objects. This achievement is remarkable and highlights the potential of SNAPG.

We have corrected for the non-linearity due to the noisy estimates of the centroid
and the second moments themselves have a linear relationship to the noise. Indeed it
is shown in Fig. 2.4 that if the centroid bias is perfectly corrected for, the noise in
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the second moments does not introduce a bias. However, an additional non-linearity
in SNAPG remains: the correlation between the centroid error and the pixel noise.
This correlation is not present in Fig. 2.4, but it is in Figs. 2.5 and 2.6. We now
check whether this correlation is the origin of the residual bias after correction, by
measuring the centroid and its variance from a different noise realisation than the
second moments. We repeat this exercise again for different noise levels and show the
results in Fig. 2.7. Even without the use of the correction (dotted lines) the bias is
significantly decreased when compared to Fig. 2.5, highlighting the bias induced by
the correlation. We see that the centroid bias can be corrected to subpercent levels
even for galaxies with S/N < 10. Although the correction breaks down for galaxies
that are too faint, the bias is consistent with zero down to the lowest S/N.

2.5 GREAT08

In the previous section we have shown that the shear estimated using SNAPG is
accurate up to the percent level for images with circular Gaussian PSFs. Noise bias
can be removed using the centroid correction described in Sec. 2.2.4 if different noise
realisations of the same galaxy are available. However, it remains to be shown how
SNAPG would perform on real observations and specifically on images without a
circular Gaussian PSF. Therefore, we now apply the SNAPG algorithm to the more
realistic Gaussianised images of the GREAT08 competition (see Sec. 2.3). These tests
will show how well the PSF Gaussianisation algorithm performs. As before we use a = 3
and w = 3 for the sizes of the weight functions. For the covariance matrix, N(x− x′) is
given by the auto-correlation function of the kernel which is used to Gaussianise the
PSF in the GREAT08 images. This is convolved with the original covariance matrix
σ2

nδ(x−x′) and this convolution is used in Eq. 2.24 to compute the centroid covariance
matrix.

We measure the shear with SNAPG on the 15 Gaussianised LNK images and the
results are shown in the left panel of Fig. 2.8. There is a slight overestimation of the
multiplicative bias of 1-2%, and there is a small additive bias inconsistent with zero
c1 = (2.4 ± 0.4)10−4 and c2 = (0.7 ± 0.5)10−4. The sign of the multiplicative bias and
the non-zero additive bias point towards a PSF, which is not a circular Gaussian. The
results of SNAPG measurements on the 300 RNK images are shown in the right panel
of Fig. 2.8. Again there is positive residual multiplicative bias m = (+7.5±2.5)10−3, but
a slightly lower value than the one we found for the LNK images. This is probably the
combination of the Gaussianisation process and the imperfect centroid bias correction
we found in the previous section. As we do not possess different noise realisations of
the GREAT08 images, we cannot remove the residual noise bias. There is also a small,
but statistically significant discrepancy between the bias in g1 and g2 which is not seen
in other tests.

We investigate the percent level bias found in the GREAT08 in more detail by
looking at the shear bias for various PSF profiles. We simulated two images of galaxies
of opposite shears (g1 = ±0.03, g2 = ∓0.02) with a non-Gaussian PSF. Six different
Moffat profiles with β =2, 3, 4, either circular or elliptical, with ε = +0.02, ε = −0.01
were used as PSFs. The PSF half light radius was 1.76 pixels and the galaxy half
light radii were 2.5 pixels, so that these images resembled the well resolved images. At
S/N ∼ 100 the images underwent PSF Gaussianisation and afterwards the shear was
estimated. We found that regardless of the original PSF, the bias in the shear is ∼2%,
similar to the results from the GREAT08 images. At such a high S/N this bias is not
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Figure 2.6: Same as Fig. 2.5, but now for the set of barely resolved galaxies. Again SNAPG
shows that the PSF can be reliably accounted for, even for low S/N galaxies, as residual biases
after noise bias correction are only several percentage points.
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Figure 2.7: Same as Fig. 2.5 where the correlation between centroid error and the image noise
is removed. Note the different y-axis scale compared to Fig.2.5. The centroid bias correction
now accounts for all the bias to subpercent accuracy, until it fails for extremely low S/N.
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due to a centroid error and therefore we suspect an imperfect Gaussianisation of the
PSF to be the cause. It is unclear which aspect of the PSF Gaussianisation routine
causes the bias in the shear estimate, although it does seem to be robust against
variations in the PSF profile.

2.6 Discussion

2.6.1 SNAPG formalism

We have introduced the SNAPG formalism and tested its performance as a shear
measurement method. For galaxy images convolved with a round Gaussian PSF the
effect of shear on weighted second moments of image brightness can be analytically
calculated. This analytical treatment is used to create a pipeline which finds the
gravitational lensing shear by nulling the polarisations for an ensemble of galaxies.
This procedure thus finds an estimate for the shear experienced by the galaxies. On
test images with high S/N galaxies convolved with a circular Gaussian PSF, the method
obtained shear estimates deviating from the input shears by only parts per thousand.

2.6.2 Noise bias

Like most shape measurement methods, SNAPG suffers a noise bias when applied
to images of galaxies with low S/N. However, by using only linear combinations of
second moments instead of ratios of moments such as the polarisation or ellipticity,
much of the noise bias can be avoided. This strategy allows SNAPG to obtain only
a percent level bias in images with a S/N ≈ 10. Noise in the data introduces errors
in the centroid estimates, which in turn biases the shear estimates. We compute an
analytic treatment to correct the centroids and show that it can significantly improve
the performance of SNAPG for low S/N galaxies. Remaining biases after correction
for S/N ≈ 10 are in the range of less than one percent.

The residual biases increase with decreasing S/N, which indicates that the centroid
error correction does not account for the full effect of noise bias. We traced their origin
to the correlation between the centroid errors and pixel noise in the second moments.
By removing the correlation, we can greatly decrease the measured bias, and also
correct for the remaining bias with our centroid bias correction to subpercent accuracy.
For multi-band surveys a possible solution is to use different filters for the estimates
of the centroid and the measurement of the moments. In this way, the correlation
between the centroid and the image is removed and without this correlation SNAPG
can produce almost unbiased results. The impact on the bias of such a scheme will
have to be investigated as galaxy colours and colour gradients may become an issue. In
addition, this introduces a correlation with the photometric redshift estimate, which
might pose a problem for cosmic shear measurements.

2.6.3 Galaxy resolution

The shape of a galaxy similar in size to the PSF is heavily distorted by the PSF,
making it difficult to estimate the intrinsic shape. However, the analytic treatment
of the PSF in the SNAPG formalism ensures that shear estimation is possible even
for barely resolved galaxies. For galaxies 0.84 times smaller than the PSF, the shear
was retrieved to similar accuracy, as were resolved galaxies for S/N ≈7-10 galaxies. By
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Figure 2.8: Same set-up as Fig. 2.3, here for the shear estimates gout for the LowNoise Known
images of the GREAT08 challenge outfitted with a circular Gaussian PSF using SNAPG with
a correction for correlated noise. The positive multiplicative bias for these high S/N galaxies
shows that the PSF Gaussianisation routine did not produce a fully circular Gaussian PSF.
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being able to measure unresolved galaxies reliably, SNAPG is able to use the large
population of faint small galaxies to boost statistical power.

2.6.4 PSF Gaussianisation

We have run SNAPG on the images of the ‘LowNoise Known’ and ‘RealNoise Known’
branches of the GREAT08 challenge. To make them suitable for SNAPG, the GREAT08
images were first passed through the PSF Gaussianisation. We find a slight overesti-
mation of the shear for the LNK images with S/N = 200, of the order of 1-2%. The
PSF Gaussianisation introduces a correlation in the noise, which is analytically cor-
rected for. SNAPG can retrieve the shear from the RNK images with S/N = 20 to an
accuracy that is similar to that for the high S/N images. Further tests revealed that
this percent level bias is probably inherent to the PSF Gaussianisation routine that
we have used. For a variety of PSF profiles the multiplicative shear bias remained
constant around 2%. The PSF Gaussianisation appears to be the limiting factor for
SNAPG to obtain subpercent shear bias and detailed investigation into this routine is
necessary before SNAPG can be reliably applied to observations.

We can compare the performance of SNAPG to the performance of the other
methods tested in the GREAT08 challenge. This will only provide an indication as
we did not run our pipeline on all datasets in the challenge and shear measurement
methods have evolved since. However, a comparison to figures C3 and C4 in Bridle
et al. (2010) shows that the 1-2% bias SNAPG has obtained is at least competitive
with other shear measurement methods. A more quantitative comparison to other
(recent) shape measurement methods will require testing on image simulations which
incorporate realistic observational features. However, optimistically the performance
we find for SNAPG is sufficient to meet the requirements of the largest cosmic shear
survey to date (Hildebrandt et al. 2016) without any calibration being required.

2.6.5 Shear precision

So far we have been concerned only with the accuracy of SNAPG, but an equally valid
demand is high precision. To estimate the scatter in the shear estimate we use the
simulated images of galaxies observed with the Hubble Space Telescope (HST) included
in the GalSim software. These galaxies were observed as part of the COSMOS survey
(Koekemoer et al. 2007) and we used galaxies between magnitudes 20 and 24.5, similar
to the depths of the Kilo Degree Survey and the Dark Energy Survey. These galaxies
were rescaled to a pixel size of 0.214 arcseconds and convolved with a circular Gaussian
PSF. We find that the scatter in the shear estimate for this set of galaxies is roughly
0.45/

√
Ngal, where Ngal is the number of galaxies in the image. Thus the scatter in

the SNAPG shear estimate for a fully realistic ensemble of galaxies is worse than an
ellipticity based estimate; roughly 2-3 times more galaxies are needed by SNAPG for
the same precision. This result is more optimistic than the increase by a factor of
10 found by Viola et al. (2014) in their analysis of a shear estimator based on Stokes
parameters. Our use of a weight function reduces the variation of the moments, thereby
shrinking the scatter in the Stokes parameter. In our tests we used identical weights for
all sources, which naturally downweighs large, bright galaxies, which would otherwise
dominate the ensemble average of second moments. Ideally, in order to optimise the
S/N of the individual moment measurement, the size of the weight function should
match the observed size of the galaxy. However, fitting weight functions to individual
galaxies is in itself a noisy process that may lead to a bias. We therefore advocate
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using the same weight function size for all galaxies (since most will be only partially
resolved, it is not difficult to find a size that is nearly optimal for most of the galaxies
by picking a small multiple of the PSF size; see also Eq. 2.18).

A possible improvement is to assign each galaxy a weight to reduce the variance
in the shear estimate. We find that for our sample of HST galaxies weighting by the
inverse of the true flux can reduce the required number of galaxies by a factor of ∼4.
This would bring the precision of SNAPG close to the precision of shear estimates
based on galaxy ellipticities. In practice, estimating this weight factor from the galaxy
fluxes measured in other images (e.g. adjacent photometric bands in a multi-band
survey) uncorrelated with the lensing images will avoid introducing noise bias.

2.6.6 Variable shear

Observational weak lensing deals with varying shear fields, for instance in cosmic
shear measurements or when measuring the mass of groups or clusters of galaxies.
The traditional method is then to average the shear estimate for individual galaxies to
obtain the lensing signal. This is not possible with SNAPG as it does not produce a
shear estimate per source. In addition, SNAPG requires a large number of galaxies to
obtain a precise shear estimate and satisfy the condition that the intrinsic ellipticities
average to zero.

Instead of nulling a single shear value for an ensemble of galaxies, we therefore
advocate nulling a parametrised model shear field for that ensemble. For example,
to measure a galaxy-galaxy lensing signal, the model would include parameters that
describe the average shear profile of galaxies and their scaling with pertinent galaxy
properties. The model parameters would then be varied until the average shear in
a number of annular bins around the lensing galaxies is nulled, analogous to a tra-
ditional tangential shear stacking analysis. As another example, for cosmic shear
measurements, the amplitudes of independent Fourier modes in the shear field could
be nulled.
Developing this procedure will be left to the future.

2.7 Summary

We have presented a new moment-based method that attempts to combine the best as-
pects of earlier approaches to the problem of high-accuracy, precise shear measurement
from galaxy images. Moment-based methods generally approximate the deconvolution
of the PSF, but do not require any information beyond the data and generally run very
fast. Model fitting methods perform exact forward modelling, including convolution
with the PSF, but are expensive to run because they need to search through a large
parameter space, and may suffer model bias. The shear nulling after PSF Gaussian-
isation or SNAPG technique deals analytically with the PSF deconvolution and as a
moment-based method only requires a few measurements on the data. In addition,
SNAPG incorporates a correction scheme to mitigate the effects of noise bias, a major
hurdle to all shape measurement techniques.

Idealised test images show that SNAPG can retrieve shears to percent level accu-
racy for galaxies with low signal-to-noise, even if they are smaller in size than the PSF.
The main issue limiting this technique is the correlation between the noisy estimate
of the centroid and the pixel noise, which may be mitigated by incorporating further
data about the sources, such as images from neighbouring bands in a multi-wavelength
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survey. In such a set-up, SNAPG can obtain shear estimates to subpercent accuracy
for galaxies with a Gaussian PSF.

Application to real data requires PSF Gaussianisation and if this routine is imper-
fect it can introduce percent level biases. This level of accuracy is comparable to what
is required of the shape measurement algorithms used for ongoing surveys. As such, we
expect SNAPG to be a useful asset for current and future weak lensing experiments.
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2.A Convolution calculations

In this Appendix we calculate the result of convolving [xix jG1] with a Gaussian point
spread function G2, where G1 and G2 are Gaussians of arbitrary covariance matrix.

First we consider the product of a non-circular Gaussian of covariance matrix V
with an offset one of covariance P and centre y:

e−
1
2 (xT V−1x)e−

1
2 (x−y)T P−1(x−y). (2.29)

The sum xT V−1x + (x − y)T P−1(x − y) can be rearranged to yield

(x − z)T K(x − z) − zT Kz + yT P−1y (2.30)

with

K = V−1 + P−1 (2.31)

and

z =K−1P−1y (2.32)

=(V−1 + P−1)−1P−1y = V(V + P)−1y.

The terms in Eq. 2.30 not involving x simplify to

−zT Kz + yT P−1y = (2.33)

− yT P−1(V−1 + P−1)−1P−1y

+ yT P−1y

= yT (V + P)−1y.

Using this result we can calculate the convolution of xix je−
1
2 xT V−1x with a normalised
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Gaussian of covariance P as∫
dx xix je−

1
2 (xT V−1x) e−

1
2 (x−y)T P−1(x−y)

2π| det P| 12
(2.34)

=

∫
dx

xix j

2π| det P| 12
e−

1
2 (x−z)T K(x−z)e−

1
2 yT (V+P)−1y

=

∣∣∣∣∣∣det K−1

det P

∣∣∣∣∣∣
1
2

e−
1
2 yT (V+P)−1y

(
K−1

i j + ziz j

)
=

∣∣∣∣∣ det V
det(V + P)

∣∣∣∣∣ 1
2

e−
1
2 yT (V+P)−1y×[(

V(V + P)−1P
)

i j
+

(
V(V + P)−1y

)
i

(
V(V + P)−1y

)
j

]
=

∣∣∣∣∣det V
det B

∣∣∣∣∣ 1
2

e−
1
2 yT B−1y

×

[(
V − VB−1V

)
i j

+
(
VB−1y

)
i

(
VB−1y

)
j

]
where in the last line we have defined B = V + P. We note that a deconvolution is
simply accomplished by changing the sign of P.
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