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1
Introduction

1.1 Our view of the Universe

Curiosity for the unknown has been an essential trait for humanity, propelling it for-
ward to discover ever larger parts of the place we live in. A phenomenal change in
perspective on the Universe has come about in roughly the last hundred years. With
improved technology luminous nebulae were observed in the sky, which were later re-
vealed to be extragalactic objects (Hubble 1926) and in fact are galaxies much like
our own Milky Way. Later on, Hubble (1929) showed that these galaxies in the local
Universe are actually moving apart at a constant speed H0 (the Hubble constant) ac-
cording to what is now known as Hubble’s law. This expansion of the Universe affects
its contents, and for a Universe filled with matter (and radiation), expansion reduces
the temperature, so that the early Universe would be small and have extremely high
temperatures. Theoretically, elementary particles in the super-heated early Universe
would be locked together in equilibrium reactions until the temperature had fallen
enough to break equilibrium. At a certain point in time, the decrease in tempera-
ture would bind protons and electrons together in neutrons and photons suddenly had
an unimpeded path through the Universe. This sudden burst of photons happened
around 13.4 billion years ago at a temperature of around 3000 K. This wave of primor-
dial photons was observed, accidentally at first, as a remarkably homogeneous black
body spectrum at 2.73 K and is known as the cosmic microwave background (CMB).
The lower temperature is evidence for the cooling of the Universe as it expands. An
intriguing property of the CMB is its extreme homogeneity, given the large variation in
density observed in the local Universe. This discovery hinted at some unknown force of
gravity. Fritz Zwicky already coined the term ’dark matter’ to describe some source of
gravity keeping galaxies with extremely high rotational velocities together in clusters
of galaxies, as their combined visible mass was far too low (Zwicky 1937). Later, Vera
Rubin found that the visible light in galaxies could not provide enough mass to sustain
the high stellar velocities (Rubin et al. 1980). Both studies provided evidence for the
presence of invisible mass or a incomplete understanding of gravity at cosmological
scales. A Universe filled with mass should have galaxies falling towards each other
due to their gravitational attraction. It was therefore a huge surprise, worthy of a
Nobel prize in 2011, when two teams, who looked at the fluxes of type Ia supernovae,
which have known luminosities (after calibration), found that the distances were in-
compatible with a Universe dominated by matter (Riess et al. 1998; Perlmutter et al.
1999). Instead, they discovered that the Universe is not just expanding, but that the
expansion is happening at an accelerated pace. These observations form the basis for
the hot Big Bang model of the Universe, in which everything expanded from a single
super-heated point in space.

The evolution of the Universe can be remarkably well described by a relatively sim-
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2 1. Introduction

ple model, known as the ΛCDM model. Although this model can describe a plethora
of cosmological observations, the caveat is the unknown physical origins of two of its
parameters. The Λ in the ΛCDM model refers to the cosmological constant. This
constant is an additional parameter in Einstein’s field equations for general relativity,
which causes space-time to undergo accelerated expansion. A possible explanation
in the framework of the standard model of particle physics is the energy of vacuum
originating from the creation and annihilation of particles and their anti-particles.
However, the predicted energy density of vacuum is off by many orders to explain the
observed acceleration. Instead, the origin of the observed accelerated expansion of
the Universe is being called dark energy, which could be the cosmological constant,
or some other form of energy providing negative pressure on cosmological scales, and
possibly evolving over time. The CDM in the ΛCDM model stands for cold dark
matter. The mysterious gravitational force, seen by Zwicky and Rubin, is explained
in the ΛCDM model by a form of matter, which does not interact through the electro-
magnetic force and has a temperature which is low enough so that it can cluster in
large quantities, hence named cold dark matter. The abundance of atomic elements is
precisely predicted by the Big Bang Nucleosynthesis and rule out any possible origin of
dark matter as being a known particle, so a physical explanation is still missing. The
remaining components of the Universe in the ΛCDM model are baryonic matter, radi-
ation and the curvature of the Universe. The relative abundances of the components
are ∼70% dark energy, ∼25% dark matter and only ∼5% baryonic matter. The current
abundance of radiation is tightly set by measurements of the CMB to be negligible.
A period of rapid expansion in the first second of the Universe, known as inflation,
which can explain, amongst other observables, the smooth distribution of matter in
the CMB, predicts a Universe with very little curvature, consistent with, for instance,
CMB measurements (Planck Collaboration et al. 2016a).

The dark, not well understood components of the ΛCDM model are also the domi-
nant components of the Universe. The nature of dark matter and dark energy are some
of the biggest open questions in cosmology and astrophysics. Precise measurements
of the abundances of dark matter and dark energy would allow for tests of theoretical
models. Currently, some of the tightest constraints come from measurements of the
CMB. However, the CMB is one snapshot of the matter distribution in the very early
Universe and dark energy is an effect which has only recently become dominant. Mea-
suring the matter distributions at different epochs can put even tighter constraints
on cosmological parameters and help to unravel the origins of dark matter and dark
energy.

1.2 Structure in the Universe

Matter is not distributed uniformly throughout the Universe, instead there is large
spatial variation. Local variation is apparent - the Earth is an overdensity of matter
in its immediate surroundings - and on much larger scales stars and their planets are
mainly contained in galaxies. But there is also structure on the largest scales. Galaxies
tend to cluster together in groups and there is a large variety of environments. The
bottom right panel of Figure 1.1 shows observations of galaxy positions. Galaxies are
preferentially clustered along thin filaments, and the knots connecting the filaments
contain many tens of galaxies, and in between there are large regions devoid of galaxies.
This pattern is similar to the strands in a spider’s web, and hence, the distribution of
galaxies in the Universe is known as the Cosmic Web.
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As mentioned before, from a cosmological perspective, the observable structure in
the Universe posed a problem. The CMB shows a Universe where luminous matter was
distributed very uniformly across the sky. Any gravitational collapse in the photon-
baryon plasma would be washed out by Coulomb interactions and Compton scattering.
The highest density regions seen in the CMB are overdense by only one part in one
hundred thousand. In the time since the release of the CMB these regions could
not have collapsed gravitationally under their own mass to form the myriad of high
density structures seen today. The key to understanding structure formation is dark
matter. Unlike the baryons-photon plasma, dark matter in the early Universe could
already aggregate gravitationally into overdense regions. After the emission of the
CMB, when baryons were free from the stifling interactions with photons, baryons fell
into the dark matter potential wells. The early collapse of dark matter facilitated the
growth of cosmological baryonic structures.

In Figure 1.1 snapshots of a numerical dark matter simulation at different red-
shifts are shown. The final snapshot (in the bottom left panel) shows a distribution of
dark matter very similar to the Cosmic Web of galaxies. These dark matter structures
grow in mass through gravitational accretion of material and mergers with other struc-
tures. Structures thus form hierarchically, such that small structures form first and
the largest structures of the scale of galaxy clusters arise later. This history of mergers
creates two classes of galaxies: centrals and satellites. Satellite galaxies were part of
distinct structures which have merged with a larger structure. As a satellite galaxy
falls into a cluster, it is stripped of its reservoirs of cool gas by tidal interactions and
collision with the hot cluster gas. The deficiency of the cool gas hampers the ability
of satellite galaxies to form new stars, leaving them with relatively old populations of
stars, which give them a tell-tale reddish colour. On the other hand centrals reside in
the centres of dark matter halos and have undergone different violent events. Through
gravitational attraction they accrete material, growing in size and mass by cannibal-
ising other galaxies. Violence is also suffered by the infalling halos around satellite
galaxies, which are absorbed as a subhalo in the host halo. Numerical simulations
suggest that during infall, subhaloes are stripped of dark matter by dynamical friction
and tidal stripping (e.g. van den Bosch et al. 2016; Moliné et al. 2017). Measurements
of the fate of infalling satellites can thus provide valuable information on the validity
of the ΛCDM model.

Theoretical simulations of structure formation have also shown that the distribu-
tion of matter is very dependent on cosmology. Intuitively, this is to be expected. The
growth of overdensities depends on the abundance of matter and is hampered by the
(accelerated) expansion of the Universe. In addition, the growth is naturally dependent
on the initial conditions of the density fluctuations. The initial state of fluctuations in
the ΛCDM model is assumed to be isotropic and its power spectrum is described by
a power law. The cosmological parameters for this power law are the slope ns and an
amplitude set by σ8: the root mean square amplitude of matter fluctuations within a
sphere of radius 8 Mpc. Computing the growth of structures from these initial condi-
tions, numerical simulations can predict the abundance of large scale structure for any
given cosmology. Measurements of the abundance of large scale structure at different
epochs can be compared to these simulations to constrain cosmological parameters.
Experiments have put constraints on Ωm and σ8, by measuring the abundance of the
whole of large scale structure (Heymans et al. 2013; Kilbinger 2015; Jarvis et al. 2016)
and the abundance of the largest structures (Henry 2004; Vikhlinin et al. 2009; Planck
Collaboration et al. 2016b).
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Figure 1.1: Top left : Snapshot at z = 18.3 of the distribution of cold dark matter particles in
the Millennium simulation (Springel et al. 2005). Top right : Same area evolved to a redshift
z = 5.7. Bottom left : Same area evolved to a redshift z = 0, showing a large variety of
densities and strings of matter connecting the highest density (yellow) regions. Bottom right :
Positions of real galaxies in the 2 Degree Field galaxy redshift survey (Peacock 2002). Due
the filamentary structure the distribution of galaxies is refered to as the Cosmic Web. The
similar distribution of galaxies and dark matter is due to the early agglomeration of dark
matter and baryons falling into the dark matter overdensities.
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Dark matter makes up the majority of mass in the Universe and any experiments
of structure formation must necessarily include measurements of dark matter halos.
Baryons trace the dark matter potential, so baryonic observables can be used to probe
dark matter distributions. For instance, in galaxy clusters the density and temperature
of the hot gas or the velocities of member galaxies can be used to obtain a mass
estimate for the clusters. However, these estimates rely on simplifying assumptions of
hydrostatic or dynamical equilibrium, which cannot be guaranteed given the turbulent
formation history of clusters. Moreover, the whole scala of baryonic physics is currently
not fully understood and instead, a more direct estimator of dark matter distributions
is needed to calibrate baryonic observables.

1.3 Gravitational lensing

The study of dark matter requires looking at the only (known) force through which
dark matter interacts: gravity. Almost exactly one hundred years ago Albert Einstein
postulated the theory of general relativity, which describes gravity as the curvature in
space-time around a massive object. A light ray always follows a straight path through
space-time, but as it passes through a curved space-time, its trajectory will change.
Because of the analogy to optical lenses, this effect is known as gravitational lensing,
where the massive object serves as the gravitational lens or lens for short.

The distortion of the path of light from a background source depends on the cur-
vature of space time and the distances between source and lens, source and observer,
and lens and observer. Usually the distances between source, lens and observer are
much larger than the extent of the lens, so that the lens can be approximated as a
thin plane in which light rays are instantaneously deflected. Figure 1.2 shows a sketch
of such a configuration for a point mass lens. The figure is taken from Bartelmann &
Schneider (2001), the standard text known to probably everyone who studies gravita-
tional lensing, and here I will briefly discuss the basics of gravitational lensing and I
refer to that text for more details. In Figure 1.2, a light ray emitted by a source at
coordinate βββ is observed at a location θθθ instead, due to the deflection at the lens plane.
The deflection angle ααα depends on the mass of the lens M and the impact parameter
ξ via

α̂̂α̂α =
4GM
c2ξξξ

, (1.1)

where c is the speed of light in vacuum and G the Newtonian gravitational constant.
As can be seen from the figure, the deflection angle itself is not measurable, instead we
look at the angle βββ which is tied to the deflection angle according to the lens equation:

βββ = θθθ −ααα(θθθ), (1.2)

where θθθ = ξξξ/Dd and ααα = α̂̂α̂αDds/Dd. Here Dds,Dd,Ds are the anguler diameter distances
between lens and source, observer and lens and observer and source, respectively, which
can be obtained from the redshifts of lens and source. Equation 1.1 highlights the po-
tential of gravitational lensing: a measurement of the deflection angle results in a mass
estimate. However, the caveat is that gravitational lensing measures the projected 2D
surface mass density along the line of sight Σ(ξξξ), not the 3D mass distribution.

Gravitational lensing is produced by any massive lens with a bright background
source. For example, evidence for Einstein’s theory of general relativity was provided
by Sir Arthur Eddington who looked at the displacement of stars behind the eclipsed
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Figure 1.2: Graphical representation of the path of a light ray (shown as the solid line) from
its source past a gravitational lens at the lens plane to the observer. The dashed line shows
the direct line-of-sight between observer and source at location βββ, whereas the object is also
observed at the position θθθ. The deflection angle ααα, and hence the alternate postion θθθ, depends
on the curvature induced by the massive lens and the distances between between the source,
lens and/or observer. These distances are usually so much larger than the extent of the
curved space-time that the lens can be approximated by a single plane. Original figure in
(Bartelmann & Schneider 2001).
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sun in 1919. The subject of this thesis is gravitational lensing by the largest structures
in the Universe, for which the light sources are distant galaxies. Galaxies are extended
objects, so that the simple sketch in Figure 1.2 has to be expanded for multiple light
rays. For an observed galaxy, the light profile can be described by

I(θθθ) = Î(βββ(θθθ)) = Î(βββ(θ0θ0θ0) + A(θ0θ0θ0)[θθθ − θ0θ0θ0]), (1.3)

where I(θθθ) gives the observed light intensity at angular position θθθ and Î(βββ(θθθ)) gives
the light intensity at the source plane. As gravitational lensing conserves surface
brightness, the two are equal. For the equation on the right hand side, we Taylor-
expand the lens equation to first order around the location θ0θ0θ0, assuming that the
source is much smaller than the scales on which the lensing changes, which should be
valid for large distances between observer, lens and source. The matrix A is given by

A(θ0θ0θ0) =
∂βββ

∂θθθ

∣∣∣∣∣
θ0θ0θ0

= δi j −
∂2φ

∂θi∂θ j
=

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
. (1.4)

The lensing potential φ is related to the surface mass density via Poisson’s equation
∇2φ(θθθ) = 2κ = Σ(ξξξ)/Σcrit, where κ is known as the convergence and the critical surface
mass density is a geometrical factor defined as

Σcrit =
c2

4πG
Ds

DdsDd
. (1.5)

In Equation 1.4 we have also defined the complex shear γ which is related to the
lensing potential via

γ = γ1 + iγ2 =
1
2

∂2φ

∂θ2
1

−
∂2φ

∂θ2
2

 + i
∂2φ

∂θ1∂θ2
. (1.6)

The effect of gravitational lensing on an image of a background galaxy is to magnify
the image and the tidal gravitational field stretches the galaxy’s observed shape. Mag-
nification has been used to search for the most distant galaxies in the early Universe
(e.g. Zitrin et al. 2014). The gravitational shear induced by a lens can be visually ap-
preciated as spectacular luminous arcs seen in massive galaxy clusters. These examples
occur only rarely when a bright background object is directly on the line of sight of a
very massive matter overdensity. A more frequent form of gravitational lensing occurs
when the source galaxies are not directly in the line of sight and their images are only
slightly distorted. This regime is known as weak lensing and is the main subject of this
thesis. The common occurence of weak lensing makes it a powerful tool for observa-
tional cosmology, which is reflected in the large number of ongoing and upcoming weak
lensing experiments. Surveys, such as the Kilo Degree Survey (de Jong et al. 2013), the
Dark Energy Survey (The Dark Energy Survey Collaboration 2005), and the Hyper
Suprime Cam survey (Miyazaki et al. 2012), are currently observing over thousand
square degrees of the sky and in the future hemisphere-sized observations are planned
with the Euclid satellite mission (Laureijs et al. 2011), the Large Synoptic Survey
Telescope (Ivezic et al. 2008), and the Wide Field InfraRed Survey Telescope (Spergel
et al. 2015). All these surveys will perform a cosmic shear analysis: a measurement of
the shear-shear correlations between galaxies, which is a tracer for the distribution of
dark matter structures. Comparison with theoretical cosmological models can provide
constraints on the cosmological parameters governing the abundance and clustering of
matter (see Kilbinger 2015 for a review). A tomographic analysis, in which galaxies
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are divided into redshift bins, can also probe the time evolution of large scale structure
and hence elucidate on dark energy. Tomographic cosmic shear has been hailed as one
of the most powerful techniques for precise cosmological measurements.

1.4 Shape measurements

Weak gravitational lensing introduces small distortions in the observed shapes of dis-
tant galaxies, so the measurements of galaxy shapes are integral to weak lensing exper-
iments. Projected light intensity profiles of galaxies can be very irregular and no single
traditional shape can describe all galaxies, but we can generally consider galaxies as
ellipses on the sky. The shape of an ellipse is fully described by a ratio between the
semi-minor- and semi-major axes and the position angle, or equivalently by the two
components of the ellipticity. The shear is a dimensionless spin-2 quantity, as is the
ellipticity, so the ellipticity provides a natural observable for weak lensing. A galaxy
with an intrinsic ellipticity will be observed after being gravitationally lensed to have
an ellipticity (Seitz & Schneider 1997; Bartelmann & Schneider 2001)

ε =
εs + g

1 + g∗εs
for |g| ≤ 1 (1.7)

and

χ =
χs + 2g + g2χ∗s

1 + |g|2 + 2Re
[
gχ∗s

] , (1.8)

where ε and χ are the third flattening and third eccentricity, respectively. For an
ellipse, these two definitions would be

ε =
1 − q
1 + q

e2iζ (1.9)

and

χ =
1 − q2

1 + q2 e2iζ (1.10)

for an axis ratio q and a position angle ζ. The subscript s for both definitions denotes
the intrinsic shape of the galaxy at the source plane before it was sheared and an
asterisk denotes a complex conjugate. The reduced shear g is the quantity measured
in practice and it is related to the shear and convergence via g = (1 − γ)/κ.

The shape of a galaxy can be computed from the second order moments of the
galaxy surface brightness:

ε =
Q20 − Q02 + 2iQ11

Q20 + Q02 + 2
√

Q20Q02 − Q2
11

(1.11)

and

χ =
Q20 − Q02 + 2iQ11

Q20 + Q02
. (1.12)

Here the moments of image brightness are defined as

Qi j =

∫
d2x I(x, y) (x − xc)i(y − yc) j, (1.13)
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where x and y are coordinates in the pixel image and the moments are evaluated
around the galaxy centroid (xc, yc). The centroid can be estimated by finding the
location where the flux Q00 of the galaxy is maximal, which is found by locating the
coordinate (xc, yc) such that the first order moments Q10 = Q01 = 0. The moments
of the image brightness provide an comprehensive set of quantities in which the pixel
information in I(x, y) is compressed. Combining many different orders can recover the
original galaxy profile, although for weak lensing, typically, only the first few orders
of moments are used.

Hypothetically, if all galaxies were circular, any anisotropy in the shape would be
due to gravitational lensing. Unfortunately, galaxies have intrinsic ellipticities, which
are usually much larger than the shear in the weak regime of gravitational lensing. It
is therefore impossible to estimate the shear from a single galaxy. But according to the
cosmological principle, galaxies should not have a preferential orientation, and galaxies
in an ensemble should be round on average. This asumption of random projected
shapes breaks down if there are intrinsic alignments between galaxies (see Joachimi
et al. 2015 for a review). Mathematically we can rewrite Equations 1.7 and 1.8 for an
ensemble average, assuming a small reduced shear g � 1 appropriate for weak lensing,
to

〈ε〉 ≈ 〈εs〉 + g ≈ g (1.14)

and

〈χ〉 ≈ 〈χs〉 + 2g ≈ 2g. (1.15)

Here we assume that the intrinsic source ellipticities average to zero, so that the
average observed value is a direct estimator of the gravitational reduced shear. The
precision of a measurement of the shear is thus given by the number of galaxies in the
ensemble. For ongoing cosmic shear surveys the precision is around a percent level,
whereas future missions will have a precision of approximately one part-per-thousand.

The accuracy with which the shape of a galaxy can be measured directly affects the
accuracy of the shear measurement. Although the task of measuring a shape sounds
trivial, it is complicated by additional distortions to a galaxy’s shape other than the
gravitational shear. The excellent precision of upcoming cosmic shear surveys also puts
unprecedented requirements on the accuracy of shape measurement methods. Here I
review some of the main issues affecting accurate shape measurements on an image of
a galaxy, although the full array of errors sources is much larger.

The effects undergone by light emitted from a distant galaxy are schematically
shown in Figure 1.3 in chronological order from left to right. The leftmost panel
shows the intrinsic light profile of some distant galaxy, which is sheared by gravitational
lensing in the second panel. The shape of a galaxy becomes blurred as light rays travel
through a turbulent atmosphere and telescope optics, which can be mathematically
represented by a convolution with a point spread function (PSF). The PSF will have
some shape, which is not identical to the shape of the sheared galaxy, so the convolution
alters the observed shape. Although the middle panel sketches PSF convolution as a
benign effect, the shape of a galaxy can be severely affected by the shape of the PSF,
especially if the galaxy is small compared to the PSF. As weak lensing targets galaxies
behind matter overdensities, source galaxies are often distant and thus small. The
issue of the PSF is one of the main limitations in the recovery of accurate shapes
and therefore, to remove the atmospheric contribution to the PSF, one of the future
weak lensing experiments will be operated from a satellite. Next, the light rays hit
the CCD cameras, which pixelises the galaxy image (fourth panel from the left in
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Figure 1.3: Sketch of the difficulties in shape measurement process. From left to right, the
different processes affecting the light from a distant galaxy is shown in each panel, as the light
rays move forward. Note that for visual effect the gravitational shear in the second panel
is exaggerated by a factor ∼ 10 to what is typical for weak gravitationally lensed galaxies.
Original figure in (Bridle et al. 2009).

Figure 1.3). Pixelisation becomes troublesome for galaxies similar in size to the pixel
scale. However, pixels are usually much smaller than the size of the PSF, and hence
this issue has not received much attention. Finally, as is sketched for a very high signal-
to-noise case in the rightmost panel, there is noise on the observed image from stray
light, read out electronics, sky background and Poisson noise due to the finite amount
of photons hitting the detector. Noise introduces an uncertainty in the observed light
profile and this in turn introduces a bias in the measured shape of the galaxy: as
can be seen from Equations 1.11 and 1.12 the ellipticity of a galaxy is a ratio of the
observed light profile, and this non-linear dependence on the noisy data introduces a
bias. Furthermore, the centroid is also measured from noisy data and as it appears
non-linearly in Equation 1.13, it also adds to the noise bias.

1.4.1 Shape measurement techniques

A large amount of effort has been expended to find a method that can reliably measure
galaxy shapes in the presence of observational nuisances. Early efforts (e.g. Kaiser et al.
1995) focused on using the moments of image brightness to estimate the ellipticity and
are called moment based methods. The moments are measured with a weight function
W which surpresses the noise at large distances from the galaxy centroid, which would
otherwise dominate the integral

Qw
i j =

∫
d2x Iblur(x, y) W(x − xc, y − yc) (x − xc)i(y − yc) j. (1.16)

The choice of the weight function is arbitrary, as long as it reduces the effect of noise
on large scales. The optimal choice would be the PSF convolved galaxy image Iblur,
but as it is not available in practice, a Gaussian is a usual choice. The use of a
weight function biases the ellipticity measurement, because Equations 1.7 and 1.8 are
no longer formally correct. In addition, the galaxy image has been convolved by the
PSF

Iblur(x, y) =

∫
d2x I(x′, y′) P(x − x′, y − y′) (1.17)

and the galaxy image has to be deconvolved. The PSF profile P(x, y) can be obtained
in practice by using stars in the observations as point sources on the sky which are
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only affected by the atmosphere and telescope optics. The KSB method (Kaiser et al.
1995; Luppino & Kaiser 1997; Hoekstra et al. 1998) uses higher order (than two)
moments to correct the observed third eccentricity χ for the use of the weight function
and approximates the deconvolution using simplifying assumptions of the shape of
the PSF. Later versions of moment-based methods have improved the algorithm by
using elliptical weight functions matched to the shape of the galaxy and more accurate
deconvolutions of the PSF profile (Melchior et al. 2011; Okura & Futamase 2011).

The approximate PSF deconvolution in early shape measurement methods could
be overcome by forward modelling the galaxy image. In this approach, a model galaxy
is generated and convolved with the PSF model. This convolved galaxy model is then
fit to the observed galaxy by adjusting its properties, such as size, flux and ellipticity.
The intrinsic ellipticity of the best fit galaxy model can then be used to estimate the
shear. For obvious reason, this class of methods is refered to as model fitting methods
in the literature, and two distinct galaxy models have been used: a linear combination
of shapelets (e.g. Refregier & Bacon 2003; Massey & Refregier 2005; Kuijken 2006) and
a linear combination of parametric profiles (e.g. Kuijken 1999; Miller et al. 2007; Zuntz
et al. 2013; Jarvis et al. 2016). Shapelets are a set of basis functions which can describe
a plethora of astronomical objects and have a well defined convolution operator. The
downside of shapelets, and the reason that shapelet-based methods are not employed
in ongoing large weak lensing experiments, is that the number of shapelets needs to be
truncated because higher orders are more prone to noise, and the truncation leads to a
biased shape measurement. Alternatively, parametric profiles provide a simpler fitting
model. Sérsic profiles (Sérsic 1963) are a family of parametric radial profiles of the form
ln

[
I(x, y)

]
∼ −(x2 +y2)1/2n often used to describe galaxy light profiles. Some descriptions

of galaxies used in the literature are linear combinations of Gaussians (n = 0.5) or the
sum of an exponential disk (n = 1) and a De Vaucouleurs bulge (n = 4). Although the
PSF convolution is accurately handled by this type of shape measurement method,
a large assumption is made on the light profile of galaxies. The potential danger of
using Sérsic profiles is that they might not capture the full morphological complexity
of real galaxies, leading to a possible model bias in the ellipticity estimate (Voigt &
Bridle 2010; Bernstein 2010).

Recently, the weak lensing community has focused more on noise bias and several
new methods have been developed to reduce the effect. Noise bias is caused by a non-
linear dependence of the shear estimator on the noisy image data (Hirata et al. 2004;
Melchior & Viola 2012; Viola et al. 2014). For any method, noise is an addition to the
galaxy image and is subject to the same mathemathical formalism. Some authors have
used this to calculate the effect of noise on the resulting shear estimate and implicitly
correct the estimate for noise bias with notable success (Refregier et al. 2012; Okura
& Futamase 2013). Alternatively, Bernstein & Armstrong (2014) have developed a
Bayesian method which circumvents noise bias by removing non-linear dependence on
the noisy image and the method shows good promise for the future (Bernstein et al.
2016).

1.4.2 Image simulations

A quantitative statement on the performance of shape measurement methods is nec-
essary before they can be reliably applied on data. Given the size and depth of the
survey and the desired constraints on cosmological parameters, there is a maximum
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allowed bias. The biases in a shape measurement method are generally expressed by

gmeas
i = gtrue

i (1 + mi) + ci, (1.18)

where m and c are the multiplicative and additive biases, respectively, in the measured
shear gmeas

i compared to the true shear gtrue
i , for the two components of the shear.

A multiplicative bias can arise due to noise or PSF convolution and an additive bias
from any coherent sources of anisotropy, such as an imperfect correction of an elliptical
PSF. Because the full process undergone by light rays is well understood, it can be
simulated and these image simulations are currently the only reliable way to quantify
the accuracy of shape measurement methods. Emulating telescope images will subject
the method to the same difficulties faced in real observations, some of which can not
be modelled otherwise, such as for instance the blending of the light of neighbouring
galaxies, the impact of the detection algorithm, or stars misclassified as source galaxies.

The weak lensing community has a long history of community wide image simula-
tions to improve overall understanding of systematic effects. The different performance
of different implementations of the same method prompted the team behind the ’shear
testing programme’ (STEP; Heymans et al. 2006) to create large suites of simulated
observations with known input shears. Different groups then ran their method on these
simulated images to compute the shear, which when compared to the input shear gives
the bias in their method. This exercise clearly showed that different choices could influ-
ence the performance. The first STEP was followed by a second programme (Massey
et al. 2007) in which they searched for the perfect unbiased method. Instead, no unbi-
ased method was found and the community turned to a new programme, which aimed
to characterise the sources of bias inherent to methods. The ‘gravitational lensing
accuracy testing’ (GREAT) challenges (Bridle et al. 2010; Kitching et al. 2012; Man-
delbaum et al. 2015) were set up using much simpler image simulations to address
individual sources of bias. These simulations contain only postage stamps of isolated
galaxies and had different branches with different realistic complexities, such as con-
stant versus varying shear profiles or parametric galaxy models versus actual galaxy
images.

All of these public suites of image simulations have been of tremendous value to the
weak lensing community. Each has pushed the understanding of sources of systematic
error further and provides a benchmark on which to test new methods. The latest chal-
lenge has also provided the community with the well-tested software package GalSim

with which to produce image simulations (Rowe et al. 2015). However, by systemati-
cally going through realistic features of telescope observations these simulations have
shown the importance of having realistic image simulations with which to calibrate the
observations. The input of the simulations has a strong effect on the bias measured
from the simulations (Hoekstra et al. 2015; Kannawadi et al. 2015; Hoekstra et al.
2016) and realistic input is thus imperative for the calibration of shape measurement
methods with image simulations. Different weak lensing experiments will have varying
observational conditions, survey strategies and camera characteristics, which all affect
the bias in the measurement. The requirement of percent level precision in the shear
estimates posed by ongoing surveys already limits the use of general simulations for
individual surveys. Instead, each cosmic shear survey requires its own dedicated set
of image simulations (Miller et al. 2013; Jarvis et al. 2016).
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1.5 This thesis

Weak gravitational lensing has the potential to provide excellent cosmological con-
straints from the evolution of large scale structure. However, the accuracy of weak
lensing measurements is severely degraded because observational effects distort the
shapes of galaxies, mimicking a shear signal. The first half of this thesis is concerned
with these systematic sources of errors and how they can be mitigated.

In Chapter 2 we develop a new shape measurement method which deals analytically
with PSF convolution and noise in the image. We present the theoretical framework
and test the method on simple image simulations to quantify the accuracy. We show
that our method is capable of reaching subpercent accuracy even for small and noisy
galaxies, which, taken at face value, is sufficient for ongoing cosmic shear surveys.
However, more testing on more realistic image simulations is needed to characterise
the performance for a whole host of observational effects.

At the beginning of 2016 the Kilo Degree Survey (KiDS) had observed roughly 450
square degrees of the sky. This provided us with the largest area to date for a cosmic
shear analysis, but also put unprecedented requirements on the systematic uncertain-
ties. Chapter 3 describes the performance testing of the shape measurement algorithm
used in the cosmic shear analysis. In this massive endeavour, I was responsible for the
creation of a large suite of dedicated image simulations specifically designed to match
the KiDS data as closely as possible. Some discrepancies between simulations and
observations remained and so I performed extensive sensitivity analyses to ensure that
the discrepancy did not affect the shear estimate beyond the precision afforded by the
simulations. After all these tests we could confidently claim a residual multiplicative
shear bias of 0.01 ± 0.01 and a negligibly small additive bias. This work has been an
indispensible part of the analysis of the KiDS data and provided a calibration with
enough precision for the KiDS cosmic shear analysis (Hildebrandt et al. 2017), and
the calibration has since been used by every paper using the KiDS data.

The second half of this thesis focuses on weak lensing measurements using obser-
vations of galaxy clusters. For the analysis of Hoekstra et al. (2015), I created large
suites of image simulations in an exercise similar to the GREAT challenges. We anal-
ysed simulations with ever increasing complexity to systematically account for various
sources of error in the shear measurement pipeline, and eventually calibrated the algo-
rithm for these biases. The increased accuracy of the shear estimates helped to obtain
improved mass estimates for the sample of galaxy clusters studied in Hoekstra et al.
(2015) compared to earlier work by Hoekstra et al. (2012). For this thesis I used this
improved pipeline to study another large sample of clusters observed as part of the
Multi Epoch Nearby Cluster Survey. Other factors affecting the accuracy of the weak
lensing mass estimates are the determination of the critical surface density from the
redshift distribution of source galaxies and the purity of the sample of source galax-
ies. I used auxiliary deep data containing reliable photometric redshift estimates to
derive a source redshift distribution. With image simulations, similar to those used
in Chapter 3, I studied the incompleteness of the population of background source
galaxies due to obscuration by cluster members. Incorporating this incompleteness,
I compute the purity of the source galaxy sample and statistically correct our weak
lensing signal.

In Chapter 4 we use our pipeline to measure the weak lensing masses of a large set
of galaxy clusters. These total masses are combined with the sample of Hoekstra et al.
(2015) and then used to determine a scaling relation with the mass estimate based on
measurements of the hot cluster gas. We find that a mass dependent scaling relation is
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favoured by our data over a constant bias in the gas-based mass measurements. Given
the large statistical power of our full cluster sample, our findings may help to resolve
the tension found between the cosmological parameters estimated from the primary
CMB measurements and those estimated using the abundance of galaxy clusters.

In Chapter 5 we apply our pipeline to the dark matter halos around satellite galax-
ies in the same sample of galaxy clusters. Shape measurements of galaxies are affected
by light of nearby galaxies, which is a major concern in the crowded cluster environ-
ment. I calibrated the shape measurement algorithm for this effect with dedicated
image simulations and determined the minimum radius from the galaxy centre for ac-
curate weak lensing measurements. We constrain the relation between subhalo mass
and stellar mass and find it to be consistent with expectations. There is no sign of
significant mass segregation in our data, contrary to what has been found by other
works.
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Melchior P., Viola M., Schäfer B. M., Bartelmann M., 2011, MNRAS, 412, 1552

Miller L., Kitching T. D., Heymans C., Heavens A. F., van Waerbeke L., 2007, MN-
RAS, 382, 315

Miller L., et al., 2013, MNRAS, 429, 2858

Miyazaki S., et al., 2012, in Ground-based and Airborne Instrumentation for Astron-
omy IV. p. 84460Z, doi:10.1117/12.926844
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2
Moment-based weak lensing

measurements with subpercent
noise bias

Current optical imaging surveys for cosmology cover large areas of sky. Exploiting
the statistical power of these surveys for weak lensing measurements requires shape
measurement methods with subpercent systematic errors.
We introduce a new weak lensing shear measurement algorithm, shear nulling after
PSF Gaussianisation (SNAPG), designed to avoid the noise biases that affect most
other methods.
SNAPG operates on images that have been convolved with a kernel that renders the
point spread function (PSF) a circular Gaussian, and uses weighted second moments
of the sources. The response of such second moments to a shear of the pre-seeing
galaxy image can be predicted analytically, allowing us to construct a shear nulling
scheme that finds the shear parameters for which the observed galaxies are consistent
with an unsheared, isotropically oriented population of sources. The inverse of this
nulling shear is then an estimate of the gravitational lensing shear.
We identify the uncertainty of the estimated centre of each galaxy as the source of
noise bias, and incorporate an approximate estimate of the centroid covariance into
the scheme. We test the method on extensive suites of simulated galaxies of increasing
complexity, and find that it is capable of shear measurements with multiplicative bias
below 0.5 percent.

R. Herbonnet, A. Buddendiek, K. Kuijken
A&A, Volume 599, id.A73, 13pp. (2017)
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2.1 Introduction

The effect that masses can act as lenses and bend the path of light rays is called
gravitational lensing. In the weak lensing regime first considered by Tyson et al. (1990)
we statistically measure the slight distortion of the shapes of background galaxies by
foreground lenses, called the shear. The subtle effects of weak gravitational lensing on
galaxy shapes are an immensely powerful tool in observational astronomy. Amongst
other applications, weak lensing has been an invaluable tool for cosmology through
measurements of shear-shear correlations, called cosmic shear, which are connected to
the dark matter power spectrum. After its first detection 15 years ago (Bacon et al.
2000; Van Waerbeke et al. 2001; Wittman et al. 2000; Kaiser et al. 2000) cosmic shear
has been extensively used in cosmological studies (e.g. Kilbinger 2015; Hildebrandt
et al. 2016; Jarvis et al. 2016).

Currently, large (>1000 deg2) cosmic shear surveys are ongoing, such as the Kilo
Degree Survey (de Jong et al. 2013), the Dark Energy Survey (The Dark Energy
Survey Collaboration 2005), and Hyper Suprime-Cam (Miyazaki et al. 2012); more
hemisphere-sized missions are planned, such as LSST (Ivezic et al. 2008), WFIRST
(Spergel et al. 2015), and Euclid (Laureijs et al. 2011). These surveys will observe un-
precedented numbers of galaxies, pushing down statistical errors, and hence requiring
percent (for ongoing missions) to subpercent level accuracies (for future missions) on
the measured galaxy shapes.

In order to conduct weak lensing studies a crucial point is to measure the shapes
of faint background galaxies with high accuracy as well as high precision in the face
of inevitable noise, finite image resolution, and pixel effects. The first weak lensing
techniques used the moments of the galaxy’s image to estimate its shape and are
known as moment-based methods (e.g. Kaiser 1992; Kaiser et al. 1995 (hereafter
KSB); Rhodes et al. 2000). These techniques need to use a weighting function with
which to cut off the moment integrals so that the moments are not dominated by noise.
Having to correct for the effect of the weight function and the PSF convolution are the
main challenges for this class of techniques. The widely used KSB method employs an
approximate deconvolution scheme, which assumes that the PSF is nearly Gaussian.
Newer moment-based methods have improved upon the PSF correction (Melchior et al.
2011), and there have been methods that change the PSF to make the measurement
more exact (as explained in Hirata & Seljak 2003 and used by Mandelbaum et al.
2013; Okura & Futamase 2015, 2016).

An alternative class of techniques relies on models of galaxies which are convolved
with a PSF and then fit to the galaxy image and are hence known as model-fitting
methods (e.g. Kuijken 1999; Miller et al. 2013; Zuntz et al. 2013). These techniques
have the benefit of an accurate treatment of the PSF, but in return require realistic
models of galaxies. The model of a galaxy is usually a parametric model (e.g. a
linear combination of Sersic profiles) and if it does not resemble the intrinsic galaxy,
the results can be biased (Bernstein 2010; Voigt & Bridle 2010). A similar class of
techniques, known as shapelets methods (Bernstein & Jarvis 2002; Refregier & Bacon
2003; Kuijken 2006), use a set of basis functions which can, in theory, model any galaxy
morphology by invoking ever higher order functions. However, in practice the order
has to be truncated as the higher functions are dominated by noise, again leading to an
unrepresentative galaxy model. In addition, noise in the galaxy image biases all shape
measurement methods due to the non-linear dependence of the galaxy’s ellipticity (the
usual description of its shape) on the surface brightness (Refregier et al. 2012; Melchior
& Viola 2012; Viola et al. 2014).
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In order to quantify these uncertainties and to find ways of calibrating the differ-
ent techniques, the weak lensing community started shape measurement challenges in
which teams competed by using their methods to obtain the most unbiased shear esti-
mate. This started with a general census and benchmark tests in the STEP challenges
(Heymans et al. 2006; Massey et al. 2007) and continued with GREAT challenges (Bri-
dle et al. 2010; Kitching et al. 2012; Mandelbaum et al. 2015), which focused on the
understanding of different sources of bias. After the most recent GREAT3 challenge
it appears that the development in shape measurement algorithms is slowly reaching
the goals set by ongoing cosmic shear surveys.

The recent improvement in accuracy was mainly due to the advanced understand-
ing of noise bias. Several authors have introduced correction schemes into their shape
measurement methods which are able remove a large portion of the noise bias (Man-
delbaum et al. 2015). An alternative route is to avoid biased shear estimators by using
estimators with a linear response to the pixel data instead of traditional non-linear
variables, such as the ellipticity. Several authors have used the second moments of the
galaxy’s image brightness to estimate the shear (Zhang & Komatsu 2011; Bernstein
& Armstrong 2014; Viola et al. 2014). Recently, Bernstein et al. (2016) have reported
that their Bayesian method based on moments is able to reach subpercent accuracy
even with low signal-to-noise (S/N) galaxies. However, the drawback of any Bayesian
analysis is the requirement of accurate priors, for which external deep observations
would be required. This requirement also means that there is no shear estimate for
single galaxies, as then knowledge of the intrinsic galaxy profile would be needed, but
only a shear estimate for an ensemble of galaxies.

In this paper we propose a novel shape measurement method which may help to
reach the ambitious goals of future cosmic shear experiments. Shear nulling after PSF
Gaussianisation (SNAPG) is a moment-based method based on a circular Gaussian
PSF and weight function, and requires the images to be preprocessed with a PSF
Gaussianisation routine. For such galaxies we have an analytic relation between the
moments of the galaxy and the shear. Shearing a population of galaxies introduces
anisotropy to their ellipticity distribution. Using the analytic expressions, SNAPG
reintroduces isotropy to this population by applying a nulling shear to the weighted
second moments. The inverse of the nulling shear is then the shear estimate. Such
a nulling technique was first advocated by Bernstein & Jarvis (2002). We propose
an analytic correction to mitigate the bias due to centroid errors (Bernstein & Jarvis
2002), which is directly computed from the galaxy image.

SNAPG is similar to the Bernstein et al. (2016) method, but instead of a Bayesian
framework it uses a nulling technique extract the shear from the second moments of
a population of galaxies. It does not require a prior on the intrinsic moments of the
galaxy population, but instead relies on the more general requirement that galaxy
ellipticities are isotropic. Our novel method thus only produces a shear value for an
ensemble of galaxies, but has the benefit that no auxiliary data is needed.

In Sect. 2.2 we introduce the SNAPG concept and a correction for the bias due to
centroid errors. Section 2.3 describes the image simulations we use to test SNAPG,
and in Sect. 2.4 and Sect. 2.5 we present the results of the test runs. This is followed
by a detailed discussion in Sect. 2.6, and a summary in Sect. 2.7.
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2.2 Theory

2.2.1 Principles of SNAPG

Our novel method combines elements from a number of shear measurement methods.
It follows KSB and Luppino & Kaiser (1997) in its use of Gaussian-weighted second
moments, and uses a nulling technique to estimate the shear (Bernstein & Jarvis 2002).
We explain the basics of moment-based methods, such as KSB and Luppino & Kaiser
(1997) in Sec. 2.2.2.

Because the ellipticities used in KSB are non-linear functions of the pixel val-
ues, pixel noise makes them biased estimators. In SNAPG we work with the second
moments of galaxies instead, which even in the presence of pixel noise are unbiased
estimators as long as the pixel noise in the image is unbiased (as has been previ-
ously explored by Zhang & Komatsu 2011 and Viola et al. 2014). For mathematical
tractability we require that the PSF in the images is Gaussian and circular; this al-
lows us to work out analytically how the weighted moments respond to any pre-seeing
shear (Sec. 2.2.3). A similar exercise was done by Rhodes et al. (2000), but here we
do not make any simplifying assumptions and find an expression which is valid for
all values of the gravitational shear. Note that we do not try to find the intrinsic
unweighted moments as in Luppino & Kaiser (1997); instead, we are only interested
in the response of the weighted moments to a shear, similar to Bernstein et al. (2016).

The centroid of a source needs to be chosen before the second moments can be
calculated. As this position is determined from noisy data, there is a noise dependent
shift in the centroid. We show how to incorporate the uncertainty on the centroid
of the galaxy into the shear estimator in the approximation where this uncertainty is
distributed as a bivariate Gaussian in Sect. 2.2.4.

The response of the weighted second moments to shear can be used to find the
inverse shear which counteracts the gravitational lensing shear. Hence, given the true
shear, we can use the inverse shear to compute the second moments of the galaxy
before it was lensed. As the true gravitational lensing shear is unknown, we cannot
use each galaxy as an independent shear estimator. Rather, we use an ensemble of
sheared galaxies as a probe of systematic alignments and calculate the nulling shear
that needs to be applied to this ensemble to render their intrinsic ellipticity distribution
isotropic. The nulling shear is then the opposite to the true shear affecting these
galaxies (Sec. 2.2.5). Our approach differs from the approach of Viola et al. (2014)
and Zhang & Komatsu (2011), who average the numerator and denominator of the
ellipticity separately to avoid introducing biases. In SNAPG only the numerator of
the ellipticity is used as a measure of the isotropy of the ellipticity distribution, and
its response to shear calculated in order to null the signal.

Because real PSFs are not circular Gaussians, SNAPG can only be applied to
images that have been convolved with a suitable Gaussianisation kernel (Sec. 2.2.6).
Such a convolution is a linear operation on the pixels, so does not introduce noise bias
in the second moments. However, it does correlate the pixel noise, the effect of which
can be tracked and corrected for.

2.2.2 Lensing basics

Here we introduce the basic expressions regarding general shear estimation via the
ellipticity of a galaxy as we refer to them often throughout this section. For a more
detailed weak lensing review see Bartelmann & Schneider (2001).
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A gravitational potential changes the path of light rays moving through it, thereby
changing the observed direction of incoming light rays. For extended luminous objects
different light rays can be deflected differently and thus we will observe a distorted
image of a distant object. To the first order this distortion consists of a stretch
(shear) and a magnification (convergence). The deflection angle of light rays from the
source depends on the gradient of a suitably defined lensing potential, Ψ. The relation
between the position of the source βββ and the position of the observed image θθθ is known
as the lens equation

βββ = θθθ − ∇Ψ(θθθ). (2.1)

Given that the deflection angles in weak lensing are small, the distortion can be ex-
pressed in terms of a Jacobian matrix

A =
∂βi

∂θ j
=

(
δi j −

∂2Ψ(θθθ)
∂θi∂θ j

)
=

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
≡

1
1 − κ

(
1 − g1 −g2
−g2 1 + g1

)
. (2.2)

The parameters

κ =
1
2

∂2Ψ(θθθ)
∂θ2

1

+
∂2Ψ(θθθ)
∂θ2

2

 , (2.3)

γ1 =
1
2

∂2Ψ(θθθ)
∂θ2

1

−
∂2Ψ(θθθ)
∂θ2

2

 ,
γ2 =

∂2Ψ(θθθ)
∂θ1∂θ2

are the gravitational lensing convergence κ and the two components of the shear γ1,
γ2, respectively. Without information on the intrinsic size of the lensed source, only
the reduced shears g1, g2 can be measured.

The shear affects a galaxy’s polarisation according to

χi =
χ − 2g + g2χ∗

1 + |g|2 − 2<(gχ∗)
, (2.4)

where χ and χi are the observed and the intrinsic, unlensed polarisation. As the in-
trinsic shape of a galaxy cannot be measured and the weak lensing shear is very small,
the shear has to be statistically obtained from a large number of galaxies experienc-
ing the same distortion. Assuming that galaxies are randomly oriented, the intrinsic
polarisations should average out, 〈χi〉 = 0.

Moment-based methods construct the polarisation of an object from the second
moments of image brightness Qi j

χ =
Q11 − Q22 + 2iQ12

Q11 + Q22
. (2.5)

These moments are defined as the noiseless unweighted moments on the intrinsic
galaxy image Ii(x),

Qi
i j =

∫
dx Ii(x)xix jW(x), (2.6)
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with the weight function W(x) = 1. However, in practice a galaxy is observed convolved
with a PSF P(x),

Io(x) =

∫
dx′ Ii(x′)P(x − x′), (2.7)

and the weight function W(x) that goes to zero at large x is required for the moments
not to be dominated by the noise on the image. The aim of moment-based methods is
then to estimate the intrinsic polarisations by correcting for the weight function and
PSF.

2.2.3 Effect of pre-seeing shear on observed Gauss-weighted moments

In the case when the PSF is Gaussian, we can reconstruct what the second moments
would have been if the galaxy had been sheared.

The weighted second moments of the observed image are

Qo
i j =

∫
dx Io(x)xix jW(x) (2.8)

=

∫ ∫
dx dx′ Ii(x′)P(x − x′)xix jW(x),

with W(x) a weight function that depends only on |x|. The order of integration can be
swapped and Eq. 2.8 rewritten as

Qo
i j =

∫
dx′ Ii(x′)

[∫
dx P(x − x′)xix jW(x)

]
, (2.9)

and so relate the weighted second moments directly to the intrinsic galaxy shape as
an integral weighted by the expression in square brackets (which depends only on the
weight function and PSF).

A gravitationally lensed source has a distorted image: the intrinsic image Ii(x) is
transformed to

IA(x) = Ii(Ax) (2.10)

by the distortion matrix A.
In order to measure the gravitational shear, we need to know the weighted second

moments that we would observe if the galaxy had been distorted by a distortion matrix
A before PSF convolution; these can be written as

QA
i j =

∫
dx′′ IA(x′′)

[∫
dx P(x − x′′)xix jW(x)

]
(2.11)

=

∫
dx′

| det A|
Ii(x′)

×

[∫
dx P(x − A−1x′)xix jW(x)

]
by means of Eq. 2.10 and the transformation x′ = Ax′′. We now show how the moments
QA

i j of the sheared source can be derived from the observed, PSF-convolved image Io(x),
by constructing a new weight function WA

i j (x) which satisfies, for arbitrary x′,∫
dx
| det A|

P(x − A−1x′)xix jW(x) (2.12)

=

∫
dxP(x − x′)WA

i j (x).
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It is easy to see from Eq. 2.12 that integrating the observed (PSF-convolved but un-
sheared) image times the weight function WA

i j will give the moments QA
i j. Equation 2.12

shows that WA
i j can be constructed from the original weight function W and the PSF

P by the following sequence of operations:

1. Convolving xix jW with the PSF;

2. Distorting the result of the previous step with distortion matrix A and divide by
| det A|;

3. Deconvolving the result of the previous step by the PSF.

This recipe is valid as long as the deconvolution in the final step is well defined.
We do not attempt to solve the general problem, but concentrate on the simpler

case where both the PSF P and the weight function W are round Gaussians:

P(x) =
1

2πp2 e−|x|
2/2p2

(2.13)

and

W(x) = e−|x|
2/2w2

. (2.14)

In Appendix 2.A we derive an expression (Eq. 2.34) for the convolution of G1 with
xix jG2, where G1 and G2 are Gaussians of arbitrary covariance matrices P and V
respectively. By substituting V = w21, P = p21, and y = A−1x′ in Eq. 2.34, we can
write the left-hand side of Eq. 2.12 as∫

dx
| det A|

P(x − A−1x′)xix jW(x) (2.15)

=
w4

(w2 + p2)2

e−
1
2 |A

−1x′ |2/(w2+p2)

| det A|

×

[
p2δi j +

w2

w2 + p2

(
A−1x′

)
i

(
A−1x′

)
j

]
.

The final step is now to deconvolve this expression by the PSF in order to obtain
an expression for the weight function WA

i j that satisfies Eq. 2.12. We first calculate
the result of convolving with a general Gaussian PSF of covariance matrix P; the
deconvolution we seek is then obtained by setting P = −p21 (note the sign). The
first term (involving δi j) is straightforward: convolving two Gaussians results in a new
Gaussian with covariance matrix equal to the sum. The second term can be calculated
using the result of Eq. 2.34 in Appendix 2.A by setting the matrix V defined there to
V = (w2 + p2)A2.

After some work we find

WA
i j (x) = w4 e−

1
2 xT B−1x

| det B| 12
(2.16)

×

[
δi j + w2

((
AB−1x

)
i

(
AB−1x

)
j
−

(
AB−1A

)
i j

)]
with

B = (w2 + p2)A2 − p21. (2.17)
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The weight function WA
i j is only useful in practice if it tends to zero at large |x|.

This is the case as long as the distortions are small enough so that both eigenvalues
of B are positive, which is true when

κ + γ < 1 −
p√

w2 + p2
. (2.18)

As long as the weight function is wider than the PSF (w > p, a reasonable choice if
one wants to avoid unnecessarily noisy measurements), this means a useful WA

i j can be

constructed for κ + γ at least up to 0.3. We show the form of the weight function WA
i j

for a grid of (g1, g2, κ = 0) in Fig. 2.1.

2.2.4 Bias as a consequence of centroiding errors

Applying the filter WA
i j in Eq. 2.16 to an image yields unbiased estimates for the post-

seeing weighted second moments of the source about x = 0 as long as the noise on each
pixel is unbiased. However, in reality the true centre of the source is unknown, and
must be estimated from the image itself. The associated scatter in the centroid biases
the second moments. In this section we quantify that bias.

Suppose that xc is a noisy estimate of the centroid of the observed image Io. Then,
using this centroid our estimate for QA

i j is

Q̃A
i j =

∫
dx Io(x)WA

i j (x − xc). (2.19)

If the error distribution of the centroids is f (xc) then the expectation value of Q̃A
i j is〈

Q̃A
i j

〉
=

∫
dxc f (xc)Q̃A

i j (2.20)

=

∫
dx Io(x)

∫
dxc f (xc)WA

i j (x − xc),

i.e. the weight function that determines Q̃A
i j is the original weight function WA

i j con-
volved with the centroid error distribution f . Hence, conversely, an unbiased estimate
of QA

i j is obtained by using a weight function ŴA
i j obtained by deconvolving WA

i j by the
centroid error distribution f . We assume that f is Gaussian, of covariance C. Remem-
bering that expression 2.16 for WA

i j was itself obtained by deconvolving Eq. 2.15 by

the PSF, we see that ŴA
i j is the deconvolution of Eq. 2.15 by P⊗ f , i.e. by a Gaussian

of covariance matrix p21 + C. As noted under Eq. 2.17, this deconvolution is simply
accomplished by using Eq. 2.16 with a modified B matrix

B̂ = (w2 + p2)A2 − p21 − C. (2.21)

It remains for us to quantify the covariance matrix C of the centroid error for a
given source. This will depend on the recipe used to determine the centre.

We centre each source by finding the peak of the correlation of its (noisy) image
In(x) with a suitable centring kernel f , equivalent to finding the optimum positional
match between In and f . The centroid c found this way satisfies

0 =
∂

∂ci

∫
In(x) f (x − c)dx (2.22)

=

∫
In(x)( f,i(x) − c j f,i j(x) + ...)dx
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Figure 2.1: Example shear filter functions WA
i j , for filter and PSF size w = 3, p = 2, (κ = 0).

Integrating an image multiplied with the filter function for a particular shear (g1, g2) yields
the weighted second moments the image would have had if it had been sheared by that
amount before seeing convolution. The central box is 25 units on a side, and the dashed line
indicates the maximum shear value that can be applied for the given w and p (see Eq. 2.18).
Red is positive, blue is negative. Left: Filters corresponding to Qxx − Qyy. Right: Filters
corresponding to Qxy.
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where we used a Taylor expansion on f about c = 0, assumed to be the true centre of
our source. To derive the noise properties of c we first separate In(x) into the noise-free
observed image Io(x) and a noise field ∆(x), and obtain the first-order relation between
∆ and c:

c j

∫
Io(x) f,i jdx =

∫
∆(x) f,i(x)dx. (2.23)

To calculate the covariance ckcl we define Fi j as the integral on the left-hand side of
Eq. 2.23, and we assume the background-limited case in which pixel noise is stationary,
of constant covariance matrix N(x − x′) across a source image. Squaring Eq. 2.23 and
averaging over all possible noise realisations then yields

ckclFikF jl =

∫ ∫
f,i(x) f, j(x′)N(x − x′)dxdx′ ≡ Hi j, (2.24)

and hence the covariance matrix C needed in Eq. 2.21 is given by

C = F−1HF−1. (2.25)

Here, H depends only on the kernel function f and the pixel noise properties N, and
F can be estimated from the noisy image In. If the kernel f is circular and the noise
covariance matrix isotropic N(x − x′) = σ2

nδ(x − x′), where σn is the root mean square
of the noise background, then H becomes a scalar.

A convenient choice is a Gaussian

f (x) = e−|x|
2/2a2

(2.26)

for which

Hi j =
πσ2

nδi j

2
(2.27)

and

f,i j(x) =

(
xix j

a4 −
δi j

a2

)
e−|x|

2/2a2
. (2.28)

2.2.5 SNAPG shear nulling estimator

In the previous sections we constructed the filter WA
i j which, when applied to an ob-

served Gaussian-PSF smeared image, yields the Gauss-weighted second moments QA
i j

that would have been observed (with the same PSF) had the galaxy been distorted
by distortion matrix A. We have also quantified the noise bias on QA

i j due to cen-

troiding errors, and constructed a modified filter ŴA
i j that compensates for it. In what

follows we will drop the “hat” notation and assume that the centroid error correction
is applied.

The weight function WA
i j can be used to construct a shear estimator. If a galaxy is

sheared by some known distortion matrix A, then we can use the inverse of A to find the
intrinsic second moments of the galaxy. For a large ensemble of galaxies their combined
intrinsic ellipticities (or equivalently their Stokes parameters) average out to zero.
Then the search is for the distortion matrix A which can null the Stokes parameters
(QA

11 − QA
22, 2QA

12) of a sheared population of galaxies. The inverse of that distortion
matrix is a good estimator of the shear those galaxies experience. To efficiently search
for the distortion matrix we use a nulling scheme similar to one already used in shape
measurements (Bernstein & Jarvis 2002). In practice, a trial distortion matrix A is
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chosen and the corresponding weight function WA
i j is computed (see Fig. 2.1), with

which the Stokes parameters for the ensemble of galaxies are calculated. Based on
the (an)isotropy of the Stokes parameters a new distortion matrix is chosen, and the
previous steps are repeated to reassess the isotropy. This procedure converges in
roughly four trials, after which the inverse of the distortion matrix is taken as the
shear estimate.

Because galaxies have a wide range of brightness, the Stokes parameters of a galaxy
population have a large variance. This translates into a large variance in the nulling
shear and increasing precision would require large numbers of galaxies. Alternatively,
the moments could be weighted by flux or size to reduce the variance, but this would
introduce a bias in the shear. In our current tests such a weight is not required, but
we discuss possible solutions for future work in Sec. 2.6.5.

2.2.6 PSF Gaussianisation

As indicated in the beginning of Sec. 2.2.3, SNAPG relies on the assumption of a
circular Gaussian PSF. Such a PSF is never present in observational data and thus
we need to transform the actual observed PSF into the required PSF. We employ
a Gaussianisation process which creates a circular Gaussian PSF by convolving the
observed PSF with an appropriate kernel.

Gaussianisation starts by creating a shapelets model of the PSF. Shapelets are a
set of basis functions of Gauss-Hermite polynomials, which can be linearly combined
to model astronomical objects (Refregier 2003). Convolution in shapelet space is a
straightforward procedure, making shapelets an ideal basis for the Gaussianisation
process. We use the shapelet implementation of Kuijken (2006) to create a shapelet
model of the PSF. In practice, bright stars can be used to obtain a model of the PSF.
A best fit circular Gaussian of the shapelets model of the PSF is determined. Then
a convolution kernel is found that convolves the PSF into the best fit Gaussian. The
resulting kernel is applied to the whole image to create galaxies with circular Gaussian
PSFs. See Kuijken et al. (2015) for more detail on the process of PSF Gaussianisation.

It is worth noting that this procedure is different from the one presented by Hirata
& Seljak (2003). They assume a Gaussian form for the intrinsic shape of the galaxy
when calculating the corrections for PSF non-Gaussianity, whereas our procedure is
valid for any galaxy morphology. However, it does rely on well-sampled data and was
designed with only ground-based PSFs in mind. It is unclear how the procedure would
perform for diffraction-limited space telescopes.

The convolution mixes information from neighbouring pixels and hence introduces
a correlation between the noise on different pixel values. The resulting noise covariance
matrix N(x− x′) is given by the original image’s pixel variance, multiplied by the auto-
correlation function of the convolution kernel. It is important to propagate this noise
covariance into the centroid error estimate (Eq. 2.24).

2.3 Image simulations

To test the performance of SNAPG we create simulated images of galaxies with known
applied shear. Following the image simulations of the GREAT challenges, we create a
grid of isolated galaxies on postage stamps. This approach gives us a clean test of the
performance of SNAPG without introducing errors related to blended galaxy isophotes
(see Hoekstra et al. 2015 for a discussion on how blends affect shear measurements).
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Table 2.1: Overview and specifications of all simulated images used to test the performance
of SNAPG.

Set PSF Galaxy type
Well resolved Gaussian Exponential
Barely resolved Gaussian Exponential
GREAT08 RNK Gaussianised Moffat Exponential or de Vaucouleurs
GREAT08 LNK Gaussianised Moffat Exponential or de Vaucouleurs

Set PSF HLR Galaxy HLR S/N
Well resolved 1.76 pixels 2.5 pixels ∼5 - 100
Barely resolved 1.76 pixels 1.5 pixels ∼5 - 100
GREAT08 RNK 1.72 pixels 2.1 or 10 pixels ∼200
GREAT08 LNK 1.72 pixels 2.1 or 10 pixels ∼20

The images of the GREAT challenges do not have circular Gaussian PSFs, so for a
clean test of the SNAPG framework we use GalSim (Rowe et al. 2015) to create our
own image simulations with perfect circular Gaussian PSFs.

Our simulated galaxy images are a grid of 100 x 100 galaxies, all with exponential
profiles of the same size. The grid of postage stamps have a single galaxy randomly
offset from the centre of the stamp. The postage stamp is large enough to avoid any
bias due to truncation of the surface brightness profile. The half light radius (HLR)
of the galaxies is 2.5 pixels. The flux of all galaxies is the same, so that when noise is
added all galaxies will have the same S/N. The modulus of the ellipticity of a galaxy
is randomly drawn from a Rayleigh distribution of width 0.25, cut off at 0.6 to avoid
artificial truncation by the edge of the postage stamp. The position angle of the galaxy
is taken from a random uniform distribution between 0 and 180 degrees. The galaxy
models are convolved with a Gaussian PSF with a half light radius of 1.76 pixels. The
size of the galaxies is larger than the size of the PSF, so we call this set of images the
well resolved sample. Each image has a constant shear applied to all 10000 galaxies,
where the shear is taken from a grid of (−0.04,−0.035,−0.03, ..., 0.04) for each shear
component separately, resulting in 289 different g1, g2 pairs.

We also create a similar set of images where the galaxy half light radius is set to
1.5 pixels. The half light radius of the Gaussian PSF is 1.76 pixels, so that the PSF is
larger than the galaxy. We call this set of images the barely resolved sample. Fluxes
are fixed and the ellipticity is sampled in the same way as described above. Here too,
constant shears are applied to all galaxies on an image, and the shear is taken from
the same grid.

These two suites of image simulations contain a total of 5.78 · 106 galaxies. These
galaxy images do not contain any noise, instead Gaussian noise is added as required
for each test. Each set represents a different target for shape measurement. The
well resolved images present our fiducial dataset as the galaxy shapes are not badly
affected by the PSF and provide us with a benchmark test of the performance of
SNAPG. The barely resolved images present a challenging sample, as galaxy shapes
are heavily influenced by pixelisation and severely blurred by the PSF. These galaxies
are a difficult target for most shape measurement methods and are sometimes cut from
the sample owing to the uncertainty in the galaxy shapes. However, faint small galaxies
are abundant in observations and their removal presents a serious loss of statistical
power. Having a shear measurement technique able to reliably measure such objects
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Figure 2.2: Examples of the simulated galaxies at different noise levels to help visualise
varying S/N levels, and well resolved in contrast to barely resolved galaxies. Top: Cut-out
of the well resolved sample of images for S/N ≈ 100 (left) and S/N ≈ 10 (right). Bottom:
Cut-out of the barely resolved sample of images for S/N ≈ 100 (left) and S/N ≈ 10 (right).
The shape of the barely resolved galaxies is rounded by the PSF and for low S/N both well
resolved and barely resolved galaxies the shapes are very much affected by noise.

will be a huge advantage for future weak lensing experiments.

As a visual aid to interpreting the different sets of simulated galaxy images we show
some of our mock galaxy images in Fig. 2.2. The upper images show the fiducial well
resolved galaxies and the lower images show galaxies from the challenging set of barely
resolved galaxies. The images have Gaussian noise added so that the mean S/N ≈ 100
(left panel) and S/N ≈ 10 (right panel), where S/N is defined as the FLUX/FLUXERR

measured by SExtractor on default settings (Bertin & Arnouts 1996). A summary of
the image properties can be found in Table 2.1.

The images of the GREAT08 challenge (Bridle et al. 2010) provide us with a
test of the PSF Gaussianisation. In addition, we can compare the performance of
SNAPG to other tested methods. We use the 15 LowNoise Known (LNK) and 300
RealNoise Known (RNK) sets of images from the challenge, where each image has
10000 isolated galaxies in postage stamps of 40 pixels across. All 10000 galaxies in
an image have the same shear applied to provide ample statistics. The galaxies are
either an exponential or a de Vaucouleurs profile with a fiducial S/N = 200 for LNK
and S/N ≈ 20 for RNK. The sizes of galaxies are set so that the PSF convolved galaxy
size is 1.4 times larger than the PSF size. We use the PSF Gaussianisation algorithm
explained in Sec. 2.2.6 to outfit the GREAT08 images with a circular Gaussian PSF.
The Gaussianisation algorithm is applied to PSF set0001, which is a Moffat profile
of full width half maximum 2.85 truncated at 5.7 pixels and ellipticity components
e1 = −0.019 and e2 = −0.007. The main properties of the GREAT08 images are
summarised in Table 2.1.
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2.4 Test runs

The new shear nulling method is coded in python and we apply it to the image sim-
ulations described in the previous section. The code returns the shear value gi that
nulls the average distortion of each 10,000-galaxy image. First we test the SNAPG
formalism, then the centroid bias correction formalism, and finally a full implemen-
tation of SNAPG. Throughout this section we use a=3 and w=3 for the widths of
the centroid and moment weight functions, respectively. As noted above, none of the
images contains noise. Instead, we add noise for each test as storing each noise re-
alisation presented storage problems. For every level of added noise we calculate the
mean signal-to-noise ratio (S/N) using SExtractor with default settings and defined
as FLUX/FLUXERR. Each measurement we present was obtained by using the full set of
2.89 ·106 galaxies in each set of simulations described in the previous section.

The performance of SNAPG is measured by performing a linear fit using the func-
tional form gi,out = (1 + mi)gi,true + ci (Heymans et al. 2006) for each shear component
gi. This procedure quantifies the shear bias as a multiplicative term mi (e.g. arising
from method assumptions or noise) and an additive term ci (arising from imperfect
corrections for the elliptical PSF). Because our simulations are ideal with a circular
Gaussian PSF we do not expect any additive bias in these tests.

2.4.1 High signal-to-noise tests of SNAPG

We start by quantifying the performance of SNAPG on the fiducial set of images with
well resolved galaxies for S/N=100 for the true centroid of the galaxy. In the left panel
of Fig. 2.3 we show the measured residuals between the input shear and the measured
one, and the true input versus the measured shear. We find 〈m〉 = (+1.6 ± 1.9)10−4

and 〈c〉 = (−0.1 ± 0.1)10−4 for the average of the two components of the shear. We
also test the algorithm on the set of barely resolved galaxies and the result is plotted
in the right panel. Again SNAPG retrieves the applied shear without detectable bias:
〈m〉 = (−0.9 ± 2.3)10−4 and 〈c〉 = (−0.1 ± 0.1)10−4.

As expected SNAPG returns unbiased shear estimates for our ideal images with
circular Gaussian PSF with high S/N, showing that the pipeline works. These tests
also show the potential of SNAPG as a shear measurement method, regardless of the
size of the galaxy in relation to the size of the PSF. We note that at this high S/N the
results remain unchanged if the centroid is measured from the data.

2.4.2 Tests of centroid bias correction

We expect a bias in the shear estimate to originate from the random error on the
measured centroid due to image noise. In order to test the effectiveness of the centroid
bias correction proposed in Sec. 2.2.4, we perform a test with truly random centroid
values. The well resolved images are re-analysed with SNAPG, but the centroids are
artificially offset from the true centroid by a random Gaussian value. The error on the
centroid is taken from a normal distribution with a standard deviation of 0.5 pixels.
Such a distribution would occur for our simulated images with a S/N ≈ 5.5 for a = 3.

Besides introducing random centroid errors, we also add Gaussian noise to the
images before measuring the shear. The addition of noise, which is uncorrelated to
the centroid error, should not bias SNAPG as the moments are linear with respect
to the noisy surface brightness. Hence, we analyse the images with SNAPG several
times where each time Gaussian noise with a different root mean square is added to the
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Figure 2.3: Shear estimates gout measured by SNAPG on images with well resolved (left) and
barely resolved (right) galaxies of S/N ≈ 100 compared to the input shears gtrue of the images.
Each datapoint is the shear estimated from the 10000 isolated galaxies on an image. The
text in the figures shows the multiplicative bias m and the additive bias c of the measurement
obtained from the best linear fit shown in black. The potential of SNAPG as a shear mea-
surement method is clear as the true shears can be recovered to an accuracy of less than one
part per thousand.
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Figure 2.4: Galaxies in the well resolved image set are assigned random centroid errors,
then Gaussian noise is added, after which the shear is measured with SNAPG. Measured
multiplicative bias in the shear is plotted versus the mean S/N of all galaxies on the images,
with m1 in black and m2 in red. Each datapoint is based on the shear estimates of all
2.89 million galaxies in the well resolved image set. SNAPG results with the exact centroid
covariance matrix are shown as dashed lines and results without centroid error correction
as dotted lines. The bias from misplaced centroids can be reliably removed by SNAPG,
regardless of the noise added to the images.

images. The results of these tests are presented in Fig. 2.4 as the multiplicative bias m1
in black and m2 in red versus the mean S/N of all galaxies. The dotted lines show the
measured bias when no correction is applied. The dashed lines show the bias when the
covariance matrix is set to the correct centroid covariance C = 0.521. As we expected,
the application of the correction reduces the multiplicative bias from centroid errors
to subpercent levels regardless of the noise on the galaxy images. Higher levels of
noise increase the variance of the measurements but do not lead to a bias. The mean
corrected multiplicative bias over all S/N is 〈m〉 = −4.7 ·10−4 and the measured additive
bias is below 10−3 for all S/N.

2.4.3 Full test of SNAPG

We now add a centroid measurement algorithm to SNAPG and use it as input for
SNAPG. The centroids of each galaxy are estimated by nulling the first moments
of the galaxy and the centroid error covariance matrix is estimated using Eq. 2.25.
Gaussian noise is added to the well resolved images and SNAPG is run to obtain a
shear estimate. In contrast to the previous test, the noise is now directly related to
the centroid error. Again we repeat this exercise for different noise levels and show
the multiplicative bias as a function of the measured mean S/N in Fig. 2.5. The
dotted line shows the bias in g1 in black and g2 in red without applying the centroid
bias correction and the solid line shows the corrected bias. Centroid errors lead to a
bias of several percent for S/N ≈ 10, which is decreased to ∼ 1% by the centroid bias
correction. The measured additive bias is below 0.1% for all S/N. For very low S/N
the estimate for the covariance matrix becomes dominated by noise and the formalism
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Figure 2.5: Similar set-up to that in Fig. 2.4. Dotted lines show the SNAPG results without
using the centroid error correction and solid lines show the results for covariance matrices
measured from the data. The centroid bias algorithm breaks down for very low S/N, so that
the solid curves do not reach to S/N < 6. Dashed lines show the SNAPG results when the
mean centroid variance in each image is taken to be the covariance matrix for that image.
As the dashed and solid lines are almost indistinguishable, the measured covariance matrix
is a good estimate of the true centroid covariance. However, it is unable to remove all bias
caused by noise, leaving residual biases of percent level for very faint S/N < 10 galaxies.

breaks down.

The centroid error correction removes a large part of the noise bias, but does not
remove the bias completely. This can occur if the measured covariance matrix is
not a good representation of the true centroid variance. To check this hypothesis,
we compute the true centroid variance and compare its performance to our previous
results. First we measure the centroid from a noisy image and compare this to the true
centroid to compute the centroid error ∆x. We then estimate the centroid variance as
the average Ci j = 〈∆xi∆x j〉 over all 10000 galaxies in each image, square the centroid
error, and compute the centroid variance as the squared centroid error averaged over
all 10000 galaxies in an image Ci j = 〈∆xi∆x j〉. This true centroid error covariance is set
into Eq. 2.21 as the covariance matrix for all 10000 galaxies in the image and the shear
for the image is measured. We show these results as dashed lines in Fig. 2.5 and note
that they are very similar to our previous results (solid lines). These findings indicate
that the estimate of the centroid variance is good, but that there is unresolved noise
bias in SNAPG.

We have also analysed the set of barely resolved images and plotted the multiplica-
tive bias as a function of S/N in Fig. 2.6. These results sketch a similar picture: noise
bias can be reduced by roughly half, but not completely removed. However, even with
residual noise bias, SNAPG has only percent level biases for very faint, very small
objects. This achievement is remarkable and highlights the potential of SNAPG.

We have corrected for the non-linearity due to the noisy estimates of the centroid
and the second moments themselves have a linear relationship to the noise. Indeed it
is shown in Fig. 2.4 that if the centroid bias is perfectly corrected for, the noise in
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the second moments does not introduce a bias. However, an additional non-linearity
in SNAPG remains: the correlation between the centroid error and the pixel noise.
This correlation is not present in Fig. 2.4, but it is in Figs. 2.5 and 2.6. We now
check whether this correlation is the origin of the residual bias after correction, by
measuring the centroid and its variance from a different noise realisation than the
second moments. We repeat this exercise again for different noise levels and show the
results in Fig. 2.7. Even without the use of the correction (dotted lines) the bias is
significantly decreased when compared to Fig. 2.5, highlighting the bias induced by
the correlation. We see that the centroid bias can be corrected to subpercent levels
even for galaxies with S/N < 10. Although the correction breaks down for galaxies
that are too faint, the bias is consistent with zero down to the lowest S/N.

2.5 GREAT08

In the previous section we have shown that the shear estimated using SNAPG is
accurate up to the percent level for images with circular Gaussian PSFs. Noise bias
can be removed using the centroid correction described in Sec. 2.2.4 if different noise
realisations of the same galaxy are available. However, it remains to be shown how
SNAPG would perform on real observations and specifically on images without a
circular Gaussian PSF. Therefore, we now apply the SNAPG algorithm to the more
realistic Gaussianised images of the GREAT08 competition (see Sec. 2.3). These tests
will show how well the PSF Gaussianisation algorithm performs. As before we use a = 3
and w = 3 for the sizes of the weight functions. For the covariance matrix, N(x− x′) is
given by the auto-correlation function of the kernel which is used to Gaussianise the
PSF in the GREAT08 images. This is convolved with the original covariance matrix
σ2

nδ(x−x′) and this convolution is used in Eq. 2.24 to compute the centroid covariance
matrix.

We measure the shear with SNAPG on the 15 Gaussianised LNK images and the
results are shown in the left panel of Fig. 2.8. There is a slight overestimation of the
multiplicative bias of 1-2%, and there is a small additive bias inconsistent with zero
c1 = (2.4 ± 0.4)10−4 and c2 = (0.7 ± 0.5)10−4. The sign of the multiplicative bias and
the non-zero additive bias point towards a PSF, which is not a circular Gaussian. The
results of SNAPG measurements on the 300 RNK images are shown in the right panel
of Fig. 2.8. Again there is positive residual multiplicative bias m = (+7.5±2.5)10−3, but
a slightly lower value than the one we found for the LNK images. This is probably the
combination of the Gaussianisation process and the imperfect centroid bias correction
we found in the previous section. As we do not possess different noise realisations of
the GREAT08 images, we cannot remove the residual noise bias. There is also a small,
but statistically significant discrepancy between the bias in g1 and g2 which is not seen
in other tests.

We investigate the percent level bias found in the GREAT08 in more detail by
looking at the shear bias for various PSF profiles. We simulated two images of galaxies
of opposite shears (g1 = ±0.03, g2 = ∓0.02) with a non-Gaussian PSF. Six different
Moffat profiles with β =2, 3, 4, either circular or elliptical, with ε = +0.02, ε = −0.01
were used as PSFs. The PSF half light radius was 1.76 pixels and the galaxy half
light radii were 2.5 pixels, so that these images resembled the well resolved images. At
S/N ∼ 100 the images underwent PSF Gaussianisation and afterwards the shear was
estimated. We found that regardless of the original PSF, the bias in the shear is ∼2%,
similar to the results from the GREAT08 images. At such a high S/N this bias is not
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Figure 2.6: Same as Fig. 2.5, but now for the set of barely resolved galaxies. Again SNAPG
shows that the PSF can be reliably accounted for, even for low S/N galaxies, as residual biases
after noise bias correction are only several percentage points.
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Figure 2.7: Same as Fig. 2.5 where the correlation between centroid error and the image noise
is removed. Note the different y-axis scale compared to Fig.2.5. The centroid bias correction
now accounts for all the bias to subpercent accuracy, until it fails for extremely low S/N.
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due to a centroid error and therefore we suspect an imperfect Gaussianisation of the
PSF to be the cause. It is unclear which aspect of the PSF Gaussianisation routine
causes the bias in the shear estimate, although it does seem to be robust against
variations in the PSF profile.

2.6 Discussion

2.6.1 SNAPG formalism

We have introduced the SNAPG formalism and tested its performance as a shear
measurement method. For galaxy images convolved with a round Gaussian PSF the
effect of shear on weighted second moments of image brightness can be analytically
calculated. This analytical treatment is used to create a pipeline which finds the
gravitational lensing shear by nulling the polarisations for an ensemble of galaxies.
This procedure thus finds an estimate for the shear experienced by the galaxies. On
test images with high S/N galaxies convolved with a circular Gaussian PSF, the method
obtained shear estimates deviating from the input shears by only parts per thousand.

2.6.2 Noise bias

Like most shape measurement methods, SNAPG suffers a noise bias when applied
to images of galaxies with low S/N. However, by using only linear combinations of
second moments instead of ratios of moments such as the polarisation or ellipticity,
much of the noise bias can be avoided. This strategy allows SNAPG to obtain only
a percent level bias in images with a S/N ≈ 10. Noise in the data introduces errors
in the centroid estimates, which in turn biases the shear estimates. We compute an
analytic treatment to correct the centroids and show that it can significantly improve
the performance of SNAPG for low S/N galaxies. Remaining biases after correction
for S/N ≈ 10 are in the range of less than one percent.

The residual biases increase with decreasing S/N, which indicates that the centroid
error correction does not account for the full effect of noise bias. We traced their origin
to the correlation between the centroid errors and pixel noise in the second moments.
By removing the correlation, we can greatly decrease the measured bias, and also
correct for the remaining bias with our centroid bias correction to subpercent accuracy.
For multi-band surveys a possible solution is to use different filters for the estimates
of the centroid and the measurement of the moments. In this way, the correlation
between the centroid and the image is removed and without this correlation SNAPG
can produce almost unbiased results. The impact on the bias of such a scheme will
have to be investigated as galaxy colours and colour gradients may become an issue. In
addition, this introduces a correlation with the photometric redshift estimate, which
might pose a problem for cosmic shear measurements.

2.6.3 Galaxy resolution

The shape of a galaxy similar in size to the PSF is heavily distorted by the PSF,
making it difficult to estimate the intrinsic shape. However, the analytic treatment
of the PSF in the SNAPG formalism ensures that shear estimation is possible even
for barely resolved galaxies. For galaxies 0.84 times smaller than the PSF, the shear
was retrieved to similar accuracy, as were resolved galaxies for S/N ≈7-10 galaxies. By
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Figure 2.8: Same set-up as Fig. 2.3, here for the shear estimates gout for the LowNoise Known
images of the GREAT08 challenge outfitted with a circular Gaussian PSF using SNAPG with
a correction for correlated noise. The positive multiplicative bias for these high S/N galaxies
shows that the PSF Gaussianisation routine did not produce a fully circular Gaussian PSF.
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being able to measure unresolved galaxies reliably, SNAPG is able to use the large
population of faint small galaxies to boost statistical power.

2.6.4 PSF Gaussianisation

We have run SNAPG on the images of the ‘LowNoise Known’ and ‘RealNoise Known’
branches of the GREAT08 challenge. To make them suitable for SNAPG, the GREAT08
images were first passed through the PSF Gaussianisation. We find a slight overesti-
mation of the shear for the LNK images with S/N = 200, of the order of 1-2%. The
PSF Gaussianisation introduces a correlation in the noise, which is analytically cor-
rected for. SNAPG can retrieve the shear from the RNK images with S/N = 20 to an
accuracy that is similar to that for the high S/N images. Further tests revealed that
this percent level bias is probably inherent to the PSF Gaussianisation routine that
we have used. For a variety of PSF profiles the multiplicative shear bias remained
constant around 2%. The PSF Gaussianisation appears to be the limiting factor for
SNAPG to obtain subpercent shear bias and detailed investigation into this routine is
necessary before SNAPG can be reliably applied to observations.

We can compare the performance of SNAPG to the performance of the other
methods tested in the GREAT08 challenge. This will only provide an indication as
we did not run our pipeline on all datasets in the challenge and shear measurement
methods have evolved since. However, a comparison to figures C3 and C4 in Bridle
et al. (2010) shows that the 1-2% bias SNAPG has obtained is at least competitive
with other shear measurement methods. A more quantitative comparison to other
(recent) shape measurement methods will require testing on image simulations which
incorporate realistic observational features. However, optimistically the performance
we find for SNAPG is sufficient to meet the requirements of the largest cosmic shear
survey to date (Hildebrandt et al. 2016) without any calibration being required.

2.6.5 Shear precision

So far we have been concerned only with the accuracy of SNAPG, but an equally valid
demand is high precision. To estimate the scatter in the shear estimate we use the
simulated images of galaxies observed with the Hubble Space Telescope (HST) included
in the GalSim software. These galaxies were observed as part of the COSMOS survey
(Koekemoer et al. 2007) and we used galaxies between magnitudes 20 and 24.5, similar
to the depths of the Kilo Degree Survey and the Dark Energy Survey. These galaxies
were rescaled to a pixel size of 0.214 arcseconds and convolved with a circular Gaussian
PSF. We find that the scatter in the shear estimate for this set of galaxies is roughly
0.45/

√
Ngal, where Ngal is the number of galaxies in the image. Thus the scatter in

the SNAPG shear estimate for a fully realistic ensemble of galaxies is worse than an
ellipticity based estimate; roughly 2-3 times more galaxies are needed by SNAPG for
the same precision. This result is more optimistic than the increase by a factor of
10 found by Viola et al. (2014) in their analysis of a shear estimator based on Stokes
parameters. Our use of a weight function reduces the variation of the moments, thereby
shrinking the scatter in the Stokes parameter. In our tests we used identical weights for
all sources, which naturally downweighs large, bright galaxies, which would otherwise
dominate the ensemble average of second moments. Ideally, in order to optimise the
S/N of the individual moment measurement, the size of the weight function should
match the observed size of the galaxy. However, fitting weight functions to individual
galaxies is in itself a noisy process that may lead to a bias. We therefore advocate
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using the same weight function size for all galaxies (since most will be only partially
resolved, it is not difficult to find a size that is nearly optimal for most of the galaxies
by picking a small multiple of the PSF size; see also Eq. 2.18).

A possible improvement is to assign each galaxy a weight to reduce the variance
in the shear estimate. We find that for our sample of HST galaxies weighting by the
inverse of the true flux can reduce the required number of galaxies by a factor of ∼4.
This would bring the precision of SNAPG close to the precision of shear estimates
based on galaxy ellipticities. In practice, estimating this weight factor from the galaxy
fluxes measured in other images (e.g. adjacent photometric bands in a multi-band
survey) uncorrelated with the lensing images will avoid introducing noise bias.

2.6.6 Variable shear

Observational weak lensing deals with varying shear fields, for instance in cosmic
shear measurements or when measuring the mass of groups or clusters of galaxies.
The traditional method is then to average the shear estimate for individual galaxies to
obtain the lensing signal. This is not possible with SNAPG as it does not produce a
shear estimate per source. In addition, SNAPG requires a large number of galaxies to
obtain a precise shear estimate and satisfy the condition that the intrinsic ellipticities
average to zero.

Instead of nulling a single shear value for an ensemble of galaxies, we therefore
advocate nulling a parametrised model shear field for that ensemble. For example,
to measure a galaxy-galaxy lensing signal, the model would include parameters that
describe the average shear profile of galaxies and their scaling with pertinent galaxy
properties. The model parameters would then be varied until the average shear in
a number of annular bins around the lensing galaxies is nulled, analogous to a tra-
ditional tangential shear stacking analysis. As another example, for cosmic shear
measurements, the amplitudes of independent Fourier modes in the shear field could
be nulled.
Developing this procedure will be left to the future.

2.7 Summary

We have presented a new moment-based method that attempts to combine the best as-
pects of earlier approaches to the problem of high-accuracy, precise shear measurement
from galaxy images. Moment-based methods generally approximate the deconvolution
of the PSF, but do not require any information beyond the data and generally run very
fast. Model fitting methods perform exact forward modelling, including convolution
with the PSF, but are expensive to run because they need to search through a large
parameter space, and may suffer model bias. The shear nulling after PSF Gaussian-
isation or SNAPG technique deals analytically with the PSF deconvolution and as a
moment-based method only requires a few measurements on the data. In addition,
SNAPG incorporates a correction scheme to mitigate the effects of noise bias, a major
hurdle to all shape measurement techniques.

Idealised test images show that SNAPG can retrieve shears to percent level accu-
racy for galaxies with low signal-to-noise, even if they are smaller in size than the PSF.
The main issue limiting this technique is the correlation between the noisy estimate
of the centroid and the pixel noise, which may be mitigated by incorporating further
data about the sources, such as images from neighbouring bands in a multi-wavelength
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survey. In such a set-up, SNAPG can obtain shear estimates to subpercent accuracy
for galaxies with a Gaussian PSF.

Application to real data requires PSF Gaussianisation and if this routine is imper-
fect it can introduce percent level biases. This level of accuracy is comparable to what
is required of the shape measurement algorithms used for ongoing surveys. As such, we
expect SNAPG to be a useful asset for current and future weak lensing experiments.
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Massey, R., Heymans, C., Bergé, J., et al. 2007, MNRAS, 376, 13

Melchior, P. & Viola, M. 2012, MNRAS, 424, 2757
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2.A Convolution calculations

In this Appendix we calculate the result of convolving [xix jG1] with a Gaussian point
spread function G2, where G1 and G2 are Gaussians of arbitrary covariance matrix.

First we consider the product of a non-circular Gaussian of covariance matrix V
with an offset one of covariance P and centre y:

e−
1
2 (xT V−1x)e−

1
2 (x−y)T P−1(x−y). (2.29)

The sum xT V−1x + (x − y)T P−1(x − y) can be rearranged to yield

(x − z)T K(x − z) − zT Kz + yT P−1y (2.30)

with

K = V−1 + P−1 (2.31)

and

z =K−1P−1y (2.32)

=(V−1 + P−1)−1P−1y = V(V + P)−1y.

The terms in Eq. 2.30 not involving x simplify to

−zT Kz + yT P−1y = (2.33)

− yT P−1(V−1 + P−1)−1P−1y

+ yT P−1y

= yT (V + P)−1y.

Using this result we can calculate the convolution of xix je−
1
2 xT V−1x with a normalised
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Gaussian of covariance P as∫
dx xix je−

1
2 (xT V−1x) e−

1
2 (x−y)T P−1(x−y)

2π| det P| 12
(2.34)

=

∫
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]
where in the last line we have defined B = V + P. We note that a deconvolution is
simply accomplished by changing the sign of P.
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3
Calibration of weak-lensing shear in

the Kilo-Degree Survey

We describe and test the pipeline used to measure the weak lensing shear signal from
the Kilo Degree Survey (KiDS). It includes a novel method of ‘self-calibration’ that
partially corrects for the effect of noise bias. We also discuss the ‘weight bias’ that
may arise in optimally-weighted measurements, and present a scheme to mitigate that
bias. To study the residual biases arising from both galaxy selection and shear mea-
surement, and to derive an empirical correction to reduce the shear biases to . 1%,
we create a suite of simulated images whose properties are close to those of the KiDS
survey observations. We find that the use of ‘self-calibration’ reduces the additive and
multiplicative shear biases significantly, although further correction via a calibration
scheme is required, which also corrects for a dependence of the bias on galaxy proper-
ties. We find that the calibration relation itself is biased by the use of noisy, measured
galaxy properties, which may limit the final accuracy that can be achieved. We assess
the accuracy of the calibration in the tomographic bins used for the KiDS cosmic shear
analysis, testing in particular the effect of possible variations in the uncertain distri-
butions of galaxy size, magnitude and ellipticity, and conclude that the calibration
procedure is accurate at the level of multiplicative bias . 1% required for the KiDS
cosmic shear analysis.

I. Fenech Conti, R. Herbonnet, H. Hoekstra, J. Merten, L. Miller, M. Viola
MNRAS, Volume 467, Issue 2, p.1627-1651 (2017)
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3.1 Introduction

The matter distribution in the Universe changes the geometry of spacetime, thus alter-
ing the paths of light rays. As this mimics the effects of a lens, with the gravitational
potential taking the role of the index of refraction, this phenomenon is referred to as
gravitational lensing. If the deflector is massive and the light rays pass sufficiently
close, multiple images of the same source may be observed. More typically the source
position only appears shifted by an unknown amount. The variation in the deflection
across the image results, however, in a stretching (shear) and changes the observed
size (magnification). This regime is commonly referred to as weak gravitational lensing
(see e.g. Bartelmann & Schneider 2001, for an extensive introduction).

The original source properties are unknown, and thus the measurement of a single
galaxy does not provide meaningful information. However, sources that are close on the
sky have experienced similar deflections and consequently their observed orientations
are correlated. The changes in the shapes of the observed galaxies are small, typically
at the level of a few percent, much smaller than their intrinsic shapes. Hence, the
weak lensing signal can only be determined statistically by averaging the shapes of
many sources, under the assumption that there are no intrinsic correlations (but see
e.g., Joachimi et al. 2015, for a review on intrinsic alignments).

The ellipticity correlations can be related directly to the statistics of matter density
fluctuations (e.g. Blandford et al. 1991; Miralda-Escude 1991; Kaiser 1992) and can
thus be used to infer the cosmological model. This application, commonly known as
cosmic shear, is one of the most powerful ways to study the nature of dark energy and
constrain modified gravity theories (see Kilbinger 2015, for a recent review). Since
the first detections in 2000 (Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke
et al. 2000; Wittman et al. 2000) the precision of the measurements has improved
dramatically thanks to deep imaging surveys of ever larger areas (e.g. Hoekstra et al.
2006; Fu et al. 2008). Moreover, observations in multiple pass-bands allowed for the
determination of photometric redshifts, which are essential to improve constraints
on cosmological parameters (Schrabback et al. 2010; Heymans et al. 2013; Jee et al.
2015). The measurement of cosmic shear is also a major science driver for a number of
ongoing large imaging surveys, such as the Kilo Degree Survey (KiDS; de Jong et al.
2015; Kuijken et al. 2015), the Dark Energy Survey (DES; Becker et al. 2015; Jarvis
et al. 2015) and the Hyper-Suprime Cam Survey 1.

The increase in precision afforded by these surveys needs to be matched by a cor-
responding improvement in the accuracy with which galaxy shapes can be measured.
The main complications are (i) that the true galaxy image is convolved with a point
spread function (PSF) due to atmospheric effects and telescope optics; (ii) the re-
sulting image is pixelised by the detector; (iii) the images contain noise from various
sources. Each effect introduces systematic changes in the galaxy shapes, or affects
our ability to correct for it. Although shape measurement algorithms differ in their
sensitivity to some of the systematics, because of differences in their implementation
or the assumptions that are made, they are all affected by noise in the data.

Fortunately, it is well understood how the galaxy surface brightness is transformed
into an image, and this process can be emulated. Creating mock images of telescope
observations can thus be used to understand the impact of systematic effects and their
propagation throughout the shear measurements. Moreover, by comparing the output
shears to the input values the biases can be quantified. The biases themselves are

1http://www.naoj.org/Projects/HSC/surveyplan.html
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classified in additive and multiplicative bias. The former arises from an incomplete
correction for the convolution by the (typically) anisotropic PSF, or by residual errors
in the PSF model itself. The data themselves can be used to examine the presence
of additive biases (see e.g. Heymans et al. 2012). Multiplicative bias, a change in the
amplitude of the lensing signal, can only be reliably studied using simulated data.
The Shear TEsting Programme (STEP; Heymans et al. 2006; Massey et al. 2007)
represented the first community-wide effort to benchmark the performance of various
weak lensing pipelines using simulated images. Although simplistic in many regards,
the simulated data included some of the complexity of real data, such as blending
of objects. To examine the differences between algorithms more systematically, the
Gravitational LEnsing Accuracy Testing (GREAT; Bridle et al. 2010; Kitching et al.
2012; Mandelbaum et al. 2015) challenges focused on more idealised scenarios.

When applying an algorithm to actual data, evaluating the performance on realistic
mock data is essential (Miller et al. 2013; Hoekstra et al. 2015). An essential step in
this process is to ensure that the simulations are sufficiently realistic, such that the
inferred bias is robust given the uncertainties of the input parameters. One approach
is to match the observed properties of the simulated images to those of the real data
by modifying the input distributions in case differences are found (e.g. Bruderer et al.
2015). Alternatively, the simulated output can be used to account for differences with
the actual data by parameterising the bias as a function of observed galaxy properties.
In Kuijken et al. (2015) and Jarvis et al. (2015) the shear biases for KiDS DR1/2
and DES, respectively, were corrected using a function of size and signal-to-noise ratio
(hereafter SNR). Another option we explore is to re-weight the catalogue entries such
that they match the observations.

In this paper we focus on lensfit (Miller et al. 2013), a likelihood based algorithm,
which fits observed galaxy profiles with an elliptical surface brightness model that is
convolved with a model of the PSF. This algorithm has been used to measure the
lensing signal from CFHTLenS (Heymans et al. 2013) and RCSLens (Hildebrandt
et al. 2016a), as well as the initial release of KiDS (Kuijken et al. 2015). Like any
other method, the lensfit measurements are biased if the SNR is low (this is commonly
referred to as noise bias; e.g. Melchior & Viola 2012; Refregier et al. 2012; Miller
et al. 2013). In the latest of these challenges, GREAT3 (Mandelbaum et al. 2015) an
improved version of lensfit was introduced and tested: a new self-calibrating algorithm
was added to alleviate the effect of noise bias. This improvement reduced the biases
from tens of percents to a percent level. In this paper we expand on this formalism
and apply the algorithm to simulated images that are designed to mimic KiDS data.

The third public data release of KiDS (KiDS-450 hereafter; Hildebrandt et al.
2016b) comprises 360.3 square degrees of unmasked area with an effective number
density of 8.3 galaxies per square arcminute. Hildebrandt et al. (2016b) calculate
that the required level of bias in shape measurements that can be tolerated given
the precision afforded by KiDS-450 implies that the multiplicative bias needs to be
determined to better than ∼ 1%. In spite of the fact that the performance of the
self-calibrating version of lensfit is close to this requirement, a final adjustment is
nonetheless required to reduce the bias further. Although this is only a small correction
in absolute terms when compared to the improvement by self-calibration itself, we note
that the actual implementation can be rather complex .

To reduce the biases in the shear determination for KiDS-450 to the required
level of accuracy, we present SCHOol for KiDS, the Simulations Code for Heuristic
Optimization of lensfit for the Kilo Degree Survey, which was used to obtain a shear
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bias calibration for the latest KiDS-450 lensing catalogues obtained with a new version
of lensfit. SCHOol was designed to carry out the following: i) testing of the newest
version of the lensfit algorithm; ii) deriving bias calibration functions for the KiDS-450
data; iii) evaluating the robustness of the final calibration functions to the input of the
calibration data. The main modifications to lensfit are presented in §3.2. The image
simulations are described in detail in §3.3. These are used to quantify and account for
the residual bias in the self-calibrating lensfit algorithms in §3.4. In §3.5 we examine
how differences between the simulated and observed data can be accounted for using
a resampling of the the simulated measurements. In §3.6.3 we examine the robustness
of the results.

3.2 The shear measurement method

3.2.1 lensfit

The shear measurement method used in the analysis of KiDS data is lensfit (Miller et al.
2007; Kitching et al. 2008; Miller et al. 2013), which has also been used to measure
the lensing signal from CFHTLenS (Heymans et al. 2013), RCSLenS (Hildebrandt
et al. 2016a) and the initial release of KiDS (Kuijken et al. 2015). It is a likelihood
based algorithm that fits observed galaxy profiles with a surface brightness model
that is convolved with a model of the PSF. The PSF model is obtained from a fit
to the pixel values of stars, normalised in flux, with a polynomial variation across
individual CCD images and across the full field of each individual exposure. Galaxies
are modelled as an exponential disk plus a bulge (Sérsic index n = 4) component.
There are seven free parameters (flux, size, ellipticity, position and bulge-to-total flux
ratio). To reduce the model complexity, the ratio of disk and bulge scale lengths is a
fixed parameter and the ellipticities of the disk and bulge are set equal. The likelihood
for each galaxy, as a function of these parameters, is obtained from a joint fit to each
individual exposure, taking into account the local camera distortion. The measured
ellipticity parameters are deduced from the likelihood-weighted mean parameter value,
marginalised over the other parameters, adopting priors for their distribution. To
determine the lensing signal, the ellipticities of the galaxy models are combined with a
weight, which takes care of the uncertainty in the ellipticity measurement, to form an
estimate of the shear from the weighted average. The complexity of the galaxy model
has been designed to be sufficient to capture the dominant variation in galaxy surface
brightness distributions visible in ground-based data, without unduly overfitting a
model that is too complex to noisy data (SNR& 10). In principle, we may be concerned
that differences between the lensfit model and actual surface brightness distributions
may introduce model bias (e.g. Kacprzak et al. 2014; Zuntz et al. 2013), however
Miller et al. (2013) have argued that the possible model bias should be sub-dominant
in ground-based data analyses, an argument that is supported by the performance
of lensfit on simulated realistic galaxies in the great3 challenge (Mandelbaum et al.
2015).

We investigate the possible amplitude of such model bias in Appendix 3.A and
conclude that indeed the effect is expected to be small in the KiDS-450 analysis.

For the latest analysis of KiDS-450 data (Hildebrandt et al. 2016b) we use an up-
dated version of lensfit, which is based largely on the methods adopted for CFHTLenS
as described by Miller et al. (2013), but with some modifications and improvements to
the algorithms. The most prominent changes are the self-calibration for noise bias and
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the procedure to calibrate for weight bias, which are described in more detail below in
§3.2.2 and §3.2.3, respectively. Moreover, the handling of neighbouring objects, and
the sampling of the likelihood surface were improved.

In surveys at the depth of CFHTLenS or KiDS, it is essential to deal with con-
tamination by closely neighbouring galaxies (or stars). The lensfit algorithm fits only
individual galaxies, so contaminating stars or galaxies in the same postage stamp as
the target galaxy are masked out during the fitting process. The masks are generated
from an image segmentation and deblending algorithm, similar to that employed in
SExtractor (Bertin & Arnouts 1996). However, the CFHTLenS version rejected
target galaxies that were too close to its neighbours. For KiDS, a revised deblending
algorithm was adopted that resulted in fewer rejections and thus a higher density of
measured galaxies. The distance to the nearest neighbour was recorded in the cata-
logue output so that any bias as a function of neighbour distance could be identified
and potentially rectified by selecting on that measure. The sampling of the likelihood
surface was improved in both speed and accuracy, by first identifying the location of
the maximum likelihood and only then applying the adaptive sampling strategy de-
scribed by Miller et al. (2013). More accurate marginalisation over the galaxy size
parameter was also implemented.

In the following analysis, the identical version of lensfit, with the same data han-
dling setup, was used for the simulations as for the KiDS-450 data analysis of Hilde-
brandt et al. (2016b).

3.2.2 Self Calibration of Noise Bias

In common with other shear measurement methods, lensfit measurements of galaxy
ellipticity are biased by the presence of pixel noise: even if the pixel noise is Gaussian
or Poissonian in nature, the non-linear transformation to ellipticity causes a skewness
of the likelihood and a bias in any single-point estimate of individual galaxy ellipticity
that propagates into a bias on measured shear values in a survey (Refregier et al. 2012;
Melchior & Viola 2012; Miller et al. 2013). The bias is a complex function of of SNR,
size, ellipticity and surface brightness distribution of the galaxies, but also depends on
the point spread function (PSF) morphology. Given that we only have noisy estimates
of galaxy properties, it is difficult to predict the bias with sufficient accuracy, and
to date published shear surveys have used empirical methods to calibrate the bias,
typically by creating simulations that match the properties of the survey, measuring
the bias in the simulation as a function of observed (noisy) galaxy properties and
applying a calibration relation derived from those measurements to the survey data
(Miller et al. 2013; Kuijken et al. 2015; Jarvis et al. 2015; Hoekstra et al. 2015).

In the current analysis we first apply an approximate correction for noise bias that
is derived from the measurements themselves, which we refer to as self-calibration.
The method was first used for the “MaltaOx” submission in the great3 challenge
(Mandelbaum et al. 2015). When a galaxy is measured, a nominal model is obtained
for that galaxy, whose parameters are obtained from a mean likelihood estimate. The
idea of self-calibration is to create a simulated test galaxy with those parameters,
remeasure the test galaxy using the same measurement pipeline, and measure the
difference between the remeasured ellipticity and the known test model ellipticity. It
is assumed that the measured difference is an estimate of the true bias in ellipticity
for that galaxy, which may be subtracted from the data measurement. The estimate
of a galaxy’s size is also simultaneously corrected with the ellipticity. Ideally, when
the test galaxy is remeasured, we would like to add multiple realisations of pixel noise



50 Calibration of weak-lensing shear in the Kilo-Degree Survey

and marginalise over the pixel noise: however such a procedure is computationally
expensive, so in the current self-calibration algorithm we adopt an approximate method
in which the noise-free test galaxy model is measured, but the likelihood is calculated
as if noise were present. Mathematically we may represent the log likelihood of a
measurement, logL as

logL(p) = −
1
2

(~D − ~M(p))T C−1(~D − ~M(p))

= ( ~M0 + ~N − ~M(p))T C−1( ~M0 + ~N − ~M(p))
= ( ~M0 − ~M(p))T C−1( ~M0 − ~M(p))

+2( ~M0 − ~M(p))T C−1 ~N

+~NT C−1 ~N (3.1)

where we express the data as a vector ~D, the model obtained with parameters p as ~M(p)
and the pixel noise covariance matrix as C, and where we decompose the data into a
true model ~M0 and a noise vector ~N. Our self-calibration procedure corresponds to
generating a test galaxy whose model ~M0 is described by the parameters measured from
the data for that galaxy and where we only calculate the leading term in the likelihood,
equation 3.1, for this test galaxy, ignoring terms involving ~N, when estimating the
bias. In the case where the noise is uncorrelated with the galaxy, corresponding to the
background-limited case of a faint galaxy, the noise-model cross-term would disappear
if we were to marginalise logL over the noise, the final term would be a constant,
and the leading term would provide a good estimate of the expected distribution.
Unfortunately, when estimating the ellipticity, we are interested in the likelihood L
and not its logarithm, logL, and so ignoring the noise-model cross-term may lead
to an error in the derived bias. However, we also make the approximation that the
values of the model parameters measured from the data are close to the true galaxy
parameters, which at low SNR may not be true. Hence our procedure can only be
approximate.

However, self-calibration has the advantage that, unlike calibration from an exter-
nal simulation, it does not rely on an assumed distribution of galaxy parameter values:
the input model parameter values are taken from those measured on each individual
galaxy in the data analysis. The method appears particularly useful in removing PSF-
dependent additive bias, which is otherwise hard to mitigate using external simulations,
which typically do not reproduce the PSF for each observed galaxy.

In making the self-calibration likelihood measurements, we are careful to ensure
that the galaxy ellipticity and size parameters are sampled at the same values as
in the data measurement for each galaxy, so that sampling variations do not cause
an additional source of noise in the self-calibration. This procedure also makes self-
calibration computationally fast, as the step of identifying which samples to use is not
repeated.

The GREAT3 results (Mandelbaum et al. 2015) showed that the self-calibration
correction does, on average, reduce the shear bias to the percent level and that the
amplitude of the residual bias is almost independent of the morphology of the simulated
galaxies. Importantly, the reduction in noise bias improves both the multiplicative
and additive biases, and the self-calibration procedure therefore has been applied to
the survey data measurements presented in Hildebrandt et al. (2016b). The residual
bias, however, is still correlated with galaxy properties such as SNR and size. As the
distributions of those properties are redshift- and magnitude-dependent, the residual
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bias may be large enough to lead to a significant bias in tomographic shear analyses.
We therefore seek to empirically calibrate the residual bias using conventional methods,
employing realistic image simulations as described in §3.3.

3.2.3 Weight bias correction

In our standard analysis, we apply a weight to each galaxy that takes account of both
the shape noise variance and the ellipticity measurement noise variance, following
Miller et al. (2013). The ellipticity noise variance is measured from the ellipticity
likelihood surface for each galaxy, after marginalisation over other parameters, with a
correction for the finite support imposed by requiring ellipticity to be less than unity.
This contrasts with approaches such as that of Jarvis et al. (2015), where an average
correction as a function of galaxy parameters, such as flux signal-to-noise ratio, is
derived and applied.

Our scheme should result in optimal SNR in the final shear measurements, but
any bias in the weights would introduce a shear bias. Inspection of the distribution of
weight values shows that indeed there are two sources of weight bias that arise. First,
the measurement variance is a systematic function of the ellipticity of the galaxy,
with a tendency for galaxies to have smaller measurement variance, and hence higher
weight, at intermediate values of ellipticity, compared with either low or high ellipticity,
for galaxies of comparable isophotal area and SNR. This results in a tendency to
overestimate shear at intermediate and low values of SNR, to an extent that is sensitive
to the distribution of galaxy ellipticities.

A second bias that arises is correlated with the PSF anisotropy. Galaxies of a given
total flux that are aligned with the PSF tend to have a higher SNR than galaxies
that are cross-aligned with the PSF, and also tend to have a smaller measurement
variance. This orientation bias has the same origin as that discussed by Kaiser (2000)
and Bernstein & Jarvis (2002) and results in a net anisotropy in the overall distribution
of weights which, if uncorrected, would result in a net shear bias.

In the KiDS-450 analysis, we adopt an empirical correction for these effects by
determining the mean measurement variance for the full sample of galaxies as a func-
tion of their 2D ellipticity, e1, e2, and as a function of their SNR and isophotal area.
From that mean variance, a correction is derived that may be applied to the weights
to ensure that, on average, the distribution of weights is neither a strong function of
ellipticity nor of position angle. The anisotropic bias depends on the size and elliptic-
ity of the PSF, so to accommodate variations in the PSF across the survey, galaxies
from the entire completed survey are binned according to their PSF properties, and
the weights correction is derived in each PSF bin (Hildebrandt et al. 2016b). In the
simulations, we apply the equivalent weight bias correction to each of 13 sets of PSFs
that are simulated (see §3.3.4).

3.3 Image simulations

3.3.1 The simulation of galaxies

The performance of shape measurement algorithms can only be evaluated using simu-
lated images. To this end, a number of community-wide efforts have been undertaken
to benchmark methods. The self-calibrating version of lensfit performed well on simu-
lated images from GREAT3 (Mandelbaum et al. 2015), the latest of these challenges,
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with an average shear bias of about a percent. Whilst useful to test new algorithms
and to better understand common sources of bias in shape measurements, these gen-
eral image simulations cannot be used to evaluate the actual performance. First of
all, they ignore the effects neighbouring objects can have on the shape measurement,
which was shown to be important by Hoekstra et al. (2015). Moreover, to calibrate the
performance with high accuracy, the simulations should match the real data in terms
of survey depth, number of exposures, noise level, telescope PSF and pixelisation.

To quantify and calibrate the shear biases of the self-calibrating version of lensfit for
the new KiDS-450 dataset we created the SCHOol for KiDS pipeline, Simulations Code
for Heuristic Optimization of lensfit for the Kilo Degree Survey. We use it to generate
a suite of image simulations that mimic the r-band KiDS observations that were used
in Hildebrandt et al. (2016b) to measure the cosmic shear signal. As discussed below,
we match the dither pattern, instrument footprint, average noise level, seeing and
PSF properties. The simulated images are created using GalSim (Rowe et al. 2015),
a widely used galaxy simulation software tool developed for GREAT3. Note that we
do not aim to test the PSF modelling (this was presented in Kuijken et al. 2015).

3.3.2 Simulation volume

The precision with which biases are measured can be improved by creating and analysing
more simulated images. However, it is a waste of computational resources if the bi-
ases are already known sufficiently well compared to the statistical uncertainties of
the cosmic shear signal. Moreover, as a result of simplifications in the simulated data,
residual biases may remain. It is therefore useful to establish the level of accuracy
that is required, given the KiDS-450 data set, and use these results to determine the
simulation volume that is needed. Hildebrandt et al. (2016b) showed that the lensfit
shear multiplicative bias has to be known with an accuracy of at least 1% for the
error bars on cosmological parameters not to increase by more than 10% (see their
Appendix A3). Hildebrandt et al. (2016b) do not set requirements on the knowledge
of the additive bias from the simulations. In fact the residual additive bias is measured
from the data themselves (Heymans et al. 2012) as there are a number of steps in the
data acquisition, processing and analysis which are not simulated and might contribute
to amplitude of the additive bias (e.g. cosmic rays, asteroids, binary stars, imperfect
PSF modelling, non-linear response of CCD...). The observed level of residual bias
may be used to determine the maximum scale where the cosmic shear signal is robust,
in contrast to multiplicative shear bias, which affects all angular scales.

In our simulations we apply a shear with a modulus |g| = 0.04 to all galaxies. This is
a compromise between the small shears we aim to recover reliably, whilst minimising
the number of simulated images. For a fiducial intrinsic dispersion of ellipticities
σε = 0.25, the minimum required number of galaxies to reach a precision of 0.01 on
the multiplicative bias is then Ngal = (σε/(0.01|g|))2 ≈ 3.9×105. This number should be
considered the bare minimum, because in practice we wish to explore the amplitude
of the bias as a function of galaxy and PSF properties.

The dominant source of uncertainty is the intrinsic dispersion of ellipticities. This
source of noise can, however, be reduced in simulations using a shape noise cancellation
scheme (Massey et al. 2007). This results in a significant reduction in the number
of simulated galaxies, without affecting the precision with which the biases can be
determined. Previous studies have done so by introducing a copy of each galaxy,
rotated in position angle by 90◦ before applying a shear and convolution by the PSF,
such that the mean of the intrinsic ellipticity ε s satisfies 〈ε s〉 = 0 (e.g. Massey et al.
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2007; Hoekstra et al. 2015). Although this reduces the shape noise caused by galaxies,
such a scheme does not guarantee that the mean of the observed ellipticity values
〈ε〉 = g. That condition is only satisfied by a population of galaxies that are uniformly
distributed around circles of ε s. Fortunately, even a small number of rotated copies of
each galaxy suffices to meet this criterion to adequate accuracy.

In this work we create four copies of each galaxy, separated in intrinsic position
angle by 45◦. If we write the first copy as having intrinsic ellipticity ε s, we may write
the complex intrinsic ellipticity of each copy as ε s

n = inε s for each rotation, n = 0 . . . 3.
The relation between the sheared ellipticity εn, the reduced shear g and ε s

n, for each
rotation, is

εn =
ε s

n + g
1 + g∗ε s

n
=

inε s + g
1 + g∗inε s , (3.2)

where the asterisk denotes the complex conjugate. A shear estimate g̃ = 〈εn〉 then
reduces to

g̃ =
g − g∗3 (ε s)4

1 − (g∗ε s)4 . (3.3)

For the same fiducial values, |ε s| ' 0.25 and |g| = 0.04, this expression differs from g with
a relative error of order ∆g/g ' |g|2|ε s|4 ' 6×10−6, compared with ∆g/g ' |ε s|2 ' 0.06 for
the shape noise reduction achieved using only pairs of galaxies (Massey et al. 2007).
The four-rotation method has significantly higher accuracy relative to the two-rotation
method at the highest values of ε s.

Using a larger number of rotated galaxies reduces the shear measurement error
further, to ∆g/g ∼ 10−13 for 8 duplicated galaxies. However, for a given simulation vol-
ume, this reduces the diversity in other galaxy properties. Moreover, pixel noise in the
simulated images reduces the effectiveness of shape noise cancellation for galaxies with
low SNR, which are the most numerous. Furthermore, not all rotated galaxy copies
may be detected, thus breaking the assumed symmetry in the analytical estimate.
The weighted dispersion of the mean input ellipticities of the set of four catalogues is
0.084, a factor about 3 reduction compared to the case without shape noise cancella-
tion. This corresponds to a decrease of a factor about 9 in the number of simulated
galaxies required to achieve a fixed uncertainty in shear bias measurement.

3.3.3 Input object catalogue

To measure meaningful shear biases from the simulated data it is essential that the
properties of the simulated objects are sufficiently realistic. For instance, neighbouring
galaxies affect shape measurements (Dawson et al. 2014), and therefore the correct
number density of galaxies needs to be determined. Moreover, Hoekstra et al. (2015)
highlighted the importance of simulating galaxies well beyond the detection limit of
the survey in order to derive a robust shear calibration. Galaxies just below the
detection limit can still blend with brighter galaxies, directly affecting the measurement
of the object ellipticity, whereas even fainter galaxies affect the background and noise
determination by acting as a source of correlated noise. Hence we include in our
simulations galaxies as faint as 28th magnitude, which should be adequate given the
depth of KiDS.

We place the objects at random positions, and thus ignore the additional com-
plication from clustering. The fraction of blended objects in the simulations might
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Figure 3.1: r-band magnitude histograms of KiDS-450 data (black), GEMS survey data (blue)
and UVUDF survey (cyan), with uncertainties given by the Poisson errors of each point. The
red line is the best fit through KiDS-450 20 < mr < 23 points, GEMS 25 < mr < 26 points
and UVUDF 26 < mr < 29 datapoints and is used as the input magnitude distribution of the
simulations.

therefore be low compared to the true Universe. Alternatively, galaxies could be posi-
tioned in the simulations according to their positions in observations (e.g. Miller et al.
2013; Jarvis et al. 2015). This would naturally include realistic clustering, but cannot
be used for the galaxies below the detection limit, and thus unusable for our deep
magnitude distribution. However, we examined the impact of varying number density
and found the changes in bias to be negligible for the KiDS-450 analysis (see §3.4.4
for details).

To create a realistic magnitude distribution that extends to 28th magnitude, we
augment the measured KiDS-450 galaxy counts with measurements from deeper Hubble
Space Telescope (HST) images. We use the HST/ACS F606W counts from GEMS (Rix
et al. 2004) and UVUDF (Rafelski et al. 2015), because this filter resembles the KiDS
r filter fairly well. We remove objects classified as stars from all three data sets, and
exclude masked areas in the KiDS-450 data. Fig. 3.1 shows the magnitude distributions
of a subsample of KiDS-450 data (black), GEMS data (blue) and UVUDF data (cyan).
The error bars show the Poisson errors of the data points.

We fit a second order polynomial to the logarithm of the number counts, using
KiDS-450 data between 20 < mr < 23, GEMS data between 25 < mr < 26 and UVUDF
data between 26 < mr < 29. The resulting magnitude distribution for the simulated
galaxies is given by:

logN(mr) = −8.85 + 0.71mr − 0.008m2
r , (3.4)

where N(mr) is the number of objects with r-band magnitude mr per square degree.
The fit is mostly constrained by the KiDS data, with the ancillary data driving the
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Figure 3.2: Distributions of PSF parameters in the simulations (red) and KiDS-450 (black)
measured by lensfit using a 2.5 pixel weighting function. Shown are the distributions of
measured pseudo-Strehl ratio, size and the two components of the ellipticity. The constant
PSFs (for individual exposures) in the SCHOol images give rise to very peaky distributions,
but overall the range in properties in the data are matched by the image simulations.
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flattening of the curve at faint magnitudes. Magnitudes are converted to counts to
be used by GalSim using a magnitude zeropoint of 24.79, the median magnitude
zeropoint in the KiDS-450 data.

Creating images of large numbers of faint galaxies with m ≥ 25 by GalSim would be
rather time consuming. However, we are not interested in their individual properties,
because they are too faint to enter the sample used for the lensing analysis. Instead we
only need to ensure that their impact on shape measurements is captured, for which it
is sufficient that their number densities and sizes are realistic. To improve the speed of
the pipeline, we therefore create postage stamps for a representative sample of these
faint galaxies, and use these to populate the simulations by randomly drawing from
this sample, whilst ensuring that the magnitude distribution in equation 3.4 is obeyed.
These faint galaxies also have lensing shear applied.

Realistic galaxy morphologies, in particular the distribution of surface brightness
profiles, and consequently sizes and ellipticities, are another essential ingredient for
image simulations. The intrinsic ellipticity distribution for galaxies is the same as in
the CFHTLenS image simulations and the functional form is taken from Appendix B2
in Miller et al. (2013). It corresponds, as is the case for the size distribution, to the
prior used by lensfit to measure galaxy shapes. We model the galaxies as the linear
combination of a de Vaucouleur profile for the bulge and an exponential profile for the
disk. The bulge flux to total flux ratio, B/T , is randomly sampled from a truncated
Gaussian distribution between 0 and 1 with its maximum at 0 and a width of 0.1,
the same as was used for the CFHTLenS simulations presented in Miller et al. (2013).
Ten percent of all galaxies are set to be bulge-only galaxies with B/T = 1, and the rest
have a disk with random values for the bulge fraction.

The sizes of the galaxies are defined in terms of the scale length of the exponential
disk along the major axis, and are randomly drawn from the distribution

P(r) ∝ rexp(−(r/A)4/3), (3.5)

where A is related to the median of the distribution, rmed, by A = rmed/1.132 and where
the relationship between rmed and magnitude is given by rmed = exp(−1.31−0.27(mr−23)).
This distribution is the same as given by Miller et al. (2013) but with the rmed relation
shifted to be appropriate for observations in the KiDS r filter (see Kuijken et al.
2015). The distribution corresponds also to the lensfit prior used in the analysis of
the KiDS observations. For the bulge-plus-disk galaxies simulated here, the halflight
radius of the bulge component is set equal to the exponential scale length of the disk
component (see Miller et al. 2013, for details). Galaxies are simulated using GalSim,

which defines the size as rab =
√

ab, where a and b are the semi-major and semi-minor
axis of the object, respectively, so the sizes sampled from equation 3.5 were converted
to rab prior to simulation.

We also include stars in the simulations, as they might contaminate the galaxy
sample and blend with real galaxies (see Hoekstra et al. 2015, for a discussion of the
effect of stars on shear measurements). The simulated stars are perfect representations
of the PSF in the simulated exposure and we do not include realistic CCD features
around bright stars, such as bleeding, stellar spikes or ghosts, as these effects are
masked in the real data. The stellar r-band magnitude distribution is derived using
the Besançon model3 (Robin et al. 2003; Czekaj et al. 2014) for a right ascension

2There was an error in Appendix B1 of Miller et al. (2013): the factor 1.13 shown here was also
used for the CFHTLenS analysis, instead of the incorrectly reported value of 0.833.

3model.obs-besancon.fr
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Table 3.1: Overview and specifications of all simulated images created with the SCHOol
pipeline

Total simulated area 416 square degrees
Tile 5 exposures of ∼1 square degree

dithered by 25 arcsec, 85 arcsec
Exposure 32 chips of ∼ 2000x4000 pixels

with 70 pixel wide chip gaps in between
Applied shears (0.0,0.04) (0.0283,0.0283) (0.04,0.0) (0.0283,-0.0283)

(0.0,-0.04) (-0.0283,-0.0283) (-0.04,0.0) (-0.0283,0.0283)
The same shear is applied to all galaxies in a tile

Applied PSF 13 sets; each set contains 5 different PSF models
of KiDS-450 observations

Each PSF model is applied to all galaxies in an exposure
Shape noise reduction Each tile is copied with galaxies

rotated by 45, 90 and 135 degrees

α = 175◦ and a declination δ = 0◦, corresponding to one of the pointings in the KiDS-
450 footprint. We note that the star density in that pointing is higher than average.
This is not a concern for the bias calibration, as discussed in §3.4.4. We do not include
very bright (mr < 20) stars, because they would be masked in real observations and
we exclude stars fainter than mr > 25.

3.3.4 Simulation setup

As described in detail in de Jong et al. (2015) and Kuijken et al. (2015), lensfit measures
galaxy shapes using the five r−band exposures that make up a tile covering roughly
one square degree of the sky. The KiDS-450 data are analysed tile-by-tile, i.e. data
from the overlap of tiles is ignored. It is thus sufficient to simulate individual tiles.
Each VST/OmegaCam exposure is seen by a grid of 8 × 4 CCD chips, where each
chip consists of 2040 × 4080 pixels that subtend 0.′′214. There are gaps of around 70
pixels between the chips and to fill the gaps the exposures are dithered. To capture
the resulting variation in depth due to this dither pattern we simulate individual
tiles of data, using the same dither pattern described in de Jong et al. (2015), which
we incorporate by adding artificial astrometry. We also add a small random shift
in pointing between the exposures, so that the same galaxy is mapped on a slightly
different location in the pixel grid for each exposure. This extra shift is accounted for
when stacking the exposures. Gaussian background noise is added to the simulated
exposures, where the root mean square of the noise background σbg = 17.03 was
determined as the median value from a sub-sample of 100 KiDS-450 tiles. When
exposures are stacked, the noise level varies with position in the simulated tile as in
the real data, owing to the chip gaps.

The simulated images for each exposure are created using GalSim (Rowe et al.
2015) which renders the surface brightness profiles of stars and sheared galaxies using
the input catalogues detailed in §3.3.3. The five exposures for each tile are created
using the same input catalogue. The 32 individual chips in each of the five exposures
are coadded using SWARP4 (Bertin 2010). Finally we run SExtractor (Bertin &

4Note that we do not use the resampling option of SWARP to reduce the processing time. This
might introduce some incorrect sub-pixel matching of the pixels in the coadded image, but does not
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Arnouts 1996) to detect objects in the coadded image. We use the same version of
the software and configuration file as is used in the analysis of the KiDS-450 data (de
Jong et al. 2015) to ensure homogeneity. Only the magnitude zeropoint is set to the
value of 24.79 which was used to create the simulations.

Eight shear values are sampled isotropically from a circle of radius |g| = 0.04 and
using evenly spaced position angles (see Table 3.1 for the exact values). We apply the
same shear to each simulated galaxy in the five exposures in a simulated tile, using the
GalSim Shear function which preserves galaxy area, but vary the shear between tiles.
The sheared galaxies are convolved with an elliptical Moffat PSF, whose parameters
are representative of the ones measured in KiDS-DR1/2 (de Jong et al. 2015). To
obtain the PSF parameters, we ran PSFEx (Bertin 2013) on KiDS-DR1/2 data. As
the VST seeing conditions change over time, so that different exposures have different
PSFs, we mimic this temporal variation of the PSF in the SCHOol simulations. To this
end we selected a series of PSF parameters corresponding to 5 subsequently observed
dithered exposures of KiDS data. This gave us a set of Moffat parameters for the PSF
in each of the 5 exposures of a tile. All galaxies in a simulated exposure were convolved
with the same Moffat profile. All galaxies in the first simulated exposure thus have the
PSF in the first exposure of the observed KiDS tile. The second simulated exposure
has galaxies convolved with the observed PSF in the second exposure of the KiDS tile.
And so on for all five exposures of the simulated tile. This ensures that the PSFs in the
simulations are the same as in the KiDS observations. We used the PSF parameters
from 13 KiDS tiles, so that we have in total 65 different PSFs in the simulations. This
number of PSFs gave us enough statistical power to reach the required precision. The
13 tiles were chosen so that the distributions of PSF parameters in the simulations
would match the distribution of the full KiDS data. The distributions of simulated PSF
properties measured by lensfit on the SCHOol images are shown in the red histograms
in Fig. 3.2. We define the PSF size in terms of the weighted quadrupole moments Pi j

of the surface brightness of the PSF:

r2
PSF :=

√
P20P02 − P2

11, (3.6)

where we measure the moments employing a Gaussian weighting function with a size
of 2.5 pixels. The bottom panels show the two components of the weighted ε ellipticity.
Comparison with the distributions measured in the KiDS-450 data (shown in black)
shows that the simulations sample the range in PSF properties. The median full width
to half maximum (FWHM) of 0.′′64 in our sample is very similar to the value of 0.′′65
from the full KiDS sample. However, the lack of spatial variation in the simulations
produces very spiky distributions. This also leads to an over-representation of large
and elliptical PSFs in the simulations.

In total we have simulated 416 deg2 of KiDS observations, slightly more than the
unmasked area of the KiDS-450 dataset. However, the use of shape noise reduction
ensures that we have ample statistical power in the calibration, because the simulated
data are equivalent to an area of ∼ 3750 deg2 without the shape noise cancellation.
A summary of the set of simulations created with the SCHOol pipeline is provided in
Table 3.1.

affect the lensfit measurements, which are made by jointly fitting to the original individual exposures.
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Figure 3.3: Comparison of KiDS-450 data (black) and SCHOol simulations (red) for weighted
normalised distributions of galaxy properties. From left to right, top to bottom: magnitude,
size, SNR, modulus of the ellipticity |ε|, lensfit weights, bulge fraction. The inset shows a
zoom in of the ellipticity distributions for ε > 0.8.
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3.3.5 Comparison to data

Although our input catalogue is based on realistic prior distributions, it is important
to verify whether the simulated data are a good representation of the observations.
Differences with the actual KiDS-450 measurements may occur because of simplifying
assumptions or errors in the prior distributions. For instance, in the simulations the
PSF is constant over one square degree and the noise level does not vary. Therefore,
the resulting lensfit measurements are not identical to those in KiDS-450 data and the
average shear biases inferred from the simulations may differ from the actual shear
biases in the data. Rather than adjusting the input catalogue such that the agreement
with the data is improved (Bruderer et al. 2015), we instead aim to model the biases
as a function of observed properties (see §3.4). This approach does not require perfect
simulations, but does require that the simulations capture the variation in galaxy
properties seen in the data. To examine whether this is indeed the case, we compare
the measured galaxy properties in the simulations to those in the KiDS-450 data.

We run lensfit on the entire volume of the simulations, using the SExtractor de-
tection catalogue as input. For each detected object lensfit returns a measurements of
the ellipticities, weights as well as measurements of the galaxy properties such as SNR
and size. A measurement of the observed magnitude is provided by SExtractor. In
order for the comparison with the data to be meaningful the same cuts have to be ap-
plied to both datasets. In both cases we consider only measurements of galaxy shapes
for objects fainter than mr = 20. Moreover, to study selection biases (see §3.4.2) we
create a catalogue that contains for each detected object its input properties and those
measured by SExtractor and lensfit. This is done using a kD-tree based matching
routine which combines each lensfit output catalogue with the input catalogue used
to create the galaxy images.

For each object in a given lensfit catalogue we find its five nearest neighbours
in the input catalogue, according to the L2-norm spatial separation. We discard all
candidates with a separation larger than three pixels and select from the remainder
the one with the smallest difference in measured magnitude and input magnitude as
the final match. This last step introduces a sensible metric to discard by-chance close-
neighbour pairs of physically different objects. This matching process removes spurious
detections from the catalogue. This is not a problem for the bias characterisation, as
lensfit would have assigned a vanishing weight to such spurious detections.

After the matching we apply a series of cuts to the data, starting with the removal of
all objects with a vanishing lensfit weight to reduce the size of the analysis catalogues.
This does not have any effect on the recovered shear since this is calculated as a
weighted average of the measured ellipticities. This initial selection automatically
removes the following:

1. Objects identified as point sources (fitclass = 1)

2. Objects that are unmeasurable, usually because they are too faint (fitclass =
-3)

3. Objects whose marginalised centroid from the model fit is further from the SEx-
tractor input centroid that the positional error tolerance set to 4 pixels (fit-
class = -7).

4. Objects where insufficient data is found, for example an object at the edge of an
image or defect (fitclass = -1)
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Additionally, in order to match the cuts applied to the KiDS-450 data (see Ap-
pendix D in Hildebrandt et al. (2016b)), we also remove:

5. Objects with a reduced χ2 > 1.4 for their respective lensfit model, meaning that
they are poorly fit by a bulge plus disk galaxy model (fitclass = -4).

6. Objects whose lensfit segmentation maps contain more than one catalogue object
(fitclass = -10).5

7. Objects that are flagged as potentially blended, defined to have a neighbouring
object with significant light extending within a contamination radius > 4.25
pixels of the SExtractor centroid.

8. Objects that have a measured size smaller than 0.5 pixels.

After these cuts, considering all image rotations, shear and PSF realisations, we
obtain a sample of ∼ 16 million galaxies which are used in the analysis. Fig. 3.3 shows
the resulting weighted distributions of magnitude, scale length, modulus of ellipticity,
bulge fraction, SNR and weight measured from KiDS-450 data (black) and the SCHOol
simulations (red).

The distributions of the lensfit measurement weight and bulge fraction are in good
agreement with the data, although the measured bulge fractions are extremely noisy,
and are eliminated from the shear measurement by a marginalisation step. However,
the agreement in the simulated and observed distributions gives some reassurance that
the simple parametric galaxy profiles are an adequate representation of the KiDS-450
data. The simulated galaxy counts are in good agreement with the observations for
bright galaxies, but the magnitude and SNR distributions suggest that the simula-
tions lack faint, low SNR objects. The paucity in the simulated catalogues might be
attributed partly to the fixed noise level or the spatially constant PSF in the simula-
tions, which is not fully representative of KiDS-450 observations, but also partly to a
difference in intrinsic size distributions of the data and simulations, which may also
be seen in Fig. 3.3.

The shear measurement bias that we seek to calibrate depends primarily on galaxy
size and SNR (e.g. Miller et al. 2013), and differences in the distributions of these
quantities between the data and the simulations mean that we cannot simply measure
the total bias from the simulations and apply the result to the data. Furthermore, this
consideration applies to the bias for any sub-selection of the data, such as the analysis
of shear in tomographic bins of Hildebrandt et al. (2016b). Even if the data and sim-
ulations were a perfect match in Fig. 3.3, any dependence of bias on galaxy properties
would mean that a ‘global’ bias for the simulations might not be appropriate to the
galaxy selection in tomographic bins. Thus, in this paper we derive a shear calibration
that includes a dependence on size and SNR, but also investigate the sensitivity of
the final shear calibration to modifications of the assumed distributions, in §3.6.1 and
§3.6.2.

5 In order to remove contamination from nearby objects, lensfit builds a dilated segmentation map
that is used to mask out a target galaxy’s neighbours. It was found that a small fraction of targets
had two input catalogue target galaxies within a single segmented region associated with the target,
owing to differing deblending criteria being applied in the SExtractor catalogue generation stage
from the lensfit image analysis. When measured, this leads to two catalogue objects being measured
using the same set of pixels, and thus the inclusion of two correlated, high ellipticity values in the
output. As these accounted for a very small fraction of the catalogue, these instances were flagged in
the output and excluded from subsequent analysis.
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The ellipticity distributions also differ, both at low and high ellipticity. Both the
simulations and the KiDS-450 data contain very elliptical galaxies galaxies, as is clear
from the inset in the lower left panel of Fig. 3.3, which shows the high ellipticity tail
of the distribution. In the simulations these high ellipticities are caused by noise or
blending with neighbours, as there are no galaxies with an intrinsic ellipticity ε > 0.804.
However, in the data this is not necessarily the case. Differences in the ellipticity
distribution may lead to an incorrect estimate of the shear bias and this is especially
worrying for highly elliptical objects (Melchior & Viola 2012; Viola et al. 2014). In
§3.6.3 we investigate the (origin of the) discrepancy and also quantify the resulting
uncertainty in shear bias that arises from the differences between the data and the
simulations.

As noted above, the observed differences suggest that the simulations cannot be
used directly to infer the shear biases, and in the remainder of this paper we explore
calibration strategies that use observed properties to estimate the bias for a given
selection of galaxies (Miller et al. 2013; Hoekstra et al. 2015). For this to work, it is
important that the simulations at least cover the multi-dimensional space of relevant
parameters. Moreover, differences in selection effects should be minimal. Before we
explore these issues in more detail, we first examine the distributions of the two most
relevant parameters, namely the SNR and the ratio of the PSF size and the galaxy
size (e.g. Massey et al. 2013). The latter parameter, which we define as,

R :=
r2
PSF(

r2
ab + r2

PSF

) , (3.7)

quantifies how the shape is affected by the convolution by the PSF. For the analysis,
we adopt the rab size definition, because it has significantly lower correlation with the
measured ellipticity in noisy data (cf. §3.4.3).

Fig. 3.4, shows the ratio between the number of simulated and real galaxies on a
grid in SNR and R defined using the KiDS-450 data. The size of each data point is
proportional to the sum of the lensfit weight in each grid cell. The red stars indicate
the region where the ratio is 0; i.e. the simulations do not contain objects with that
SNR and resolution. The simulations are lacking very large objects (low R) and with
low SNR. Those objects contribute only 0.001 % of the total weight and hence the fact
that they are not present in the simulations can be safely ignored.

3.4 KiDS Calibration Method

3.4.1 The evaluation of shear bias

As our image simulations are a good, but not perfect representation of the KiDS-450
data, and as in our data analyses (e.g. Hildebrandt et al. 2016b) we select sub-samples
of galaxies with differing distributions of intrinsic properties, it would be incorrect to
simply compute the average multiplicative and additive bias from the simulations and
use the result as a scalar calibration of the KiDS-450 shear measurements. This is
because previous analyses (e.g. Miller et al. 2013; Hoekstra et al. 2015), and analytical
arguments (e.g. Massey et al. 2013) have demonstrated that the shear bias depends on
galaxy and PSF properties. In particular, we expect the bias to be a function of the
galaxy SNR and size, and to depend on the PSF size and ellipticity. Estimating those
functional dependencies is crucial in order to derive a shear calibration that may be
robustly applied to the data.
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Figure 3.4: Ratio between the number of galaxies in the simulation and the data on a SNR
and resolution grid defined using the real galaxies. The size of each data point is proportional
to the total lensfit weight in each grid cell. The red stars indicate the grid points with a ratio
of 0.

A practical procedure for estimating the bias and its dependences from the simula-
tions is to bin the simulated data, and compute the multiplicative and additive shear
bias in each bin. To do so, we use the lensfit measurements of the galaxy ellipticities
ε j in combination with the re-calibrated weights w j (see §3.2.3) to compute the two
components of the measured shear g j:

gmeas
j =

∑
i wiεi j∑

i wi
. (3.8)

Following Heymans et al. (2006) we quantify the shear bias in terms of a multiplicative
term m and an additive term c:

gmeas
j =

(
1 + m j

)
gtrue

j + c j , (3.9)

where we consider the biases for each of the ellipticity components separately. In our
analysis below, we designate m, c values for components evaluated in the original ‘sky’
co-ordinate frame by m1,2, c1,2. When investigating PSF-dependent anisotropy, we also
investigate biases on components where the ellipticity and shear values have been first
rotated to a co-ordinate frame that is aligned with the orientation of the major axis
of each galaxy’s PSF (c.f. Mandelbaum et al. 2015). We designate the latter linear
bias components as m||, c||,m×, c× for the components parallel to and at 45◦ to the PSF
orientation, respectively.

Several calibration binning schemes may be considered, such as fixed linear or
logarithmic bin sizes, or a scheme that equalises the number of objects in each bin. In
the following, we choose a binning scheme that equalises the total lensfit weight in each
bin and assign the median as the centre of each bin for each respective data sample.
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Figure 3.5: Multiplicative (left panel) and additive (right panel) selection bias, m and c, for
the components aligned (m||, c||) or cross-aligned (m×, c×) with the PSF major axis orientation,
as a function of galaxy magnitude, as discussed in §3.4.2. The grey band in the left panel
indicates the requirement on the knowledge of the multiplicative bias set by Hildebrandt et al.
(2016b) in the context of a cosmic shear analysis.

The multiplicative and additive biases for both shear components are then obtained
by a linear regression with intersection of all measured average ellipticity values 〈ε〉 j
against the true input reduced shear values gtruej .

We use two different methods to assign errors to the respective biases in m and c
in each bin. In the first method, the uncertainties are estimated from the scatter of
the measurements around the best fit line. The other method is to bootstrap resample
the sets of galaxies that share the same input shear values. The number of bootstrap
realisations is chosen to be large enough for the resulting errors to stabilise. We find
this to be the case after the creation of 20 bootstrap realisations.

3.4.2 Selection bias

Bias in the measurement of the shear arises from the combined processes of galaxy
detection or selection (‘selection bias’) and the shear measurement itself (‘model bias’
and ‘noise bias’). In this section, we inspect the individual selection bias contribu-
tions. Selection biases may occur if the intrinsic ellipticity distribution of galaxies is
anisotropic (Kaiser 2000; Bernstein & Jarvis 2002; Hirata & Seljak 2003), which may
happen if galaxies are preferentially detected when they are aligned with the shear or
the PSF, or if an anisotropic weighting function is employed in the measurement. Mul-
tiplicative shear bias may also arise if the distribution of ellipticities that are selected
is systematically biased with respect to the underlying distribution. Such anisotropic
or multiplicative selection effects may arise at two stages of the process. First, galax-
ies and stars are detected on stacked images using SExtractor. In principle, the
dependence of the SNR on galaxy size, ellipticity, orientation and PSF properties may
result in biases at this detection stage. Second, the lensfit shear measurement process
may not be able to measure useful ellipticity values for some galaxies, leading to an
additional contribution to selection bias.

We investigate these biases by inserting the ‘true’ sheared ellipticity value of each
simulated galaxy into our shear measurement framework, characterising a linear re-
lation between shear estimates formed from these quantities and the true shear. In
this approach, there is no contribution to the bias estimate, or to its measurement
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uncertainty, from noise bias. The only potential source of bias is sampling noise, but
in our simulations ellipticity shape noise has largely been ‘cancelled’ (see §3.3.2), apart
from the effect of galaxies that are not detected. In this test, we find a small bias,
m|| ' mx ' −0.005 ± 0.001, c|| ' 0.0002 ± 0.00004, cx ' 0.00005 ± 0.00004, as a result
of the SExtractor stage. However, if we measure the shear bias after the lensfit
stage by selecting those galaxies that are both detected by SExtractor and with
shear measurement weight greater than zero, we do find a significant multiplicative
bias, of 4.4 percent when averaged across the sample, with little difference between
biases whether the true shear values are unweighted or weighted by the lensfit weight,
for those galaxies with non-zero weight. As shown in Fig. 3.5 the bias is strongly
magnitude-dependent, with a maximum bias around 8 percent. By rotating galaxy
ellipticity and shear values to the coordinate frame aligned with the PSF major axis
(the PSF orientation varies in our simulations), we may also look for additive selection
bias that is correlated with the PSF: Fig. 3.5 also demonstrates the existence of such
an additive selection bias, with a significant aligned c term (there is no significant bias
detected in the cross-aligned c term).

The bias is caused by the inability to measure small galaxies: if an object has a
lensfit star-galaxy discrimination classification that favours the object being a star over
a galaxy (see Miller et al. 2013), it is classified as a star and given zero weight in the
subsequent analysis. This step introduces a significant selection bias, because galaxies
are more easily measured and distinguished from stars if they are more elliptical: thus
galaxies whose intrinsic ellipticity is aligned with its shear value are more likely to be
selected as measurable galaxies, than those whose intrinsic ellipticity and shear values
are cross-aligned. This results in a significant bias in the average intrinsic ellipticity
of the measured galaxies, and thus a significant shear bias.

This measurement selection bias should arise in both the data and the simulations,
and thus our calibration derived from the simulations should remove the effect from
the data. We note however that the selection bias is not small relative to our target
accuracy (grey band in Fig. 3.5), and is comparable to the noise bias that has received
more attention in the literature. We expect the selection bias to have some sensitivity
to the distributions of size and ellipticity and thus not to be precisely reproduced in
our fiducial simulations: as previously mentioned, in §3.5 we resample the simulations
to match the observed distributions in the KiDS tomographic bins, and in §3.6.2 we
further test the effect of modifying the size distribution. We also consider the possible
contribution of object selection bias to the PSF leakage in §3.4.6.

3.4.3 Calibration selection bias

In a conventional approach to shear calibration, the objective is to establish a shear
calibration relation, whose parameters are observed quantities, which may be applied
to the survey data. Ideally, to ensure that unbiased measurements of the cosmology are
obtained, after shear calibration has been applied, we should aim for a lack of residual
dependence on true, intrinsic galaxy properties (such as size or flux) in the simulations,
even though the calibration relation must be derived from observed quantities. The
absence of such dependencies would imply that the results are not sensitive to changes
in the input distributions.

However, if we attempt to deduce a shear calibration that depends on observed
quantities, the correlations between observed quantities may cause calibration relations
themselves to be biased, and may even mislead the investigator into believing that
their shear measurement is biased when it is not. In this section, we discuss biases in
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Figure 3.6: The apparent multiplicative (left panel) and additive (right panel) calibration
selection bias, m and c, deduced from the analysis of true, noise-free, sheared galaxy ellipticity
values, as a function of galaxy size. Relations are shown for five definitions of galaxy size:
(red) size r measured from true input major axis values; (magenta) size r measured from
noisy output major axis values; (blue) rab size, measured from true input, unsheared major
and minor axis values; (green) rab size, measured from true input, sheared major and minor
values; (black) rab size, measured from noisy output major and minor values. The additive
bias c is shown for the component aligned with the PSF major axis. See §3.4.3.

Figure 3.7: The multiplicative shear bias m (top) and additive shear bias c (bottom) as a
function of measured galaxy properties. The left panels shows the bias with and without
lensfit self-calibration as a function of measured model SNR. The right panels show the same
measurements as a function of R. The grey band in the top panels indicates the requirement
on the knowledge of the multiplicative bias set by Hildebrandt et al. (2016b) in the context
of a cosmic shear analysis.
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calibration relations that arise artificially as a result of correlations between size and
ellipticity, and thus shear, when following a calibration approach such as that adopted
for CFHTLenS (Miller et al. 2013) or Dark Energy Survey (Jarvis et al. 2015). We
distinguish this ‘calibration selection bias’ from the ‘galaxy selection bias’ discussed
above, in §3.4.2.

First, we consider the choice of size parameter. The definition of galaxy size mea-
sured by lensfit is the scale length, r, along the galaxy’s major axis: for disk galaxies,
where the ellipticity arises from the inclination of the disk to the line-of-sight, this
choice of size measure is the most invariant with the galaxy’s ellipticity. However, at
low SNR, pixel noise leads to a strong statistical correlation of the major axis size with
the ellipticity. The distribution of observed ellipticity directly affects the inferred shear
in a population, and thus a calibration relation that depends on major axis size causes
large, apparent size-dependent biases that in fact arise from the choice of observable.

This difficulty may be mitigated by adopting instead rab, the geometric mean of
the major and minor axis scale lengths. In noisy data rab has significantly lower
correlation with the measured ellipticity, but a bias on calibration relations still exists.
This selection bias is illustrated in Fig. 3.6. Here, we follow §3.4.2 and again calculate
the apparent shear bias that is deduced from using the true, noise-free sheared galaxy
ellipticity values. It is important to realise that the biases seen here do not arise from
any process in the noisy measurement of shear, other than through the correlation
between the size parameter and shear. The blue and red lines show the bias on the
input (true) galaxy size, for the rab and major axis r size definitions respectively: it
is this bias that we wish to minimise in order to achieve cosmological results that are
unbiased. It may be seen that the rab measure yields a somewhat lower apparent bias,
compared with r, which is a reflection of how the small, unmeasurable galaxies enter
each plotted bin. As a comparison, the green curve shows the results for the rab input
size definition, but where now the sheared major and minor axis values have been used
to calculate rab: a very large bias results.

However, any calibration relation that we adopt must instead be a function of the
noisy, measured galaxy size, rather than the true size, which is unknown in real data.
In Fig. 3.6 (magenta line), we also show that the correlation with the noisy, measured
r parameter has a bias that vastly exceeds the input size bias, and which is strongly
dependent on the size value. The rab size definition (black line in Fig. 3.6) is better
behaved in this regard, although the bias observed using output size still does not
reflect the bias on the input size. On the other hand, the r size definition should
be less correlated with ellipticity in the true, astrophysical joint distribution. Hence,
we continue to parameterise the lensfit models in terms of r, and marginalise over r
when estimating galaxy ellipticity as described in §3.2, but we adopt rab as the size
parameter in our calibration relation. We then test how well the bias as a function of
input parameters is corrected.

An alternative strategy that would mitigate the selection effects shown in Fig. 3.6
is to subtract the true, intrinsic ellipticity value from every galaxy, before forming any
shear estimates: this accurately compensates for the calibration selection bias. This
was the procedure adopted for the CFHTLenS shear calibration (Miller et al. 2013),
but it has the severe disadvantage that it also removes both the primary selection bias
described in §3.4.2 and the weight bias described in §3.2.3. As these are percent-level
effects, we must include them in our KiDS calibration, and accordingly do not use
this strategy here. We note in passing that neglect of these biases in CFHTLenS may
have resulted in larger amplitude shear values (and hence a larger value of the σ8



68 Calibration of weak-lensing shear in the Kilo-Degree Survey

Table 3.2: The total multiplicative and additive shear bias, both with (‘self-cal’) or without
(‘no-cal’) the lensfit self-calibration having been applied. Biases are quoted for components
measured either in the co-ordinate system of the sky simulations (upper Table section), or
where shear and ellipticity components have been rotated to be aligned, m||, c||, or cross-aligned,
m×, c×, with the PSF orientation (lower Table section).

sky-frame analysis m1 ∆m1(regr)/(BS) m2 ∆m2
[10−2] [10−2] [10−2] [10−2]

no-cal -4.09 0.33/0.25 -3.84 0.21/0.22
self-cal -1.90 0.33/0.25 -1.68 0.19/0.22
self-cal, no stars -1.40 0.30/0.29 -1.22 0.18/0.19
self-cal, low density, no stars -1.39 0.19/0.21 -0.93 0.18/0.26
sky-frame analysis c1 ∆c1 c2 ∆c2

[10−3] [10−3] [10−3] [10−3]

no-cal -0.73 0.09/0.07 3.32 0.06/0.05
self-cal 0.12 0.05/0.05 1.10 0.05/0.05
self-cal, no stars 0.15 0.09/0.08 1.26 0.05/0.05
self-cal, low density, no stars 0.09 0.05/0.06 0.80 0.05/0.06

PSF-frame analysis m|| ∆m||(regr)/(BS) m× ∆m×
[10−2] [10−2] [10−2] [10−2]

no-cal -3.96 0.22/0.43 -3.97 0.20/0.42
self-cal -1.78 0.18/0.21 -1.79 0.18/0.27
PSF-frame analysis ∆c|| c× ∆c×

[10−3] [10−3] [10−3] [10−3]

no-cal -2.51 0.06/0.10 -0.84 0.06/0.09
self-cal -0.55 0.05/0.07 -0.15 0.05/0.09

cosmological parameter), by a few percent, than reported by Heymans et al. (2013)
and other related cosmology analysis papers.

Finally, we note that Clampitt et al. (2016) found significant size-dependent shear
bias in their null test of Dark Energy Survey galaxy-galaxy lensing: this bias may
have been the result of the selection-induced size bias we have discussed here, and in
general, tests of the dependence of shear on measured galaxy size should be avoided
as a null test.

In the following sections, we investigate the full bias introduced by the noisy mea-
surement process: this bias includes the object selection bias discussed in §3.4.2 and
we should be mindful of the artificial biases of this section when investigating the size
dependence and when deriving a calibration relation: biases as a function of galaxy
size measured in noisy simulations may have a significant contribution from the cal-
ibration selection bias. Provided the simulated galaxy distributions match well the
data distributions, any derived calibration relation should correctly include such ef-
fects and should result in correctly calibrated data, but it makes sense to minimise
the effect of the choice of size definition by calibrating using rab rather than r, as this
should minimise the sensitivity to any mismatch between data and simulations.
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3.4.4 lensfit results

We start the analysis of the noisy measurement biases by quantifying the impact of
the lensfit self-calibration (see §3.2.2) on the recovered shear biases. This is done by
simply removing the self-calibration corrections (which are reported in the catalogue)
from the measured galaxy ellipticities before computing the shear. Without the self-
calibration we find that the average multiplicative bias for the full galaxy sample is
∼-4% in both components. This number reduces to ∼-2% in each component once we
use the lensfit self-calibration. We report the exact values, together with their errors,
in Table 3.2. Even more dramatic is the reduction of the additive bias when we use
the self-calibrated version of lensfit: it reduces by a factor five in c1 and by a factor
of three in c2. This is extremely encouraging, in particular for cosmic shear analysis,
where a large additive bias hampers the ability to measure the cosmological signal at
large angular separations (e.g. Heymans et al. 2013; Hildebrandt et al. 2016b).

We also explore the impact of misclassified stars on the average bias in the simu-
lations. In fact, lensfit occasionally classifies true stars as galaxies and assigns them
a non vanishing weight. As stars are not sheared, the net effect is a reduction of the
measured shear and hence a multiplicative bias. By measuring the shear bias either
including or excluding these misclassified stars, we quantify the effect of star misclassi-
fication on the multiplicative bias as approximately 5× 10−3. In the following analysis
we keep misclassified stars in the catalogue used to estimate the shear bias. We also
ran a set of simulations where the density was lowered by 50 % to explore the effect
of galaxy number density on the recovered biases. We found the multiplicative bias to
differ by only 2× 10−3, suggesting that at the current level of accuracy, simulating the
correct number density of galaxies is not crucial for shear calibration, which in turn
also implies that galaxy clustering should not impact the shear bias at the KiDS-450
measurement accuracy.

Despite the significant improvements of the self-calibrating lensfit, residual shear
bias remains, arising from both selection bias and from residual uncorrected noise
bias, and we now investigate how the total bias budget is distributed over bins of key
input and observed quantities. As discussed above, we expect the shear bias to depend
predominantly on the galaxy SNR and on the ratio of the PSF size and galaxy relative
size R, defined by equation 3.7 (Massey et al. 2013). This is confirmed by Fig. 3.7, which
shows the multiplicative and additive bias from the simulated data as a function of
lensfit model SNR and R with, and without, self-calibration. We notice that at low
SNR (and faint magnitude) the self-calibration reduces the multiplicative bias by more
than a factor of 2; similar improvements are seen as a function of R. However, even
with self-calibration, the residual multiplicative bias can still be substantially above
the 5% level for very faint (low SNR) and very small (large R) objects. This emphasises
the need for an additional, post measurement bias calibration based on the results of
the image simulations.

When the self-calibration corrections are included, the residual bias almost van-
ishes, within its errors, for c1 but remains significant for c2. Motivated by the difference
in the two components and in order to explore whether the residual additive bias de-
pends on PSF properties, we perform the same analysis in the PSF frame, by rotating
all ellipticity and shear values into a frame where the two axes of the PSF align with
the coordinate frame. Once we repeat the bias analysis in the PSF frame, we find
that the additive bias is now consistent with zero in the cross-aligned component and
that for the PSF-aligned component it has risen to the level we found for the second
component in the sky frame. This indicates a dependence of the measured bias on
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Figure 3.8: The multiplicative bias m (top) and additive bias c (bottom) as a function of
simulation input galaxy properties. The left panels shows the bias with and without lensfit
self-calibration as a function of input magnitude. The right panels shows the same measure-
ments as a function of input size. The grey band in the top panels indicates the requirement
on the knowledge of the multiplicative bias set by Hildebrandt et al. (2016b) in the context
of a cosmic shear analysis.

PSF properties and motivates a more detailed investigation in §3.4.6.
To explore the dependencies on input parameters, Fig. 3.8 shows the bias in m and

c as a function of input magnitude and size. Selection effects are clearly important for
the multiplicative bias for faint galaxies, although it should be noted that the most
dramatic effects arise at magnitudes m > 23, where the galaxy detection is incomplete
(Fig. 3.3) and where the weighted contribution to shear measurement is small. In the
case of the additive bias, in particular, the utility of self-calibration is evident, as the
dependences on input parameters are significantly reduced.

3.4.5 Multiplicative shear bias calibration

The self-calibrated lensfit already delivers excellent results in terms of total residual
shear bias, as shown in Table 3.2. However, emphasised by Fig. 3.7 and Fig. 3.8, mul-
tiplicative biases significantly larger than 5% are still possible, most prominently for
faint and small galaxies, although we must be cautious in interpreting any size de-
pendence, owing to the selection bias demonstrated in §3.4.3. We aim here to derive
a calibration for the residual multiplicative bias after self-calibration as a function of
lensfit-measured SNR and R. While R is a good choice for characterising the size of a
galaxy with respect to the PSF (Massey et al. 2013), one could consider flux-related
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Figure 3.9: The 2D bias surface as a function of model SNR and R. The top panels show the
multiplicative bias surface, m1 on the left and m2 on the right. The bottom panels show the
additive bias components, c1 on the left and c2 on the right. Each point in the plot has equal
lensfit weight.

calibration quantities other than SNR, for example the observed magnitude, to use as
a calibration parameter. However, as discussed in §3.3.5, the real KiDS imaging data
has quite some variation of the pixel noise rms, mostly owing to varying observing
conditions, while in the simulations we used a fixed value. As the shear bias depends
on the noise level and not on the actual flux of the object, it is not possible to derive
a robust calibration based on output magnitude.

We bin our simulated data according to the measured galaxy model SNR and R,
again requiring equal lensfit weight in each bin and we use the self-calibrated lensfit
measurements as the default. The two dimensional multiplicative bias surface as a
function of SNR and R is shown in Fig. 3.9. A crucial parameter in such analyses is
the total number of bins used to characterise the bias surface. On the one hand, we
would like to have a fine enough grid to capture every real feature in the bias surface,
but, on the other hand, we have to ensure that there is enough statistical power in
each bin so that measurements are not dominated by noise. We tried a variety of grids
ranging from only two up to 40 bins on each axis. A coarse 10 × 10 binning scheme
results in an average m-bias error of 2% in both components per bin and increases to
an average 10% per bin for the 40 × 40 scheme. This results in a vanishing signal-to-
noise ratio for bins with a small measured bias while using a very fine binning scheme.
We found that a 20×20 bin grid provides the best compromise with an average signal-
to-noise of 2.5 per bin over the full SNR-R surface and enough resolution to capture
the complicated structure of the bias surface in the low SNR, large R regime.

Fig. 3.9 reveals that the multiplicative bias surface is complex. Our initial char-
acterisation attempt is based on a fit of an analytic 2D function to the bias surface,
as was done for example in Miller et al. (2013); Hoekstra et al. (2015); Jarvis et al.
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(2015). Unfortunately, even a complex 16-parameter functional form

m1/2 = f0 + f1R−1 + f2R + f3R2, (3.10)

where the pre-factors fi depend on the 16 parameters and the lensfit SNR

fi = p4i+1 + p4i+2SNR−1 + p4i+3SNR−2 + p4i+4SNR−1/2, (3.11)

for i ∈ (0, 1, 2, 3) gave only a poor fit to the surface (χ2-values of 3.9 and 3.6 for m1 and
m2 respectively). From now on we will refer to this form of characterisation of the bias
surface as method A.

Our second attempt to characterise the surface, method B, is based on an inter-
polation of the bias surface. Simple spline interpolation fails to robustly interpolate
the bias due to its complicated structure in SNR and R space. We applied an inter-
polation scheme based on a Gaussian radial basis function with a spatially varying
shape parameter (see Merten 2014, and references therein). The interpolation was
trained beforehand using the best-fit analytic functional form of method A, to opti-
mally adapt its shape-parameters to the spatial structure of the SNR-R grid and the
general features of the bias surface. The resulting interpolation allowed us to query
the multiplicative bias in both components for any parameter pair, at least in the area
covered by the given SNR and R range shown in Fig. 3.9.

Finally, we tried a simpler calibration strategy, method C, which was to not fit or
interpolate the bias surface, but rather to assign the bias determined in each of the
20 × 20 bins to the galaxies that fall in each bin.

We test the differing calibration strategies, by investigating the derived multiplica-
tive bias as a function of SNR and R according to methods A, B or C, for all galaxies
with shape measurement in the simulation. In each bin of the analysis we calculate
the lensfit-weighted average multiplicative bias correction and apply it to the average
measured ellipticity in the bin according to equation 3.9. Afterwards, we recalculate
the bias. The results for each method are presented in Table 3.2 in terms of the total
bias and in Figs. 3.10 and 3.11 as a function of the key output and input quantities.
The total multiplicative bias after we apply the calibration is around or below the
percent level in both shear components for all three methods. It vanishes completely,
by construction, within its error bars for the bin-based calibration method C. In terms
of our 1% target window, method A fails to deliver a robust calibration over the full
R range. Methods B and C do clearly better and robustly calibrate the residual bias
over the full R range. An exception are extremely small, high R objects, which repre-
sent only a small population in the image simulations. The very last bin in R, where
methods B and C show a residual bias of 2%, accounts for 7% of the total lensfit
weight in the sample.

The picture is similar in terms of the calibration performance as a function of
SNR. Method C performs best and only marginally falls out of our target accuracy
for objects with SNR < 7. The reason why this method shows a residual bias at all, is
the fact that the binning scheme we used for this analysis differs in both the number
of bins and its 1-dimensional nature from the 20 × 20 SNR-R binning scheme that we
used to derive the calibration. The first SNR bin in Fig. 3.10, where methods B and
C show residual multiplicative biases of -3.5% and 1.5%, respectively, contributes 7%
to the lensfit weight in the full sample. In the extremely low SNR regime (∼ 10), the
interpolation based method B performs much worse than C, likely due to less robust
interpolation result near the edges of the initial bias surface. In the final analysis and
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considering all mentioned effects, we find that method C provides the most robust
calibration of the multiplicative bias and it will be our default method.

In order to test the dependence of this calibration on the number of bins used to
characterise the multiplicative bias surface, we investigated the measured bias as a
function of the number of 2D bins used. We find that if the number of bins is too
small, the calibration is not able to pick up all relevant features in the bias surface and
hence existing residual bias remains uncalibrated. Using more than ten bins starts to
remedy the problem and a 20 bin scheme is the first calibration that delivers a robust
calibration within 1% for the full range of SNR and R, with the exception of very
small objects with R > 0.9, which contribute only a small fraction of the sample’s total
lensfit weight.

We might hope that when the residual bias, after applying the calibration, is mea-
sured as a function of input magnitude and size, it should be consistent with zero.
However, this is not the case, as shown in Fig. 3.11. All the calibration schemes show
a small positive bias for objects with bright input magnitudes (m . 23) and small
galaxies (rab . 0.2′′), and a negative bias at faint magnitudes which becomes large for
galaxies below the selection completeness limit. The average weighted bias, however,
for the entire simulation, is consistent with zero. The cause of this effect is that the
calibration on noisy output quantities relies on there being a stationary correlation
between the true quantities and their measured, noisy counterparts. At magnitudes
below the completeness limit, the relationship between true size and measured size
in the selected galaxies changes, which in turn impacts the calibration relation. In
effect, there is a third axis of “magnitude” in our calibration space which has not been
included in the calibration relation. In fact, it is not possible to reliably include this
third axis, as the three quantities are highly correlated, and also correlated with galaxy
ellipticity, and correct calibration in this space would require the joint distributions in
the simulations and in the data to match precisely, which is difficult to achieve and is
not the case in our simulations.

As by construction, the net residual bias after calibration in the simulations is
zero, if the data that we seek to calibrate has the same distribution of true magnitude
and size as the simulations, application of the calibration relation should also result in
zero residual bias in the calibrated data. However, in reality the data and simulation
distributions differ, as shown in Fig. 3.3, and in the cosmic shear analysis (Hildebrandt
et al. 2016b) the data are divided into tomographic subsamples, with their own size
and magnitude distributions. We investigate the amount of residual bias that might
leak into the tomographic analysis presented in Hildebrandt et al. (2016b) via this
effect in § 3.5.

3.4.6 Additive shear bias calibration and PSF properties

We have identified the 20×20 grid, bin-based method C as the most robust to calibrate
for the remaining residual multiplicative bias. Using exactly the same methodology
and by again following equation 3.9 we also characterise the small remaining additive
bias not accounted for by lensfit’s self-calibration. When calibrating for both, multi-
plicative and additive bias, simultaneously, we find the residuals shown in the last line
of Table 3.3, which is our best and final result.

Fig. 3.12 shows the residual additive bias as a function of SNR and R before and
after calibration and Fig. 3.13 shows the remaining multiplicative and additive bias as a
function of PSF properties. This includes the two PSF ellipticity components, the PSF
size and “pseudo-Strehl ratio” (defined as the fraction of light contained in the central
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Table 3.3: The total multiplicative and additive bias after residual bias calibration.

method m1 ∆m1(regr)/(BS) m2 ∆m2
[10−3] [10−3] [10−3] [10−3]

A 3.80 3.35/4.62 4.90 1.88/1.90
B -1.99 3.35/3.72 -1.89 1.90/2.44
C -0.008 3.37/3.89 -0.01 1.91/2.49

C (m+c) -0.008 3.36/4.22 -0.005 1.90/2.72

method c1 ∆c1 c2 ∆c2
[10−5] [10−5] [10−5] [10−5]

A – – – –
B – – – –
C – – – –

C (m+c) -0.007 9.51/9.38 0.014 5.37/6.66

Figure 3.10: The multiplicative bias after empirical calibration using different methods.
Method A is based on a function form fit to the bias surface, method B performs an in-
terpolation of the bias surface and C assigns a constant bias correction in 2D bins. The left
panel shows the residual multiplicative bias after calibration as a function of model SNR and
the right panel as a function of R.The grey band indicates the requirement on the knowledge
of the multiplicative bias set by Hildebrandt et al. (2016b) in the context of a cosmic shear
analysis.

Figure 3.11: This plot is equivalent to Fig. 3.10, but shows the residual multiplicative bias as
a function of input magnitude in the left panel and as a function of input size in the right
panel.
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Figure 3.12: The residual additive shear bias before and after calibration using method C.
The left panel shows residual bias as a function of model SNR and the right panel in bins of
R.

pixel of the PSF). All the analyses show no systematic dependence of m -and c-bias
on PSF properties and all reported residual biases fulfil, within their errors, our target
of 1% residual bias. However, as summarised earlier in Table 3.3, we do detect bias
when performing the analysis in the PSF and not in the sky frame. This is expected
from the additive selection bias of §3.4.3 and should also have a contribution arising
from residual uncorrected noise bias (Miller et al. 2013). In order to characterise this
effect we extend our bias description by including a PSF ellipticity dependent term α,
following Jarvis et al. (2015):

gmeas
j =

(
1 + m j

)
gtruej + α jε

PSF
j + c j. (3.12)

We measure the two α components by subdividing the galaxy sample into bins of
the respective PSF ellipticity component. For the full sample, without any further
subdivision into bins of galaxy properties we determine α1 = −0.006 ± 0.002 and α2 =

0.005 ± 0.003 for the self-calibrated lensfit output. It is important to note that no
additional residual bias calibration, as described in §3.4.5 and §3.4.6 is applied here.
Fig. 3.14 shows the dependence of α, which is sometimes also called PSF leakage, on
measured galaxy properties and Fig. 3.15 shows it as a function of simulation input
quantities. Clearly, the measurement is significant over the full property range, but
is most significant for the low SNR and the small size regime. Fig. 3.14 also shows
the bias obtained when true, sheared ellipticity values are propagated through the
analysis, as in §3.4.2. We observe that the α-dependence on SNR is well explained
by the selection bias, but that there remains α-dependence on the relative galaxy size
that appears to have an additional contribution to the selection bias.

In summary, referring to our preferred calibration scheme (method C ), all m, c
-and α biases vanish for the galaxy sample in its entirety. When looking closer into
the biases as a function of measured galaxy properties we find small, of the order 2%
residual multiplicative biases for extremely low SNR and extremely high R objects.
All c-biases vanish after our calibration and while residual α terms are presented in the
self-calibrated lensfit output, they vanish after the additional residual bias calibration.
We do expect the PSF-dependent additive biases to be sensitive to the PSF properties,
and thus we recommend that the additive bias measured from the simulations is not
simply applied blindly to any science analysis. In Hildebrandt et al. (2016b), the
additive bias is investigated empirically in the data, and the results compared with
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Figure 3.13: The residual bias as a function of PSF properties. The solid lines refer to the
residual multiplicative bias with the scale given by the left y-axis. The dot-dashed lines
refer to residual additive bias with the scale on the right y-axis in each plot, respectively.
The four panels show the biases in clock-wise order starting on the top-right as a function
of: measured PSF size, PSF pseudo-Strehl ratio, second PSF ellipticity component and first
ellipticity component.



Calibration of weak-lensing shear in the Kilo-Degree Survey 77

Figure 3.14: The average of the two PSF leakage components, α, as a function of measured
galaxy properties, showing the leakage deduced from measured lensfit ellipticities (red curves
and points) and from true, sheared input ellipticities (blue curves and points), as a test of
selection bias. The left panel shows α as a function of model SNR, the right panel as a
function of R.

Figure 3.15: The PSF leakage for measured and true ellipticities as a function of simulation
input quantities. Input magnitude in the left panel and input size in the right panel.

those from the simulations, rather than relying on the simulations to be an exact
representation of the data regarding its PSF and noise properties.

3.5 Calibration by resampling the simulated catalogue

3.5.1 A resampling approach to calibration

Once the bias has been characterised in terms of relevant observed properties, it can
be applied to virtually any selection of the real galaxies used to measure shear. For
example, a tomographic cosmic shear analysis requires splitting the galaxy sample
into redshift bins; a galaxy-galaxy lensing analysis requires selecting a source sample
behind lenses at a given redshift. However, as we saw in §3.4, the bias surface may be
complex and thus difficult to characterize, and may itself be biased (see §3.4.3). This
may be a concern, given the tight requirements from current and especially future
lensing surveys.

The lensfit measurements are, however, made for individual objects, and as an
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alternative to the approach presented in §3.4, we may instead resample the output
from the image simulations, such that the measured galaxy parameter distributions
match those of any (sub-)selection of galaxies. The multiplicative and additive biases
may then be calculated from the resampled catalogues and applied to the galaxy
sample of interest. Note, however, that this approach will only give reliable results if
the multi-dimensional parameter space of simulated galaxy properties covers the full
parameter space of the real galaxies. Whilst this approach is less flexible than the
one described in §3.4, as the simulations need to be resampled for each galaxy sample
used to measure shear, it avoids having to characterise the bias as a function of galaxy
properties.

Comparison of the biases determined using the different schemes provides an im-
portant check on the robustness of the calibration. As described in more detail below,
we therefore implemented the resampling approach and applied it to the four tomo-
graphic bins used in the cosmic shear analysis presented in Hildebrandt et al. (2016b).

3.5.2 Application to the multiplicative bias in KiDS data

For a given selection of real galaxies, the population of simulated galaxies may be
resampled using a k-nearest neighbour search of an N-dimensional volume, defined by
a combination of N observed properties of the simulated galaxies. As the search is
done by minimising the Euclidian distance between the simulated and real galaxies in
that space, it is important to map the distributions of the chosen properties onto a
unit length vector. Moreover, there are two important points to consider in order to
successfully apply this technique:

• The galaxy properties that define the N-dimensional volume must be correlated
with the shear bias;

• The N-dimensional volume of the simulations has to be at least as large as the
corresponding volume defined using the properties of the real galaxy sample.

Motivated by the results presented in §3.4, we define the resampling volume based
on the galaxy SNR and the ratio of the PSF size and observed galaxy size (R), for which
the simulations cover the same space as the data, as we have shown in §3.3.5. We apply
the resampling technique to the selection of galaxies defined by the four tomographic
bins used for the cosmic shear analysis presented in Hildebrandt et al. (2016b). Our
simulations do not contain any simulated redshift information: we implicitly assume
that matching the size and SNR distributions of each tomographic bin is adequate,
and that there is no redshift dependence of the bias beyond that conveyed by the bias
as a function of SNR and size.

The tomographic bins are defined using the peak of the posterior photometric
redshift distribution zB as measured by BPZ (Beńıtez 2000) using observations in four
optical bands ugri (Kuijken et al. 2015). The KiDS-450 data are further divided in five
contiguous regions on the sky (designated G9, G12, G15, G23 and GS). We resample
the simulations using each region individually, in order to test the robustness of the
method, although we note that the SNR and R distributions are very similar between
the regions.

The top panels in Fig. 3.16 show the SNR and R distributions measured from the
KiDS-450 data (all regions combined) and those obtained from the resampled simula-
tions for the third tomographic bin, 0.5 < zB ≤ 0.7, used in Hildebrandt et al. (2016b).
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Figure 3.16: Top panels: SNR and R distributions measured from the KiDS-450 data (black
line) and using the resampled simulations (red histogram). Bottom panels: The distribution
of lensfit weight (left) and weighted ellipticity (right) measured from the KiDS-450 (black
line) and using the resampled simulations (red histogram). All distributions are computed
using galaxies in the redshift range 0.5 < zB ≤ 0.7, which corresponds to the third tomographic
bin used in the cosmic shear analysis presented in Hildebrandt et al. (2016b)

.
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The excellent agreement between them validates the resampling technique and con-
firms that the simulations are representative of the data. In the bottom panels of
Fig. 3.16 we show the distributions of the lensfit weight and the weighted distribution
of the modulus of the ellipticity. As those two quantities were not used in the resam-
pling, it is not surprising that the distributions differ slightly. However, the amplitude
of the noise bias depends on the galaxy ellipticity distribution (Viola et al. 2014): we
will assess the possible impact of this mismatch on the derived average biases in §3.6.3.

3.5.3 Robustness of the tomographic calibration

From the k-nearest neighbour search we can define a ‘resampling’ weight wres, which
is the number of times that a simulated object was matched to an object in the data.
We use this new weight in combination with the lensfit weight to measure the shear
from the resampled simulations:

gobs,res
j ≡

∑
i wiwres

i εi j∑
i wiwres

i
, (3.13)

and compute the multiplicative and additive bias using equation 3.9. We verified that
the estimate for the bias is robust against the choice of the number of nearest neigh-
bours. The errors on the biases are also unchanged for k > 4. Unless explicitly stated,
all the results quoted in this paper have been derived using k = 5.

The measured multiplicative bias does not depend on the PSF properties, in agree-
ment with what we found in §3.4. As an additional test we compared the average biases
derived from resampling each individual PSF set individually with the results derived
from resampling the whole simulation volume. Also in this case we found statistically
equivalent results. Fig. 3.17 shows the multiplicative bias derived using the resampling
technique and the calibration method presented in §3.4. The hatched regions, centered
on the bias measured using the resampling technique indicate the requirements in the
knowledge of the multiplicative bias as derived by Hildebrandt et al. (2016a). We
compare the results from the two calibration schemes for the four tomographic bins
used in Hildebrandt et al. (2016b). The average difference, combining all tomographic
bins, is ∆m = −0.001 ± 0.003.

3.6 Calibration sensitivity analyses

3.6.1 Sensitivity to the magnitude distribution

In §3.4.5 we noted that there might be a residual shear bias that arises from differences
between the magnitude distributions of the simulations and of the selection of galaxies
in the tomographic bins. We estimate this effect by first applying the method C
calibration scheme to the simulations. Then, a new resampling weight is derived for
each galaxy, by comparing the lensfit-weighted distributions of measured magnitudes
in the simulations and in the KiDS-450 data in each tomographic bin, and reweighting
the simulated galaxies so that those distributions match.

We measure the residual bias in these reweighted simulations, for each tomographic
bin. First, we confirm that the residual bias is consistent with zero in the absence of
any magnitude reweighting, as expected. Then, for each tomographic bin reweighting,
we find residual bias levels of approximately −0.001, 0.001, 0.0004,−0.012 in each of the
four bins. The residual bias is consistent with zero in the first three bins, but shows a
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percent-level residual in the highest-redshift bin. We cannot know whether this effect
is as large in the data as in the simulations, for two reasons: first, we have reweighted
using noisy, measured magnitudes rather than true magnitudes, and second we know
that the simulations become incomplete at a slightly brighter magnitude limit than
the data, so the residual bias effect is expected to be larger in the simulations than in
the data. However, this test does indicate the possible size of the residual bias, which
is either much smaller than (tomographic bins 1 − 3) or comparable to (tomographic
bin 4) our nominal requirement on calibration accuracy.

To explore further the effect of the simulation magnitude limit on the measured
shear bias we run another suite of simulations, which are identical to the reference
simulations described in Section 3.3, except that we change the noise level, such that
the magnitude limit increases by 0.3 magnitude. These simulations are 0.2 magnitude
deeper than the KiDS-450 data. We apply the method C to these new simulations and
we compute the multiplicative shear bias in the four tomographic bins. Compared to
the fiducial results we find a change in the bias of−0.008,−0.003,−0.006,−0.014 in each
of the four bins. We can use this result to estimate the sensitivity of the bias to the
magnitude limit from which we can calculate that the 0.1 magnitude limit different
between the reference simulations and the KiDS-450 data should result in sub-percent
residual biases of −0.003,−0.001,−0.002,−0.005 in the four bins.

3.6.2 Sensitivity to the galaxy size distribution

The output galaxy size distribution also differs between the data and the simulations,
as shown in Fig. 3.3, which might arise from a difference between the input size distri-
bution we used to create the simulations and the true size distribution of the KiDS-450
galaxies. To examine in more detail the impact of such a difference, we again reweight
the galaxies such that the output size distributions of data and simulations match.
However, in this case we cannot simply weight by the distribution of output size, as
that would not capture correctly the joint dependence of the correlated output size
and ellipticity measurements. Instead, we choose to reweight simulated galaxies as
a function of their true, input size. We first define an alternative target input size
distribution and calculate a ‘size weight’ that may be applied to each galaxy, such
that the fiducial input size distribution is transformed from the nominal distribution
to the target distribution. The size weight is just the ratio of the values of the target
and nominal distributions for each galaxy. The target distribution was varied until a
good match of output size distributions was found. The simplest target distribution
that was tried had the same functional form as the input size distribution, but with
a shift of the median relation by a constant factor to larger sizes, while preserving
the magnitude dependence. The factor was varied to obtain the best match between
the simulation and data size distributions (as measured by the Kolmogorov-Smirnov
statistic), however differences in the distributions remained.

Hence, we also tested a lognormal target distribution, where the median size was
again scaled by some factor and where the standard deviation of the distribution of the
logarithm was also varied to obtain the best match between data and simulations. This
produced a better match, but with some magnitude dependence: a final sophistication
then was to allow the slope of the rmed − m relation to vary. The new relation was
found to be rmed = exp(−1.07 − 0.19(m − 23)) with standard deviation of the logarithm
σ = 0.48. A good match was then found between the size distributions of the data
and the reweighted simulations. The size reweighting also causes some variation in
the measured distributions of other quantities, but does not on its own remove the
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Figure 3.17: Multiplicative bias calculated using the resampling technique and the bias cal-
culated employing the calibration scheme described in §3.4 as a function of the tomographic
bins used in the cosmic shear analysis described in Hildebrandt et al. (2016b). The hatched
area indicates the requirement on the knowledge of the multiplicative bias for KiDS-450.

discrepancies between the data and simulations in the distributions of magnitude and
SNR.

To test the possible effect on the deduced bias, we apply the size reweighting
globally to the entire simulation, repeat the bias estimation using method C, and then
deduce again the bias for each tomographic bin, as described above. The reweighted
bias values differ from the nominal values by −0.0011,−0.0014,−0.0013, 0.0085 in each
tomographic bin. The differences in the first three bins are again negligible, with only
a sub-percent level effect in the final tomographic bin. That effect has the opposite
sign to that found in the magnitude reweighting, which suggests that the joint effect
of magnitude- and size-reweighting may be close to zero in all tomographic bins. We
conclude that the effect of the uncertainty in either the size or magnitude distributions
does not impact our tomographic bin calibration at the level of accuracy required here.

3.6.3 Sensitivity to accuracy of the galaxy ellipticity distribution

A remaining concern is that the recovered ellipticity distribution in the simulations
does not match precisely those from the KiDS-450 observations. This may indicate
either that the intrinsic ellipticity distribution in the simulations is not the same as
in the real Universe, or that some other observed property that is correlated with
ellipticity is biasing the distribution. Such a discrepancy in the ellipticity distribution
may result in a bias measured from the simulations which may not be applicable to the
observations (Melchior & Viola 2012; Viola et al. 2014). To quantify how our results
change for different input ellipticity distributions, we perform a further resampling
sensitivity analysis, similar to those done by Bruderer et al. (2015) and Hoekstra et al.
(2015), that investigates the effect of possible variations in the ellipticity distribution
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Figure 3.18: Multiplicative bias (left panel) and additive bias (right panel) for bins in input
ellipticity for the four tomographic resampled catalogues with 1σ uncertainties. A redder
colour indicates a higher redshift tomographic bin.

on the resampling calibration, in tomographic bins (§3.5).

We first quantify the sensitivity of the shear measurement to the input ellipticity
distribution, by binning the simulated galaxies according to their input ellipticity, ε s,
and computing the multiplicative and additive bias in each ellipticity bin. The results
are presented in Fig. 3.18 for the resampled catalogues for the four tomographic bins
(see §3.5). Thanks to the resampling, these catalogues have the same observed SNR
and resolution distributions as the KiDS-450 data in each tomographic bin. The
multiplicative bias depends only weakly on the intrinsic ellipticity for objects with low
ellipticities, although the biases differ between tomographic bins. For the additive bias
we observe a clear trend with ε s, but we note that the amplitude is low and we do
not, in any case, apply our simulated additive bias measurements directly to the data.
These findings are in line with the expectations from Viola et al. (2014) and show that
modest changes to the input ellipticity distribution should result in at most a percent
level effect on the overall multiplicative bias.

The results for the four tomographic bins shown in Fig. 3.18 indicate that the
sensitivity of the multiplicative bias to the adopted intrinsic ellipticity distribution is
small. Nonetheless, we aim to quantify this further by considering possible variations
of the input ellipticity distributions in the simulations. To do so, we follow a similar
method to that in §3.6.2, by applying additional weights to the catalogue entries as
a function of their input intrinsic ellipticity, and then computing the new, reweighted
bias. The difficulty in this approach is that there may be many possible variations of
the true ellipticity distribution that result in the same, or similar, measured ellipticity
distributions. So, although the principle of resampling is analogous to that done in
§3.6.2, here we follow a Monte-Carlo approach to the reweighting, in which we test
many possible variations of the true ellipticity distribution, only selecting those that
produce a match with the KiDS-450 data. As the input ellipticity is uncorrelated to
any other input galaxy property in the simulations, the new weight does not introduce
any further bias due to selection effects in our measurements. Here we focus on the
ellipticity distribution, but note that this method could be used for other, or multiple,
distributions, provided that the simulated volume is large enough. The steps for our
sensitivity analysis procedure are as follows:
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• We bin the lensfit weighted input ellipticity distribution in equally spaced bins
Ps

i (|ε|).

• For each input ellipticity bin we determine the corresponding observed ellipticity
distribution P̃out

i (|ε|).

• We assign a weight w̃i to each input ellipticity bin, resulting in a modification of
both the input and output ellipticity distributions.

In this way we can mimic image simulations with differing input ellipticity distri-
butions, without the need to create and analyse such simulations. For our analysis we
have chosen to use 50 bins in input ellipticity. The weights w̃i are chosen such that the
simulated output ellipticity distribution matches the observed ellipticity distribution
in the KiDS-450 data. The intrinsic ellipticity distribution in the Universe varies due
to cosmic variance, which limits the precision with which the bias can be determined
from our sensitivity analysis. An estimate for cosmic variance can be obtained from
the variation in the observed ellipticity distributions between the KiDS-450 patches.
We found that these variations are very similar to the Poisson errors on the observed
ellipticity distribution. When comparing the ellipticity distributions from simulations
and data we therefore assign Poisson errors to the latter.

Matching the observed and simulated ellipticity distributions can only be done reli-
ably if the full range of ellipticities found in the data is encompassed by the simulations.
In the course of performing the analysis, we found that the KiDS-450 data contain a
small fraction of galaxies with ε > 0.8, which are absent in the simulations (see the
inset in the lower left panel of Fig. 3.3). In the simulations, such high ellipticities are
caused either by measurement noise or by blending of galaxies with close neighbours.
To check whether the objects in the data are also caused by noise or blending, we
inspected HST images of the COSMOS field (Scoville et al. 2007) for which we also
have VST r-band data. To ensure a fair comparison, we restricted the comparison to
images in the F606W filter, which is similar to the r-band.

Unfortunately, the F606W imaging in the COSMOS field only covers 240 arcmin2,
resulting in a comparison sample of only about 100 galaxies. We found that 70%
of these objects were genuinely high-ellipticity, edge-on galaxies, while the rest were
either spurious detections or blended objects. The likely cause is that there exists a
distribution of the ratio of galaxy disk scale-heights to their scale-lengths (e.g. Un-
terborn & Ryden 2008), with a tail of galaxies having very thin disks, which are not
represented by the nominal ellipticity prior that we assume. Even though the com-
parison sample is small, this test suggests that the high-ellipticity tail of the lensfit
prior is not representative of the Universe in this regime. However, the sample is too
small to allow us to derive an updated ellipticity prior. Instead, to compensate this
incompleteness, we augment our catalogues with very elliptical objects. We created
and analysed additional simulations with 2000 galaxies per exposure, adopting a flat
input ellipticity distribution with 0.5≤ |ε| ≤0.95. All other properties of the simulations
remained unchanged from what has been described in §3.3. Note that the number den-
sity of these very elliptical galaxies does not reflect reality, but rather was chosen to
provide adequate information for the sensitivity analysis.

We use Monte Carlo Markov Chains (MCMCs) to sample the w̃i parameter space.
We found that convergence was slow, and the resulting input ellipticity distribution
very irregular and spiky if no priors on w̃i were imposed. This result is not physical,
and does not agree with our limited knowledge of the ellipticity distribution based on
high quality data, which indicates a much smoother distribution. To speed up the
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Figure 3.19: Results from the sensitivity analysis based on 0.5 ≤ ZB < 0.7 galaxies in the G15
patch of the KiDS DR3 data. The intrinsic ellipticity distribution in the resampled catalogue
in blue and the distribution which best fits the measured KiDS data and the grey band shows
the possible variations from the MCMC tests. To suppress the spiky nature of the best fit
we demanded smoother intrinsic ellipticity distribution, finding a strength of the smoothness
prior K = 500 to be adequate, as indicated at the top of the plot. The bottom row shows
how similar the observed ellipticity distribution is to the KiDS-450 data for the resampled
catalogue in blue and the best fit in black. The textboxes show the difference in multiplicative
(top box) and additive (bottom box) bias between the blue and black distribution. The biases
change with K, but all biases are much smaller than the 1% required for cosmic shear.

MCMC runs in finding a more physical solution, we applied a prior to regularise the
result. The form of the prior is

π(K, |ε s|) := K ×
∣∣∣∣∣1 − Pi+1(|ε s|)

Pi(|ε s|)

∣∣∣∣∣ |ε s|i

|ε s|i+1
, (3.14)

which penalises a spiky distribution where subsequent bins have very different values.
The extra factor of |ε s|i/|ε

s|i+1 lessens the effect of the prior near |ε| = 0, where the
distribution turns over. The strength of the prior K should be chosen so that the prior
does not dominate. We explored several values of K and found a good compromise
for K = 500; this choice produced physical distributions in a reasonable amount of
computing time.

The third tomographic bin (0.5 < zB ≤ 0.7) shows the largest discrepancy between
the observed ellipticity distribution in the simulations and KiDS DR3 data and thus
serves as a worst case scenario for the sensitivity analysis. We use the ellipticity
distribution from patch G15 in the sensitivity analysis and use the 1σ variation between
the patches as the error on the distribution. The results of our sensitivity analysis
and the effect of the smoothing prior are shown in Fig. 3.19, which shows the input
ellipticity distribution of the SCHOol simulations P(|εs|) in blue and the best fit model∑

i w̃iP(|εs|)i from the MCMC results in black. The MCMC chains converged for every
run, so that the observed ellipticity distribution was identical to the KiDS ellipticity
distribution within the errorbars.

The MCMC framework was able to match the simulations to the data. For the
family of modified ellipticity distributions from the MCMC, we compute the standard
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deviation in input ellipticity for each bin and show this as the grey band. From
left to right the strength of the smoothness prior increases, resulting in smoother
distributions. Importantly, the unphysical spike around |ε s| = 0.75 is no longer present
in this case. For 1% of the ∼ 2 × 107 MCMC solutions we computed the shear bias
from the corresponding (observed) ellipticity distributions. The difference between the
average bias and that measured from the resampled catalogue is shown in the boxes
and the error is the 1σ spread of all the computed biases. The difference in ellipticity
distribution thus results in only a small change in bias. The biases also change very
little as a function of the applied smoothing; the change in multiplicative and additive
bias never exceeds 0.3% and 0.01%. These tests show that the shear measurement is
quite insensitive to changes in the intrinsic ellipticity distribution and any reasonable
variations are within the 1% errors. The discrepancy between the observed ellipticity
distribution in the simulations and the data is therefore not a concern for the cosmic
shear analysis.

3.7 Conclusions

The large areas covered by ongoing and future imaging surveys dramatically reduce
the statistical uncertainties in the measurement of the alignments of galaxies caused
by lensing by intervening large-scale structure. This increase in precision needs to be
matched by a corresponding improvement in the accuracy with which weak lensing
shear can be measured. This can only be achieved by evaluating the performance of
shear measurement algorithms on realistic mock data (e.g. Miller et al. 2013; Hoekstra
et al. 2015). In this paper we use extensive image simulations created using GalSim
(Rowe et al. 2015), to test and calibrate the lensfit algorithm used by Hildebrandt
et al. (2016b) to analyse 450 deg2 (360.3 deg2 after accounting for masking) of KiDS-
450 data. This large survey area implies that the multiplicative bias needs to be
determined to better than about 1 percent.

We have shown that the average multiplicative bias over the simulation volume
using the self-calibrating lensfit algorithm is ∼ 2%, and the average additive bias is
∼ 5× 10−4. Although this is close to the required level of accuracy, a final correction is
nonetheless required. We have investigated the behaviour of the bias as a function of
observed properties of galaxies, such as SNR and size. The measured bias as a func-
tion of galaxy properties is a combination of measurement bias, caused by noise, and
selection bias, caused by the inability to measure small galaxies and by the weighting
of galaxies in the shear measurement process. While it is possible to disentangle those
effects in the simulations, it is not possible to do the same in the data. In our analysis,
we find that selection bias is at least as important as measurement bias, which implies
that even shear measurement methods that are free from, or that perfectly correct for,
noise bias may still show shear biases that are present at the percent level or larger.

We have successfully derived a calibration relation that corrects for the dependence
of bias on galaxy properties, but we have also shown that this calibration itself may be
biased by its use of noisy, measured galaxy properties rather than their unobservable
true properties, and these ‘calibration bias’ effects need to be assessed when deriving
any new shear calibration. We have tested the accuracy of the application of the
calibration relation, including the effect of calibration bias, by a number of resampling
tests that were designed to test the accuracy in the four tomographic bins used in
the cosmic shear analysis presented by Hildebrandt et al. (2016b). Although there
are sub-percent uncertainties in the calibrations arising from the differences between
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the data and the simulations, and from the effects of calibration bias, the accuracy of
the calibration appears to satisfy the specification required for cosmic shear analysis
of the KiDS-450 data set, at 1 percent accuracy of multiplicative bias. In deriving
cosmological constraints it is therefore necessary to marginalise over the uncertainty
in the shear bias employing a gaussian prior with σm = 0.01. As the SNR and R
distributions in the four tomographic bins are very broad, the shear biases derived from
the simulations described in this paper are strongly correlated among tomographic
bins. For this reason we conservatively recommend to assume a correlation coefficient
of r=0.99 between all bins.
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images of faint galaxies and the shear recovered from a population of galaxies made
with synthetic bulge-plus-disk models whose distributions of sizes and shapes match
the HST galaxies.

First, a simulation was created using postage stamps of high resolution HST galax-
ies, with i-band magnitude between 20 and 24.5, which are available in GalSim. Each
galaxy was sheared and convolved with the median KiDS PSF (FWHM=0.64′′, Moffat
β=3.14, ε1=0.08, ε2=-0.05) and rendered to a pixel scale of 0.214′′. The flux is the same
for each object and set high enough with respect to the noise level, so that noise bias
in the measurements is small. The simulated images consist of a grid of approximately
50 000 isolated galaxies, so that blended galaxy isophotes do not influence the shape
measurement. As was done for the fiducial simulations (see §3.3), four rotations of
each galaxy were used to reduce shape noise and the same 8 shear values were tested.
Given the high SNR of the galaxies and the use of four rotations, the simulated volume
is large enough to achieve per mille precision in the shear bias determination.

SExtractor was run on the simulated images with the same configuration used
in the analysis of the KiDS-450 data. About 1% of the HST galaxies were incorrectly
segmented and flagged by lensfit in the subsequent analysis as blended. We visually
inspected several postage stamps and indeed confirmed that these HST images showed
unphysical features, such as a large number of negative pixels, creating problems for
SExtractor. Furthermore another ∼ 1% of objects were flagged by lensfit and
assigned a weight of zero. In order to retain the rotational symmetry we used in the
subsequent analysis only galaxies for which all the 32 renditions (4 rotations time 8
shears) have a weight larger than zero and are unflagged, as would be the case in a
survey of real galaxies.

We then reran the same simulation without applying the shear to the galaxies.
This was necessary to determine the distributions of intrinsic galaxy properties for
the input for the synthetic galaxy simulation. The modulus of the intrinsic ellipticity
of each HST galaxy was obtained by averaging the modulus of the measured lensfit
ellipticity of the four rotations. As before, only if all four rotations were properly
detected and had non-zero weight, were they included in the average. Similarly we
obtained the intrinsic scale lengths and bulge fractions.

The comparison set of simulations were created using synthetic galaxies, adopting
a bulge plus disk model. The modulus of the intrinsic ellipticity, the size and the bulge
fraction were drawn from the measured distribution in the real galaxy simulation. The
intrinsic position angle of galaxies was randomly assigned from a uniform distribution.
This procedure ensures that the distributions between the first and the second set of
simulations are the same and it also removes any bias in the lensfit measurements
correlated with the shear. These galaxies were sheared, in the same way as it was
done for the HST galaxy simulations, and convolved with the same PSF.

Finally, the same analysis was run as described in Section §3.4 on the two cat-
alogues and we compared the average biases. The HST galaxies showed an average
multiplicative bias m = −0.002 ± 0.002, while the bulge-plus-disk galaxy simulations
the average bias was m = −0.001 ± 0.002. We conclude that there is no evidence of
a lensfit multiplicative bias larger than couple of permille. This is in line with the
previous results achieved on the GREAT3 benchmark simulations.



4
Multi Epoch Nearby Cluster Survey:

Weak lensing masses for 48 local
galaxy clusters

Large surveys have detected significant samples of galaxy clusters with well-understood
selection functions. These can be used to constrain cosmological parameters, provided
that their masses can be measured robustly. To extend the calibration of cluster
masses using weak gravitational lensing we present results for 48 clusters with 0.05 <
z < 0.15, observed as part of the Multi Epoch Nearby Cluster Survey (MENeaCS). Our
measurements benefit from the low cluster redshifts, which decrease contamination of
the source sample by cluster members and reduce the sensitivity to uncertainties in
the source redshift distribution. Combined with advances in shape measurements
we estimate that the systematic uncertainties in the lensing signal are less than 3%,
sufficient for the size of the MENeaCS sample. We compute physical cluster properties
by fitting parametric models to the contamination corrected weak lensing signal. The
weak lensing masses and velocity dispersions are in fair agreement with estimates
based on galaxy dynamics and we find consistent relations for MENeaCS and the
Canadian Cluster Comparison Project. We derive a scaling relation with hydrostatic
masses using Planck measurements and find a bias in the hydrostatic masses 1 − b =

0.90± 0.05(stat)± 0.03(syst) when combining both cluster samples. The data support a
decreasing trend of 1 − b with mass, which is in agreement with other observations.

R. Herbonnet, C. Sifón, H. Hoekstra, R. F. J. Van der Burg
to be submitted

91



92 3. MENeaCS weak lensing masses

4.1 Introduction

The growth rate of massive structures is sensitive to cosmology as gravitational build-
up of overdensities in the initial density distribution is counteracted by the expansion of
the Universe. Numerical simulations can predict the abundance of massive structures
for varying cosmologies and linking these to such objects in the real Universe allows
for cosmological tests. Although the bulk of the mass in these structures is in the form
of dark matter, they are observable across the electro-magnetic spectrum because they
contain large amounts of baryons that manifest their presence in various ways, such as
clusters of galaxies and hot gas. Studies of the number of clusters as a function of mass
and redshift (cluster mass function) have put tight constraints on the energy density
of matter Ωm and normalisation of the matter power spectrum σ8 and the redshift
evolution of the mass function can constrain the abundance and the equation of state
of dark energy and the number of neutrino species (Borgani & Guzzo 2001; Vikhlinin
et al. 2009b; Planck Collaboration et al. 2014; Mantz et al. 2015; Planck Collaboration
et al. 2016b; de Haan et al. 2016). See also Allen et al. (2011) for a general review on
galaxy clusters as a cosmological tool.

Determination of the cluster mass function requires a large sample of clusters rep-
resentative of the whole population and accurate mass estimates of those clusters. The
number of observed clusters is steadily increasing thanks to optical searches for over-
densities of (red) galaxies (e.g. Gladders & Yee 2005; Rykoff et al. 2016), and X-ray
surveys looking for diffuse hot intracluster gas (e.g. Böhringer et al. 2004; Vikhlinin
et al. 2009a). In recent years millimeter wavelength observations have added greatly
to the number of detected clusters (Hasselfield et al. 2013; Bleem et al. 2015; Planck
Collaboration et al. 2016c). In galaxy clusters photons from the cosmic microwave
background (CMB) undergo inverse Compton scattering off the hot intracluster gas
thereby obtaining a slight net boost in energy (Sunyaev & Zeldovich 1972, SZ). This
SZ effect introduces a characteristic distortion in the millimetre part of the spectral
energy distribution, which is a tell-tale sign of a massive galaxy cluster. CMB photons
are present at all observable redshifts and the SZ signal scales linearly with gas density
making it observable even for high redshift clusters with relatively low gas density.

All these surveys detect clusters based on a selection function (such as signal to
noise ratio cuts), which can make the sample unrepresentative of the underlying dis-
tribution of clusters. The selection function needs to be taken into account, lest the
cluster mass function be biased (see e.g. Mantz et al. 2010; Battaglia et al. 2016 for
the effects of selection functions).

The second requirement for robust estimates of cosmological parameters is a well
calibrated relation between survey observable and mass1. In fact, the lack of a reliable
scaling relation is the main limitation for the full exploitation of the all-sky Planck
cluster catalogue. The total mass of clusters can be computed using kinematics of
cluster members under the assumption of dynamical equilibrium (e.g. Ruel et al. 2014;
Bocquet et al. 2015; Sifón et al. 2016; Amodeo et al. 2017) or using caustics (Rines
et al. 2016). The X-ray temperature and surface brightness profile can be connected
to mass, but this is usually done under the assumption of hydrostatic equilibrium (see
e.g. Battaglia et al. (2012) for an assessment of the impact of non thermal pressure on
cluster mass estimation). As clusters formed through mergers, most clusters will not be
in a state of equilibrium. Numerical hydrodynamical simulations consistently suggest

1Actually, because of degeneracy between cosmological and astrophyical parameters in the esti-
mation, the scaling relation should be inferred simultaneously with cosmological parameters (Mantz
et al. 2010, e.g.)
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that X-ray masses can be biased low by ∼10%-35% depending on the dynamical state
of the cluster (Nagai et al. 2007; Rasia et al. 2012; Henson et al. 2017).

Weak gravitational lensing can provide the total mass of a cluster against which
other mass proxies can be calibrated. A galaxy cluster acts as a lens because its
gravitational potential distorts the surrounding space-time which deflects photons from
their straight line trajectories. This phenomenon introduces a coherent distortion
(shear) in the observed shape of background galaxies. The lensing signal is not sensitive
to the dynamical state of the cluster and can be a source for unbiased mass estimates.
However, lensing is a probe for the gravitational potential projected along the line of
sight and the triaxial distribution of mass introduces an uncertainty of ∼10-30% in
the weak lensing estimates (Corless & King 2007; Meneghetti et al. 2010; Becker &
Kravtsov 2011; Rasia et al. 2012; Henson et al. 2017). Moreover, uncorrelated large
scale structure also affects the lensing signal introducing extra scatter in the mass
estimates (Hoekstra 2001; Hoekstra et al. 2011a). For a large sample of clusters these
uncertainties should average out, so reliable scaling relations can only be produced for
large samples of clusters.

A number of studies have estimated weak lensing masses for galaxy clusters with
the aim to constrain scaling relations (Jee et al. 2011; Okabe et al. 2013; von der
Linden et al. 2014b; Kettula et al. 2015; Hoekstra et al. 2015; Okabe & Smith 2016;
Penna-Lima et al. 2016; Schrabback et al. 2016; Sereno et al. 2017). The large numbers
of studied clusters help to reduce the statistical uncertainties, but also to quantify the
intrinsic scatter of the scaling relations, which can help to reveal the underlying astro-
physical origins. The largest weak lensing surveys have targeted several tens of galaxy
clusters so that statistical errors can become comparable to systematic uncertainties.
Therefore, the main focus for the Weighing the Giants survey (WtG, von der Linden
et al. 2014a; Applegate et al. 2014), the Canadian Cluster Comparison Project (CCCP,
Hoekstra et al. 2012, 2015), the Local Cluster Substructure Survey (LoCuSS, Okabe
& Smith 2016) and Cluster Lensing and Supernovae survey with Hubble (CLASH,
Umetsu et al. 2014) has been to robustly assess sources of systematic errors. Weak
lensing experiments measure the shear by averaging the shapes of galaxies behind the
clusters, and combine these with distance estimates for the background galaxies in
order to reconstruct the mass profile. The background galaxies are predominantly
faint objects, so the distances are computed using photometric redshifts. Systematics
are thus introduced by biased measurements of the galaxy shapes or of the galaxy
redshifts, a false classification of objects as background galaxies, and an incorrect es-
timation of the mass profile. These effects have become more important as different
teams have found inconsistent mass estimates for the same clusters. To investigate the
discrepancies between Applegate et al. (2014) and Hoekstra et al. (2012), the CCCP
cluster mass estimates were revisited by Hoekstra et al. (2015, hereafter H15). They
used a large set of simulations of telescope images to calibrate their shape measure-
ment algorithm to an accuracy of 2%. Unlike the WtG data, the CCCP data did not
have enough colour data for their galaxies to compute photometric redshifts. This lack
of redshifts was a major concern, but was overcome with a separate high fidelity red-
shift catalogue and a correction for the contaminated sample of background galaxies.
With these improvements they found that shear- and masses estimates were consistent
between the two teams within the measurement uncertainties.

With the robust pipeline of H15, systematic errors are low enough that they are
comparable to the statistical uncertainties. In this work, we build on the work of H15
by studying another sample of clusters, which was observed with the Canada-France-
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Hawaii Telescope (CFHT), as was CCCP, and analyse it with the same pipeline. The
Multi Epoch Nearby Cluster Survey (MENeaCS) provides excellent quality optical
imaging data in the g and r-band for a sample of 58 X-ray selected clusters at 0.05 <
z < 0.15. MENeaCS presents a significant collection of clusters allowing for a precise
determination of the average cluster mass. However, as was the case for CCCP, the
trade-off for the large sample size is the lack of colour information required to estimate
photometric redshifts for all observed galaxies. Fortunately, the systematic errors due
to the lack of individual redshifts are much less severe thanks to the low redshifts of
the clusters compared to the CCCP analysis. The local MENeaCS cluster galaxies are
spread over a larger part of the sky and thus the number density of cluster members
contaminating the background population should be small. The lensing signal for
low redshift clusters is also fairly insensitive to the actual distribution of redshifts
of background galaxies (Hoekstra et al. 2011a). These qualities make MENeaCS an
excellent sample of galaxy clusters with which to estimate robust weak lensing masses.

The MENeaCS observations are briefly described in Section 4.2, where we also
present details on the pipeline used to determine galaxy shapes. The MENeaCS ob-
servations lack the colour information required for accurate photometric redshifts and
instead we determine a distribution of redshifts for the background galaxy population
using ancillary data. This process is described in Section 4.3. Without reliable pho-
tometric redshifts, galaxies cannot be separated into a population associated to the
cluster and a population of gravitationally lensed background galaxies. We derive a
correction for this contamination in Section 4.4. In Section 4.5 we determine the phys-
ical properties of the MENeaCS clusters by fitting parametric density models to the
corrected weak lensing signal. We then assess the robustness of our results by com-
paring them against estimates derived using galaxy dynamics. Finally we compute
a scaling relation with the masses estimated using the Planck CMB measurements
(Planck Collaboration et al. 2016c) and we conclude in Section 4.6. Throughout the
paper we assume a flat Λ cold dark matter cosmology where H0=70h70 km/s/Mpc
and the current energy densities of matter and dark energy are Ωm(z = 0) = 0.3 and
ΩΛ(z = 0) = 0.7, respectively. All masses and radii scale as h−1

70 .

4.2 Data and shape analysis

The Multi Epoch Nearby Cluster Survey (MENeaCS) is a deep, wide-field imaging
survey of a sample of X-ray selected clusters with 0.05 < z < 0.15. The data were
obtained with two main science objectives in mind. The first, the study of the dark
matter halos of cluster galaxies using weak gravitational lensing, defined the required
total integration time and image quality, as well as the redshift range; with ground-
based observations such studies are best done with low redshift clusters. The results
of this analysis are presented in Chapter 5. Taking advantage of the queue scheduling
of CFHT observations, however, the observations were spread over a two-year period,
which enabled a unique survey to study the rate of supernovae in clusters (Sand et al.
2012; Graham et al. 2012), including intra-cluster supernovae (Sand et al. 2011). To
do so, typically two 120s exposures in the g and r-band were obtained for each epoch
(which are a lunation apart). The full sample comprises the 58 most X-ray luminous
clusters that were catalogued at the start of the survey, whilst observable with the
CFHT. A detailed description of the survey is presented in Sand et al. (2012)2. All

2We note that Sand et al. (2012) did not present results for Abell 401, which we have included in
the total sample.
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clusters used in our analysis are listed in Table 4.1 together with their redshift and the
coordinates of the brightest cluster galaxy (BCG) which we take as the centre of the
cluster. A possible complication is the misclassification of a galaxy as the BCG (see
e.g. Bildfell et al. 2008). However, it was straightforward for the MENeaCS clusters
from visual inspection which galaxy was the BCG.

In this paper we use the r-band data to determine the cluster masses using weak
gravitational lensing. The individual exposures are pre-processed using the Elixir

pipeline (Magnier & Cuillandre 2004), and we refine the astrometry using Scamp

(Bertin 2006). Although the CFHT observations were typically obtained when the
seeing was below 1′′, some exposures suffer from a larger PSF. As this is detrimental
for accurate shape measurements, these exposure were excluded when co-adding the
data. For each cluster the 20 frames with the best image quality were selected and
combined into a single deep mosaic using Swarp (Bertin 2010). However, if additional
frames had a seeing full width at half maximum less than 0.80 arcseconds they were
added to the stack. The minimal depth of each mosaic is 40 minutes of exposure time.
The magnitudes we use are corrected for Galactic extinction using the Schlafly &
Finkbeiner (2011) recalibration of the Schlegel et al. (1998) infrared-based dust map.
For the analysis presented here, we excluded 9 clusters based on their r-band Galactic
dust extinction Ar. The threshold value Ar < 0.2 was chosen to reflect the range in
which we can reliably correct for contamination (see Section 4.4 and Appendix 4.A).
Finally, the cluster Abell 763 contained no significant overdensity of galaxies and was
removed from the sample. Table 4.1 lists for all selected clusters the characteristics
of the image quality of the mosaic: the half-light radius of the PSF, the root mean
square (r.m.s.) noise level and the Galactic extinction.

Objects were detected in the mosaics using the pipeline described in Hoekstra et al.
(2012). To measure the weak lensing signal around the clusters we select objects with
an r-band magnitude 20 ≤ mr ≤ 24.5. Following H15 an upper limit of 5 pixels on the
galaxy half-light radius is imposed. A lower limit for the size is set by the size of the
PSF, which removes stars and small galaxies that have highly biased shapes. Galaxies
are assigned a lensing weight

w =

[
〈ε2

int〉 +

(σχ
Pγ

)2
]−1

, (4.1)

where 〈ε2
int〉 = 0.252 is the dispersion in the distribution of intrinsic ellipticities and σχ

is an estimate of the uncertainty in the measured polarisation value χ due to noise in
the image (Hoekstra et al. 2000). The polarisation is measured using a weight function
to reduce the effect of noise, which introduces a bias in the final shear estimate. The
shear polarisability Pγ corrects the polarisation for the use of the weight function and
for PSF smearing. The shear is then computed as the weighted average of the corrected
polarisations

gi =

∑
n

wnχi,n/P
γ
n∑

n
wn

, (4.2)

where the index i indicates the two Cartesian components of the shear and the sum runs
over all galaxies in the sample. In practice, we measure the reduced shear gi = γi/(1−κi)
(Bartelmann & Schneider 2001), which deviates from the true shear γ near the cluster
centre, but for most radii of interest the convergence κ is negligible, although we take
it into account in our analysis. We decompose the shear into a cross and tangential
component relative to the lens, where the tangential shear gt can be related to the
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projected mass of the lens and the cross shear can be used to find systematic errors
(Schneider 2003).

The galaxy polarisations and polarisabilities are measured from the mosaics using
the shape measurement algorithm detailed in H15, which is based on the moment-based
method of Kaiser et al. (1995). H15 used extensive image simulations to quantify the
multiplicative bias that arises from noise in the data and the imperfect correction
for the blurring by the PSF. The MENeaCS data are similar in terms of depth and
image quality compared to the observations of the CCCP that were analysed in H15;
therefore we use the same correction scheme. A potentially important difference with
the CCCP analysis is that the individual exposures are offset from one another. This
could lead to a complicated PSF pattern in the combined images. However, tests on
the CCCP data indicate that this results in a negligible change in the mass estimates.
Moreover, the large number of exposures, combined with the smooth PSF pattern
results in a smooth PSF when measured from the mosaics.

Galaxy magnitudes are corrected for background light by subdividing pixels with-
out galaxy light in an annulus between 16 and 32 pixels into four quadrants and fitting
the quadrants with a plane to allow for spatial variation of the background. We found
that bright neighbouring objects affect this local background subtraction, which in
turn affects the shape measurement. When we examined the performance of the algo-
rithm near bright cluster members in image simulations for the purpose of studying
the lensing signal around such galaxies (see Chapter 5), there were cases where mfind,
the apparent magnitude as measured by the detection algorithm differed from mshape,
the magnitude measured by the shape measurement algorithm. No background light
was present in the simulations and instead the local background subtraction was af-
fected by the proximity of bright cluster galaxies. We introduced a flag that identified
galaxies for which the shape measurement is biased due to the background subtraction.
A cut based on ∆m = mfind − mshape of

∆m > −49.0 − 7.0mshape + 0.3m2
shape − 0.005m3

shape (4.3)

efficiently removed problematic objects. We therefore apply this cut to the full lensing
catalog, which removes approximately 10% of the sources. We applied the same selec-
tion to the image simulations studied in H15 and found that the biases are unchanged.
Consequently, we use the same parameters to correct for the biases in the method.
H15 estimate that the systematic uncertainties in the cluster masses caused by the
shape measurements is less than 2%, which is also adequate for the results presented
here.

4.3 Photometric source redshift distribution

Gravitational lensing is a geometric phenomenon and the amplitude of the effect de-
pends on the distances involved. This dependency is parametrised by the critical
surface density

Σcrit =
c2

4πG
Dos

Dol Dls
, (4.4)

where the lensing efficiency β = max(0,Dls/Dos) contains the redshift information
about the background galaxy (termed the ‘source’). The angular diameter distances
Dos,Dls,Dol are measured between observer ‘o’, lens ‘l’ and/or source ‘s’. The definition
of β is such that objects in front of the cluster, which are not gravitationally sheared,
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do not contribute to the measured signal. For an increasing source redshift the lensing
efficiency β rises sharply when the source redshift is comparable to the lens redshift,
but it flattens off when source and lens are far apart.

We lack photometric redshifts for individual objects in our catalogue and we cannot
determine the critical surface density for each source lens pair. However, as the galaxies
are averaged to obtain a shear estimate, we can use the average lensing efficiency 〈β〉
to compute the critical surface density for the full source population. This assumption
introduces a bias in our shear estimates which can be approximately corrected for by
multiplying our reduced shear estimates by

1 +

(
〈β2〉

〈β〉2
− 1

)
κ, (4.5)

(Equation 7 in Hoekstra et al. 2000). The width of the distribution of the lensing
efficiency 〈β2〉 corrects the reduced shear for the use of a single value of 〈β〉. For our
local clusters most sources are so distant that there is little variation in the value of
β. Indeed, we find that the ratio 〈β2〉/〈β〉2 ≈ 1 in the range 0.05 ≤ z ≤ 0.15 and so the
correction is negligible for our analysis. However, when we compute cluster properties
we do correct our reduced shear estimates using Equation 4.5 for completeness.

A reference sample of field galaxies can serve as a proxy for the source population
in the observations from which the average lensing efficiency can be computed. For
this we use the Cosmological Evolution Survey (COSMOS) field which has received
dedicated spectroscopic coverage so that reliable redshift estimates are available. In
our analysis we use the COSMOS2015 catalogue of Laigle et al. (2016), which con-
tains photometric redshifts of galaxies in the COSMOS field based on over 30 differ-
ent wavelengths. This catalogue has two important benefits for our analysis. First,
near infrared data from the UltraVISTA DR2 are included, so that the Lyman and
Balmer/4000 Å breaks can be distinguished. The additional knowledge on these fea-
tures helps to robustly assess high redshift galaxies, which would otherwise tend to
be assigned a low redshift. Second, the catalogue also includes the CFHT r filter, so
that we can easily match it to our data. Although the objects in the COSMOS2015
catalogue were not selected based on their r-band magnitude, we find that the cata-
logue is complete down to mr ≈ 25, which is sufficient to cover our magnitude range
20 ≤ mr ≤ 24.5. From comparisons to spectroscopic data Laigle et al. (2016) found
that their redshift estimates are accurate to better than a percent, which is sufficient
for this study.

However, the COSMOS2015 catalogue is not representative of our MENeaCS lens-
ing catalogues, as the latter are subject to various cuts. Gruen & Brimioulle (2016)
have shown that these selection effects can introduce a bias in the mass estimates. To
quantify the impact, we ran our lensing pipeline on r-band observations of the CFHT
Legacy Survey (CFHTLS) D2 field which covers ∼1 square degree of the COSMOS
field and matched the lensing catalogue to the COSMOS2015 catalogue. This enabled
us to perform exactly the same cuts on the redshift distribution as were applied to the
lensing data. We found that applying the cuts introduces a difference in the lensing
efficiency of only ∆β ≤ 1% for all clusters. We use the matched catalogue for our
analysis, but note that this does not significantly impact our results, nor the results
in H15.

We select galaxies from the matched catalogue using the TYPE parameter, which
classifies objects as either stars or galaxies. The observed galaxy density as function of
magnitude varies for the MENeaCS clusters due to the different observing conditions,
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which is not reflected in the source population in COSMOS. As a galaxy’s magnitude
depends on its redshift, using the COSMOS galaxies to compute 〈β〉 directly may
lead to an incorrect value for our data. Therefore we customise our COSMOS galaxy
population by reweighting them to match the magnitude distributions for individual
MENeaCS clusters. The redshift catalogue is divided into magnitude bins and for each
magnitude bin we compute the sum of the lensing weights of the COSMOS galaxies (as
the appropriate proxy for number of galaxies) and the mean lensing efficiency 〈β〉bin.
Then the final estimate 〈β〉 for each cluster is the average of 〈β〉bin weighted by the sum
of the lensing weight for all bins. For each cluster the value of 〈β〉 is listed in column
9 of Table 4.1. We use 〈β〉 to compute the average critical surface density with which
we estimate cluster masses. In order to apply Equation 4.5 we also require 〈β2〉, which
is calculated the same way and listed in column 10 of Table 4.1.

The redshift distribution in our catalogue based on 1 square degree of the COSMOS
field might not be representative for all source populations in our observations. This
cosmic variance introduces an uncertainty in the mean lensing efficiency 〈β〉. We
estimate the impact of cosmic variance using the photometric redshift catalogues of
Coupon et al. (2009) for the four CFHTLS DEEP fields. We also analysed these fields
with our own weak lensing pipeline and matched these catalogues to introduce the
lensing selections. These photometric redshifts are based on five optical bands and
hence are not as reliable as the COSMOS2015 catalogue. However, as the four fields
were analysed consistently they may serve as an estimate of the variation in redshift
distributions due to cosmic variance. For each cluster we compute the weighted average
〈β〉 for the 4 fields and use the standard deviation between them as the error due to
cosmic variance.

In addition to cosmic variance, there are Poisson errors in the 〈β〉 due to finite
statistics. The Poisson errors are estimated by comparing the lensing efficiency in the
CFHTLS D2 field with the lensing efficiency in the remainder of the COSMOS field,
where we assume that within two square degrees cosmic variance is subdominant. We
compare the lensing efficiency for galaxies between 20 ≤ mr ≤ 24.5 for both regions and
use the difference as a measure of the Poisson error. As we do not have KSB parameters
for the full COSMOS2015 catalogue we do not impose any other constraints besides
the magnitude limits. We assume that the lensing cuts would affect both samples in
the same way.

The uncertainties from cosmic variance and finite statistics are roughly equal in
amplitude and we estimate our final uncertainty by summing both quadratically, as-
suming they are independent. The uncertainty in the average lensing efficiency for
each cluster is listed in column 6 in Table 4.1 and is at most ∼1.5%. Strictly speak-
ing, this is a conservative estimate, as our cosmic variance errors are also affected by
Poisson errors. An error δβ ∼ 1.5% is a marked improvement over H15 who found
an uncertainty of 4.2%. In part, this can attributed to our use of better photometric
redshift data. However, H15 found that most of their uncertainty was driven by faint
galaxies and the shallower data for MENeaCS help to reduce the error. Finally, for
the low redshift MENeaCS clusters the distribution of β is very peaked which reduces
the uncertainty in the lensing efficiency.
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(1) (2) (3) (4) (5) (6) (7) (8)
cluster z RABCG DecBCG Ar RPSF r.m.s. noise

(J2000) (J2000) [mag] [pixels] [counts]

1 A7 0.106 00:11:45.2 +32:24:56.4 0.086 1.907 1.279
2 A21 0.095 00:20:37.3 +28:39:28.3 0.083 2.005 1.325
3 A85 0.055 00:41:50.4 −09:18:11.3 0.082 1.964 1.447
4 A119 0.044 00:56:16.1 −01:15:19.1 0.084 2.041 1.403
5 A133 0.057 01:02:41.7 −21:52:54.4 0.040 2.148 1.405
6 A646 0.129 08:22:09.5 +47:05:52.9 0.089 2.171 1.381
7 A655 0.127 08:25:29.0 +47:08:00.4 0.076 2.056 1.389
8 A754 0.054 09:08:32.3 −09:37:47.4 0.150 2.338 1.326
9 A780 0.054 09:18:05.7 −12:05:45.2 0.086 2.542 1.470
10 A795 0.136 09:24:05.3 +14:10:21.8 0.062 2.282 1.514
11 A961 0.124 10:16:22.8 +33:38:17.3 0.039 2.245 1.536
12 A990 0.144 10:23:39.8 +49:08:37.8 0.014 2.468 1.482
13 A1033 0.126 10:31:44.2 +35:02:28.0 0.037 2.064 1.627
14 A1068 0.138 10:40:44.5 +39:57:11.2 0.046 1.937 1.582
15 A1132 0.136 10:58:23.6 +56:47:41.8 0.024 2.144 1.600
16 A1285 0.106 11:30:23.8 −14:34:52.8 0.090 2.587 1.588
17 A1348 0.119 11:41:24.2 −12:16:38.5 0.066 2.590 1.535
18 A1361 0.117 11:43:39.5 +46:21:20.4 0.050 1.926 1.401
19 A1413 0.143 11:55:18.0 +23:24:18.6 0.052 2.074 1.423
20 A1650 0.084 12:58:41.5 −01:45:40.9 0.036 2.413 1.316
21 A1651 0.085 12:59:22.4 −04:11:45.8 0.060 2.871 1.625
22 A1781 0.062 13:44:52.5 +29:46:15.3 0.035 2.308 1.199
23 A1795 0.062 13:48:52.5 +26:35:33.2 0.028 2.162 1.402
24 A1927 0.095 14:31:06.7 +25:38:01.3 0.084 1.953 1.284
25 A1991 0.059 14:54:31.4 +18:38:32.3 0.071 2.116 1.465
26 A2029 0.077 15:10:56.1 +05:44:41.0 0.083 2.058 1.330
27 A2033 0.082 15:11:26.5 +06:20:56.7 0.081 1.937 1.237
28 A2050 0.118 15:16:17.9 +00:05:20.8 0.119 1.953 1.296
29 A2055 0.102 15:18:45.7 +06:13:56.2 0.082 1.935 1.300
30 A2064 0.108 15:20:52.2 +48:39:38.4 0.036 2.196 1.129
31 A2065 0.073 15:22:29.1 +27:42:27.6 0.086 2.079 1.230
32 A2069 0.116 15:24:07.4 +29:53:20.2 0.053 1.945 1.152
33 A2142 0.091 15:58:20.0 +27:14:00.3 0.098 1.971 1.259
34 A2420 0.085 22:10:18.7 −12:10:13.7 0.127 2.130 1.638
35 A2426 0.098 22:14:31.5 −10:22:26.2 0.129 2.293 1.757
36 A2440 0.091 22:23:56.9 −01:34:59.7 0.174 2.200 1.449
37 A2443 0.108 22:26:07.8 +17:21:23.4 0.136 1.944 1.352
38 A2495 0.078 22:50:19.7 +10:54:14.1 0.167 1.938 1.366
39 A2597 0.085 23:25:19.7 −12:07:27.0 0.066 2.106 1.649
40 A2627 0.126 23:36:42.0 +23:55:29.0 0.168 2.025 1.360
41 A2670 0.076 23:54:13.6 −10:25:08.5 0.097 2.422 1.520
42 A2703 0.114 00:05:23.9 +16:13:09.2 0.103 1.881 1.326
43 MKW3S 0.045 15:21:51.8 +07:42:31.8 0.077 2.046 1.253
44 RXJ0132 0.149 01:32:41.1 −08:04:04.8 0.066 1.901 1.444
45 RXJ0736 0.118 07:36:38.0 +39:24:52.6 0.104 2.198 1.418
46 RXJ2344 0.079 23:44:18.2 −04:22:49.1 0.077 2.198 1.515
47 ZWCL1023 0.143 10:25:57.9 +12:41:08.4 0.101 2.274 1.528
48 ZWCL1215 0.075 12:17:41.1 +03:39:21.2 0.036 2.730 1.484
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(1) (2) (3) (9) (10) (11)
cluster z 〈β〉 〈β2〉 δβ

1 A7 0.106 0.714 0.536 0.008
2 A21 0.095 0.738 0.568 0.007
3 A85 0.055 0.841 0.718 0.004
4 A119 0.044 0.871 0.767 0.004
5 A133 0.057 0.834 0.708 0.005
6 A646 0.129 0.665 0.469 0.009
7 A655 0.127 0.669 0.475 0.008
8 A754 0.054 0.842 0.720 0.005
9 A780 0.054 0.841 0.718 0.005
10 A795 0.136 0.648 0.449 0.010
11 A961 0.124 0.675 0.481 0.008
12 A990 0.144 0.632 0.428 0.010
13 A1033 0.126 0.670 0.475 0.008
14 A1068 0.138 0.646 0.446 0.010
15 A1132 0.136 0.648 0.448 0.010
16 A1285 0.106 0.709 0.528 0.009
17 A1348 0.119 0.683 0.492 0.007
18 A1361 0.117 0.693 0.505 0.007
19 A1413 0.143 0.636 0.434 0.010
20 A1650 0.084 0.763 0.603 0.007
21 A1651 0.085 0.756 0.592 0.007
22 A1781 0.062 0.821 0.688 0.005
23 A1795 0.062 0.821 0.688 0.005
24 A1927 0.095 0.740 0.571 0.007
25 A1991 0.059 0.828 0.698 0.005
26 A2029 0.077 0.782 0.631 0.007
27 A2033 0.082 0.772 0.615 0.006
28 A2050 0.118 0.690 0.502 0.008
29 A2055 0.102 0.724 0.548 0.008
30 A2064 0.108 0.710 0.530 0.008
31 A2065 0.073 0.793 0.646 0.007
32 A2069 0.116 0.696 0.510 0.007
33 A2142 0.091 0.747 0.581 0.007
34 A2420 0.085 0.759 0.597 0.007
35 A2426 0.098 0.726 0.551 0.007
36 A2440 0.091 0.745 0.577 0.007
37 A2443 0.108 0.708 0.527 0.008
38 A2495 0.078 0.778 0.625 0.007
39 A2597 0.085 0.760 0.598 0.007
40 A2627 0.126 0.672 0.478 0.008
41 A2670 0.076 0.780 0.628 0.007
42 A2703 0.114 0.699 0.513 0.007
43 MKW3S 0.045 0.868 0.763 0.004
44 RXJ0132 0.149 0.622 0.419 0.010
45 RXJ0736 0.118 0.686 0.497 0.008
46 RXJ2344 0.079 0.775 0.620 0.007
47 ZWCL1023 0.143 0.633 0.430 0.010
48 ZWCL1215 0.075 0.783 0.631 0.007

Table 4.1: Basic information on the MENeaCS clusters, parameters governing the quality of
our observations and the lensing efficiency β computed in Section 4.3. (2 & 3) cluster name
and redshift; (4)&(5) coordinates of the BCG, which is taken to be the cluster centre; (6)
Galactic extinction in r-band magnitude; (7) half-light radius of the PSF in pixels averaged
over the entire image; (8) r.m.s. of the background noise in counts; (9) average β used to
estimate the critical surface density; (10) average β2 used to correct the shear for the lack of
individual source redshifts; (11) error on β (see text for more details).
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4.4 Contamination of the source population by cluster mem-
bers

The galaxy catalogue from the lensing analysis contains both field galaxies and cluster
members. Cluster members are not sheared by the gravitational potential of the cluster
and keeping them in the sample will alter the shear signal. If cluster galaxies are not
intrinsically aligned (as has been shown by Sifón et al. 2015), their presence dilutes
the shear signal, biasing the shear estimate low, where the size of the bias depends on
the relative overdensity of cluster members compared to background galaxies. At low
redshift, cluster galaxies are spread out over the field of view, so their number density
per unit solid angle is low.

With reliable redshifts for individual galaxies, cluster members can be identified
and removed from the sample. However, we lack the multi-band observations to ac-
quire reliable photometric estimates. Instead, we can apply a ‘boost correction’ to
statistically correct for cluster member contamination (see appendix A1 of Leauthaud
et al. (2016) for a discussion of the boost correction). This approach offsets the dilution
of the shear by boosting the shear signal based on the fraction of cluster members to
background galaxies. The application of the boost correction relies on the assumption
that only cluster members affect the galaxy counts. We investigate the effects that
violate this assumption in the next sections and take them into account to obtain a re-
liable estimate of the density of cluster members relative to the density of background
galaxies, from which we compute the boost correction.

As noted in Section 4.2 close proximity to bright objects can affect the measured
shapes of galaxies, changing the measured shear signal. We incorporate this effect by
quantifying the boost correction in terms of the sum of the lensing weights per square
arcminute, which we call the weight density ξ.

4.4.1 Magnification

Gravitational lensing near the cluster core magnifies the background sky. This phe-
nomenon increases the observed flux of background galaxies, but it also reduces the
actual area behind the cluster that is observed. These two features counteract each
other in their effect on the observed number density of sources. The net effect de-
pends on the number of galaxies scattered into the magnitude range that we designate
for our lensing study. The observed number of galaxies increases with the magnifi-
cation µ as µ2.5α−1 (Mellier 1999). Hence, for a slope of the magnitude distribution
α = dlogNsource/dmshape = 0.40 the net effect is negligible. For the MegaCam r-band
data H15 computed that the slope is close to 0.40 and so we can safely ignore the
effect of magnification on the source population.

4.4.2 Obscuration

Cluster members are large foreground objects and obscure part of the background
sky, thereby reducing the number density of observed background galaxies. This phe-
nomenon is especially important for MENeaCS as the low redshift cluster members
are very spread out. As the cluster member density increases towards the cluster
core, obscuration reduces the apparent contamination signal as a function of projected
cluster-centric distance. To address this issue we use the results of Chapter 5, where
we used image simulations of the MENeaCS clusters to compute the effect of obscu-
ration. Their cluster image simulations were designed to mimic the observations as
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closely as possible to accurately predict the effect of obscuration. For each simulated
cluster image the seeing and noise level were set to the values measured in the data.
Background galaxies were created with the image simulations pipeline of H15, which
is based on the GalSim software (Rowe et al. 2015), and cluster galaxies were added
to the images. Where available, the GALFIT (Peng et al. 2002) measurements of
Sifón et al. (2015) were used to create surface brightness profiles for cluster members,
which were identified through spectroscopy or as part of the red sequence. For cluster
members without (reliable) GALFIT measurements, galaxy properties were randomly
sampled from parametric curves which follow the observed distributions of those prop-
erties. The analysis pipeline is run on both the background image and the cluster
image producing two lensing catalogues. By matching these catalogues all background
galaxies can be selected and the effect of cluster members on the weight density of the
background population can be determined. The obscuration is defined as

fobsc = 1 −
ξcl

ξbg , (4.6)

where ξcl and ξbg are the weight densities of all observed background galaxies in the
cluster simulation and in the background simulation, respectively.

In Figure 4.1 we show the resulting obscuration in bins of projected cluster centric
distance for individual clusters R in gray, and in black the average for all clusters.
The effect of obscuration is greatest in the very lowest radial bins, which is expected
because of the presence of the low redshift BCGs. At radii larger than 1 Mpc the
obscuration flattens out but does not reach zero. We do not expect cluster members
to obscure ∼5% of all background galaxies in these outer regions. Instead, this plateau
is caused by field galaxies entering the cluster member sample, as Sifón et al. (2015)
showed that their sample of red sequence selected cluster members is contaminated at
large radii. The simulated sample of cluster members lacks faint blue galaxies, but we
expect that their obscuration is minimal and we thus ignore their contribution.

We determine an obscuration correction for the background weight density in the
MENeaCS data by fitting a smooth function to the individual cluster obscuration
profiles shown in gray in Figure 4.1. We find that the expression

fobsc(R) = n∆ + n0

(
1

R + Rc
−

1
Rmax + Rc

)
, (4.7)

worked well to describe the obscuration. We use the same expression in Section 4.4.4 to
model the contamination and we discuss it in more detail there. On average Rc ≈ 0.04
Mpc and n0 ≈ 0.04 for the best fits to the obscuration profiles. The parameter Rmax = 3
Mpc and n∆ was fit but then set to zero to renormalise the data such that fobsc is
consistent with zero beyond 1.5 Mpc. The best fits to the obscuration profiles to
individual clusters were then used to correct the background galaxy counts in the
MENeaCS data.

4.4.3 Excess galaxy weight density

Now that we have a correction for the decreased weight density due to obscuration,
we can determine the excess weight density of all sources in the MENeaCS lensing
catalogues relative to the weight density of background objects as a function of cluster-
centric distance. This then provides the boost correction for the shear signal to correct
for contamination of the source sample by cluster members.
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Figure 4.1: Fraction of source galaxies obscured by cluster members in realistic image simu-
lations of MENeaCS clusters as a function of radial distance to the BCG, which is assumed
to be the cluster centre. Gray lines show the obscuration profile for individual clusters and
the black solid (dahsed) curve shows the average (1 σ spread) for all clusters. The region
of interest for our lensing analysis is between 0.5 Mpc and 2 Mpc, where obscuration is on
average a .10% effect.

The first step to compute the excess weight density is to determine the weight
density of background objects. H15 computed that at 4 Mpc the structure associated
to the cluster is a negligible contribution to the number density of field galaxies and
used the area outside that 4 Mpc to estimate the galaxy density. The low redshift of
the MENeaCS sample means that the field of view does not encompass 4 Mpc for all
clusters. Only the clusters at z > 0.1 have any significant area outside 3 Mpc in the
mosaics with full exposure time and only the highest redshift clusters have sufficient
area outside 3 Mpc for statistically meaningful estimates. To compensate for this lack
of data, we use ancillary publicly available observations of blank fields to obtain an
estimate of the weight density of field galaxies (as was also suggested by Schrabback
et al. 2016). We analysed ∼33 square degrees of deep CFHT data with our lensing
pipeline and we derive a parametric model for the field galaxy weight density ξfield in
Appendix 4.A. The value of ξfield is a function of the Galactic extinction, depth of the
observations, and the seeing, and it predicts the mean density with an uncertainty of
1%. We use this model to predict the weight density of field galaxies for each cluster
based on the seeing, noise level and the Galactic extinction in the observations.

In Figure 4.2 we show the excess weight density ξ/ξfield (the obscuration corrected
weight density normalised to the weight density of field galaxies), as a function of the
distance to the BCG. Points with errorbars show the average excess weight density for
all clusters and blue (red) shaded regions show the average excess weight density for
clusters at z < 0.1 (z ≥ 0.1). The contamination by cluster members is benign for the
MENeaCS clusters; the excess weight density is higher than 20% only within the inner
500 kpc. For the lensing analysis we only use sources beyond 500 kpc (see Section 4.5)
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Figure 4.2: Excess weight densities of all sources in the magnitude range 20 ≤ mr ≤ 24.5 in
the lensing catalogues as a function of radial distance to cluster centre, which we assume to
be the position of the BCG. The excess weights are determined from the ratio of the weight
density ξ corrected for obscuration and the average weight density for field galaxies. The
blue (red) shaded area shows average excess weight density for all z < 0.1 (z ≥ 0.1) clusters,
black points with errorbars show the full MENeaCS sample. The dotted line shows unity.
The width of the coloured regions and the errorbars show the 1 σ uncertainty in the excess
weight density. The region shown in white between 0.5 Mpc and 2 Mpc is used for the lensing
analysis, in which the contamination is on average ∼5%.
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Figure 4.3: Average weight density of galaxies as a function of cluster-centric distance after
the best fit model for contamination for each individual cluster has been subtracted. Blue
(red) shaded area shows residual weight density for z < 0.1 (z ≥ 0.1) clusters, points show
the full MENeaCS sample. The width of the coloured regions and the errorbars show the 1
σ uncertainty. The region of interest for our lensing analysis is shown in white, where the
residual contamination is consistent with zero.

and so the effect of contamination is small. The difference in the red and blue shaded
regions clearly shows that this low level of contamination is thanks to the low redshift
of the MENeaCS clusters.

The weight density from the blank fields predicts the average weight density of
field galaxies very well, but it may not be representative of specific environments of
the MENeaCS clusters. Specifically, we may miss large scale structure in the cluster
background, which would have been properly accounted for if the density was nor-
malised to the area outside the cluster. Therefore we checked the gain of combining
the blank fields and any available area in the MENeaCS data outside 3 Mpc from the
BCG for the highest redshift clusters. We redefined the field galaxy weight density
ξfield as the inverse variance weighted average of the blank fields and the available un-
contaminated MENeaCS area. The spread of the blanks around the best fit is 6.4%,
which is used as the square root of the variance for the blank fields. The variance for
the uncontaminated data is estimated by subdividing the available area outside 3 Mpc
into quadrants and taking the variance between the quadrants. The addition of the
cluster data helps to reduce the uncertainty in the boost correction. However, in our
analysis we are dominated by the uncertainty in the shear estimate due to the finite
number of galaxies that are averaged. Hence we use the blank field prediction for ξfield

for all clusters to compute the excess weight density.

4.4.4 Boost correction

The excess weight density per cluster is a noisy measurement and using it directly to
boost the shear signal can produce a spurious signal. Instead, we assume that the
density of cluster members is a smooth function of the cluster-centric radius. This
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assumption will not be valid if the cluster has local substructure, but any additional
uncertainty this introduces, will average out for the full ensemble of clusters. A rea-
sonable and simple approximation for the density of cluster members is the singular
isothermal sphere (SIS; see also § 4.5.1). H15 found that the projected singular isother-
mal sphere was not able to describe the excess density profile to sufficient accuracy and
introduced a function with additional parameters, which is shown in Equation 4.7. In
this case, n0 describes the amplitude of the contamination and the cluster core radius
Rc is fitted for each cluster individually. The maximum radius Rmax = 3 Mpc is the
limit beyond which the function is set to n∆. In Figure 4.2 the excess weight density
already vanishes beyond 2 Mpc, so setting Rmax = 3 Mpc is reasonable for MENeaCS.
All CCCP clusters were small enough in angular coordinates so that H15 could set
n∆ = 1. Our prediction for field galaxy weight density has an intrinsic scatter and so
we do not expect the excess weight density for individual clusters to converge to 1 at
large radii. Therefore we add n∆ as a free parameter in our analysis. We find that the
relative spread in n∆ is 7.2%, which is in agreement with the 6.4% scatter expected
from the blank fields.

The ensemble averaged residual, after subtracting the best fit profile for each clus-
ter, is shown in Figure 4.3. Again, we separate the sample in low redshift (z < 0.1,
blue) and high redshift (z ≥ 0.1, red) clusters and the full sample is denoted by the
black points. For most radii the average residual is consistent with zero within the
errors, regardless of the mean redshift of the sample. This shows that Equation 4.6 is
a decent description of the density of cluster members. At R ≈ 3 Mpc the available
area for z < 0.1 clusters is decreasing which greatly increases the errorbars and the
crowded cluster centre is not accurately described by the fitting function. However, for
the lensing analysis we restrict ourselves to 0.5 - 2 Mpc for which the residual is con-
sistent with zero with an uncertainty of ∼1%. The best fit profiles will serve as a boost
correction for the shear signal of clusters to statistically correct for contamination of
the source population by unlensed cluster members.

4.5 MENeaCS cluster masses

In the previous sections we have computed the corrections for the lack of individual
redshift estimates for the source galaxies and the presence of cluster members in the
source sample. We now apply these corrections to the measured tangential reduced
shear and use the resulting shear as a function of cluster-centric distance to estimate
the weak lensing masses.

To compute cluster masses we fit parametric models to our estimated shear profile.
These symmetric models are not a perfect description of full dark matter haloes and
may be poor fits to individual clusters. In fact numerical simulations have shown that
fitting models can lead to masses underestimated by ∼5%-10% (Becker & Kravtsov
2011; Schrabback et al. 2016; Henson et al. 2017). To mitigate potential biases we
restrict the scales at which we fit our models to 0.5 - 2 Mpc scales, where the models
are reasonable descriptions of dark matter distributions. At large radii the density
models go to zero whereas large scale structure surrounding the cluster contributes
to the shear signal in the real Universe. Estimated masses will be biased due to this
mismatch, unless the fit is restricted to intermediate scales (Corless & King 2007;
Becker & Kravtsov 2011; Rasia et al. 2012). At small radii the shears can become very
large for which our shape measurement algorithm was not calibrated, so we also exclude
these scales. By excluding the cluster core we also limit the impact of miscentring in
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our mass estimates (see Section 4.5.4).
Uncorrelated structures along the line of sight do not bias the lensing signal (Hoek-

stra 2001), but introduce an additional uncertainty that cannot be distinguished from
the cluster signal. We use the predictions from Hoekstra et al. (2011a) to incorporate
the effect of distant large scale structure into the errorbars on our weak lensing masses.

4.5.1 Singular isothermal sphere

The simplest profile to fit to the tangential shear profile is the projected singular
isothermal sphere (SIS)

γt(R) =
RE

2R
. (4.8)

The SIS profile is useful to consider because it can be directly linked to dynamical
estimates of the cluster. The Einstein radius RE in radians is related to the velocity
dispersion of the cluster projected along the line of sight σv, assuming isotropic orbits
and spherical symmetry,

RE = 4π〈β〉
σ2

v

c2 , (4.9)

where c is the speed of light. For the MENeaCS clusters Sifón et al. (2015) compiled a
catalogue of cluster members and computed the velocity dispersions from spectroscopic
redshifts. We fit the SIS model to our weak lensing data to compare with the dynamical
velocity dispersions.

The convergence κ for a SIS is given by the same expression as the shear and we
fit the reduced shear g = γ/(1 − κ) (corrected for using Equation 4.5) to our measured
reduced shears. The best fit Einstein radii and resulting velocity dispersions are listed
for all clusters in Table 4.2. For the radial range 0.5-2 Mpc the convergence is negligible
and we note that instead fitting the reduced shear directly with Equation 4.8 would
alter the Einstein radii by only 0.5%.

The comparison between the velocity dispersions from the SIS fit to the dynamical
velocity dispersions from Sifón et al. (2015) is shown in Figure 4.4. Black points show
results for the MENeaCS clusters and gray points show CCCP clusters from H15. The
MENeaCS clusters have on average lower velocity dispersions (and thus lower masses
according to the virial theorem) than the CCCP clusters. The volume from which the
local MENeaCS clusters are drawn is small compared to the volume for the CCCP
clusters. As the mass function decreases rapidly for high masses, and both surveys
target the most massive clusters in their respective volumes, we expect on average
lower masses for MENeaCS clusters.

To fit the data points with errorbars on both axes, we represent each data point
as an elliptical Gaussian distribution where the width is set by the errorbars and we
randomly sample from the distribution to recreate our measurements many times. For
each mock measurement we fit a straight line with only a slope and no offset. The
analysis shows that there is decent agreement between the velocity dispersion estimates
for the MENeaCS clusters. On average the weak lensing estimates are roughly 2σ
higher than the dynamical estimates, where sigma was determined from the 16th and
84th percentiles of the distribution. The full sample of MENeaCS and CCCP are
consistent with a one-to-one relation. We perform a formal Kolmogorov-Smirnov test
on the difference between the two velocity dispersion estimates for the two clusters
samples. The p-value is 0.18, so we can be confident that the two samples are drawn
from the same underlying distribution.
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Figure 4.4: Velocity dispersion σ from SIS fit to the weak lensing against the dynamical
velocity dispersion taken from Sifón et al. (2015). Black points show our results and gray
points show the same for clusters in the CCCP sample of H15. The dashed line shows a one
to one relation.

4.5.2 Navarro-Frenk-White profile

An often used profile to describe dark matter haloes is the Navarro-Frenk-White
(NFW) profile, which, unlike the SIS profile, is known to be a good fit to observational
data (e.g. Okabe et al. 2013; Umetsu et al. 2014; Viola et al. 2015). In numerical sim-
ulations Navarro et al. (1997) found a universal profile for the density of dark matter
haloes

ρ(r)
ρ0

=
δc(∆)

(r/rs)(1 + r/rs)2 , (4.10)

where the radial shape of the profile is defined by the scale radius rs
3. The amplitude

of the profile is set by the characteristic overdensity

δc(∆) =
∆

3
c3

∆

ln(1 + c∆) + c∆/(1 + c∆)
, (4.11)

which depends on the concentration c∆. For a fixed number ∆ the concentration is the
ratio of the radius r∆ enclosing a sphere of density ∆ρ0 and the scale radius: c∆ = r∆/rs.
The mass within this region can be obtained from:

M∆ = ∆ρ0
4π
3

r3
∆. (4.12)

The density ρ0 is usually set to the critical density of the Universe ρcrit = 3H(z)2/8πG or
the mean density of the Universe ρmean = Ωmρcrit in combination with some characteris-
tic value for ∆. For our analysis we use the mean density ρ0 = ρmean in Equations 4.10
and 4.12 and the overdensity factor ∆vir =

(
18π2 + 82ΩΛ(z) − 39ΩΛ(z)2

)
/Ωm(z), where

3Here the scale radii r and rs are three dimensional quantities in contrast to the two dimensional
Einstein radius RE and cluster-centric radius R.
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ΩΛ(z) and Ωm(z) are the energy densities of dark energy and matter at redshift z, re-
spectively (e.g. Coe 2010). The resulting mass estimate from the NFW profile is the
virial mass Mvir.

We follow the definitions in Wright & Brainerd (2000) to fit a projected NFW
profile to our lensing signal. We combine their expressions for γ and κ to create an
NFW profile for the tangential reduced shear, again with the additional terms given
in Equation 4.5. The free parameters in the NFW model are correlated and the
concentration depends on redshift. In practice, the concentration is constrained using
numerical dark matter simulations (e.g. Duffy et al. 2008; Dutton & Macciò 2014;
Diemer & Kravtsov 2015). We follow H15 and use the mass concentration relation
found by Dutton & Macciò (2014), which is in good agreement with later work by
Diemer & Kravtsov (2015) for our low redshift clusters. With the addition of the
mass-concentration relation, our fitting function only has the virial mass as a free
parameter. We fit our corrected reduced shear signals with an NFW model and list
the best fit virial masses and corresponding viral radii rvir in Table 4.2. We find that
taking into account the uncertainty in the masses due to distant large scale structure
inflates the errorbars by ∼20%.

In Figure 4.5 we show the inverse variance weighted average shear signal multi-
plied by the critical surface density to account for the different lensing efficiencies of
the clusters. Each individual reduced shear profile is converted to shear γ using the
individual best fit mass estimates to compute κ. The best fit NFW profiles are also
shown and are visually a good representation of the data. The average NFW virial
mass is 8.26± 0.40× 1014M� and is shown as the red point in the inset. If we leave the
concentration as a free fit parameter we obtain 7.93 ± 0.60 × 1014M� (blue contours).
Our data shows an average mass and concentration consistent with the results we get
when using the results of Dutton & Macciò (2014).

It is instructive to compare our best fit NFW masses other available mass estimates.
Rines et al. (2016) have used spectroscopic redshifts to identify caustics, which can be
related to the escape velocity in the cluster potential. They provide M200 dynamical
masses for 24 MENeaCS clusters. We convert our NFW virial masses to M200 using
the expressions given in Hu & Kravtsov (2003)4. For M200 this amounts to equating
ρmean δc(∆vir) = ρcrit δc(200) and solving for c200. The resulting M200 masses are listed in
Table 4.2 and compared to the dynamical estimates in Figure 4.6. The 24 MENeaCS
clusters are shown in black and 18 CCCP clusters are shown in gray. Simple linear
regression shows that the weak lensing masses are higher than the dynamical masses
by a factor of ∼20%. This discrepancy is consistent for both the MENeaCS and
the CCCP sample. H15 discussed that the discrepancy could be reduced (but not
removed) by excluding outliers, which were also commented upon by Rines et al.
(2013). The bulk of the MENeaCS clusters have consistently higher weak lensing
mass compared to the dynamical mass, making it difficult to explain the difference
based on individual clusters. Moreover, we could not find discussions on the dynamical
masses or dynamical states for all clusters with a large difference between the masses
estimates. One of these outlying clusters, Abell 2243, is a known merging system,
so that the dynamical mass might be poorly constrained. There is no satisfactory
explanation for the discrepancy of the mass estimates, but we do find that the overall
discrepancy is consistent for both the MENeaCS and the CCCP clusters.

4The conversion is not strictly necessary here as Dutton & Macciò (2014) derive a relation for
c200(M200), so that it is possible to fit the NFW profile directly for M200. However, the same cannot
be done for M500, which we shall use in Section 4.5.3, so we employ the conversion already here.
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Figure 4.5: Stacked profile of the shear times critical surface density (also known as the excess
surface density profile) as a function of the virial radius. Errorbars were computed using a
sufficiently large number of bootstraps for each bin. The red solid line shows the best fit
NFW profile using the Dutton & Macciò (2014) mass-concentration relation, and the blue
dashed line shows the best fit, when leaving the concentration as a free fit parameter. The
inset shows for the same colours the best fit mass and concentration and contours show the
68%, 90%, and 99% confidence intervals.
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Figure 4.6: Comparison of the weak lensing masses MWL
200 and the dynamical masses Mdyn

200 from
Rines et al. (2016). Black points show our results and gray points show the results for CCCP
clusters from H15. The dashed line shows unity slope.
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4.5.3 Hydrostatic mass comparison

The Planck all-sky survey has produced a large catalogue of clusters detected through
the SZ effect (Planck Collaboration et al. 2016c). Planck Collaboration et al. (2016b)
used 439 clusters to constrain cosmological parameters by measuring the cluster mass
function at different epochs. Cluster masses were computed using a scaling relation
between the hydrostatic X-ray mass and the SZ observable YSZ (integrated Compton y-
profile) based on a universal pressure profile (Arnaud et al. 2010). X-ray mass estimates
can be biased because the underlying assumption of hydrostatic equilibrium is violated
in galaxy clusters by bulk gas motions and non-thermal pressure support (e.g. Rasia
et al. 2012), or due to uncertainties related to the calibration of X-ray observables
(Mahdavi et al. 2013), and possibly by the assumption of a pressure profile. Planck
Collaboration et al. (2016b) find that a bias MPlanck/Mtrue ≡ 1−b = 0.58±0.04 is required
to attain consistency between cosmological parameter constraints obtained with the
cluster mass function and those obtained using primary CMB measurements (Planck
Collaboration et al. 2016a). Such a low bias is not fully supported by independent
mass measurements. von der Linden et al. (2014b) find a bias 1−b = 0.69±0.07, which
is marginally consistent, but H15 find a higher value 1−b = 0.76±0.05(stat)±0.06(syst),
and Smith et al. (2016) find that b is consistent with zero. However, Battaglia et al.
(2016) showed that adding a correction for Eddington bias would bring the results of
WtG and CCCP more in line with the required Planck value.

The Planck cluster masses are based on the Compton y-profile integrated out to a
radius of r500. Therefore we have computed M500 estimates based on the NFW profile
for a direct comparison (the values are listed in column 10 in Table 4.2). In Figure 4.7
our mass estimates MWL

500 are shown as a function of the Planck masses MSZ
500 in black

for 30 clusters in MENeaCS in common with the Planck catalogue and in gray we
show the same for 37 CCCP clusters.

We fit a linear scaling relation between the two mass estimates accounting for
errors in both mass estimates and allowing for intrinsic scatter in the hydrostatic
masses. For MENeaCS we find MWL

500 = (1.03 ± 0.08)MSZ
500 with an intrinsic scatter of

29 ± 10%. This value is notably different from the scaling relation 0.76 ± 0.05 (stat)
±0.06 (syst) found by H15. If we repeat our analysis for the CCCP clusters using
the computed NFW masses and the updated Planck masses (Planck Collaboration
et al. 2016c), we find a bias of 0.83 ± 0.06, which is still inconsistent with the results
for MENeaCS. A similar difference in scaling relations between samples of clusters at
different redshifts was already noted by Smith et al. (2016). They suggested a redshift
dependent hydrostatic mass bias, possibly arising due to systematic errors in weak
lensing measurements or departures from self-similar evolution (Andreon 2014).

Alternatively, von der Linden et al. (2014b) advocated a mass dependence in the
hydrostatic bias, which was also seen in other observations by H15 and Mantz et al.
(2016) (who used the WtG weak lensing measurements) and hinted at in numerical
simulations of clusters. Henson et al. (2017) find that the bias in X-ray masses increases
from 20% to 40% with the true cluster mass for clusters in a mass range from ∼

1014 − 1015h−1
70 M�. Nagai et al. (2007) find lower hydrostatic biases of 5 − 20% for

a relatively low mass sample with 〈M500〉 = 4.14h−1
70 M�, whereas Rasia et al. (2012)

examine a sample of more massive clusters and find a higher range of biases around
∼ 25−35%. As the CCCP clusters are more massive than the MENeaCS clusters, such
a mass dependent hydrostatic mass bias could explain the difference in the scaling
relations.

We take advantage of the large range in masses in the combined sample of CCCP
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and MENeaCS to investigate a potential mass dependence of the hydrostatic bias. For
consistency we use the masses from NFW fits for the CCCP clusters, but H15 showed
that the mass estimates are consistent. We fit the combined sample with a linear
relation, finding MWL

500 = (0.90± 0.05)MSZ
500 and an intrinsic scatter of 34± 5%. To allow

for a mass dependence we fit a power law and find

MSZ
500

1015M�
= (0.84 ± 0.07)

 MWL
500

1015M�

(0.82±0.08)

(4.13)

and an intrinsic scatter of 29 ± 6%. Both lines are shown in Figure 4.7. The power
law fit clearly favors a power different than one, indicating that the data prefer mass
evolution. This is also backed up by the slightly lower intrinsic scatter found for the
power law. Both the amplitude 0.84 ± 0.07 and the slope of the power law 0.82 ± 0.08
are consistent with the results from H15: 0.76± 0.04 and 0.64± 0.17, respectively. The
slope is also consistent with the WtG results of 0.68+0.15

−0.11 (von der Linden et al. 2014b)
and 0.73 ± 0.02 (Mantz et al. 2016), but, as for CCCP, this is mainly due to the large
errorbars.

A potential caveat in our analysis is the use of NFW profiles. Although the NFW
profile is a good description for a stack of clusters, simulations suggest they are biased
low (e.g. Bahé et al. 2012). Gravitational lensing measures the density contrast and
the NFW profile might be biased for merging systems (see e.g. Hoekstra et al. 2000
for how substructure affects the mass estimates). We find several known merging
systems as outliers in the population and omitting them in the analysis reduces the
slope and the power for the power law by ∼ 0.5σ. An alternative approach would be
to use the aperture mass (Fahlman et al. 1994; Clowe et al. 1998), which estimates
the mass inside an aperture and should be more robust against the state of the matter
distribution. H15 showed that aperture masses were consistent with NFW masses and
in future work we shall verify this for the MENeaCS clusters. In addition, a more
careful analysis should incorporate the effect of Eddington bias, the importance of
which has been shown by Battaglia et al. (2016). At low masses, not all MENeaCS
have measurements of MSZ

500 and such selection effects could be mistaken for a mass
dependence of the hydrostatic mass bias.

4.5.4 Systematic error budget

A large part of this work has been devoted to corrections for systematic effects. Here
we review their impact on our mass estimates.

In our analysis we have assumed that the centre of the cluster is given by the
location of the BCG. If the BCG is not in the bottom of the gravitational potential
the NFW profile is miscentred and the mass estimates will be biased. However, the
red line in Figure 4 in Hoekstra et al. (2011b) shows that for our conservative choice
of 0.5 Mpc as the lower limit of the fit range the bias is only ∼5% if the BCG is 100
kpc from the true cluster centre. Mahdavi et al. (2013) and Bildfell (2013) looked at
the distance between the BCG location and the peak in the X-ray surface brightness,
and for small distances they are a good indicator for the centre of the gravitational
potential of the cluster (George et al. 2012). They found that most of the CCCP
clusters have a BCG offset smaller than 100 kpc. If we assume a similar distribution
for the MENeaCS clusters, we expect a bias of much less than 5% in our average
cluster mass.

The uncertainty in the shear estimates for our pipeline was tested by H15 and
they found an accuracy of ∼1%. They conservatively assign a 2% uncertainty in their
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Figure 4.7: Comparison of the weak lensing masses M500 and the SZ masses from Planck.
Black points show our results and gray points show the same for clusters in the CCCP
sample of H15. The red line shows the best fit scaling relation using a constant hydrostatic
mass bias and the scatter is shown as the orange band. The blue line and cyan shaded region
show the same for the best power law fit.

analysis and we do the same. Thanks to a new high-fidelity photometric redshift
catalogue, the uncertainty in our source redshift distribution is .1.5%, much better
than the 4.2% uncertainty found for CCCP. The boost corrections applied to our
tangential shear profiles are accurate to ∼1%. We find that not applying the boost
corrections, contamination of cluster members in the source sample would reduce our
mass estimates by ∼10%. This highlights the benefit of MENeaCS as H15 found for
the same fit range a ∼20% effect for the higher redshift CCCP clusters. These sources
of errors are uncorrelated and we add them quadraticaly to find a systematic error of
2.7%. The conservatively estimated 2% uncertainty in the shear measurement is the
dominant source of error. A more cavalier view would state that the uncertainties in
the photometric redshifts and the shear measurement are comparable.

The overall error in our analysis of ∼3% is remarkably low, despite the lack of
reliable photometric redshifts for individual galaxies. This deficiency is less severe
for the low redshift MENeaCS clusters and trading off multi-wavelength information
against number of observed clusters has proven worth-while. We note that if the
MENeaCS observations had been deeper, the available photometric redshift catalogues
would not have sufficient depth to cover our source population. For weak lensing
analyses of clusters at much higher redshifts multi-wavelength observations will be
necessary.

4.6 Conclusions

Cluster counts have the potential to put tight constraints on cosmological parameters,
if large numbers of clusters with accurate mass estimates are observed. The large
survey area of cosmic microwave background experiments provides a large sample
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(1) (2) (3) (4) (5) (6)
cluster RE[arcsec] σSIS [km/s] rvir [h−1

70 Mpc] Mvir [1014h−1
70 M�]

1 A7 19.0 ± 3.6 959 ± 92 2.86 ± 0.28 7.97 ± 2.34
2 A21 13.7 ± 2.5 803 ± 73 2.44 ± 0.22 4.85 ± 1.29
3 A85 24.6 ± 4.9 1006 ± 100 3.20 ± 0.33 10.17 ± 3.17
4 A119 20.4 ± 5.7 901 ± 126 2.82 ± 0.42 6.87 ± 3.04
5 A133 13.1 ± 2.2 737 ± 63 2.30 ± 0.19 3.78 ± 0.96
6 A646 12.0 ± 5.2 791 ± 172 2.33 ± 0.50 4.48 ± 2.89
7 A655 16.0 ± 6.2 909 ± 177 2.71 ± 0.52 7.05 ± 4.06
8 A754 30.0 ± 4.5 1111 ± 84 3.57 ± 0.27 14.07 ± 3.16
9 A780 13.6 ± 3.7 749 ± 103 2.33 ± 0.31 3.92 ± 1.56
10 A795 35.0 ± 4.3 1367 ± 85 4.02 ± 0.27 23.21 ± 4.61
11 A961 25.6 ± 4.2 1146 ± 95 3.40 ± 0.29 13.81 ± 3.52
12 A990 30.6 ± 3.6 1295 ± 76 3.76 ± 0.24 19.36 ± 3.68
13 A1033 24.3 ± 8.2 1121 ± 190 3.28 ± 0.59 12.39 ± 6.67
14 A1068 16.9 ± 4.9 952 ± 138 2.74 ± 0.41 7.37 ± 3.30
15 A1132 26.7 ± 3.2 1194 ± 72 3.49 ± 0.23 15.27 ± 3.01
16 A1285 21.0 ± 4.6 1013 ± 112 3.08 ± 0.34 9.89 ± 3.33
17 A1348 11.5 ± 3.8 763 ± 125 2.27 ± 0.35 4.04 ± 1.87
18 A1361 16.4 ± 3.8 906 ± 105 2.68 ± 0.31 6.69 ± 2.35
19 A1413 21.3 ± 5.6 1076 ± 140 3.14 ± 0.42 11.20 ± 4.47
20 A1650 26.2 ± 2.1 1091 ± 43 3.35 ± 0.14 12.33 ± 1.54
21 A1651 19.2 ± 7.9 939 ± 193 2.92 ± 0.59 8.16 ± 4.98
22 A1781 6.8 ± 6.6 536 ± 259 1.74 ± 0.73 1.65 ± 2.08
23 A1795 31.7 ± 4.9 1156 ± 89 3.65 ± 0.29 15.27 ± 3.66
24 A1927 14.9 ± 2.6 836 ± 71 2.54 ± 0.22 5.43 ± 1.39
25 A1991 14.5 ± 6.9 779 ± 184 2.43 ± 0.57 4.49 ± 3.17
26 A2029 38.6 ± 3.8 1308 ± 64 4.12 ± 0.20 22.56 ± 3.23
27 A2033 12.3 ± 3.3 744 ± 101 2.27 ± 0.30 3.82 ± 1.49
28 A2050 14.9 ± 3.6 865 ± 105 2.58 ± 0.31 5.95 ± 2.16
29 A2055 11.8 ± 3.8 752 ± 122 2.28 ± 0.37 3.99 ± 1.92
30 A2064 9.1 ± 7.8 668 ± 286 2.02 ± 0.79 2.83 ± 3.33
31 A2065 31.6 ± 5.5 1175 ± 102 3.69 ± 0.33 16.13 ± 4.39
32 A2069 12.9 ± 5.1 800 ± 157 2.40 ± 0.46 4.75 ± 2.74
33 A2142 33.2 ± 5.2 1240 ± 96 3.86 ± 0.29 19.00 ± 4.34
34 A2420 27.0 ± 6.7 1111 ± 136 3.45 ± 0.43 13.45 ± 5.04
35 A2426 20.1 ± 7.4 979 ± 181 2.92 ± 0.56 8.32 ± 4.82
36 A2440 26.3 ± 4.7 1107 ± 98 3.40 ± 0.30 13.01 ± 3.48
37 A2443 28.4 ± 5.7 1178 ± 118 3.55 ± 0.37 15.20 ± 4.80
38 A2495 7.0 ± 3.9 560 ± 156 1.75 ± 0.44 1.75 ± 1.32
39 A2597 16.1 ± 4.4 855 ± 118 2.62 ± 0.36 5.87 ± 2.43
40 A2627 9.7 ± 2.8 706 ± 101 2.10 ± 0.30 3.24 ± 1.40
41 A2670 21.0 ± 5.7 965 ± 130 2.94 ± 0.41 8.20 ± 3.45
42 A2703 17.6 ± 5.2 933 ± 138 2.78 ± 0.42 7.43 ± 3.33
43 MKW3S 11.1 ± 3.5 665 ± 105 2.09 ± 0.32 2.77 ± 1.27
44 RXJ0132 7.9 ± 3.4 663 ± 142 1.95 ± 0.40 2.71 ± 1.66
45 RXJ0736 9.8 ± 4.4 703 ± 157 2.10 ± 0.46 3.23 ± 2.11
46 RXJ2344 17.2 ± 5.0 878 ± 126 2.68 ± 0.39 6.27 ± 2.74
47 ZWCL1023 10.9 ± 4.0 772 ± 143 2.26 ± 0.41 4.17 ± 2.25
48 ZWCL1215 16.3 ± 7.9 848 ± 207 2.67 ± 0.63 6.13 ± 4.37
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(1) (2) (7) (8) (9) (10)
cluster r200 [h−1

70 Mpc] M200 [h−1
70 Mpc] r500 [h−1

70 Mpc] M500 [h−1
70 Mpc]

1 A7 1.58 ± 0.16 5.00 ± 1.64 1.01 ± 0.10 3.24 ± 1.07
2 A21 1.35 ± 0.13 3.07 ± 0.94 0.86 ± 0.08 2.02 ± 0.62
3 A85 1.74 ± 0.19 6.27 ± 2.16 1.11 ± 0.12 4.05 ± 1.40
4 A119 1.53 ± 0.23 4.27 ± 1.99 0.98 ± 0.15 2.79 ± 1.30
5 A133 1.26 ± 0.11 2.39 ± 0.70 0.81 ± 0.07 1.58 ± 0.46
6 A646 1.30 ± 0.28 2.86 ± 1.89 0.84 ± 0.18 1.88 ± 1.24
7 A655 1.51 ± 0.30 4.45 ± 2.65 0.97 ± 0.19 2.89 ± 1.72
8 A754 1.93 ± 0.16 8.61 ± 2.31 1.23 ± 0.10 5.52 ± 1.48
9 A780 1.27 ± 0.17 2.48 ± 1.05 0.82 ± 0.11 1.64 ± 0.70
10 A795 2.22 ± 0.17 14.24 ± 3.53 1.40 ± 0.11 8.96 ± 2.22
11 A961 1.88 ± 0.17 8.56 ± 2.52 1.19 ± 0.11 5.47 ± 1.61
12 A990 2.09 ± 0.15 11.95 ± 2.88 1.32 ± 0.10 7.56 ± 1.82
13 A1033 1.82 ± 0.33 7.70 ± 4.30 1.15 ± 0.21 4.93 ± 2.76
14 A1068 1.53 ± 0.23 4.65 ± 2.20 0.98 ± 0.15 3.02 ± 1.42
15 A1132 1.94 ± 0.14 9.47 ± 2.34 1.23 ± 0.09 6.03 ± 1.49
16 A1285 1.70 ± 0.20 6.16 ± 2.27 1.08 ± 0.13 3.98 ± 1.46
17 A1348 1.26 ± 0.20 2.58 ± 1.25 0.81 ± 0.13 1.70 ± 0.83
18 A1361 1.49 ± 0.18 4.22 ± 1.61 0.95 ± 0.12 2.75 ± 1.05
19 A1413 1.75 ± 0.24 7.01 ± 2.98 1.11 ± 0.15 4.50 ± 1.91
20 A1650 1.83 ± 0.10 7.61 ± 1.48 1.17 ± 0.06 4.89 ± 0.95
21 A1651 1.60 ± 0.33 5.09 ± 3.20 1.02 ± 0.21 3.31 ± 2.07
22 A1781 0.96 ± 0.41 1.06 ± 1.35 0.62 ± 0.26 0.72 ± 0.91
23 A1795 1.98 ± 0.17 9.33 ± 2.63 1.26 ± 0.11 5.97 ± 1.68
24 A1927 1.40 ± 0.13 3.43 ± 1.01 0.90 ± 0.08 2.25 ± 0.66
25 A1991 1.33 ± 0.32 2.83 ± 2.04 0.85 ± 0.20 1.87 ± 1.35
26 A2029 2.24 ± 0.13 13.69 ± 2.83 1.41 ± 0.08 8.65 ± 1.79
27 A2033 1.25 ± 0.17 2.43 ± 1.01 0.81 ± 0.11 1.60 ± 0.67
28 A2050 1.43 ± 0.18 3.76 ± 1.48 0.92 ± 0.12 2.46 ± 0.96
29 A2055 1.27 ± 0.21 2.54 ± 1.28 0.81 ± 0.13 1.68 ± 0.84
30 A2064 1.13 ± 0.44 1.82 ± 2.15 0.73 ± 0.29 1.21 ± 1.43
31 A2065 2.01 ± 0.20 9.87 ± 3.06 1.27 ± 0.12 6.29 ± 1.95
32 A2069 1.33 ± 0.26 3.02 ± 1.80 0.85 ± 0.17 1.98 ± 1.18
33 A2142 2.11 ± 0.18 11.62 ± 3.17 1.33 ± 0.11 7.37 ± 2.01
34 A2420 1.89 ± 0.24 8.29 ± 3.34 1.20 ± 0.16 5.31 ± 2.14
35 A2426 1.61 ± 0.32 5.20 ± 3.11 1.03 ± 0.20 3.37 ± 2.02
36 A2440 1.86 ± 0.18 8.03 ± 2.46 1.18 ± 0.11 5.15 ± 1.58
37 A2443 1.95 ± 0.22 9.38 ± 3.27 1.24 ± 0.14 5.98 ± 2.08
38 A2495 0.97 ± 0.25 1.13 ± 0.87 0.63 ± 0.16 0.76 ± 0.59
39 A2597 1.44 ± 0.21 3.69 ± 1.62 0.92 ± 0.13 2.42 ± 1.06
40 A2627 1.17 ± 0.17 2.08 ± 0.95 0.75 ± 0.11 1.38 ± 0.63
41 A2670 1.61 ± 0.23 5.11 ± 2.28 1.03 ± 0.15 3.32 ± 1.48
42 A2703 1.54 ± 0.24 4.67 ± 2.21 0.98 ± 0.15 3.03 ± 1.43
43 MKW3S 1.14 ± 0.18 1.76 ± 0.85 0.73 ± 0.11 1.18 ± 0.57
44 RXJ0132 1.10 ± 0.23 1.75 ± 1.10 0.71 ± 0.15 1.16 ± 0.73
45 RXJ0736 1.18 ± 0.26 2.07 ± 1.39 0.76 ± 0.17 1.37 ± 0.92
46 RXJ2344 1.47 ± 0.22 3.93 ± 1.82 0.94 ± 0.14 2.57 ± 1.19
47 ZWCL1023 1.27 ± 0.23 2.67 ± 1.49 0.81 ± 0.15 1.76 ± 0.98
48 ZWCL1215 1.47 ± 0.35 3.85 ± 2.80 0.94 ± 0.22 2.52 ± 1.83

Table 4.2: Physical properties measured from the weak lensing signal of the MENeaCS clus-
ters. (2) cluster name; (3) Einstein radius from the best fit SIS profile; (4) velocity dispersion
from the best fit SIS profile; (5) & (7) & (9) Radius of a sphere where the cluster is overdense
by a factor ∆ compared to the mean (for column 5) or critical (for columns 7 and 9) density
of the Universe; (6) & (8) & (10) Mass enclosed within the radius R∆.
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of clusters, whose mass can be efficiently determined from scaling relations of cluster
observables. Weak gravitational lensing can produce unbiased mass estimates of galaxy
clusters, such that scaling relations can be calibrated. However, projection effects of
overdensities along the line of sight to the cluster introduce a large uncertainty in the
measurement, so that robust calibration requires large samples of clusters.

The Multi Epoch Nearby Cluster Survey (MENeaCS) provides high quality optical
imaging data in the g and r filters observed using the Canada-France-Hawaii Tele-
scope (CFHT) for a sample of 58 galaxy clusters. We performed a thorough weak
lensing analysis on 48 clusters in this sample, excluding some of the clusters because
of their very high Galactic extinction, which prevented us from establishing a robust
correction for contamination by cluster members. Our shape measurement pipeline
was extensively tested in Hoekstra et al. (2015) and this gives us confidence that our
systematic uncertainty in the shear estimates is ∼ 2%.

The MENeaCS observations lack the colour information for reliable photometric
redshifts and we rigorously check and correct for the uncertainties this introduces into
the lensing analysis. First, the redshift distribution for the background sources in
our data is approximated by the galaxy population in the COSMOS field, for which
redshift information accurate to 1% is available. We consistently apply the lensing
quality cuts to our photometric redshift distribution to avoid introducing biases from
selection effects. To assess how representative the redshift distribution in the COSMOS
field is, we use additional observations of four CFHT Legacy Survey Deep fields and
find that the redshift uncertainty for our source population is at most 1.5%.

Second, without redshifts for individual sources we cannot discriminate between
cluster members and field galaxies. We statistically correct for the contamination of
our source sample by applying a boost correction to the shear signal. The lowest
redshift clusters fill the entire field of view, so that the weight density in the cluster
fields cannot be compared to the weight density of source galaxies. To overcome
this issue, we used additional deep observations of blank parts of the sky from the
CFHT archive to compute the average weight density for field galaxies. We determine
the expected field galaxy weight density as a function of the seeing, depth of the
observations and the Galactic extinction and find only a marginal uncertainty of 1%
on our best fit. The intrinsic scatter in the weight density of around ∼6% is smaller
than the statistical uncertainty in the shear estimates. The final boost corrections
have a residual contamination of cluster members into source sample of .1%.

The radial profiles of the boost corrected tangential shear were fit with parametric
models to estimate physical properties of the clusters. Velocity dispersions from an
SIS fit and masses from an NFW fit agree reasonably well with estimates based on
dynamics of cluster members. The CCCP and MENeaCS samples were observed under
the same conditions with the same telescope and analysed with the same pipeline. We
check that the two samples are similar and find no evidence for a systematic difference.

Finally, we perform an analysis to compute a scaling relation between weak lensing
masses and hydrostatic masses estimates from Planck Collaboration et al. (2016c),
for 30 clusters in common between MENeaCS and Planck, which results in a bias of
1 − b = 1.03 ± 0.08(stat) ± 0.03(syst). This value is high compared what was found for
the CCCP and Weighing the Giants cluster samples, but in agreement with results of
LoCuSS. The variation in hydrostatic estimates hints at an evolution of the hydrostatic
bias with mass, as has been found in numerical simulations of clusters. We combine
the CCCP and MENeaCS samples to extend the mass range of the clusters and find
that a power law is a better fit to the data than a constant hydrostatic bias. In future
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work we shall use another mass estimator to check the effect of structure in the cluster
and incorporate a careful treatment of Eddington bias. This will help to verify the
mass dependence of the hydrostatic mass bias. It is unclear what the impact of such
a mass dependence is for the tension between the cosmological parameters estimated
from primary CMB and cluster counts.
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Figure 4.8: Histogram of the difference between the predicted weight density from the blank
fields ξmodel and the weight density measured outside the cluster ξcluster for the highest redshift
MENeaCS clusters. As the full extent of the cluster is unknown we show ξcluster for different
areas corresponding to a radius of 3 Mpc, 3.5 Mpc and 4 Mpc from the BCG, from left to
right respectively. The decreasing number of clusters shows that only the highest redshift
clusters have any area available and highlights the need for the model prediction ξmodel. The
black curve is the same for all three panels and it shows the distribution expected from the
6% scatter around the best fit for the blank fields.
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Figure 4.9: Weight density ξ as a function of the average PSF size in the image, color coded
by the Galactic extinction for 41 CFHT observations homogenised to a noise rms of 1.4.
Colored lines show the best fit to the data at the four different noise levels, using the same
color code as the circles. The black histogram shows the distribution of PSF sizes in the
MENeaCS data, covering the same range as the blank fields.
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and were visually inspected to mask out obvious artifacts, leaving an effective area of
approximately 33 degrees.

The noise levels vary between the images and do not match the MENeaCS data
(they are typically deeper). To homogenise the data we added Gaussian noise so that
all the blank fields had the same noise level. We considered four r.m.s. values σn =(1.2
1.4, 1.6, 1.8) to cover a range that matches most of the MENeaCS data. For the two
lowest noise levels we omitted ten and two fields, respectively. The resulting images
were analysed in exactly the same way as the MENeaCS data, resulting in catalogs
with shape measurements and corresponding uncertainties. To quantify image quality
we use the half-light radius of the PSF r∗h.

Figure 4.9 shows the resulting weight density ξ for galaxies with 20 < mr < 24.5
as a function of the average PSF size in the image for a noise level of 1.4. Using the
blanks at all 4 different noise levels we fit a simple model to the measurements and
find

ξmodel(r∗h, σn, Ar) = −40.6〈r∗h〉 − 68.4σn − 122.8Ar + 364.2, (4.14)

where Ar is the Galactic extinction in the r-band. The color of the circles shows the
extinction for each blank field and the lines show the prediction from the fit for different
extinction levels in the same color scheme. For reference we also plot the distribution
of PSF half-light radii found in the MENeaCS data as a black histogram in the bottom
of the plot.

For the full sample we find that the r.m.s. variation in the mean weight density is
6.4%, which is smaller than the typical statistical uncertainty in the lensing signal for
an individual cluster. Hence observing clusters with a single band and modelling the
excess weight as a function of cluster-centric distance is an efficient way to determine
masses for a large sample of clusters. Although the contamination can be largely
eliminated using multi-band data, the improvement in precision is modest. On the
other hand, the limited number of blank fields limits our current precision of 1% with
which the average background weight density can be determined.

The blank fields have been observed with different dither patterns than the ME-
NeaCS data. Consequently, the variations in depth will not exactly match the cluster
data. To examine whether this leads to a significant systematic uncertainty, we com-
pare the predicted weight density to the observations of high redshift clusters beyond
the extent of the cluster. H15 found that the contribution from cluster members and
associated structures is less than 0.5% for radii beyond 4 Mpc and we use this to define
the areas in the MENeaCS observations with mostly field galaxies. Due to the low
redshift of MENeaCS clusters there is very little area beyond 4 Mpc, so we vary the
outer radius for a more robust comparison.

Figure 4.8 shows the distribution of the difference between the weight density in
the blank field prediction and in the cluster data. For all three outer radii − 3.0 Mpc,
3.5 Mpc and 4.0 Mpc from left to right respectively − the scatter is centered around
zero. The colored curves show the best fit Gaussian, which can be compared to the
black curve, which shows the variation expected from the blank fields. We have fixed
the centre of the Gaussian on zero, but leaving the centre as a free parameter changes
little in the fit. The overall agreement between the scatter in the blank fields and the
cluster outskirts is remarkably good. The scatter in all but the furthest outskirts is
slightly larger than the scatter exhibited in the blank fields. The available area where
RBCG > 4 Mpc is so small that the lower scatter in the cluster outskirts might be
due only to low number statistics. In fact, Figure 4.2 shows little evidence for cluster
members outside 2 Mpc, so that the area RBCG > 3 Mpc should also provide a clean
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sample of source galaxies. Trusting the left panel in Figure 4.8, we investigate the
larger scatter of the cluster data. We suspect it is caused by the limited area available
in the cluster data. To check this, we re-evaluated the scatter around the blank field
prediction using only part of the full blank fields. For half the area, the scatter around
the best fit increased by ∼20%, which increased to ∼50% when using only a quarter of
the area. As expected, the scatter increases as we decrease the size of the used area,
corroborating our hypothesis for the scatter of the cluster data. This again shows that
our blank field prediction for the weight density of field galaxies is a reliable tool for
the normalisation of the weight density in the cluster data.
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5
The galaxy-subhalo connection in
low-redshift galaxy clusters from

weak gravitational lensing

We measure the gravitational lensing signal around satellite galaxies in a sample of
galaxy clusters at z < 0.15 by combining high-quality imaging data from the Canada-
France-Hawaii Telescope with a large sample of spectroscopically-confirmed cluster
members. We use extensive image simulations to assess the accuracy of shape mea-
surements of faint, background sources in the vicinity of bright satellite galaxies. We
find a small but significant bias, as light from the lenses makes the shapes of back-
ground galaxies appear radially aligned with the lens. We account for this bias by
applying a correction that depends on both lens size and magnitude. We also correct
for contamination of the source sample by cluster members. We use a physically-
motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg,
similar to definitions used by common subhalo finders in numerical simulations. Bin-
ning the satellites by stellar mass we provide a direct measurement of the subhalo-to-
stellar-mass relation, log mbg/M� = (11.66 ± 0.07) + (0.94 ± 0.15) log[m?/(2 × 1010M�)].
This best-fitting relation implies that, at a stellar mass m? ∼ 3 × 1010 M�, subhalo
masses are roughly 50 per cent lower than their central counterparts, and this frac-
tion decreases at higher stellar masses. On the other hand, we find no statistically
significant evidence for mass segregation when we bin lenses by their projected cluster-
centric distance, contrary to recent claims, with an average total-to-stellar mass ratio
〈mbg/m?〉 = 21.5+6.3

−5.5. We find that, once we account for projection effects and for differ-
ences between dark matter subhaloes and satellite galaxies, our results are consistent
with theoretical predictions.

C. Sifón, R. Herbonnet, H. Hoekstra, R.F.J. Van der Burg, M. Viola
submitted to MNRAS
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126 Satellite galaxy-galaxy lensing in low-z clusters

5.1 Introduction

According to the hierarchical structure formation paradigm, galaxy clusters grow by
the continuous accretion of smaller galaxy groups and individual galaxies. Initially,
each of these systems is hosted by their own dark matter halo, but as a galaxy falls
into a larger structure, tidal interactions transfer mass from the infalling galaxy to the
new host. The galaxy then becomes a satellite and its dark matter halo, a subhalo.

Detailed studies on the statistics of subhaloes from numerical N-body simulations
have revealed that subhaloes are severely affected by their host haloes. Dynamical fric-
tion makes more massive subhaloes sink towards the centre faster, while tidal stripping
removes mass preferentially from the outskirts of massive subhaloes closer to the cen-
tre. These two effects combined destroy the most massive subhaloes soon after infall
(e.g., Tormen et al. 1998; Taffoni et al. 2003), a result exaggerated in simulations with
limited resolution (e.g., Klypin et al. 1999; Taylor & Babul 2005; Han et al. 2016).
Tidal stripping makes subhaloes more concentrated than field haloes of the same mass
(e.g., Ghigna et al. 1998; Springel et al. 2008; Moliné et al. 2017), and counterbalances
the spatial segregation induced by dynamical friction (van den Bosch et al. 2016).

One of the most fundamental questions is how these subhaloes are linked to the
satellite galaxies they host, which are what we observe in the real Universe. Taking
N-body simulations at face value results in serious inconsistencies with observations,
the most famous of which are known as the “missing satellites” (Klypin et al. 1999;
Moore et al. 1999) and “too big to fail” (Boylan-Kolchin et al. 2011) problems. It
has since become clear that these problems may arise because baryonic physics has
a strong influence on the small-scale distribution of matter. Energetic feedback from
supernovae at the low-mass end, and active galactic nuclei at the high-mass end, of
the galaxy population affect the ability of dark matter (sub)haloes to form stars and
retain them. In addition, the excess mass in the centre of galaxies (compared to dark
matter-only simulations) can modify each subhalo’s susceptibility to tidal stripping
(e.g., Zolotov et al. 2012).

Despite these difficulties, given the current technical challenges of generating cos-
mological high-resolution hydrodynamical simulations (in which galaxies form self-
consistently), N-body simulations remain a valuable tool to try to understand the
evolution of galaxies and (sub)haloes. In order for them to be applied to real obser-
vations, however, one must post-process these simulations in some way that relates
subhaloes to galaxies, taking into account the aforementioned complexities (and oth-
ers). For instance, semi-analytic models contain either physical or phenomenological
recipes whether or not to form galaxies in certain dark matter haloes based on the
mass and assembly history of haloes (e.g., Bower et al. 2006; Lacey et al. 2015). A
different method involves halo occupation distributions (HODs), which assume that
the average number of galaxies in a halo depends only on host halo mass. Because they
provide an analytical framework to connect galaxies and dark matter haloes, HODs
are commonly used to interpret galaxy-galaxy lensing and galaxy clustering measure-
ments through a conditional stellar mass (or luminosity) function (e.g., Seljak 2000;
Peacock & Smith 2000; Mandelbaum et al. 2006; Cacciato et al. 2009; van den Bosch
et al. 2013).

One of the key aspects of these prescriptions is the stellar-to-halo mass relation.
While many studies have constrained the stellar-to-halo mass relation of central galax-
ies (e.g., Hoekstra et al. 2005; Heymans et al. 2006b; Mandelbaum et al. 2006, 2016;
More et al. 2011; van Uitert et al. 2011, 2016; Leauthaud et al. 2012; Velander et al.
2014; Coupon et al. 2015; Zu & Mandelbaum 2015), this is not the case for satel-
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lite galaxies, whose subhalo-to-stellar mass relation (SHSMR) remains essentially un-
explored, and the constraints so far are largely limited to indirect measurements.
Rodŕıguez-Puebla et al. (2012) used abundance matching (the assumption that galax-
ies rank-ordered by stellar mass can be uniquely mapped to [sub]haloes rank-ordered
by total mass) to infer the SHSMR using the satellite galaxy stellar mass function,
and Rodŕıguez-Puebla et al. (2013) extended these results using galaxy clustering mea-
surements. They showed that the SHSMR is significantly different from the central
stellar-to-total mass relation, and that assuming an average relation when studying a
mixed population can lead to biased results (see also Yang et al. 2009).

Instead, only stellar dynamics and weak gravitational lensing provide direct ways
to probe the total gravitational potential of a galaxy. However, the quantitative con-
nection between stellar velocity dispersion and halo mass is not straightforward (e.g.,
Li et al. 2013b; Old et al. 2015), and only weak lensing provides a direct measurement
of the total surface mass density (Fahlman et al. 1994; Clowe et al. 1998). Using deep
Hubble Space Telescope (HST) observations, Natarajan et al. (1998, 2002, 2007, 2009)
measured the weak (and also sometimes strong) lensing signal of galaxies in six clusters
at z = 0.2 − 0.6. After fitting a truncated density profile to the ensemble signal using
a maximum likelihood approach, they concluded that galaxies in clusters are strongly
truncated with respect to field galaxies. Using data for clusters at z ∼ 0.2 observed with
the CFH12k instrument on the Canada-Hawaii-France Telescope (CFHT), Limousin
et al. (2007) arrived at a similar conclusion. Halkola et al. (2007) and Suyu & Halkola
(2010) used strong lensing measurements of a single cluster and a small galaxy group,
respectively, and also found evidence for strong truncation of the density profiles of
satellite galaxies. However, Pastor Mira et al. (2011) have argued that the conclusion
that cluster galaxies are truncated from these (strong and weak) galaxy-galaxy lensing
measurements are driven by the parametrization of the galaxy density profiles rather
than constraints from the data themselves.

Recent combinations of large weak lensing surveys with high-purity galaxy group
catalogues have allowed direct measurements of the average subhalo masses associ-
ated with satellite galaxies using weak galaxy-galaxy lensing (Li et al. 2014, 2016;
Sifón et al. 2015a; Niemiec et al. 2017). However, these studies did not focus on the
SHSMR but on the segregation of subhaloes by mass within galaxy groups, by mea-
suring subhalo masses at different group-centric distances. The observational results
are consistent, within their large errorbars, with the mild segregation of dark matter
subhaloes seen in numerical simulations (Han et al. 2016; van den Bosch et al. 2016).
However, it is not clear whether results based on subhaloes in N-body simulations can
be directly compared to observations. In fact, van den Bosch (2017) has shown that
the statistics of subhaloes inferred from N-body simulations are problematic even to
this day, because of severe numerical destruction of subhaloes.

In this work, we present weak gravitational lensing measurements of the total
mass of satellite galaxies in 48 massive galaxy clusters at z < 0.15. Our images were
taken with the MegaCam instrument on the Canada-France-Hawaii Telescope (CFHT),
which has a field of view of 1 sq. deg., allowing us to focus on very low redshift clusters
and take advantage of the < 1′′ seeing (corresponding to 1.84 kpc at z = 0.1) of
our observations. We can therefore probe the lensing signal close to the galaxies
themselves, at a physical scale equivalent to what can be probed in a cluster at z ∼ 0.5
with HST, but out to the clusters’ virial radii. In addition, the low-redshift clusters
we use have extensive spectroscopic observations available from various data sets,
compiled by Sifón et al. (2015b), so we do not need to rely on uncertain photometric
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identification of cluster members.
This paper is organized as follows. We summarize the galaxy-galaxy lensing for-

malism in Section 5.2. We describe our data set in Section 5.3, taking a close look at
the source catalogue and the shapes of background sources in Section 5.4. We present
our modelling of the satellite lensing signal in Section 5.5, and discuss the connection
between mass and light in satellite galaxies, in the form of the subhalo-to-stellar mass
relation and subhalo mass segregation, in Sections 5.6 and 5.7, respectively. Finally,
we summarize in Section 5.8.

We adopt a flat Λ cold dark matter (ΛCDM) cosmology with Ωm = 0.315, based on
the latest results from cosmic microwave background observations by Planck Collab-
oration (2015), and H0 = 70 km s−1Mpc−1. In this cosmology, 10′′ = {9.8, 18.4, 26.1} kpc
at z = {0.05, 0.1, 0.15}. As usual, stellar and (sub)halo masses depend on the Hubble
constant as m? ∼ 1/H2

0 and m ∼ 1/H0, respectively.

5.2 Weak galaxy-galaxy lensing

Gravitational lensing distorts the images of background (“source”) galaxies as their
light passes near a matter overdensity along the line-of-sight. This produces a distor-
tion in the shape of the background source, called shear, and a magnification effect on
the source’s size (and consequently its brightness). The shear field around a massive
object aligns the images of background sources around it in the tangential direction.
Therefore, starting from a measurement of the shear of an object in a cartesian frame
with components (γ1, γ2) (see Section 5.3.3), it is customary to parametrize the shear
as (

γt
γ×

)
=

(
− cos 2φ − sin 2φ
sin 2φ − cos 2φ

) (
γ1
γ2

)
, (5.1)

where φ is the azimuthal angle of the lens-source vector, γt measures the ellipticity in
the tangential (γt > 0) and radial (γt < 0) directions and γ× measures the ellipticity in
directions 45◦ from the tangent. Because of parity symmetry, we expect 〈γ×〉 = 0 for
an ensemble of lenses (Schneider 2003) and therefore γ× serves as a test for systematic
effects.

The shear is related to the excess surface mass density (ESD), ∆Σ, via

∆Σ(R) ≡ Σ̄(< R) − Σ̄(R) = γtΣc, (5.2)

where Σ̄(< R) and Σ̄(R) are the average surface mass density within a radius1 R and
within a thin annulus at distance R from the lens. The critical surface density, Σc, is
a geometrical factor that accounts for the lensing efficiency,

Σc =
c2

4πG
Ds

DlDls
, (5.3)

where, Dl, Ds, and Dls are the angular diameter distances to the lens, to the source
and between the lens and the source, respectively. The ESD for each bin in lens-source
separation is then

∆Σ =

∑
i wiΣc,iγt,i∑

i wi
, (5.4)

1As a convention, we denote three-dimensional distances with lower case r and two-dimensional
distances (that is, projected on the sky) with upper case R.
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where the sums run over all lens-source pairs in a given bin and the weight of each
source galaxy is given by

wi =
1

〈ε2
int〉 + (σγ,i)2

. (5.5)

Here, σγ is the measurement uncertainty in γt, which results from the quadrature
sum of statistical uncertainties due to shot noise in the images (see Section 5.3.3) and
from uncertainties in the modelling of a measurement bias detailed in Sections 5.4.2
and 5.A.2 We set the intrinsic root-mean-square galaxy ellipticity, 〈ε2

int〉
1/2, to 0.25. In

Equation 5.4, we use a single value for Σc for all satellites in each cluster (see Section
5.4.5).

In fact, the weak lensing observable is the reduced shear, g ≡ γ/(1 − κ) (where
κ = Σ/Σc is the lensing convergence), but in the weak limit κ � 1 so that g ≈ γ.
However, close to the centres of galaxy clusters the convergence is of order unity, so
this approximation is not accurate anymore. To account for this, the lensing model
presented in Section 5.5 is corrected using

g(R) =
γ(R)

1 − Σ̄(R)/Σc
=

∆Σ(R)/Σc

1 − Σ̄(R)/Σc
. (5.6)

5.2.1 Statistical errors: data covariance

Because the gravitational potential of satellites in a cluster is traced by the same
background source galaxies, data points in the ESD are correlated. Following Viola
et al. (2015), we can re-arrange Equation 5.4 to reflect the contribution from each
source galaxy. The data covariance of measurements in a single cluster can then be
written as

Cmni j = Σ2
c〈ε

2〉

∑
s

(
Csi,mCs j,n + S si,mS s j,n

)
(∑

s Zsi,m
) (∑

s Zs j,n

) , (5.7)

where index pairs m, n and i, j run over the observable bins (e.g., stellar mass) and
lens-source separation, R, respectively, and C, S and Z are sums over the lenses:

Csi = −
∑

l

wls cos 2φls ,

S si = −
∑

l

wls sin 2φls ,

Zsi =
∑

l

wls ,

(5.8)

where we explicitly allow for the possibility that the source weight, w, may be different
for each lens-source pair (as opposed to a unique weight per source). This is indeed
the case when we consider the corrections to the shape measurements from lens con-
tamination discussed in Sections 5.4.2 and 5.A, although in practice differences are
negligible. As implied by Section 5.7, we assign the same Σc to all galaxies that are
part of the same cluster. The total ESD is then the inverse-covariance–weighted sum
of the ESDs of individual clusters.

In addition to the data covariance there is, in principle, a contribution to the
measurement uncertainty from sample variance. By comparing Equation 5.7 to uncer-
tainties estimated by bootstrap resampling, Sifón et al. (2015a) have shown that the

2In practice, the latter is negligible in most cases.
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contribution from sample variance is less than 10 per cent for satelite galaxy-galaxy
lensing measurements when limited to small lens-source separations (R . 2 Mpc).
Since the signal from satellites themselves is limited to R . 300 kpc (Figure 5.8; see
also Sifón et al. 2015a), in this work we ignore the sample variance contribution to the
lensing covariance.

5.3 Data set

In this section we describe the lens and source galaxy samples we use in our analysis.
In the next section, we make a detailed assessment of the shape measurement and
quality cuts on the source sample using extensive image simulations.

5.3.1 Cluster and lens galaxy samples

The Multi-Epoch Nearby Cluster Survey (MENeaCS, Sand et al. 2012) is a targeted
survey of 57 galaxy clusters in the redshift range 0.05 . z . 0.15 observed in the g
and r bands with MegaCam on CFHT. We only use the 48 clusters affected by r-
band Galactic extinctions Ar ≤ 0.2 mag, since we find that larger extinctions bias the
source number counts and the correction for cluster member contamination (Section
5.4). The image processing and photometry are described in detail in van der Burg
et al. (2013); most images have seeing . 0.8′′. Sifón et al. (2015b) compiled a large
sample of spectroscopic redshift measurements in the direction of 46 of these clusters,
identifying a total of 7945 spectroscopic members. Since, Rines et al. (2016) have
published additional spectroscopic redshifts for galaxies in 12 MENeaCS clusters, six
of which are included in Sifón et al. (2015b) but for which the observations of Rines
et al. (2016) represent a significant increase in the number of member galaxies. We
select cluster members in these 12 clusters in an identical way as Sifón et al. (2015b).
The median dynamical mass of MENeaCS clusters is M200 ∼ 6 × 1014 M� (Sifón et al.
2015b).

From the member catalogue of Sifón et al. (2015b), we exclude all brightest cluster
galaxies (BCGs), and refer to all other galaxies as satellites. Because the shapes
of background galaxies near these members are very likely to be contaminated by
light from the BCG, we also exclude all satellite galaxies within 10′′ of the BCGs to
avoid severe contamination from extended light. Finally, we impose a luminosity limit
Lsat < min(2L?, 0.5LBCG) (where L?(z) is the r-band luminosity corresponding to the
characteristic magnitude, m?

phot(z) of the Schechter (1976) function, fit to red satellite

galaxies in redMaPPer galaxy clusters over the redshift range 0.05 < z < 0.7 (Rykoff
et al. 2014)).3 We choose the maximum possible luminosity, 2L?, because the BCGs
in our sample have LBCG & 3L?, so this ensures we do not include central galaxies
of massive (sub)structures that could, for instance, have recently merged with the
cluster. In addition, we only include satellites within 2 Mpc of the BCG. At larger
distances, contamination by fore- and background galaxies becomes an increasingly
larger problem. Our final spectroscopic sample consists of 5414 satellites in 45 clusters.

In addition, we include red sequence galaxies in all MENeaCS clusters in low Galac-
tic extinction regions in order to improve our statistics. We measure the red sequence

3Equation 9 of Rykoff et al. (2014) provides a fitting function for the i-band m?
phot(z), which we

convert to r-band magnitudes assuming a quiescent spectrum, appropriate for the majority of our
satellites, using EzGal (http://www.baryons.org/ezgal/, Mancone & Gonzalez 2012).

http://www.baryons.org/ezgal/
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Table 5.1: Number of galaxies and average properties of stellar mass and cluster-centric
distance bins used in Sections 5.6 and 5.7. Sub-columns correspond to the values of the
fiducial spectroscopic-plus-red-sequence and the spectroscopic-only samples.

Binning Bin
Range

Nsat 〈Rsat/Mpc〉 log〈m?/M�〉
observable label spec spec spec spec spec spec

+RS +RS +RS

log(m?/M�)

M1 [9.0 − 9.8) 2144 1010 0.66 0.88 9.51 9.51
M2 [9.8 − 10.2) 2017 1315 0.67 0.87 10.01 10.03
M3 [10.2 − 10.5) 1387 1146 0.80 0.91 10.36 10.35
M4 [10.5 − 10.9) 1178 1052 0.83 0.89 10.67 10.67
M5 [10.9 − 11.2] 278 265 0.93 0.98 11.01 11.01

Rsat (Mpc)

D1 [0.1 − 0.35) 1346 664 0.23 0.23 9.97 10.20
D2 [0.35 − 0.7) 1934 1139 0.52 0.52 10.03 10.20
D3 [0.7 − 1.2) 1994 1397 0.90 0.94 10.07 10.22
D4 [1.2 − 2.0) 1550 1529 1.55 1.55 10.24 10.25

by fitting a straight line to the colour-magnitude relation of red galaxies in each clus-
ter using a maximum likelihood approach, based on the methodology of Hao et al.
(2009). Following Sifón et al. (2015b), we include only red sequence galaxies brighter
than Mr = −19 and within 1 Mpc of the BCG.4 When we include red sequence galax-
ies, we also use the six clusters without spectroscopic cluster members. Therefore
our combined spectroscopic plus red sequence sample includes 7909 cluster members
in 48 clusters (including three clusters without spectroscopic data). Throughout, we
refer to the spectroscopic and spectroscopic plus red sequence samples as ‘spec’ and
‘spec+RS’, respectively.

For the purpose of estimating stellar masses and photometric redshifts, the original
MENeaCS observations in g and r were complemented by u- and i-band observations
with the Wide-Field Camera on the Isaac Newton Telescope in La Palma (except for
a few clusters with archival MegaCam data in either of these bands, see van der Burg
et al. 2015, for details). Stellar masses were estimated by van der Burg et al. (2015)
by fitting each galaxy’s spectral energy distribution using fast (Kriek et al. 2009)
assuming a Chabrier (2003) initial mass function.

In order to characterize the connection between satellite galaxies and their host
subhaloes, we split the sample by stellar mass (Section 5.6) and cluster-centric distance
(Section 5.7), each time splitting the sample in five bins. We show the stellar mass
and cluster-centric distributions of the resulting subsamples in Figure 5.1, and list the
average values in Table 5.1.

5.3.2 Source galaxy sample

We construct the source catalogues in an identical manner to Hoekstra et al. (2015),
except for one additional flag to remove galaxies whose shape is significantly biased by
the presence of a nearby bright object. This step is discussed in detail in Section 5.4.1.
The biases in the shape measurements of the sources, depending on how the source
sample is defined, have been characterized in great detail by Hoekstra et al. (2015).

4Here, Mr is the k + e–corrected absolute magnitude in the r-band, calculated with EzGal using a
passively evolving Charlot & Bruzual (2007, unpublished, see Bruzual & Charlot 2003) model with
formation redshift zf = 5.
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Figure 5.1: The five stellar mass bins used in Section 5.6 (lefthand plots) and the four cluster-
centric distance bins used in Section 5.7 (righthand plots). Top panels show histograms
for spectroscopic (‘spec’ sample, thin lines) and spectroscopic plus red sequence (‘spec+RS’
sample, thick lines) members. Middle and bottom panels show distribution of different stellar
mass bins in cluster-centric distance (left) and of different cluster-centric radius bins in stellar
mass (right), for the spec and spec+RS samples, respectively. Note the different vertical scales
in each panel.
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Although the study of Hoekstra et al. (2015) refers to a different cluster sample, both
samples have been observed with the same instrument under very similar conditions
of high image quality, so we can safely take the analysis of Hoekstra et al. (2015) as a
reference for our study.

Specifically, we select only sources with r-band magnitudes5 20 < mphot < 24.5, with
sizes rh < 5 pix and an additional constraint on δmphot, the difference in estimated mag-
nitude before and after the local background subtraction used for shape measurements
(see Section 5.4.1). Compared to Hoekstra et al. (2015), who used 22 < mphot < 25,
we choose different magnitude limits (i) at the bright end because our cluster sample
is at lower redshift and therefore cluster members tend to be brighter, and (ii) at the
faint end because our data are slightly shallower, complicating the shape measure-
ments of very faint sources. The magnitudes mphot have been corrected for Galactic
extinction using the Schlafly & Finkbeiner (2011) recalibration of the Schlegel et al.
(1998) infrared-based dust map.

Unlike most cluster lensing studies (e.g., Hoekstra et al. 2012; Applegate et al.
2014; Umetsu et al. 2014), we do not apply a colour cut to our source sample, since
this only reduces contamination by ∼30 per cent for z ∼ 0.2 clusters (Hoekstra 2007).
In fact, one of the advantages of using low-redshift clusters is that contamination by
cluster members is significantly lower than at higher redshifts, since cluster members
are spread over a larger area on the sky. Instead of applying colour cuts to reduce
contamination, we follow Hoekstra et al. (2015) and correct for contamination in the
source sample by applying a ‘boost factor’ to the measured lensing signal to account
for the dilution by cluster members (e.g., Mandelbaum et al. 2005a). We discuss
this and other corrections to the shape measurements, along with the source redshift
distribution, in Section 5.4.

5.3.3 Shape measurements

To measure the galaxy-galaxy lensing signal we must accurately infer the shear field
around the lenses by measuring the shapes of as many background galaxies as possible.
For most of the sources this is a difficult procedure as they are faint and of sizes
comparable to the image resolution, quantified by the point spread function (PSF).
Blurring by the PSF and noise lead to a multiplicative bias, µ, while an anisotropic
PSF introduces an additive bias, c (e.g., Heymans et al. 2006a). The measured (or
observed) shear is therefore related to the true shear by

γobs(θls|Rsat) = (1 + µ) γtrue(θls)B−1(Rsat) + c , (5.9)

where θls is the lens-source separation and µ and c are referred to simply as the mul-
tiplicative and additive biases, respectively; B(Rsat) is the ‘boost factor’ that corrects
for contamination by cluster members, described in Section 5.4.3. Note that µ, c and
B(Rsat) all depend on both the dataset and the shape measurement method.

We measure galaxy shapes by calculating the moments of galaxy images using the
KSB method (Kaiser et al. 1995; Luppino & Kaiser 1997), incorporating the modi-
fications by Hoekstra et al. (1998, 2000). The PSF is measured from the shapes of
stars in the image and interpolation between stars is used to estimate the PSF for
each galaxy. Hoekstra et al. (2015) used extensive image simulations to assess the
performance of KSB depending on the observing conditions and background source

5We denote r-band magnitudes with mphot in order to avoid confusion with subhalo masses, which
we denote with lower case m and subscripts depending on the definition (see Section 5.5.2).
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ellipticity, magnitude and size distributions. We adopt the size– and signal-to-noise–
dependent multiplicative bias correction obtained by Hoekstra et al. (2015). Instead
of correcting each source’s measured shape, we apply an average correction to each
data point (which is an average over thousands of sources), since the latter is more
robust to uncertainties in the intrinsic ellipticity distribution (Hoekstra et al. 2015).
In the next section we take a detailed look at possible sources of bias in our shape
measurements.

Due to lensing, sources are magnified as well as sheared, and this may alter the
inferred source density, affecting the boost correction discussed in Section 5.4.3. The
increase in flux boosts the number counts relative to an unlensed area of the sky, but
the decrease in effective area works in the opposite direction. The net effect depends
on the intrinsic distribution of source galaxies as a function of magnitude, and cancels
out for a slope d log Nsource/dmphot = 0.40 (Mellier 1999). In fact, this slope is 0.38–
0.40 for the MegaCam r-band data (Hoekstra et al. 2015), so we can safely ignore
magnification in our analysis.

In order to account for the measurement uncertainties in defining the quality of
our lensing data, throughout this work we use the source weight density. We define
the weight density, ξs ≡ (1/A)

∑
i wi, as the sum of the shape measurement weights

(Equation 5.5) per square arcminute.

5.4 Source sample and shear calibration

We now explore the impact of cluster galaxies in our analysis, as they contaminate our
source sample and in some cases bias shape measurements through blending of their
light with that of source galaxies. In order to assess the impact of cluster galaxies in the
shear measurement pipeline, we use dedicated sets of image simulations. We extend the
image simulations produced by Hoekstra et al. (2015) by introducing simulated cluster
galaxies into the images of source galaxies. We create two sets of image simulations
with different cluster galaxies to investigate different features of the analysis pipeline,
as described in the following sections.

The image simulation pipeline of Hoekstra et al. (2015) creates mock images of the
MegaCam instrument with randomly placed source galaxies. In short, these simulated
galaxies have properties based on galfit (Peng et al. 2002) measurements of galaxies
in the GEMS survey (Rix et al. 2004). The modulus of the ellipticity is drawn from
a Rayleigh distribution with a width of 0.25 and truncated at 0.9, and galaxies are
assigned random position angles. Figure 5.2 shows the distribution of magnitudes and
sizes measured with galfit of MENeaCS cluster galaxies (from Sifón et al. 2015b). We
use these measurements to simulate lens galaxies which we add to the simulations of
source galaxies. The surface brightness profiles of galaxies are drawn, assuming their
light follows Sérsic (1968) radial profiles, using the GalSim software (Rowe et al.
2015).

5.4.1 Sensitivity to background subtraction

Before discussing the impact of cluster galaxies in the source sample and shape mea-
surements, we describe a bias pertaining to the shape measurement pipeline itself. The
pipeline proceeds in two steps: the first is to detect sources using a global background
estimation, while the second is to measure the shapes of these detected objects. In the
second step, a local background level is determined by measuring the root mean square
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brightness in an annulus with inner and outer radii of 16 and 32 pixels respectively,
after masking all detected objects. This annulus is split into four quadrants. The
background is modelled by fitting a plane through them, and is then subtracted from
the image. This background subtraction works well in general, but when light from
nearby objects is not properly accounted for, it significantly modifies the estimated
magnitude of the test galaxy. Since the simulations do not have a diffuse background
component, a proper background subtraction would leave the galaxy magnitude un-
touched. Therefore, changes in the magnitude pre- and post-background subtraction
in the simulations, which we denote δmphot ≡ mpostbg − mprebg, mean that the shape
measurement process is not robust for that particular galaxy. As our sources are
in close proximity to bright satellite galaxies, this feature is potentially detrimental
to our shear measurements. The cluster image simulations indeed contain a popula-
tion of sources with large values of δmphot, which is absent in the simulations without
cluster galaxies. Comparing the simulations with- and without cluster galaxies we
determined an empirical relation to flag any galaxies severely affected by the local
background subtraction. We discard all source galaxies with

δmphot < −49.04 − 7.00mphot + 0.333m2
phot − 0.0053m3

phot , (5.10)

since these galaxies are outliers in the δmphot − mphot plane. Inspecting the images
of the galaxies thus discarded in the real data, we find that they are mostly located
either near bright, saturated stars (but these galaxies would be discarded in subsequent
steps by masking stellar spikes and ghosts), or close to big galaxies with resolved spiral
arms or other features, that make the plane approximation of the background a bad
description of the local background. We have verified that the calibration of the shape
measurements by Hoekstra et al. (2015) remains unchanged when discarding these
galaxies (which were included in their sample); this is essentially because Equation
5.10 is independent of galaxy shape. Typically, an additional 10–12 per cent of sources
in the data are flagged by Equation 5.10.

5.4.2 Additive shear bias

In galaxy-galaxy lensing (and equivalently cluster lensing), source shapes are az-
imuthally averaged around the lenses. This washes out any spatial PSF anisotropy,
and the additive bias c in Equation 5.9 can be neglected. (In other words, additive
biases in γ1 and γ2 vanish when projected onto γt.) However, our measurements are
focused on the immediate surroundings (tens of arcseconds to few arcminutes) of thou-
sands of luminous lenses, such that galaxy light may bias the shape measurements of
fainter background sources. Given that the light profile always decreases radially, the
azimuthal averaging can in fact introduce an additive bias in γt (as opposed to γ1,2)
by biasing the background subtraction along the radial direction. We refer to this
additive bias in γt as ct hereafter.

We expect the bias to depend on the size and magnitude of cluster galaxies and
therefore create image simulations to determine this relation. We selected a set of
magnitudes and sizes representative of the full sample of cluster members (shown
as cyan circles in Figure 5.2) and simulated lens galaxies with those properties. In
order to accurately estimate ct, we simulate large numbers of galaxies with the same
magnitude and size, placed in a regular grid in the image simulations, separated by at
least 60′′ to avoid overlap between the lenses. We refer to these simulations as ‘grid
image simulations’. The PSF in these simulations is circular with a full width at half
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Figure 5.2: Magnitude and size distribution of satellites in the MENeaCS spec+RS sample.
The logarithmic color scale shows the number of galaxies per two-dimensional bin, while black
histograms show the one-dimensional distributions. Cyan circles show the coordinates used in
the grid image simulations used to determine the additive bias on the shape measurements in
Section 5.4.2. Note that galaxies at the bottom-right corner of the distribution, not covered
by the simulations, are faint and small and therefore can be safely assumed to produce no
obscuration (see Section 5.A).

maximum of 0.′′67. We generate a large number of grid image simulations spanning a
range of lens size and r-band magnitude and measure the average shear around these
simulated lenses, which is by construction zero in the source-only image simulations.

In Section 5.A we show that we can model this (negative) bias as a function of lens-
source separation, lens magnitude and size, and we correct the shear measured for each
lens-source pair for this bias. For illustration, we show in Figure 5.3 the average Σcct
obtained from the image simulations after weighting the results in the simulations by
the two-dimensional distribution of real galaxies in r-band magnitude and size, when
binning MENeaCS galaxies into five stellar mass bins (see Section 5.6). As expected,
the correction is larger for more massive galaxies, which are on average larger. At R ∼
20 kpc (i.e., the smallest scales probed), the correction is 20–30 per cent and is typically
negligible at R ∼ 50 kpc. We find that on average ct is approximately independent of
cluster-centric distance, because there is no strong luminosity segregation of galaxies
in clusters as massive as those in MENeaCS (e.g., Roberts et al. 2015). For reference, a
fraction of order 10−6 lens-source pairs have |ct| > 0.01, which corresponds to the typical
shear produced by massive cluster galaxies in our sample. We remove these lens-source
pairs from our analysis, since such corrections are most of the time larger than the
signal itself, although such a small fraction of lens-source pairs has no effect on our
results. We find that lens galaxies with seff < 1′′ produce no noticeable obscuration at
the scales of interest (see Section 5.A), and we therefore did not produce simulations
for the smallest lenses (Figure 5.2).

5.4.3 Contamination by cluster members

In addition to the additive bias discussed above, lens galaxies affect the source density
in their vicinity for two reasons: big lenses act as masks on the background source
population, while small ones enter the source sample. We refer to these effects as
obscuration and contamination, respectively.
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separation, θls, and distance from the lens to the cluster centre, Rsat, for all MENeaCS clusters,
after applying all the cuts described in Section 5.3.
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Since on average cluster galaxies are randomly oriented (Sifón et al. 2015b), con-
tamination by cluster members biases the (positive) lensing signal low; the correction
for this effect is usually referred to as the ‘boost factor’ (e.g., Mandelbaum et al. 2005a).
Obscuration, in turn, has two effects: it reduces the statistical power of small-scale
measurements, and it complicates the determination of the contamination correction,
since the observed source density is affected by obscuration. Figure 5.4 shows the
number density of sources as a function of lens-source separation and cluster-centric
distance. The obscuration of soure galaxies is evident: the source density decreases
rapidly at θls . 10′′, while it remains essentially constant over the rest of the θls − Rsat
plane. The effect of contamination is not so readily seen (i.e., the source density is
approximately constant for varying Rsat), because of the low redshift of our clusters:
cluster galaxies are sufficiently separated on the sky that they do not appreciably boost
the source density if obscuration is not accounted for.

Correcting the observed source density profile for obscuration

To measure the obscuration by cluster members, we generate a new set of image
simulations, in which the spatial distribution of lens galaxies in the observations is
reproduced and each lens galaxy is simulated with its measured properties. In this
way a realistic simulation of each observed MENeaCS cluster is created. We refer to
these image simulations as ‘cluster image simulations’.

The cluster image simulations were designed to mimic the data as closely as pos-
sible to accurately capture the obscuration produced by MENeaCS cluster members.
We used the image simulation pipeline of Hoekstra et al. (2015) to create images of
the source population with the same seeing and noise level measured from the data
for each cluster. We then created images with the same properties, including a fore-
ground cluster. Where available, we used the galfit measurements of Sifón et al.
(2015b) to create surface brightness profiles for cluster members. For cluster members
without reliable galfit measurements (which constitute approximately 10 per cent
of the simulated cluster galaxies, and are mostly on the faint end of the population)
we draw random values following the distribution of morphological parameters for
galaxies with similar magnitude and redshift. Although individual galaxies may not
be accurately represented in the simulations, the average obscuration should be well
captured. We include all spectroscopic and red-sequence member galaxies down to an
apparent magnitude mphot = 23 and to Rsat = 3 Mpc. As shown by Sifón et al. (2015b),
the red sequence is severely contaminated at such large distances. As we show below,
this ‘interloper’ population can be easily accounted for, since the density of interlopers
is not a function of cluster-centric distance.

We use the cluster image simulations to calculate the average obscuration produced
by cluster galaxies by measuring the source density as a function of cluster-centric
radius. Because in these simulations we reproduce the spatial distribution of cluster
galaxies, we can account for the radial dependence of the obscuration, given the number
density profile of cluster galaxies. We show in Figure 5.5 the average obscuration
profile, defined as

Fobsc(RBCG) ≡
ξs,cluster(RBCG)
ξs,background

, (5.11)

where ξs is the source weight density, and the subscripts “cluster” and “background”
refer to the image simulations with and without the cluster galaxies, respectively.

In fact, the obscuration at large cluster-centric distance is not exactly zero, but
reaches a constant value F̂ (RBCG > 1.5Mpc) ' 0.06 (where the hat symbol simply de-
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Figure 5.5: Obscuration correction (orange) and obscuration-corrected contamination cor-
rection (i.e., boost factor, blue) as a function of cluster-centric distance. Both quantities
are averages over all clusters. The width of each curve shows the uncertainty on the mean
correction.

notes a biased measurement of the true F (R)). This is because, to ensure completeness,
the image simulations include all red sequence galaxies, which inevitably includes a
contaminating population of galaxies that are in fact not part of the cluster, especially
at large RBCG (Sifón et al. 2015b). We account for this excess obscuration by contam-
inating galaxies by simply subtracting the large-scale value of F̂ (RBCG), which results
in the curve shown in Figure 5.5.

Boost correction

Because the source sample is both obscured and contaminated by cluster galaxies, we
need an external measurement of the reference source density. Furthermore, because
the bulk of our sample is at z < 0.1, the Megacam field of view is not enough to estimate
cluster-free source densities—our images only reach Rsat ∼ 3 Mpc at z = 0.1. Therefore,
we retrieved data for 41 blank fields from the Megacam archive (Gwyn 2008), which
provides an area of approximately 33 sq. deg. after manual masking. These blank
fields contain no galaxy clusters and have noise and seeing properties at least as good
as the MENeaCS data. We construct the source sample and shape catalogue exactly
as described above, after degrading the blank field observations to the typical noise
level of MENeaCS data (see Herbonnet et al. in prep.).

As described in Herbonnet et al. (in prep.), we fit the the blank field source weight
densities, ξs,blank, as a linear combination of the image quality (quantified by the av-
erage half-light radius of stars, 〈r?h 〉), the background noise level, ζ, and the Galactic
extinction in the r-band, Ar,

〈ξs,blank〉(〈r?h 〉, ζ, Ar) = p1〈r?h 〉 + p2ζ + p3Ar + p4 , (5.12)
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where ζ, 〈r?h 〉 and Ar are in units of counts per pixel, pixels, and magnitudes respec-
tively, and pi = (−68.4,−40.6,−122.8, 364.2) are the best-fit parameters. The blank
field measurements are well described by a normal distribution around Equation 5.12,
with a constant scatter of 12 weight-units per sq. arcmin, as shown in Figure 5.6.
We adopt the noise-, extinction-, and seeing-dependent source density measured in
the blank fields as the background level for each of the MENeaCS clusters. We have
checked that at the high redshift end of our sample, the source densities at the out-
skirts of clusters (RBCG & 3 Mpc) are consistent with the expectations from the blank
fields. The limiting factor to the precision of the blank field source density prediction
is the number of blank fields. For the available 41 fields, the relative uncertainty in
the blank field prediction is 1.0%, which is precise enough for our analysis.

Having computed the obscuration from the image simulations and the contamina-
tion by comparing with blank fields, we now calculate the boost correction appropri-
ate to our dataset. Given a source’s RBCG, we calculate its corrected (or ‘true’) shear
through Equation 5.9, where the boost correction is

B(RBCG) =
〈ξs,data(RBCG)〉
〈ξs,blank〉

[1 − Fobsc(RBCG)]−1 , (5.13)

where all quantities are averaged over all clusters. Equation 5.13 assumes that faint
cluster galaxies (which enter the source sample) do not cluster strongly with the bright
cluster members constituting our lens sample; this small-scale cluster would introduce
a dependence of B on θls. For reference, Fang et al. (2016) showed that there an excess
of galaxies in the vicinity of cluster members, but at the level of a few galaxies per
cluster, which would have no impact on our results. In fact, we find no evidence of
small-scale clustering in our sample of red sequence galaxies.

5.4.4 More details on obscuration by cluster members

In the previous section we calculated the average obscuration produced by cluster
members as a function of cluster-centric distance, RBCG, in order to properly estimate
the boost correction. In this section, we look closer at the obscuration by cluster
galaxies individually rather than collectively as part of the cluster.

We calculate obscuration profiles around galaxies, Fobsc(θls), in bins of cluster centric
distance, RBCG; we show these profiles in Figure 5.7. Because of the high lens density
at small RBCG, the obscuration drops only down to roughly 0.45 up to θls ∼ 50′′,
decreasing slowly at larger separations. However, the effect of neighbouring lenses
is negligible at RBCG & 200 kpc. Note that these obscuration profiles do not affect
the calculation of the boost factor, because as mentioned in the preceding section the
density of cluster galaxies does not depend on θls. (Integration of this set of curves
over θls gives rise to Equation 5.13). Instead, the steep rise in the obscuration below
θls ≈ 20 arcsec fundamentally limits the scales accessible in this study. Pushing to
smaller scales would require subtraction of the light profiles of lens galaxies, an avenue
we will explore in future work.

5.4.5 Source redshift distribution

The measurement of the ESD is averaged over each lens source pair in the source
population so that redshifts for individual sources are required. However, we lack the
deep colour information to estimate reliable photometric redshifts for individual source
galaxies. Instead, we can use an average lensing efficiency 〈β〉 = 〈max[0,Dls/Ds]〉 for
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the entire source population, which can be inferred from a representative field with a
reliable redshift distribution, as a proxy for the cluster background (see, e.g., Hoekstra
et al. 2015).

We take as a reference the COSMOS2015 catalogue (Laigle et al. 2016), which
contains photometric redshift estimates for galaxies in the 2 square degrees COSMOS
field. This catalogue is deep enough to cover our magnitude range and contains near
infrared measurements that help break degeneracies in photometric redshift estima-
tion. The COSMOS field was also targeted by a deep observation with the CFHT,
from which there exists a lensing catalogue. The matched lensing-photometric redshift
catalogue allows us to apply the same quality cuts on the redshift distribution as have
been applied to the lensing data, which could otherwise bias the results (Gruen &
Brimioulle 2016). The overlapping area is only 1 square degree, which raises concerns
that it might be unrepresentative for our cluster fields. However, we have used addi-
tional photometric data of different areas on the sky to confirm that the uncertainties
on our mean lensing efficiency, 〈β〉, including cosmic variance, are less than 2 per cent.
Such precision is sufficient for our analysis. For more details see Herbonnet et al. (in
prep.).

The assumption of using only the average value 〈β〉 and ignoring the width of the
distribution introduces a bias into our measurement of ∆Σ (Hoekstra et al. 2000).
However, for our low redshift clusters the effect is expected to be very small. With
our photometric redshift catalogue and Equation 7 from Hoekstra et al. (2000) we
estimate that this bias is at most 1+0.06κ (where κ is the lensing convergence, and
κ � 1 in the weak lensing regime). This is a negligible bias compared to other sources
of uncertainty and we therefore ignore it in the rest of our analysis.

5.4.6 Resulting lensing signal

Figure 5.8 shows the resulting lensing signal from satellites in MENeaCS clusters,
corrected for both ct(θls) and B(R). We make the distinction in the arguments of both
corrections because the former is applied to each lens-source pair, while the latter is
applied as an average correction after stacking all lenses in each bin. We compare the
ESDs of the five bins in satellite stellar mass for the spec and spec+RS samples. There
are two differences in the signal measured for both samples. Firstly, the signal from the
spec+RS sample is slightly lower than the signal from the spec sample at the smallest
scales. This is expected, as in general the more massive galaxies have been targeted in
the spectroscopic observations; this is reflected also in the average stellar masses listed
in Table 5.1. Secondly, the spec+RS signal is larger at intermediate scales, which is a
reflection of the fact that spectroscopic observations tend to be incomplete at the dense
centres of clusters, so the average cluster-centric distance of the spec+RS sample is
lower. We base our analysis on the spec+RS sample, which is a more complete sample
of lenses.

At intermediate scales, 0.3 . R/Mpc . 2, the two samples produce different signals.
In particular, the signal from the spec+RS sample is higher. This is a consequence
of the fact that we only include red sequence galaxies out to 1 Mpc, so the spec+RS
sample is on average closer to the cluster centre than the spec sample. Therefore,
the peak of the host cluster signal happens at smaller R. Beyond the peak the two
signals are consistent, because all galaxies come from the same clusters. See Figure
3 of Sifón et al. (2015a) for a graphical representation. We account for the measured
radial distribution of satellites in our modelling below.
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5.5 Satellite galaxy-galaxy lensing model

We interpret the galaxy-galaxy lensing signal produced by subhaloes following the
formalism introduced by Yang et al. (2006, see also Li et al. 2013a), and applied to
observations by Li et al. (2014, 2016); Sifón et al. (2015a, 2017) and Niemiec et al.
(2017). This formalism assumes that measurements are averages over a large number
of satellites and clusters, such that the stacked cluster is (to a sufficient approximation)
point-symmetric around its centre and well-described by a given parametrization of the
density profile. A similar method was introduced by Pastor Mira et al. (2011), which
however does not rely on such parametrization by virtue of subtracting the signal at
the opposite point in the host cluster. A different approach is to perform a maximum
likelihood reconstruction of the lensing potential of cluster galaxies accounting for
the cluster potential, which must be well known a priori (e.g., Natarajan & Kneib
1997; Geiger & Schneider 1998) or modelled simultaneously with the cluster galaxies
(Limousin et al. 2005). This method has been applied in several observational studies
(e.g., Natarajan et al. 1998, 2009; Limousin et al. 2007). We discuss results from the
literature using either method after presenting our analysis, in Section 5.7. In the
following we describe our modelling of the satellite galaxy-galaxy lensing signal.

The ESD measured around a satellite galaxy is a combination of the contributions
from the subhalo (including the galaxy itself) at small scales, and that from the host
halo at larger scales,

∆Σsat(R) = ∆Σ?(R|m?) + ∆Σsub(R|mbg, csub) + ∆Σhost(R|Mh, ch), (5.14)

where ∆Σ? represents the contribution from baryons in the satellite galaxy, which we
model as a point source contribution throughout, such that

∆Σ?(R|m?) =
m?

πR2 . (5.15)

Here, we take m? to be the median stellar mass of all satellites in the corresponding
sample (e.g., a given bin in satellite luminosity). In Equation 5.14, R refers to the
lens-source separation in physical units; mbg is the average subhalo mass (see below)
and csub its concentration; and Mh and ch are the average mass and concentration of the
host clusters. In the remainder of this section we describe the other two components
in Equation 5.14. Detailed, graphical descriptions of these components can be found
in Yang et al. (2006), Li et al. (2013a) and Sifón et al. (2015a).

5.5.1 Host cluster contribution

In numerical simulations, the density profiles of dark matter haloes are well described
by a Navarro-Frenk-White (NFW, Navarro et al. 1995) profile,

ρNFW(r) =
δc ρm

r/rs (1 + r/rs)2 , (5.16)

where ρm(z) = 3H2
0(1 + z)3Ωm/(8πG) is the mean density of the Universe at redshift z

and

δc =
200

3
c3

ln(1 + c) − c/(1 + c)
. (5.17)

The two free parameters, rs and c ≡ r200/rs, are the scale radius and concentration
of the profile, respectively. Stacked weak lensing measurements have shown that this
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theoretical profile is a good description, on average, of real galaxy clusters as well
(Oguri et al. 2012; Umetsu et al. 2016). We therefore adopt this parametrization for
the density profile of the host clusters.

The concentration parameter is typically anti-correlated with mass. This relation,
referred to as c(M) hereafter, has been the subject of several studies (e.g., Bullock et al.
2001; Duffy et al. 2008; Macciò et al. 2008; Prada et al. 2012; Dutton & Macciò 2014).
Most of these studies parametrize the c(M) relation as a power law with mass (and
some with redshift as well), with the mass dependence being typically very weak. Since
our sample covers relatively narrow ranges in both quantities (i.e., cluster mass and
redshift), the exact function adopted is of relatively little importance. We therefore
parametrize the mass-concentration relation as a power law with mass,

ch(M200,h) = ac

(
M200,h

1015M�

)bc

(5.18)

where M200,h is the host halo mass within r200,h, and ac and bc are free parameters.
We follow Sifón et al. (2015a) and account for the observed separations between the
satellites and the cluster centre (which we assume to coincide with the BCG) in each
observable bin to model the total host halo contribution to Equation 5.14.

5.5.2 Subhalo contribution

Although in numerical simulations satellite galaxies are heavily stripped by their host
cluster, the effect on their density profile is not well established. For instance, Hayashi
et al. (2003) found that, although tidal stripping removes mass in an outside-in fashion,
tidal heating causes the subhalo to expand, and the resulting density profile is similar
in shape to that of a central galaxy (which has not been subject to tidal stripping).
Similarly, Pastor Mira et al. (2011) found that the NFW profile is a better fit than
truncated profiles for subhaloes in the Millenium Simulation (Springel et al. 2005),
and that the reduction in mass produced by tidal stripping is simply reflected as a
change in the NFW concentration of subhaloes, which have roughly a factor 2–3 higher
concentration than host haloes, consistent with the mass-concentration relation for
subhaloes derived by Moliné et al. (2017) from N-body simulations. Moliné et al. (2017)
further showed that the subhalo concentration depends on cluster-centric distance,
with subhaloes closer in having a larger concentration as a result of the stronger
stripping.

We therefore assume that the density profile of subhaloes can also be described by
an NFW profile. We adopt the subhalo mass-concentration relation derived by Moliné
et al. (2017), which depends on both the subhalo mass and its halo-centric distance,

csub(m200, x) =c0

1 +

3∑
i=1

[
ai log

(
m200

108 h−1M�

)]i


×
[
1 + b log x

]
,

(5.19)

where x ≡ rsat/rh,200 (defined in three-dimensional space), c0 = 19.9, ai = {−0.195, 0.089, 0.089}
and b = −0.54.

Note that the quantity m200 is used for mathematical convenience only, but is not
well defined physically. Instead, we report subhalo masses within the radius at which
the subhalo density matches the background density of the cluster at the distance of
the subhalo in question (which we denote rbg), and refer to this mass as mbg. This



Satellite galaxy-galaxy lensing in low-z clusters 147

radius rbg scales roughly with cluster-centric distance as rbg ∝ (Rsat/r200,h)2/3 (see also
Natarajan et al. 2007, for a comparison between mbg and m200). The reported subhalo
masses are therefore similar to those that would be measured by a subhalo finder
based on local overdensities such as subfind (Springel et al. 2001), which allows us to
compare our results with numerical simulations consistently.

Because the density profile is a steep function of cluster-centric distance, we take
the most probable three-dimensional cluster-centric distance, 〈rsat〉, to be equal to the
weighted average of the histogram of two-dimensional distances, Rsat:

〈rsat〉 =

∑
i n(Rsat,i)Rsat,i∑

i n(Rsat,i)
, (5.20)

where the index i runs over bins of width ∆Rsat = 0.1 Mpc (see Figure 5.1). We use this
〈rsat〉 in Equation 5.19.

5.5.3 Fitting procedure

We fit the model presented above to the data using the affine-invariant Markov Chain
Monte Carlo (MCMC) ensemble sampler emcee (Foreman-Mackey et al. 2013). This
sampler uses a number of walkers (set here to 5000) which move through parameter
space depending on the position of all other walkers at a particular step, using a
Metropolis Hastings acceptance criterion (see Goodman & Weare 2010, for a detailed
description). The loss function to be maximized is defined as

L =
1

(2π)k2/2

k∏
m=1

k∏
n=1

1
√

det(Cmn)

× exp
[
−

1
2

(O − E)T
mC
−1
mn(O − E)n

]
,

(5.21)

where k = 5 is the number of bins into which the sample is split (in stellar mass
or cluster-centric distance bins); O and E are the observational data vector and the
corresponding model predictions, respectively; C is the covariance matrix; det(·) is the
determinant operator; and the index pair (i, j) runs over data points in each bin (m, n).
As implied by Equation 5.21, we account for the full covariance matrix, including
elements both within and between observable bins.

We quote the prior ranges and marginalized posterior central values and 68 per
cent uncertainties for all free parameters in our model in Table 5.2, both when binning
by stellar mass and by cluster-centric distance (each discussed in Sections 5.6 and
5.7, respectively). Although we quote parameters of host clusters, we treat them as
nuisance parameters throughout. Note that priors are defined in real space, and are
only quoted as logarithmic quantities in Table 5.2 for convenience. As a result, when
poorly constrained by the data, posterior host cluster masses are unrealistically high.
For guidance, the values in Table 5.2 can be compared to dynamical masses and weak
lensing masses reported for the same clusters by Sifón et al. (2015b) and Herbonnet
et al. (in prep.), which suggest an average cluster mass M200,h ∼ 6 × 1014 M�.

5.6 The subhalo-to-stellar mass relation

We first bin the sample by stellar mass, as shown in the top-left panel of Figure 5.1.
The ESD of the five bins, along with the best-fit model, are shown in Figure 5.9. The
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Figure 5.10: Stellar-to-subhalo mass relation. Big black circles in both panels correspond to
the best-fit subhalo masses of spectroscopic plus red sequence satellites, assuming the subhalo
mass-concentration relation of Moliné et al. (2017). The grey line and shaded regions show the
best-fit linear relation using the BCES X2|X1 estimator and the 68 per cent confidence interval
on the fit, respectively. Subhalo masses refer to the mass within rbg (see Section 5.5.2). The
left panel shows for comparison the stellar-to-halo mass relations of central galaxies (where
halo mass refers to M200,h) from galaxy-galaxy lensing measurements by van Uitert et al.
(2016) and specifically of red central galaxies by Velander et al. (2014) and Mandelbaum
et al. (2016), plus the relation from combined lensing and clustering measurements by Zu &
Mandelbaum (2015). The right panel shows measurements of subhalo masses as a function
of stellar mass by Li et al. (2016) (green triangles), in addition to the subhalo-to-stellar mass
relations for satellite galaxies in the EAGLE simulation (Velliscig et al. 2016), and from
abundance matching applied to galaxy clustering measurements by Rodŕıguez-Puebla et al.
(2013) as a cyan band (with the width corresponding to the error on the mean) and a brown
line, respectively.
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best-fit masses resulting from this model are shown in both panels of Figure 5.10.
We fit a power law relation6 between subhalo and stellar masses using the BCES
X2|X1 estimator, an extension of least squares linear regression which accounts for
measurement uncertainties on both variables (although here we neglect uncertainties
on the average stellar masses) and intrinsic scatter (Akritas & Bershady 1996), and
find an approximately linear relation,

mbg

M�
= 1011.66±0.07

(
m?

2 × 1010M�

)0.94±0.15

. (5.22)

We remind the reader that this relation applies to the subhalo mass, mbg, within the
radius rbg where the subhalo density equals the host halo background density. If we
replace mbg with m200, the normalization increases by a factor 2.8, while the best-fit
slope is 0.96 ± 0.14, indistinguishable from that reported in Equation 5.22. We also
tested that varying the concentration of subhaloes by 20 per cent does not change the
slope of the SHSMR.

5.6.1 The SHSMR in the context of the total-to-stellar mass relation
of central galaxies

We also show in the left panel of Figure 5.10 various determinations of the relation
between total and stellar mass of central galaxies from the literature (Velander et al.
2014; Zu & Mandelbaum 2015; Mandelbaum et al. 2016; van Uitert et al. 2016), where
halo mass refers to M200.7 These have all been determined with weak lensing measure-
ments (in combination with measurements of galaxy clustering and the stellar mass
function in the cases of Zu & Mandelbaum 2015; van Uitert et al. 2016, respectively),
and are broadly consistent with each other. Both Velander et al. (2014) and Mandel-
baum et al. (2016) divided their samples into red and blue centrals, and we only show
their results for red galaxies since MENeaCS satellites are in their great majority red
as well. Indeed, small differences between some of these determinations are probably
driven by the different galaxy samples used in each study, and are not relevant for
the present discussion. In particular, Mandelbaum et al. (2016) found good agreement
with the model of Zu & Mandelbaum (2015) once the galaxy samples are matched
between the two studies.

The comparison between the central total-to-stellar mass relation and the satellite
SHSMR is however not straightforward. In principle, we may consider in the case
of central galaxies that Mbg = M200, so at least the mass definitions can be regarded
consistent. However, identifying the progenitors of present-day satellites is not an easy
task, as there is evidence that most satellites in massive clusters today were part of
smaller groups long before entering their current hosts. In the context of the decreased
star formation of satellite galaxies, this is usually referred to as ‘pre-processing’ (e.g.,
McGee et al. 2009; Gabor & Davé 2015; Haines et al. 2015). The impact of this pre-
processing on the total mass content of present-day satellites is unknown. Nevertheless,
we can make a phenomenological comparison. We find that at log mbg . 10.3 the
shape of the SHSMR coincides with that of the analogous relation for central galaxies,
consistent with the prediction that galaxies lose dark matter more easily than stellar
matter (e.g., Chang et al. 2013). We also cautiously note an increased difference in

6Our choice of a single power law to model the SHSMR is motivated only by our limited statistics.
7We scale all these relations to both the value of H0 and the definition of halo mass—that is, M200

defined with respect to the average Universal density—adopted in this paper.
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Figure 5.11: Ratio of subhalo masses measured in this work to central halo masses from dif-
ferent observational studies (solid lines) and measured in the EAGLE simulation by Velliscig
et al. (2016) (black dashed line), at fixed stellar mass. The ratios for Velander et al. (2014)
and Mandelbaum et al. (2016) are linearly interpolated from the data points. Note that
statistical uncertainties dominate measurements at m? . 2 × 1010 M�. See Figure 5.10 for a
more detailed description of the different measurements.

the SHSMR with the relation for centrals at high masses, m & 1011 M�, which may
suggest that massive satellites lose dark matter more easily than lower-mass satellites,
compared to their stellar mass loss. This may for instance be related to the fact
that dynamical friction pulls more massive satellites toward the centre more efficiently
(compared to lower mass galaxies), where tidal forces are stronger. If stellar mass is
more resistant to tidal stripping then we would expect satellite galaxies with larger
stellar masses to have a lower total-to-stellar mass ratio, as observed.

Velander et al. (2014) and Mandelbaum et al. (2016) constrained the total-to-
stellar mass relation of central galaxies making use of a mixture of central and satellite
galaxies, assuming that subhaloes have lost approximately half of their mass since
being accreted onto the clusters. They achieve this by truncating the NFW density
profiles of subhaloes at rt = 0.4r200 (Mandelbaum et al. 2005b), but they do not fit
for any parameter relating to the subhalo contribution to their signal except for the
fraction of satellite galaxies (which are hosted by subhaloes). We show in Figure 5.11
the ratio between our subhalo masses (more precisely, of the power-law fit to them)
and the central halo masses shown in the left panel of Figure 5.10. For red galaxies
(Velander et al. 2014; Mandelbaum et al. 2016) the ratio reaches a maximum of 0.5-0.6
at m? = (2 − 4) × 1010 M�, but quickly drops for both lower and higher stellar masses,
reaching ∼ 20 per cent at the low- and high-stellar mass ends probed here, although
we note that uncertainties are significant at the low mass end (cf. Figure 5.10). If we
interpret this as the fraction of mass that has not been lost to tidal stripping (that
is, we assume we can directly compare present-day satellites to present-day centrals),
then this impacts the total-to-stellar mass relation of central galaxies when centrals and
satellites are not separated a priori, as done by van Uitert et al. (2016). As discussed
by Velander et al. (2014), the effect of this increased fraction of stripped material
on the inferred halo masses is to reduce halo masses, by an amount that depends on
both the level of stripping and the satellite fraction in the sample. Since the satellite
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Table 5.2: Prior ranges and marginalized posterior estimates of best-fitting parameters of the
satellite lensing model. Masses are in units of M�. Uncertainties correspond to 68 per cent
credible intervals. All parameters have flat priors in the quoted ranges. Note that priors are
defined in linear, rather than logarithmic, space. The binning schemes are summarized in
Table 5.1.

Parameter Prior m? bins Rsat bins
range (Section 5.6) (Section 5.7)

log〈mbg,1〉 [7, 14] 10.64+0.35
−0.60 10.88+0.27

−0.37
log〈mbg,2〉 [7, 14] 11.58+0.16

−0.18 11.60+0.12
−0.13

log〈mbg,3〉 [7, 14] 11.80+0.15
−0.17 11.60+0.18

−0.19
log〈mbg,4〉 [7, 14] 11.98+0.12

−0.13 11.19+0.30
−0.44

log〈mbg,5〉 [7, 14] 12.14+0.16
−0.22 . . .

ac,h [0, 10] 6.2+0.6
−0.7 5.1+1.1

−1.3
bc,h [−1, 1] −0.82+0.15

−0.11 −0.48+0.25
−0.22

log〈Mh,1〉 [13, 16] 15.19+0.29
−0.18 15.10+0.52

−0.34
log〈Mh,2〉 [13, 16] 15.00+0.14

−0.11 15.62+0.19
−0.17

log〈Mh,3〉 [13, 16] 15.23+0.28
−0.17 15.68+0.24

−0.60
log〈Mh,4〉 [13, 16] 15.03+0.32

−0.13 15.68+0.23
−0.42

log〈Mh,5〉 [13, 16] 15.69+0.24
−0.30 . . .

fraction can be high at low stellar masses (e.g., > 40 per cent at m? < 1010 M� in
Velander et al. 2014), a stripping of 80 per cent of the mass of subhaloes could have
an appreciable effect. Exactly how much of an effect that is will also depend on the
effect the stripping has on the density profile, however, and is not easy to quantify in
advance. At the very least, our results should inform systematic uncertainty budgets
for estimations of the total-to-stellar mass relation of central galaxies when the sample
of lenses includes satellite galaxies as well.

Irrespective of whether present-day satellites are at all comparable to present-day
centrals, the solid lines shown in Figure 5.11 represent a direct, quantitative pre-
diction for hydrodynamical simulations. As shown in Figure 5.11, the same ratio
measured in the EAGLE simulation yields significantly different results, with a ratio
mbg/M200,central < 0.1 for all stellar masses m? < 2×1011 M�. This suggests that subhalo
masses are low in EAGLE. We discuss possible origins for this discrepancy in the next
section.

5.6.2 Comparison to other subhalo measurements and predictions

In the right panel of Figure 5.10, we compare our measurements to a previous mea-
surement of subhalo mass as a function of stellar mass by Li et al. (2016). We also
compare to determinations of the subhalo-to-stellar mass relation in low-mass galaxy
clusters (Mh . 1014 M�) from measurements in the EAGLE simulation (Crain et al.
2015; Schaye et al. 2015) devised to match the satellite sample of Sifón et al. (2015a)
by Velliscig et al. (2016), and from a combination of galaxy clustering measurements
and abundance matching predictions by Rodŕıguez-Puebla et al. (2013)8.

8Rodŕıguez-Puebla et al. (2013) used their measurements to fit for m?(m), which we invert by
Monte Carlo-sampling their relation accounting for the subhalo mass function at the time of infall
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The measurements by Li et al. (2016) are consistent with our results within their
comparatively large errorbars. It is worth noting that the high-stellar mass mea-
surement by Li et al. (2016) supports our tentative detection of a difference between
the SHSMR and the relation for central galaxies at the high mass end of subhaloes,
m & 1011 M�. Their measurement is in fact consistent with a simple extrapolation
of Equation 5.22. However, this comparison should be taken with care, as both the
adopted density profiles and the mass definitions are different between us and Li et al.
(2016).

Combining our measurements with those of Li et al. (2016), we find that satel-
lite galaxies in EAGLE have a steeper SHSMR than the observations require. This
may be due to the efficiency of tidal stripping implemented in the simulations, but
it is likely that this is also influenced by technical differences such as assumptions
about the density profiles and mass definitions. The EAGLE simulation was cali-
brated to measurements of the stellar mass function at z = 0.1 assuming the same
Chabrier (2003) IMF, and subhaloes and galaxies are identified, and their masses cal-
culated, using subfind, so in terms of definitions the comparison with our work seems
consistent. However, Knebe et al. (2011) have shown that the accuracy of subhalo
masses estimated by subfind depends significantly on halo-centric distance. Given
that more massive satellites are generally located further out than less massive satel-
lites (conversely, the average stellar mass at Rsat ∼ 0.2 Mpc is rougly 60 per cent that
at Rsat ∼ 1.5 Mpc cf. Table 5.1), this bias in subfind might exacerbate real differences
at low masses somewhat. This should not, however, strongly affect the high mass
end. We also note that Velliscig et al. (2016) have shown that, on average, the excess
surface density around subhaloes in EAGLE is consistent with lensing measurements
of observed satellite galaxies, but the number of subhaloes per host halo in EAGLE
can appear inconsistent with the observations if the selection function is not carefully
accounted for. It is plausible that a combination of biases in subfind and inconsistent
satellite fractions might explain the observed difference.

Similarly, the abundance matching-based measurement of Rodŕıguez-Puebla et al.
(2013) is significantly lower than our measurements at stellar masses m? & 5× 109 M�.
At face value, this suggests that subhalo abundance matching does not capture the
relation between total and stellar mass properly. The existence of assembly bias—the
hypothesis that the correspondence between halo mass and stellar mass depends on
halo formation history (Gao et al. 2005)—would indeed mean that this is the case,
but the extent of this problem is not well determined. Much work is devoted these
days to the characterization and modelling of assembly bias (e.g., Hearin et al. 2016),
and future work may be able to determine the role of assembly bias, or other effects,
in this comparison.

5.7 Subhalo mass segregation

In this section we explore the dependence of subhalo mass on the distance to the clus-
ter centre. van den Bosch et al. (2016) have shown using N-body simulations that,
although subhalo mass segregation is seen more strongly in three dimensions, the pro-
jected halo-centric distance still preserves some of the correlation of subhalo physical
parameters with the binding energy, which is closely related to the time a subhalo has
spent bound to the host halo. However, after multiple orbits the correlation is sig-
nificantly reduced because at any particular (projected) distance from the halo centre

from van den Bosch et al. (2016), including intrinsic scatter, and binning the data points by m?.
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Figure 5.12: Excess surface mass density (black points with errorbars) and best-fit NFW
model (black line) of satellites binned by cluster-centric distance. Blue lines show best-fit
models while orange and yellow regions show 68 and 95 per cent credible intervals. The
model for the host clusters is not flexible enough because the small field of view (in physical
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Figure 5.13: Best-fit subhalo-to-stellar mass ratio as a function of projected distance to the
cluster centre, in units of r200 of the host cluster assuming M200,h = 6 × 1014 M� (see text).
Uncertainties show 68 per cent credible intervals. As in Figure 5.10, subhalo masses refer to
the mass within rbg. Also shown are previous measurements from Sifón et al. (2015a) and
Li et al. (2016). The orange band shows a prediction for the total-to-stellar mass ratio as
a function of Rsat from numerical simulations from van den Bosch et al. (2016), which give
m/macc(Rsat) (where macc is the subhalo mass at the time at accretion), combined with the
semi-analytic macc(m?) predictions from Wang et al. (2013) for the median stellar masses in
the five Rsat bins (cf. Table 5.1). For illustration purposes, the orange band has a width of 20
per cent.
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there are subhaloes with a wide range of infall times. We might therefore expect satel-
lites at similar Rsat to have been part of similar halo-subhalo interactions on average,
but with a large scatter in their individual histories.

Figure 5.12 shows the measured ESD and best-fit model when we split the satellite
sample into four Rsat bins. Because of the finite field of view of our observations, we
cannot average galaxy shapes in full annuli with large lens-source separations around
most lenses, so additive biases do not cancel out. For this reason, in this section we only
use measurements out to lens-source separations R = 0.6 Mpc. At larger separations
the signal is dominated by the host clusters, with little to no contribution from the
subhaloes, and we have verified that subhalo masses are not affected by this cut.

5.7.1 Comparison to theoretical predictions

van den Bosch et al. (2016) have shown that the parameter that correlates most
strongly with both binding energy and halo-centric distance is the ratio m/macc, where
macc is the mass of the subhalo at the time of its accretion onto the main halo. This is
because of the average relation between time a subhalo has spent in the host halo (or
the accretion redshift, for a given redshift of observation) and the subhalo’s distance
to the halo centre, combined with the strong dependence of the mass ratio to the time
since accretion as a result of tidal stripping.

We show the posterior subhalo masses, normalized by the median stellar mass
in each bin, in Figure 5.13. In order to compare with literature measurements and
predictions, we normalize cluster-centric distances by cluster radius r200,h. Following
the discussion in Section 5.5.3, we adopt a mean cluster mass M200,h = 6 × 1014 M�
suggested by galaxy velocity dispersions and weak lensing measurements by Sifón
et al. (2015b) and Herbonnet et al. (in prep.), respectively, instead of the posterior
masses reported in Table 5.2. We find no statistically significant evidence for subhalo
mass segregation, with an overall average ratio 〈mbg/m?〉 = 21.5+6.3

−5.5.
We also show in Figure 5.13 a prediction obtained by combining numerical sim-

ulations and a semi-analytic model, as follows. We use the average m/macc (that is,
the ratio between present mass and mass at the time of accretion) as a function of
projected distance measured by van den Bosch et al. (2016) for subhaloes in a set of
N-body simulations. We combine these predictions with macc(m?) estimated by Wang
et al. (2013)9 by fitting predictions from semi-analytical models to the stellar mass
function and the clustering of SDSS galaxies, adopting the median stellar masses for
each cluster-centric bin, as quoted in Table 5.1. These predictions are in good agree-
ment with our measurements, and show that we do not expect to see a dependence of
the subhalo-to-stellar mass ratio with cluster-centric distance with the current uncer-
tainty levels.

Note that the normalization of the predicted subhalo-to-stellar mass ratio is fixed
by the m?(macc) relation, and has not been adjusted to match our results, except for
the use of the stellar masses of Table 5.1 as input to the macc(m?) relation. The fact
that the predicted normalization of m/m? is consistent with our data lends credence
to our definition of subhalo mass as mbg or, at the very least, supports the idea that
the comparison with theoretical predictions is internally consistent. In fact, van den
Bosch et al. (2016) based their analysis on the rockstar phase-space halo finder
(Behroozi et al. 2013) which has been shown to accurately recover subhalo masses

9Similar to the treatment of the m?(m) relation of Rodŕıguez-Puebla et al. (2013), we Monte-Carlo
sample the m?(macc) relation of Wang et al. (2013), convolved with the subhalo mass function and
accounting for intrinsic scatter, in order to recover macc(m?).
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at all halo-centric distances; most other subhalo finders (including subfind) tend to
underestimate subhalo masses closer to the halo centre (Knebe et al. 2011).

5.7.2 Previous measurements of subhalo mass segregation

Several previous observational studies have focused on the mass segregation of sub-
haloes. However, differences in the adopted density profiles, mass definitions, and the
fact that some works did not report the masses of the host clusters (nor normalized
cluster-centric distance by host cluster size), preclude a detailed comparison with our
results. To contextualize our results, we nevertheless compare these studies to the
present one in a qualitative sense.

Okabe et al. (2014) measured the lensing signal of galaxy- and subgroup-scale sub-
haloes in the Coma cluster. They found that, while subgroup-scale subhaloes (which
they analyzed individually) are better fit by truncated profiles, a stack of individual
luminous galaxies is well-fit by a simple NFW model like the one adopted in this work,
with no discernible truncation radius. This suggests that, maybe, the stacking of sub-
haloes with varying truncation radii, produces an average signal in which a truncation
radius is no longer discernible. However, this contrasts with the results of Natarajan
et al. (1998, 2002, 2007, 2009) and Limousin et al. (2007), who found evidence for
galaxy truncation by interpreting the weak lensing signal of cluster galaxies using a
maximum likelihood approach. Moreover, these studies found significant evidence for
smaller truncation radii (or, equivalently, more compact cores) in galaxies closer to the
cluster centres. It is unclear whether the methodology itself allowed the latter set of
authors to detect a truncation radius while our methodology is more limiting in this
respect, or if the parametrization of the subhalo mass density profile has any influence
on this discrepancy, as argued by Pastor Mira et al. (2011). Since the papers above
do not show the signal from which their results are derived, it is difficult to assess
the origin of the different conclusions we reach compared to theirs. Our detailed as-
sessment of shape measurements in Section 5.4 makes it unlikely that truncation radii
of order 10–20 kpc can be detected directly with weak lensing measurements using
ground-based observations (as suggested by Limousin et al. 2007), unless perhaps if
lens galaxies were subtracted from the images before the analysis, something we will
explore in future work. On the other hand, by incorporating the spatial distribution
of galaxies into the analysis, one may potentially be able to extract more information
than our methodology allows. As it stands, this difference remains unresolved.

More recently, several authors have measured the stacked weak lensing signal as a
function of cluster-centric distance, producing results that are more directly compara-
ble to ours. As mentioned in the preceding section, Sifón et al. (2015a) also found no
significant segregation of subhalo mass in GAMA groups using weak lensing measure-
ments from KiDS. The results of Niemiec et al. (2017) also suggest no evidence for
mass segregation10. In contrast, Li et al. (2016) found a factor 10 increase in subhalo-
to-stellar mass ratio going from Rsat ∼ 0.3r200,h to Rsat ∼ r200,h.11 As shown in Figure
5.13, Li et al. (2016) probe cluster-centric distances larger than we do, and it is pos-
sible that the effect would be more apparent at larger distance. We caution, however,

10Niemiec et al. (2017) interpret their measurements as evidence of tidal stripping, given that galax-
ies closer to the centre have smaller total-to-stellar mass ratios than galaxies further out. However,
their results show that there is only a 1σ difference between galaxies closer in and further out, and
we instead choose to interpret them as showing no evidence for mass segregation.

11Li et al. (2016) do not report the masses of the host clusters; we adopt a mass M200,h = 1014 M�
to estimate r200,h.
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that Li et al. (2016) used the photometric redMaPPer cluster catalogue (Rykoff et al.
2014) to construct their lens sample. Sifón et al. (2015b) showed that even in the case
of unbiased photometric redshifts, samples of galaxies selected to be at the cluster
redshift are significantly contaminated at large distances. It is therefore possible that
the trend observed by Li et al. (2016) may be due at least in part to contamination by
unrelated galaxies although the use by Li et al. (2016) of only high-probability cluster
members (based on the redMaPPer definition) may somewhat mitigate this (see Zu
et al. 2016).

5.8 Conclusions

We present the average masses of satellite galaxies in massive galaxy clusters at 0.05 <
z < 0.15 using weak galaxy-galaxy lensing measurements. We use a combination of
deep, wide-field observations of galaxy clusters and extensive archival spectroscopic
data (Sifón et al. 2015b). Using extensive image simulations of bright lenses in the
foreground of a population of field galaxies resembling the source population in our
data, we model and account for biases arising from (i) shape measurements, due to
confusion of light from the lens with the faint sources, and (ii) contamination of the
source sample by faint cluster members (Section 5.4).

We model the lensing signal from subhaloes using an NFW profile and the subhalo
mass-concentration relation measured from N-body simulations by Moliné et al. (2017),
which depends on cluster-centric distance. We split the sample in bins of stellar
mass and measure the subhalo-to-stellar mass relation (SHSMR) of galaxies in massive
clusters. Fitting the resulting masses with a power-law relation, we find log mbg =

(11.66± 0.07) + (0.94± 0.15) log m? (Figure 5.10). The slope of this relation is robust to
both the adopted subhalo mass-concentration relation and the subhalo mass definition.
We find that at a characteristic stellar mass of ∼ 3×1010 M�, the ratio between subhalo
mass and host halo mass is maximal, reaching a value of approximately 0.5, and
dropping to 0.2 at the high-mass end (Figure 5.11). This behaviour is likely caused
by a combination of tidal stripping and dynamical friction.

We also study the masses of subhaloes at different cluster-centric distances with
the aim of studying the evolution of subhaloes within clusters. We find no statisti-
cally significant evidence for mass segregation and a mean total-to-stellar mass ratio
〈mbg/m?〉 = 21.5+6.3

−5.5 (Figure 5.13). Our results are consistent with predictions from a
combination of numerical simulations and semi-analytic models and with some, but
not all, previous results. Although direct comparison with the observational litera-
ture is complicated by the use of different definitions and conventions, our results are
generally consistent within the overlapping stellar mass and cluster-centric distance
ranges.

The halo model commonly employed in galaxy-galaxy lensing studies requires some
assumptions about the density profiles of the subhaloes hosting satellite galaxies. At
low stellar masses (M? . 1010M�), most red galaxies seem to be satellites (Mandelbaum
et al. 2006; Velander et al. 2014). Therefore, host halo masses at low stellar masses are
determined through the halo model based on observations of what are mostly satel-
lite galaxies; degeneracies in the halo model dominate the resulting masses (Velander
et al. 2014). While we are not able to constrain the density profiles of subhaloes at
present, the subhalo-to-stellar mass relation is an important ingredient that could be
incorporated in future galaxy-galaxy lensing analyses to inform these choices.
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Kriek M., van Dokkum P. G., Labbé I., Franx M., Illingworth G. D., Marchesini D.,
Quadri R. F., 2009, ApJ, 700, 221

Lacey C. G., et al., 2015, preprint, (arXiv:1509.08473)

Laigle C., et al., 2016, ApJS, 224, 24

http://dx.doi.org/10.1093/mnras/stu2399
http://adsabs.harvard.edu/abs/2015MNRAS.447..374G
http://dx.doi.org/10.1111/j.1745-3933.2005.00084.x
http://adsabs.harvard.edu/abs/2005MNRAS.363L..66G
http://dx.doi.org/10.1046/j.1365-8711.1998.01146.x
http://adsabs.harvard.edu/abs/1998MNRAS.295..497G
http://dx.doi.org/10.1046/j.1365-8711.1998.01918.x
http://adsabs.harvard.edu/abs/1998MNRAS.300..146G
http://adsabs.harvard.edu/abs/1998MNRAS.300..146G
http://dx.doi.org/10.2140/camcos.2010.5.65
http://dx.doi.org/10.2140/camcos.2010.5.65
http://arxiv.org/abs/1610.01160
http://dx.doi.org/10.1086/526794
http://adsabs.harvard.edu/abs/2008PASP..120..212G
http://dx.doi.org/10.1088/0004-637X/806/1/101
http://adsabs.harvard.edu/abs/2015ApJ...806..101H
http://dx.doi.org/10.1086/510555
http://adsabs.harvard.edu/abs/2007ApJ...656..739H
http://dx.doi.org/10.1093/mnras/stv2900
http://adsabs.harvard.edu/abs/2016MNRAS.457.1208H
http://dx.doi.org/10.1088/0004-637X/702/1/745
http://adsabs.harvard.edu/abs/2009ApJ...702..745H
http://dx.doi.org/10.1086/345788
http://adsabs.harvard.edu/abs/2003ApJ...584..541H
http://dx.doi.org/10.1093/mnras/stw840
http://adsabs.harvard.edu/abs/2016MNRAS.460.2552H
http://dx.doi.org/10.1111/j.1365-2966.2006.10198.x
http://adsabs.harvard.edu/abs/2006MNRAS.368.1323H
http://dx.doi.org/10.1111/j.1745-3933.2006.00208.x
http://adsabs.harvard.edu/abs/2006MNRAS.371L..60H
http://dx.doi.org/10.1111/j.1365-2966.2007.11951.x
http://adsabs.harvard.edu/abs/2007MNRAS.379..317H
http://dx.doi.org/10.1086/306102
http://adsabs.harvard.edu/abs/1998ApJ...504..636H
http://dx.doi.org/10.1086/308556
http://adsabs.harvard.edu/abs/2000ApJ...532...88H
http://dx.doi.org/10.1086/496913
http://adsabs.harvard.edu/abs/2005ApJ...635...73H
http://dx.doi.org/10.1111/j.1365-2966.2012.22072.x
http://adsabs.harvard.edu/abs/2012MNRAS.427.1298H
http://dx.doi.org/10.1093/mnras/stv275
http://adsabs.harvard.edu/abs/2015MNRAS.449..685H
http://dx.doi.org/10.1086/176071
http://adsabs.harvard.edu/abs/1995ApJ...449..460K
http://dx.doi.org/10.1086/307122
http://adsabs.harvard.edu/abs/1999ApJ...516..530K
http://dx.doi.org/10.1111/j.1365-2966.2011.18858.x
http://adsabs.harvard.edu/abs/2011MNRAS.415.2293K
http://dx.doi.org/10.1088/0004-637X/700/1/221
http://adsabs.harvard.edu/abs/2009ApJ...700..221K
http://arxiv.org/abs/1509.08473
http://dx.doi.org/10.3847/0067-0049/224/2/24
http://adsabs.harvard.edu/abs/2016ApJS..224...24L


Satellite galaxy-galaxy lensing in low-z clusters 159

Leauthaud A., et al., 2012, ApJ, 744, 159

Li R., Mo H. J., Fan Z., Yang X., Bosch F. C. v. d., 2013a, MNRAS, 430, 3359

Li C., Wang L., Jing Y. P., 2013b, ApJL, 762, L7

Li R., et al., 2014, MNRAS, 438, 2864

Li R., et al., 2016, MNRAS, 458, 2573

Limousin M., Kneib J.-P., Natarajan P., 2005, MNRAS, 356, 309

Limousin M., Kneib J. P., Bardeau S., Natarajan P., Czoske O., Smail I., Ebeling H.,
Smith G. P., 2007, A&A, 461, 881

Luppino G. A., Kaiser N., 1997, ApJ, 475, 20
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Figure 5.14: Additive tangential shear biases measured in three sets of image simulations as
shown in the legend, which shows the magnitude and size (in pixels = 0.185 arcseconds) of
each set. The three examples correspond to big bright (yellow triangles), average (purple
squares), and small faint (black circles) simulated lenses, and illustrate the range of biases.
The relevance of each set with respect to the real satellite galaxies can be seen in Figure 5.2:
both extremes are very rare, while the purple set corresponds to the most common (mag,size)
configuration. Data points with errorbars show measured tangential shear and solid lines
show Gaussian fits to each set of simulations. Empty points are biased because they are
adjacent the chosen truncation radius of the lenses, and are excluded from the fits.
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lines connect simulation sets with the same half-light radius as shown in the legend.
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5.A Lens-induced bias on the shape measurements

Extended light from bright lens galaxies affects measurements of sources, such that
their shapes are estimated to be more radially elongated than they really are. This
induces a negative additive bias in the coordinate frame of the lens galaxy, which we
label ct.

In order to account for this bias we measure the shapes of galaxies in the image
simulations of Hoekstra et al. (2015), after adding bright lens galaxies in a grid pattern
(separated by 1 arcmin from each other). These injected lenses are modelled as a
circular Sérsic (1968) profile (i.e., I(r) ∝ r1/n) using galsim, with a power-law index
n = 4. A Sérsic profile with a high index has very extended wings and to avoid the
surface brightness profiles of different lenses to overlap we truncate the lens profiles at
5 seff , where seff is the effective, or half-light, radius of the Sérsic profile. The source
galaxies in the image simulations have a constant shear applied to them, which cancels
out when we average over an isotropic grid of shears. Therefore any measured shear
in the tangential frame can be attributed to a bias induced by extended light from
the lenses. The lenses we inject into the simulations span the ranges 14 ≤ mphot ≤ 20
and 3 ≤ seff/pix ≤ 40 (corresponding to 0.′′55 ≤ seff ≤ 7.′′40), and are compared to the
magnitude and size distribution (as measured by galfit, see Sifón et al. 2015b) in
the MENeaCS data in Figure 5.2.

We show the measured ct for three sample sets of simulations in Figure 5.14. We
find that the bias profiles can be well modelled in each bin as a Gaussian centred at
θls = 0,

ct(θls) = abias exp
 −θ2

2σ2
bias

 . (5.23)

We then fit the best-fit parameters abias and σbias as functions of lens magnitude and
size,

abias = −0.81 − 1.22(mphot − 16) − 0.36 log(seff/15 pix),
σbias = 6.27 − 14.01 log(mphot/16) + 7.04 log(seff/15 pix).

(5.24)

Figure 5.15 shows the best-fit individual values of abias and σbias and the values
predicted by Equation 5.24. While at face value Equation 5.24 is not a good description
of the measurements in the simulations for the full (mphot,seff) space (and especially for
σbias), the discrepancy is limited to the extremes of this space. One notable discrepancy
is roughly a 25 per cent difference in the prediction of σbias for (mphot, seff) = (14, 30)
(here, sizes are given in pixels). However, as shown in Figure 5.2, this combination of
magnitude and size accounts for much less than 1 per cent of the lenses in our sample.
The other notable difference happens at (mphot, seff) = (18, 3), but the bias introduced
by such small, faint galaxies is negligible to start with. Moreover, as can be seen in
Figure 5.15, the difference arises because of the degeneracy between the amplitude and
width of the Gaussian, such that the predicted bias is negligible as well.
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6.1 De duistere kant van het Universum

De nachtelijke hemel wordt verlicht door duizenden zichtbare sterren en ontelbaar
meer die niet helder genoeg zijn om met het oog waar te nemen. Al deze sterren vor-
men echter maar een klein deel van alle materie in het Universum. Enorme gaswolken
bevatten het merendeel van deeltjes die in het hele licht spectrum zijn te observeren.
Maar verreweg het meest voorkomend materiaal in het Universum is in de vorm van
de mysterieuze donkere materie. Dit fenomeen is verantwoordelijk voor de grote hoe-
veelheid zwaartekracht die nodig is om astronomische objecten, zoals sterrenstelsels
en clusters van sterrenstelsels, bijeen te houden. Hoewel de zwaartekracht van don-
kere materie reeds in de jaren dertig was opgemerkt, is donkere materie zelf (nog)
niet waargenomen omdat het geen (bekende) interactie heeft met licht. Toch is ook
donkere materie niet het meest dominante ingrediënt van het Universum: ongeveer
75% van het energie budget zit in donkere energie. Donkere energie is een beschrijving
voor de waargenomen versnelde uitdijing van het Universum, terwijl een Universum
gevuld met massa onder de invloed van zwaartekracht steeds langzamer zou moeten
expanderen. De benaming van deze fysische verschijnselen is gekozen omdat men nog
in het duister tast over de theoretische verklaringen ervoor.

Er zijn veel theoretische modellen ontwikkeld om het bestaan van donkere materie
en donkere energie te verklaren, maar tot nu toe heeft geen enkel model een bevredi-
gend antwoord gegeven voor alle kosmologische waarnemingen. Het zoeken van een
fysische oorzaak wordt bemoeilijkt door het feit dat de donkere componenten van het
Universum niet direct waargenomen kunnen worden. Er zijn wel experimenten die
proberen deeltjes, die geproduceerd worden door donkere materie, te detecteren, maar
daar is nog geen positief resultaat uit gekomen. In plaats daarvan worden de gevolgen
van donkere materie en donkere energie bestudeerd en vergeleken met voorspellingen
van theoretische modellen om de fysische oorsprong te achterhalen. Veel kosmologische
onderzoeken richten zich op de totale hoeveelheid van donkere materie en energie in
het Universum. Aan de hand daarvan kunnen fysische eigenschappen worden bepaald,
zoals een mogelijke evolutie van donkere energie met de tijd.

Een van de mogelijkheden voor kosmologisch onderzoek is het in kaart brengen van
de struktuur in het Universum. Materie op kosmische schalen is niet willekeurig ver-
deeld, maar het klontert samen onder de invloed van zwaartekracht. Waarnemingen
laten zien dat materie verdeeld is in een soort kosmisch web, waarbij sterrenstelsels
zich bevinden in lange draden. Waar de draden elkaar kruisen onstaan de grootste
verzamelingen van massa in het Universum: clusters van sterrenstelsels. Simulaties
laten ook zien dat de donkere materie een soortgelijke verdeling heeft en dat de zwaar-
tekracht van de donkere materie de belangrijkste factor is voor het ontstaan van deze
struktuur. Daarentegen wordt de samenklontering tegengewerkt door de uitdijing van
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het Universum. Uit simulaties van hypothetische donkere materie deeltjes blijkt dat de
aanwezigheid van donkere energie er voor zorgt dat er minder van de meest massieve
objecten (ook wel halo’s van donkere materie genoemd) zijn en dat de gemiddelde
massa van halo’s lager is. Door de massa’s en verdeling van halo’s in het Universum te
meten en te vergelijken met simulaties kan de hoeveelheid donkere materie en donkere
energie worden bepaald.

Het bepalen van de verdeling van massa in het Universum vereist een methode om
donkere materie halo’s in kaart te brengen. De grootste verzamelingen van lichtge-
vende deeltjes bevinden zich in massieve wolken van heet gas en in sterrenstelsels en
deze objecten worden door de zwaartekracht van de donkere materie halo’s aangetrok-
ken. De locaties van de heldere objecten, die direct met telescopen waar te nemen
zijn, onthullen dus de verdeling van donkere materie. Echter is de relatie tussen de
hoeveelheid donkere- en lichte materie niet volledig bekend. Dit komt omdat de ver-
scheidenheid aan astrofysische processen, die ondergaan worden door sterrenstelsels
en gaswolken, nog niet volledig begrepen is. Er is dus een directe manier nodig om
de massa van halo’s van donkere materie te meten en daarmee empirisch de relatie
tot heldere objecten te bepalen of de gehele verdeling van donkere materie in kaart
te brengen. Het enige wat bekend is van donkere materie is dat het zwaartekracht
uitoefent en het bestuderen van donkere materie kan dus alleen door middel van de
zwaartekracht.

6.2 Zwaartekrachtslenzen

De algemene relativiteitstheorie van Albert Einstein beschrijft zwaartekracht als de
invloed van een object met massa op de ruimte-tijd eromheen. De omliggende ruimte-
tijd wordt gekromd en door deze kromming wordt het pad van het licht, uitgezonden
door een helder hemellichaam achter het massieve object, verbogen. Het licht van het
achterliggende hemellichaam zal anders worden waargenomen, dan dat het zou wor-
den zonder het massieve object in de voorgrond. De zwaartekracht werkt dus als een
optische lens en het massieve object wordt dan een zwaartekrachtslens genoemd. Voor
kosmologische onderzoeken zijn de zwaartekrachtslenzen voornamelijk grote wolken
van donkere materie en zijn de heldere achtergrond objecten verafgelegen sterrenstel-
sels. Sterrenstelsels zijn grote objecten en licht uit verschillende delen van het stelsel
wordt anders bëınvloed door een zwaartekrachtslens, waardoor het waargenomen beeld
van sterrenstelsels wordt vervormd. Het Hoefijzer sterrenstelsel in Figuur 6.1 is een
van de bekendste voorbeelden van lenswerking door zwaartekracht en laat de vervor-
ming duidelijk zien. De blauwe band is een enkel helder sterrenstelsel direct achter het
centrale gele sterrenstelsel dat door de bijbehorende donkere materie halo is vervormd.
Deze vervorming is een herkenbaar teken van een zwaartekrachtslens en kan gebruikt
worden om de massa van de lens te bepalen. Dit geval van sterke lenswerking gebeurt
alleen bij een sterrenstelsel direct achter een zwaartekrachtlens. Zulke configuraties
zijn zeldzaam.

In het meest voorkomende geval van zwakke lenswerking door zwaartekracht ligt
een sterrenstelsel niet direct achter de zwaartekrachtslens en is het effect een minieme
uitrekking (shear) van het waargenomen licht profiel van het sterrenstelsel. In tegen-
stelling tot de duidelijke vervorming van het Hoefijzer stelsel, is deze shear veel kleiner
dan de intrinsieke elliptische vorm van het sterrenstelsel. Het is dus onmogelijk om
het effect van de zwaartekrachtslens te bepalen voor een enkel stelsel. In plaats daar-
van kan de shear met de vormen van een grote hoeveelheid sterrenstelsels statistisch
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Figuur 6.1: Waarneming met de Hubble Space Telescope van het Hoefijzer sterrenstelsel.
Het blauwe licht wordt uitgezonden door een enkel sterrenstelsel wat door lenswerking door
zwaartekracht wordt vervormd. Hierdoor nemen wij het licht waar in de vorm van een
hoefijzer. Het Hoefijzer sterrenstelsel is een bekend voorbeeld van sterke lenswerking door
zwaartekracht en de massa van de zwaartekrachtslens kan bepaald worden aan de hand het
hoefijzervormige licht. In dit geval is het gelige sterrenstelsel in het midden van het hoefijzer
bij lange na niet zwaar genoeg om het hoefijzer te veroorzaken en dus is er een halo van
donkere materie rond dat sterrenstelsel.

worden gemeten, onder de aanname dat sterrenstelsels gemiddeld cirkelvormig zijn.
Bij een intrinsiek cirkelvormig sterrenstelsel is de enige uitrekking afkomstig van de
zwaartekrachtslens en dus kan de shear gëısoleerd worden voor een verzameling van
sterrenstelsels. De aanname vereist een zo groot mogelijke hoeveelheid waargenomen
sterrenstelsels om de statistische fout door de intrinsieke vormen te verminderen. Ex-
perimenten met zwakke lenswerking (door zwaartekracht) gebruiken dus een zo groot
mogelijk oppervlak aan de hemel.

Een belangrijk onderdeel van onderzoek naar zwaartekrachtslenzen is het precies
meten van de vormen van sterrenstelsels. Aangezien sterrenstelsels ruwweg kunnen
worden beschreven als ellipsen, kan uit de ratio van de lengte van de assen de ellip-
ticiteit worden bepaald, die wiskundig te relateren is aan de shear. Het bepalen van
de ellipticiteit van een sterrenstelsel wordt bemoeilijkt door de andere processen die
licht ondergaat als het zich een weg baant door de atmosfeer en de telescoop appa-
ratuur. Dit zorgt voor versmering van het lichtprofiel van het sterrenstelsel met een
puntspreidingsfunctie (PSF) en daarnaast is er altijd ruis in de observaties. Beide ef-
fecten kunnen de ellipticiteit van het waargenomen lichtprofiel veranderen en dus een
meetfout in de shear veroorzaken.

Hoewel veel verschillende technieken zijn ontwikkeld om het effect van de PSF
ongedaan te maken, is het effect van ruis pas in de laatste jaren meer bestudeerd. Door
de verbeterde technologie, worden de experimenten met zwakke lenswerking steeds
beter en moeten meetfouten ook beter onder controle worden gehouden. De enige
(beproefde) manier om meetfouten van methoden die vormen meten te bepalen, is
door de lichtprofielen van sterrenstelsels te simuleren na toevoeging van alle oorzaken
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van vervormingen. Doordat de toegevoegde shear bekend is, kan de meetfout precies
worden gekwantificeerd voor specifieke processen die het lichtprofiel bëınvloeden. Deze
simulaties van telescoop opnames vormen de basis voor elk experiment met zwakke
lenswerking door zwaartekracht.

6.3 Dit proefschrift

Dit proefschrift begint met het verbeteren van methodes om shear te meten. In het
tweede deel van het proefschrift verleggen we de aandacht naar metingen van zwakke
lenswerking door zwaartekracht van de grootste structuren in het heelal, met als uit-
eindelijke doel limieten te stellen aan de mogelijke hoeveelheid donkere energie en
materie in het Universum.

In Hoofdstuk 2 ontwikkelen wij een nieuw algoritme om de vormen van sterrenstel-
sels te meten. De nieuwe methode is speciaal ontworpen voor zwakke stelsels waarvoor
het meten van vormen moeilijk is. In tegenstelling tot andere vergelijkbare methoden,
is de deconvolutie van de PSF een analytisch proces, waardoor in principe ook kleine
stelsels kunnen worden bestudeerd. De meetfout door de aanwezigheid van ruis is
klein door het gebruik van een van tevoren vastgestelde gewichtsfunctie en het gebruik
van momenten in plaats van ellipticiteit om de shear te bepalen. Deze meetfout kan
verder worden verminderd door een extra analytisch proces en wij vinden dat ruis een
meetfout van minder dan een procent introduceert. Dit resultaat is goed genoeg voor
de huidige experimenten, al moet de methode nog worden getest voor andere oorzaken
van meetfouten.

Een van de grootste experimenten voor zwakke lenswerking op dit moment is de
Kilo Degree Survey (KiDS). Dit experiment zal uiteindelijk 1500 vierkante graden van
de hemel bestuderen met behulp van zwakke lenswerking door zwaartekracht en de
verdeling van donkere materie in kaart brengen, om daarmee limieten te zetten op
kosmologische parameters. Het algoritme dat het KiDS team gebruikt om vormen te
meten, moest gekalibreerd worden om de statistiek van de grote dataset volledig uit
te buiten. In Hoofdstuk 3 beschrijf ik de tests die wij hebben gedaan om een betrouw-
bare kalibratie te verzekeren. Met enorme simulaties van de KiDS data, waarbij de
sterrenstelsels gesimuleerd zijn aan de hand van echte data, hebben wij de meetfout
gekwantificeerd. Onrealistische simulaties kunnen een verkeerde meetfout opleveren en
dus heb ik veel aandacht besteed om de eigenschappen van de gesimuleerde sterrenstel-
sels zoveel mogelijk op de echte data te laten lijken. Voor de overgebleven verschillen
heb ik geverifiëerd dat de kalibratie onveranderd bleef als de simulaties wel op de data
lijken. De kalibratie die wij hebben verzorgd, is nauwkeurig tot op 1% en is gebruikt
in, onder andere, de kosmologische analyse.

Een vergelijkbaar onderzoek als dat beschreven in Hoofdstuk 3 heb ik tijdens mijn
promotie traject verricht voor een andere studie, die buiten dit proefschrift beschreven
is. Met dat onderzoek hebben wij een praktische methode om vormen te meten, zeer
nauwkeurig gecorrigeerd voor meetfouten. Deze methode is toegepast op twee grote
collecties van waarnemingen van clusters van sterrenstelsels om de massa’s ervan te
bepalen. Het werk voor een van deze collecties, die de zwaarste clusters bevat met een
roodverschuiving lager dan 0.15, is beschreven in Hoofdstuk 4. De afstanden tussen
de Aarde, de waargenomen clusters, en de vervormde achtergrond stelsels zijn bepaald
met behulp van diepe fotometrische data. Met nog meer simulaties van telescoop
opnames is bepaald hoe clusters de populatie van achtergrond stelsels bëınvloeden en
dus het gemeten shear signaal veranderen. Na correctie voor dit laatste fenomeen,
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heb ik de massa’s gemeten van de clusters en deze vergeleken met andere schattingen
van de massa. De massa gemeten aan de hand van het hete gas is een van de meest
gebruikte indicatoren massa, omdat dit van veel clusters bekend is. Met onze directe
metingen van de verdeling van donkere materie tonen we aan dat de relatie tussen de
twee massa indicatoren afhangt van de massa van het cluster. Met deze relatie kunnen
bestaande catalogi van massa metingen aan de hand van het gas beter gebruikt worden
voor kosmologische analyses.

In Hoofdstuk 5 gebruiken we dezelfde methode als in Hoofdstuk4 op dezelfde clus-
ters en zijn we gëınteresseerd in de struktuur binnen de clusters zelf. Hiertoe meten
wij de massa’s rond satelliet sterrenstelsels in het cluster. Satelliet stelsels zijn ster-
renstelsels, die zich niet in het centrum van het cluster bevinden, omdat ze gëısoleerde
sterrenstelsels waren die het cluster zijn ingevallen. Deze accumulatie van satelliet
stelsels is een van de belangrijkste processen waarmee het cluster meer massa ver-
gaart en toch is er nog maar weinig bekend over de donkere materie halo’s rond deze
satelliet stelsels (subhalo’s). Om de massa van subhalo’s te bepalen, moet de shear
van sterrenstelsels, die zich in projectie dicht bij satelliet stelsels bevinden, gemeten
worden. Het licht van de satelliet stelsels zorgt voor een meetfout en ik heb daarom
nauwkeurig het effect van de nabijheid van deze objecten op de vorm metingen ge-
kwantificeerd. We hebben de relatie tussen de massa’s van subhalo’s en van massa’s in
de sterren in satelliet sterrenstelsels bepaald en vinden overeenstemming met eerder
werk. In tegenstelling tot ander werk vinden wij niet verschillende subhalo massa’s als
functie van nabijheid tot het centrum van het cluster. De onzekerheid in de metingen
is vooralsnog te groot om een duidelijke conclusie te trekken over hoeveel massa van
de subhalo verloren gaat als een satelliet stelsels het cluster invalt. Meer theoretisch
en observationeel onderzoek in dit veld is nodig om de groei van clusters te begrijpen.
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