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Chapter 4.

Molecular dynamics on a curved substrate

The mathematical concept of space-time curvature has funda-
mentally changed the way we perceive and describe the physical
world from the cosmological to the microscopic scale. In soft matter

physics, substrate curvature has been shown to have a remarkable e�ect on
two-dimensional �lms con�ned on it [5, 90, 104, 115, 124]. A common numer-
ical method used to model such soft matter systems is molecular dynamics.
Performing molecular dynamics on curved surfaces is not a straightforward
task. The equations of motion become increasingly harder as the curvature
becomes more complex. Where in the absence of curvature a free particle
follows a straight line, in the presence of curvature a free particle follows a gen-
eralization of a straight line called a geodesic [113], see appendix D. Already in
�at space, conventional numerical solutions to the equations of motion, called
integrators, often fail to preserve the conserved quantities of these equations
of motion, such as energy and momentum [103, 129, 136]. Examples of such
integrators are Forward Euler and Runge–Kutta method, see appendices I and J,
respectively. When an integrator does preserve these symmetries it is called
symplectic. Examples of symplectic integrators in the absence of curvature
are Symplectic Euler and Velocity Verlet, see appendices K and L. Even when
a certain integrator is symplectic in the absence of curvature, however, it is
not necessarily so in the presence of curvature, as these integrators are not
explicitly designed to cope with curvature.

In this chapter, we will use the method of variational integrators [103, 129,
136] to derive a novel symplectic integrator that solves Newton’s equations
in the presence of curvature. First, we will derive Newton’s equations in the
presence of curvature. Second, we discuss how to discretize the equations of
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78 Chapter 4. Molecular dynamics on a curved substrate

motions in time whilst preserving the conserved quantities — by respecting the
Lagrangian symmetries in accordance to Noether’s theorem. Third, we apply
the discussed techniques to derive a novel symplectic integrator algorithm
that solves Newton’s equations in the presence of curvature. Finally, we will
illustrate how to apply the integrator to study the two-dimensional melting
transition in the presence of curvature and give some preliminary results.

4.1 Newton’s equations in the presence of curvature

Newton’s equations on a Riemannian manifold can be found using Lagrangian
mechanics, see appendix C. Let us de�ne the metric tensor on our manifold to
be 𝑔𝜇𝜈 and we �nd the Lagrangian:

𝐿 = 1
2𝑚𝑔𝜇𝜈 𝑥̇

𝜇𝑥̇𝜈 − 𝑉 (𝑥𝜌), (4.1)

where 𝑚 is the mass and 𝑉 (𝑥𝜌) is some arbitrary interaction potential. Upon
applying the Euler–Lagrange equations — eq. (C.3) — we �nd the conservative
version of Newton’s equations of motion in the presence of curvature:

𝑚
(︀
𝑥̈𝜇 + Γ𝜇𝜎𝜌𝑥̇

𝜎𝑥̇𝜌
)︀
= −𝑔𝜇𝜈𝜕𝜈𝑉, (4.2)

which can be made non-conservative by realizing that the right-hand side of
eq. (4.2) is a force:

𝐹𝜇 = 𝑚
(︀
𝑥̈𝜇 + Γ𝜇𝜎𝜌𝑥̇

𝜎𝑥̇𝜌
)︀
. (4.3)

The symbols Γ𝜇𝜎𝜌 in eqs. (4.2) and (4.3) are called the Christo�el symbols of the
second kind. Christo�el symbols of the second kind can be de�ned in terms
of the metric tensor as:

Γ𝜇𝜎𝜌 =
1
2𝑔
𝜇𝜆 (𝜕𝜎𝑔𝜆𝜌 + 𝜕𝜌𝑔𝜎𝜆 − 𝜕𝜆𝑔

𝜎𝜌) , (4.4)

Christo�el symbols of the �rst kind Γ𝜇𝜎𝜌 are de�ned as such:

Γ𝜇𝜎𝜌 = 𝑔𝜇𝜆Γ
𝜆
𝜎𝜌 =

1
2 (𝜕𝜎𝑔𝜇𝜌 + 𝜕𝜌𝑔𝜎𝜇 − 𝜕𝜇𝑔𝜎𝜌) . (4.5)

It is worth noting that the Christo�el symbols are not tensors — they change
when the coordinate system changes. From eq. (4.3) we obtain the geodesic
equations

𝑥̈𝜇 + Γ𝜇𝜎𝜌𝑥̇
𝜎𝑥̇𝜌 = 0. (4.6)

The geodesic equations generalize the notion of a straight path♠ in the presence
of curvature — see appendix D for a more detailed derivation.

♠Often, a straight path is also the shortest.
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4.2 Variational integrators

Among the common methods to solve second order dynamical systems♠
numerically are the Forward Euler and Runge–Kutta methods, see appen-
dices I and J. For Newtonian systems there are, however, some shortcomings
associated with these methods. The problem becomes apparent when consid-
ering the total energy or Hamiltonian 𝐻 of such a system. When we look at
𝐻𝑖+𝑗 −𝐻𝑖 > 0 for 𝑗 > 0 we realize that with increasing time steps the total
energy of the system rises, see appendix M. The algorithms fail to preserve the
Hamiltonian which ought to be constant, see appendix B. As a consequence,
these numerical solutions will hence deviate from the actual path in phase
space. The path could even be attracted by di�erent �xed points — or worse,
diverge, causing numerical explosions. The fundamental problem is that these
algorithms do not respect the Lagrangian symmetries giving rise to conserved
quantities by Noether’s theorem. An energy-conserving numerical method
would be highly desirable. Such an integrator would be symplectic.♡ Symplec-
tic integrators can be found using the method of variational integrators [103,
129, 136].

The idea behind variational integration is best illustrated within La-
grangian mechanics. We know how to derive Newton’s equations of motion,
eqs. (4.2) and (B.4), from the Lagrangian 𝐿 using the Euler–Lagrange equa-
tion, eq. (C.3), by the so-called stationary action principle, as discussed in
section 4.1 and appendix C. The Lagrangian 𝐿 possesses symmetries that
generate conserved quantities. Here, we want to solve the equations of motion
for discrete time steps, recurrently, as our aim is to let a computer solve them.
Hence, if we formulate a discretized version of the stationary action principle
— appropriately — it should yield a discrete solution of the equations of motion
with conservation of Lagrangian symmetries — at least up to certain order.
The resulting numerical scheme is, hence, symplectic by de�nition. This is
essentially what the method of variational integration accomplishes. We will
continue to describe how the action can be discretized.

♠Systems of di�erential equations.
♡Strictly, symplecticity only preserves volume in phase space and total energy is only

conserved for exponentially long periods of time. For variational integrators, however, also
kinetic energy — or momentum — is strictly conserved.
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Let us de�ne the timestep ℎ such that 𝑡𝑖+1 = 𝑡𝑖 + ℎ. A discretized
Lagrangian 𝐿𝐷(𝑥𝜇, 𝑥̇𝜇) is found by:

𝐿𝐷(𝑥
𝜇
𝑖 , 𝑥

𝜇
𝑖+1) =

ˆ 𝑡𝑖+1

𝑡𝑖

𝐿(𝑥𝜇, 𝑥̇𝜇, 𝑡) d𝑡. (4.7)

The action, eq. (C.1), in terms of the discretized Lagrangian is then given by

𝑆 =
∑︁
𝑖

𝐿𝐷(𝑥
𝜇
𝑖 , 𝑥

𝜇
𝑖+1). (4.8)

Now let us introduce the discrete-time partial derivative 𝜕𝑖𝜎 = 𝜕
𝜕𝑥𝜎𝑖

for which:

𝜕𝑖𝜎𝑥
𝜇
𝑘 = 𝛿𝜇𝜎𝛿𝑖𝑘. (4.9)

The Euler–Lagrange equations are the equations that �nd the stationary points
in the action, analogous to eqs. (C.2) and (C.3) in appendix C. The time-discrete
version is given by:

𝜕𝑖𝜎𝑆 = 0, (4.10)

which, hence, yields the discrete Euler–Lagrange equations:

𝜕𝑖𝜎𝐿𝐷(𝑥
𝜇
𝑖−1, 𝑥

𝜇
𝑖 ) + 𝜕𝑖𝜎𝐿𝐷(𝑥

𝜇
𝑖 , 𝑥

𝜇
𝑖+1) = 0. (4.11)

The discrete Euler–Lagrange equations then yield the discrete-time equations
of motion, whilst preserving the Lagrangian symmetries. Note that the discrete
Lagrangian𝐿𝐷(𝑥𝜇𝑖 , 𝑥

𝜇
𝑖+1) is solely a function of position 𝑥𝜇𝑖 and not of velocity

𝑥̇𝜇𝑖 . The new velocity can be found explicitly by the following formula:

𝑥̇𝜇𝑖+1 =
1
𝑚𝛿

𝜇𝜎𝜕𝑖+1
𝜎 𝐿𝐷(𝑥

𝜇
𝑖 , 𝑥

𝜇
𝑖+1). (4.12)

The old velocity is given by:

𝑥̇𝜇𝑖 = − 1
𝑚𝛿

𝜇𝜎𝜕𝑖𝜎𝐿𝐷(𝑥
𝜇
𝑖 , 𝑥

𝜇
𝑖+1). (4.13)

This formula is generally implicit. Fortunately this is not a problem as most
integration schemes only rely on eq. (4.12).

The method of variational integrators can be used to derive the sym-
plectic Euler method and higher-order Velocity verlet method, reviewed in
appendices K and L.
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4.3 Symplectic integration with curvature

We will now move on to derive the analog of the symplectic Euler scheme in the
presence of Riemannian curvature.♠ The derivation will thus be very similar
to the symplectic Euler derivation discussed in appendix K which also uses the
variational integration method described in section 4.2. Now, however, we will
use a Lagrangian that incorporates curvature 𝐿 = 1

2𝑚𝑔𝜇𝜈 𝑥̇
𝜇𝑥̇𝜈 − 𝑉 (𝑥𝜌), as

discussed in section 4.1 — particularly eq. (4.1). We will continue to discretize
this Lagrangian using eq. (4.7). We approximate the integral using the rectangle
method — see eq. (H.6) in appendix H. We will additionally invoke a discrete
velocity:

𝑥̇𝜇 = 1
ℎ

(︀
𝑥𝜇𝑖+1 − 𝑥𝜇𝑖

)︀
. (4.14)

Doing so results into the following discrete Lagrangian:

𝐿rect
𝐷 (𝑥𝜇𝑖 , 𝑥

𝜇
𝑖+1) =

𝑚
2ℎ

(︀
𝑔𝑖𝜇𝜈𝑥

𝜇
𝑖+1𝑥

𝜈
𝑖+1 − 2𝑔𝑖𝜇𝜈𝑥

𝜇
𝑖+1𝑥

𝜈
𝑖 + 𝑔𝑖𝜇𝜈𝑥

𝜇
𝑖 𝑥

𝜈
𝑖

)︀
− ℎ𝑉𝑖.

(4.15)

Note that contrary to the Euclidean space case, the metric 𝑔𝜇𝜈(𝑥𝜇) in the
Lagrangian is a function of position. Hence, its discrete counterpart is a
function of the discrete position 𝑔𝑖𝜇𝜈 = 𝑔𝜇𝜈(𝑥

𝜇
𝑖 ).♡ We will then continue

to apply the discrete Euler–Lagrange equations, eq. (4.11), to our discrete
Lagrangian, eq. (4.15). In order to do so, we establish the following identities:

𝜕𝑖𝜎𝑔
𝑗
𝜇𝜈𝑥

𝜇
𝑘𝑥

𝜈
𝑙 = 𝛿𝑖𝑗

(︀
Γ𝑗𝜈𝜎𝜇 + Γ𝑗𝜇𝜎𝜈

)︀
𝑥𝜇𝑘𝑥

𝜈
𝑙 + 𝑔𝑗𝜇𝜈

(︀
𝛿𝑖𝑘𝛿

𝜇
𝜎𝑥

𝜈
𝑙 + 𝛿𝑖𝑙𝑥

𝜇
𝑘𝛿
𝜈
𝜎

)︀
, (4.16)

which holds because♣

𝜕𝑖𝜎𝑔
𝑗
𝜇𝜈 = 𝛿𝑖𝑗

(︁
Γ𝜆 𝑗𝜎𝜇𝑔

𝑗
𝜆𝜈 + Γ𝜆 𝑗𝜎𝜈𝑔

𝑗
𝜇𝜆

)︁
= 𝛿𝑖𝑗

(︀
Γ𝑗𝜈𝜎𝜇 + Γ𝑗𝜇𝜎𝜈

)︀
. (4.17)

Using these identities we apply the Euler–Lagrange equations and obtain:

Γ𝑖𝜈𝜎𝜇
(︀
𝑥𝜇𝑖+1𝑥

𝜈
𝑖+1 + 𝑥𝜇𝑖 𝑥

𝜈
𝑖

)︀
−
(︀
Γ𝑖𝜈𝜎𝜇 + Γ𝑖𝜇𝜎𝜈

)︀
𝑥𝜇𝑖+1𝑥

𝜈
𝑖+

𝑔𝑖𝜎𝜇
(︀
𝑥𝜇𝑖 − 𝑥𝜇𝑖+1

)︀
+ 𝑔𝑖−1

𝜎𝜇

(︀
𝑥𝜇𝑖 − 𝑥𝜇𝑖−1

)︀
− ℎ2

𝑚 𝜕
𝑖
𝜎𝑉𝑖 = 0,

(4.18)

♠As far as is known to the author, this will be the �rst explicit publication of this kind of
symplectic integrator for Riemannian manifolds.

♡In the absence of curvature this remark becomes irrelevant because then 𝑔𝜇𝜈 = 𝛿𝜇𝜈 an
therefore 𝛿𝑖𝜇𝜈 = 𝛿𝑗𝜇𝜈 for all 𝑖, 𝑗 — see eq. (K.2) in appendix K.

♣The Christo�el symbols of �rst and second kind Γ𝜇𝜎𝜌 and Γ𝜇
𝜎𝜌 are respectively de�ned in

eqs. (4.4) and (4.5).
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which can be simpli�ed by introducing the variable 𝜖𝜇𝑖 = 𝑥𝜇𝑖+1 − 𝑥𝜇𝑖 yielding:

Γ𝑖𝜈𝜎𝜇𝜖
𝜇
𝑖 𝜖
𝜈
𝑖 − 𝑔𝑖𝜎𝜇𝜖

𝜇
𝑖 + 𝑔𝑖−1

𝜎𝜇

(︀
𝑥𝜇𝑖 − 𝑥𝜇𝑖−1

)︀
− ℎ2

𝑚 𝜕
𝑖
𝜎𝑉𝑖 = 0. (4.19)

Now let us introduce the following variables for our convenience:

𝐴𝑖𝜎𝜇𝜈 = Γ𝑖𝜈𝜎𝜇, (4.20)
𝐵𝑖
𝜎𝜇 = −𝑔𝑖𝜎𝜇, (4.21)

𝐶𝑖 ,𝑖−1
𝜎 = 𝑔𝑖−1

𝜎𝜇

(︀
𝑥𝜇𝑖 − 𝑥𝜇𝑖−1

)︀
− ℎ2

𝑚 𝜕
𝑖
𝜎𝑉𝑖. (4.22)

We then solve for 𝜖𝜇𝑖 in the equation:

𝐴𝑖𝜎𝜇𝜈𝜖
𝜇
𝑖 𝜖
𝜈
𝑖 +𝐵𝑖

𝜎𝜇𝜖
𝜇
𝑖 + 𝐶𝑖 ,𝑖−1

𝜎 = 0. (4.23)

Since denoting a particular timestep 𝑖 at this point, has become unnecessary
we may drop the Latin time index in order simplify even further:

𝐴𝜎𝜇𝜈𝜖
𝜇𝜖𝜈 +𝐵𝜎𝜇𝜖

𝜇 + 𝐶𝜎 = 0. (4.24)

A natural way to solve eq. (4.24) numerically would be to apply �xed-point
iterations as discussed in appendix F, eq. (F.12). Since, 𝐵𝜎𝜇 = −𝑔𝜎𝜈 is just
minus the metric and hence 𝐵𝜎𝜇 is by de�nition invertible, we may proceed
using the �xed-point iteration scheme. The �xed-point function is given by

𝐹𝜇(𝜖𝜇) = 𝑔𝜇𝜎𝐴𝜎𝜌𝜈𝜖
𝜌𝜖𝜈 + 𝑔𝜇𝜎𝐶𝜎. (4.25)

Now let us assume that the 𝜖𝜇 is small as it scales with the small timestep ℎ.
The �xed-point equations, eq. (4.25), then have a known solution up to �rst
order in ℎ:

𝐹𝜇(𝜖𝜇) = 𝑔𝜇𝜎𝐶𝜎 +𝒪(ℎ2), (4.26)

hence we can de�ne 𝜖𝜇0 , the initial value for the �xed-point iteration:

𝜖𝜇0 = 𝑔𝜇𝜎𝐶𝜎 +𝒪(ℎ2), (4.27)

which approximately solves eq. (4.25). As the �xed-point iteration algorithm
converges we �nd the end result 𝜖𝜇. Using eq. (4.12) we �nd that the new
position and velocity on the manifold are given by

𝑥𝜇𝑖+1 = 𝑥𝜇𝑖 + 𝜖𝜇𝑖 , (4.28)
𝑥̇𝜇𝑖+1 =

1
ℎ𝜖
𝜇
𝑖 . (4.29)
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When 𝑔𝜇𝜈 → 𝛿𝜇𝜈 and therefore Γ𝜇𝜎𝜈 → 0, we recover the symplectic Euler
scheme as described in appendix K. In addition, we may modify our method a
bit to solve the equations of motion for non-conservative systems. This can
be done by substituting −𝜕𝜎𝑉𝑖 by an arbitrary force 𝐹𝜇𝑖 in 𝐶𝜎 yielding:

𝐶𝑖 ,𝑖−1
𝜎 = 𝑔𝑖−1

𝜎𝜇

(︀
𝑥𝜇𝑖 − 𝑥𝜇𝑖−1

)︀
+ ℎ2

𝑚 𝛿𝜎𝜇𝐹
𝜇
𝑖 . (4.30)

Using eq. (4.30) instead of eq. (4.22) in the �xed-point iteration scheme,
eqs. (4.25) and (4.27) will produce discretized equations of motion in the
presence of curvature for non-conservative systems.

4.4 Melting on curved substrates

The nature of two-dimensional crystal melting has been a controversial topic in
the last decades [159]. According to Kosterlitz, Thouless, Halperin, Nelson and
Young (KTHNY), a melting two-dimensional crystal �rst loses translational
order and then orientational order at distinct temperatures. This occurs due
to the emergence of topological defects in the crystal. Alternative scenarios
have proposed a discontinuous melting transition mediated by the nucleation
of grain boundaries. Although there is no de�nite consensus on the mat-
ter on all types of crystals, KTHNY melting transitions have been observed
experimentally in colloidal systems [80, 160].

4.4.1 Topological defects in crystals

In a two-dimensional crystal there may be two types of topological defects.
First, there are disclinations. Disclinations are crystal sites with an irregular
coordination number, the number of bonds. An under- or over-coordinated
site is irregular and breaks orientational order. These irregularities are called
disclinations. For example, in a triangular lattice the regular coordination
number is six — as depicted by the black sites in �g. 4.1. A disclination comes
with a topological charge. The topological charge of a disclination is found
by winding around it. In the example this reveals that a �vefold (blue) and
a sevenfold (red) disclination have a topological charge of 𝑗5 = −𝜋

3 and
𝑗7 = 𝜋

3 , respectively. Secondly, there are dislocations. A dislocation is a
dipole of disclinations that breaks translational order. Upon winding around
a dislocation we �nd that it is a defect of vectorial order having both a size
— the separation and charge of the dipole pair — and an orientation — the
relative orientation of the dipole pair. A vector that describes a dislocation is
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b

Figure 4.1:A triangular lattice with two disclinations of opposite charge tightly bound
to form a dislocation. The blue point is �vefold coordinated forming a negatively
charged defect. The red point is sevenfold coordinated forming a positively charge
defect. The pink bond binds the two disclinations forming a dislocation. The dashed
lines (olive) wind a path of three hops in every direction around the dislocation. As
this path cannot close in on itself without taking one extra step we conclude that this
defect breaks translational order as characterized by the Burgers vector 𝑏. The sign
of the Burgers vector is set by convention.
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the Burgers vector 𝑏, which is found by winding around the dislocation and
�nding a vector perpendicular to the dipolar separation vector. On a triangular
lattice a unit sized Burgers vector |𝑏| = 1 can only have six orientations
along the principal axes of the crystal. Note how a dipole of dislocations — an
irregularity with two dislocations with opposite Burgers vectors right next to
each other — is a neutral object as winding around such an irregularity yields
no topological charge whatsoever.

4.4.2 KTHNY theory

A perfect triangular lattice at zero temperature has no defects at all. In accor-
dance with KTHNY theory, upon increasing the temperature of such a crystal
tight dipoles of dislocations emerge. Increasing the temperature even more,
these dipoles of dislocations begin to unbind, breaking translational order. At
this stage only translational order is broken. Orientational order, however,
remains and the systems resides in the so-called hexatic phase. At even higher
temperatures, individual dislocations unbind into two disclinations of opposite
charge, breaking the residual orientational order and yielding the liquid phase.
We see that the entire crystal to liquid melting transition is mediated by the
emergence of topological defects.

4.4.3 Defects and curvature

Temperature is not the only reason topological defects may emerge. Stresses
and strains in the system may also produce topological defects, in an attempt
to screen these strains and stresses with topological charges. Likewise, in
the presence of curvature, which invokes stresses and strains, topological
charges arise as a screening mechanism. Positively charged disclinations
are attracted to regions of positive Gaussian curvature. Similarly negatively
charged disclinations are attracted to regions of negative Gaussian curvature.
Dislocations reside somewhere in-between the regions of positive and negative
Gaussian curvature as they can be viewed as disclination dipoles.

Analytically, the free energy of a crystal with defects in the presence of
curvature according to elasticity theory is given by: [104]

𝐹 = 𝑌
2

ˆ
d𝐴

ˆ
d𝐴 (𝑆(𝑥)−𝐾(𝑥))

1

Δ2
𝑥𝑥̃

(𝑆(𝑥̃)−𝐾(𝑥̃)) , (4.31)
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where 𝑌 is the Young modulus, 𝑆 is the distribution of unbound topological
defects, 𝐾 is Gaussian curvature and Δ2 the biharmonic operator. The free
energy in terms of the Airy stress function 𝜒 is given by:

𝐹 = 1
2𝑌

ˆ
d𝐴(Δ𝜒(𝑥))2. (4.32)

Combining eqs. (4.31) and (4.32) we �nd the following di�erential equation:

Δ2𝜒(𝑥) = 𝑌 (𝑆(𝑥)−𝐾(𝑥)) . (4.33)

In the absence of defects the latter becomes

Δ2𝜒(𝑥) = −𝑌 𝐾(𝑥), (4.34)

yielding an equation that describes the Airy stress function in terms of curva-
ture only. From the Airy stress function we may obtain the geometric potential
for dislocations 𝐷 given by: [104]

𝐷(𝑥, 𝑏𝑖) = 𝑏𝑖𝜖𝑖𝑗∇𝑗𝜒(𝑥). (4.35)

At zero temperature, dislocations will distribute in regions where they mini-
mize the elastic energy in accordance to the dislocation potential in eq. (4.35).

4.4.4 Dislocation dynamics

As a dislocation terminates a row of sites in a crystal, it is energetically more
favorable to nucleate dislocations in tight pairs. Dislocations can easily move
around parallel to the Burgers vector orientation. This motion is called glide.
When a dislocation moves in any other direction that is not parallel to the
Burgers vector the motion is called climb and generally costs much more energy
due to the required di�usive mechanisms. The dislocation pair hence separates
by having both of its dislocations glide away from each other. Nucleating a
dislocation, and therefore also a dislocation pair, costs energy. The energy per
nucleated dislocation is called the core energy 𝐸𝑐.

Dislocations interact with other dislocations. The pairwise dislocation–
dislocation potential takes the following form:

𝑉dd(𝑏𝑖, 𝑏𝑗) =
𝑌
4𝜋

(︃
𝑏𝑖𝑏𝑗 log

(︁𝑟𝑖𝑗
𝑎

)︁
+

(𝑏𝑖𝑟𝑖𝑗)(𝑏𝑗𝑟𝑖𝑗)

𝑟2𝑖𝑗

)︃
, (4.36)
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where 𝑟𝑖𝑗 is the distance between the two dislocations with Burgers vectors
𝑏𝑖 and 𝑏𝑗 and 𝑎 is the lattice spacing of the crystal [42]. Additionally, two
dislocations of opposite orientation may glide back into each other and an-
nihilate — this is the opposite process of dislocation nucleation. Likewise,
two dislocations with di�erent but not equal or opposite orientations may
glide into each other and annihilate, resulting in one new dislocation with an
intermediate orientation, but equal topological charge. Conversely the reverse
process may also occur. For instance on the triangular lattice, the dislocation
𝑏𝜃 and 𝑏

𝜃+
2𝜋
3

may add up to one single dislocation 𝑏𝜃+𝜋3
.

In the presence of curvature, dislocation pairs may nucleate in regions
where the nucleation energy is su�ciently small. In general, the regions of
preferred dislocation pair nucleation are not solely determined by the geo-
metric potential in eq. (4.35). Dynamic constraints play a role as well. The
system can only minimize energy through a series of moves consisting of
coordinated glide, nucleation and annihilation reactions. As some operations
seem entropically hard to reverse, the system may become arrested in some
local minimum. In addition, the geometric potential may make dislocation
glide energetically costly, as it leaves a local minimum.

4.4.5 Melting on curved substrates

An e�ective Hamiltonian for dislocations in a curved crystal is:

𝐻disl(𝑥) = 𝑁𝐸𝑐 +

𝑁∑︁
𝑖

𝐷(𝑥, 𝑏𝑖) +

𝑁∑︁
𝑖>𝑗

𝑉dd(𝑏𝑖, 𝑏𝑗), (4.37)

where 𝑁 is the number of dislocations in the system. When generating
equilibrium states from this Hamiltonian however, one should consider that
some states may not be accessed due to dislocation dynamics. For instance, the
lowest energy con�guration of a curved crystal with one dislocation is found
when the dislocation resides in the minimum of the dislocation potential
eq. (4.35). This state might never occur, however, if dislocation pairs are
nucleated in on the wrong row, as dislocations are only allowed to glide. At
this point, it is obvious to expect dislocations and also disclinations to have
spatial preferences, depending on the curvature. Therefore, a crystal in the
presence of curvature may melt inhomogeneously allowing crystal, hexatic
and liquid phases to simultaneously exist at di�erent locations of the sample.
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It is, however, hard to establish if the dislocation density 𝜎disl(𝑥) is purely
dominated by energetics and thus follows from

𝜎disl(𝑥) ∝ 𝑒−𝛽𝐻disl(𝑥), (4.38)

or whether it is determined primarily by dislocation-dynamic e�ects.

4.4.6 Computational studies of melting and curvature

Monte Carlo simulations have studied the distribution of dislocations in the
presence of curvature at zero temperature [99]. Although the Monte Carlo
method should also work at �nite temperature, curved space melting was never
thoroughly investigated because the algorithm gets slower as temperatures
increase. An alternative candidate method would be molecular dynamics.♠
Molecular dynamics is a numerical method that solves Newton’s equations
of motion for many interacting particles — the so-called generalized 𝑁 -body
problem. Here we will solve Newton’s equations of motion for many inter-
acting particles in the presence of curvature. The integration scheme to solve
Newton’s equations in the presence of curvature — which is the main sub-
ject of this chapter — is discussed in section 4.3. Apart from the integration
method; the choice of curvature, boundary and initial conditions and ensemble
preparations are important. We choose the surface to be of a form represented
by the two-dimensional Monge patch, see appendix E. A Monge patch, de�nes
a curved surface by introducing a scalar function 𝑓 : R2 → R called the
Monge function which is embedded in a three-dimensional space R3. We will
simulate for the following Monge functions:

𝑓bump (𝑥, 𝑦) = 𝐴𝑒−𝐾(𝑥
2+𝑦2), (4.39)

𝑓egg (𝑥, 𝑦) = 𝐴 cos (𝐾𝑥𝑥) cos (𝐾𝑦𝑦) , (4.40)

which we will refer to as the Gaussian bump eq. (4.39) and egg carton eq. (4.40),
respectively. Here, for both Monge functions, 𝐴 is the amplitude. 𝐾 is the
width of the Gaussian bump and {𝐾𝑥,𝐾𝑦} set the periodicities of the egg
carton surface. We will choose an 𝐿𝑥 × 𝐿𝑦 with 𝐿𝑥 ≈ 𝐿𝑦 nearly square
simulation box with the origin in the middle and with periodic boundary
conditions. In order to ensure periodicity in the Monge functions, we apply
the constraints 𝐾−1 ≪ 𝐿2 and 𝐾𝑥 = 2𝜋

𝐿 𝑛 and 𝐾𝑦 = 2𝜋
𝐿 𝑚 with 𝑛,𝑚 ∈ N.

We initialize 𝑁 ∈ N particles in a triangular lattice with lattice spacing 𝑎.♡

♠Molecular dynamics is introduced in appendix O.
♡For a possible algorithm to generate a triangular lattice see appendix section Q.2.
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𝑁 𝑞𝑥 𝑞𝑦

780 26 15

5822 71 41

10864 97 56

17466 123 71

32592 168 97

43456 194 112

65964 239 138

81090 265 153

97776 291 168

130368 336 194

151316 362 209

173824 388 224

216500 433 250

243270 459 265

271600 485 280

𝑁 𝑞𝑥 𝑞𝑦

293328 504 291

324360 530 306

356952 556 321

417094 601 347

453948 627 362

492362 653 377

562588 698 403

605264 724 418

649500 750 433

729810 795 459

778308 821 474

828366 847 489

866000 866 500

918760 892 515

973080 918 530

Table 4.1: An incomplete list of special numbers up to a million that generate a
triangular lattice in an approximate square. 𝑁 is the number of particles, 𝑞𝑥 and 𝑞𝑦
are the number of unit cells in the 𝑥 and 𝑦 direction respectively. The tolerance on 𝑞𝑥
and 𝑞𝑦 is at most 0.01.

We are trying to prepare a triangular lattice with 𝑁 particles inside a square
box with periodic boundary conditions. In order to tile the square box with
𝑞𝑥 × 𝑞𝑦 tiles we require♠

𝑁 = 2𝑞𝑥𝑞𝑦 =
2𝐿2

√
3 𝑎

. (4.41)

As eq. (4.41) has to be satis�ed we have to �nd the special numbers that
approximately �t; some of these numbers are listed in table 4.1. The procedure
is depicted in �g. 4.2. The velocity of the particles is randomly assigned
according to the generalized equipartition theorem, respecting the curvature.
This can be done as follows. The equipartition theorem states:

⟨𝑥𝜇𝜕𝜈𝐻kin⟩ = 𝛿𝜇𝜈 𝑘𝐵𝑇. (4.42)

♠Tiles stack in integer values, hence: 𝑞𝑥, 𝑞𝑦 ∈ N.
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𝐿𝑦

𝐿𝑥
𝑎

√
3 𝑎

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

0 1 2 3 4

0

10

20

0

Figure 4.2: Depiction of 𝑁 = 30 black particles in a triangular lattice within the
simulation box of 𝐿𝑥 × 𝐿𝑦 (𝑞𝑥 = 5 and 𝑞𝑦 = 3). Particle seventeen lies in the origin
of the chosen coordinate system. The white particles are image particles present
because of periodic boundary conditions. The black lines are the boundaries of the
system. The gray lines are the base-axes. The green dashed lines depict the unit cell
containing two particles, in this case, once particle �ve and a quarter times particles
zero, two, ten and eleven.
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In this case, the kinetic part of the Hamiltonian is given by:

𝐻kin = 1
2𝑚𝑔𝜇𝜈 𝑥̇

𝜇𝑥̇𝜈 . (4.43)

By using eqs. (4.42) and (4.43) the following equality is found:

⟨𝑔𝜇𝜈 𝑥̇𝜇𝑥̇𝜈⟩ = 𝑔𝑥𝑥⟨𝑥̇2⟩+ 𝑔𝑦𝑦⟨𝑦̇2⟩+ 2𝑔𝑥𝑦⟨𝑥̇𝑦̇⟩ = 2𝑘𝐵𝑇
𝑚 (4.44)

If the problem is diagonalized in the eigenbasis of the metric 𝑔𝜇𝜈 this equation
simpli�es to:

⟨𝑎̇2⟩+ 𝑔⟨𝑏̇2⟩ = 2𝑘𝐵𝑇
𝑚 (4.45)

Where 𝑎̇ and 𝑏̇ are eigencoordinates of 𝑔𝜇𝜈 . Using Maxwell–Boltzmann statis-
tics the variances of the velocity in the 𝑎̇ and 𝑏̇ direction are given by:

e
− 𝐻kin

𝑘𝐵𝑇 = e
−𝑚(𝑎̇2+𝑔𝑏̇2)

2𝑘𝐵𝑇 = e
− 𝑎̇2

2𝜎2
𝑎̇ e

− 𝑏̇2

2𝜎2
𝑏̇ , (4.46)

and therefore:

𝜎2𝑎̇ =
𝑘𝐵𝑇
𝑚 , 𝜎2

𝑏̇
= 𝑘𝐵𝑇

𝑔𝑚 . (4.47)

From the variances and initial particle positions,♠ random initial velocities
corresponding with a certain (�xed) temperature can be found by generating
two random numbers from a normal distribution♡ and multiplying them with
their desired variances. The mean of the velocity distribution is zero, since
the system is desired to be without �ow. Finally, the random numbers need to
be transformed back from the eigenbasis of 𝑔𝜇𝜈 to the original basis, which is
done by a simple base transformation.

Note that the initial conditions chosen for the simulations are not ideal,
since the simulation is not started in the ground state of the system, because a
�at space triangular lattice is not the ground state in curved space. Unfortu-
nately, �nding the real curved space ground state is a very hard generalized
Thomson-like problem which currently remains unsolved [124, 173]. There-
fore the lower limit of the energy in the system is not only controlled by
the temperature, but also by the curvature. One way to resolve this issue by
minimizing geometric frustration is called quenching: the idea is to run a

♠The metric determinant 𝑔 = 𝑔(𝑥𝜌) is position-dependent.
♡A uniform random generator can be transformed into a normally distributed random

generator by using, for instance, a Box–Muller transformation.
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molecular dynamics simulation while occasionally resetting the kinetic energy
to zero. The most e�ective timing to set the kinetic energy to zero is when
the kinetic energy is at its maximum and the potential energy is therefore
minimal, assuming constant total energy, because the potential energy must
be minimized to obtain a local ground state.

The described scheme will simulate particles in the microcanonical en-
semble. To obtain a canonical ensemble a linear damping term and a Langevin
random force term are introduced — this is the so-called Langevin thermostat.

4.4.7 Preliminary results

Using the procedure as described in section 4.4.6 we prepare our molecular
dynamics simulations in the microcanonical ensemble. Let us �rst analyze
the results of such simulations on a Gaussian bump surface, see eq. (4.39).
Upon performing one simulation for 𝑁 = 17466 particles in a box with
the approximate dimensions 𝐿 × 𝐿 for a small �nite temperature — after
relaxation♠ — we typically �nd a simulation snapshot as depicted �g. 4.3. We
observe that the individual dislocations are oriented with their Burgers vectors
perpendicular to the radial direction with respect to the top of the bump;
�vefold disclinations (blue) facing towards the top and sevenfold disclinations
(red) facing away from the bump. The dislocation distribution at low density
for a Gaussian bump is found using eq. (4.38) neglecting dislocation–dislocation
interactions given by eq. (4.36) in the e�ective Hamiltonian eq. (4.37). We
obtain

𝜎6(𝑥
𝜌) ∝ e−𝛽min𝜃∈[0,2𝜋]𝐷(𝑥𝜌,b(𝜃)), (4.48)

where 𝜃 is the orientation of the Burgers vector. Hence, we �nd that b(𝜃)
is always perpendicular to the radial direction. The theoretical dislocation
density for a Gaussian bump found by using eq. (4.48) is plotted in �g. 4.4.♡
Upon doing numerous simulations with di�erent random instances of the
same initial conditions we can generate a dislocation density pro�le for the
simulations and compare it to this simple estimate. This is done in �g. 4.5,

♠Meaning the initial condition is �rst quenched to zero temperature after which the tem-
perature is reinitialized.

♡Henceforth, all the density plots — which we assume for the sake of argument to be
normalized — will use the widely known jet color map with zero value as dark blue and unit
value as dark red.
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Figure 4.3: A typical end result of a simulation with 𝑁 = 17466 particles. The
triangulation is done with Delaunay triangulation. Yellow particles have six neighbors.
Red particles have seven neighbors and blue particles have �ve neighbors. Note
how dislocations are oriented with respect to the bump. This simulation is done at
𝐴
𝐿 = 0.125 and 𝐾𝐿 = 5

√
5 , for 10000 time steps. The temperature is initialized at

𝑇 = 0.0022 (a.u.). This image was cropped to �t this thesis.
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Figure 4.4: The theoretical density of dislocations according to eq. (4.48) for a Gaus-
sian bump with 𝐴

𝐿 = 0.125 and 𝐾𝐿 = 5
√
5 . The color map is given on page 92

footnote ♡.
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and we �nd some discrepancies with the theoretical result plotted in �g. 4.4.
Firstly, we observe a sixfold symmetry in �g. 4.5. This sixfold symmetry is
due to the discrete nature of the Burgers vector as set by the lattice, which
can be highlighted by distinguishing the six distinct dislocations. We color
code the dislocations with the key given in �g. 4.6 on page 101 to �nd �g. 4.7.
To account for this e�ect, we may modify the dislocation density eq. (4.48) to
respect the discrete nature of the Burgers vector. This is done by minimizing
the dislocation potential 𝐷(𝑥𝜌,b(𝜃)) where 𝜃 is now discrete and set by the
principal axes of the crystal. Doing so results in:

𝜎6(𝑥
𝜌) ∝ e−𝛽minb𝑛 𝐷(𝑥𝜌,b𝑛), (4.49)

where b𝑛 are the discrete Burgers vectors. The modi�ed dislocation density
eq. (4.49) is plotted in �g. 4.8. Secondly, we observe dislocations far away from
the bump which can be explained by realizing that dislocations nucleate in
pairs and then glide to their equilibrium position. For one dislocation this
means migrating to the point close to the theoretical energetic minimum, for
its opposite pair this means migrating away from the bump to in�nity. Since
periodic boundary conditions are imposed, however, these dislocations have
no way of reaching in�nity and migrate to a point that minimizes their energy
while respecting the constricted one-dimensional glide motion. This e�ect
can be observed when we tile �g. 4.7 resulting in �g. 4.9. Finally, we observe
that the peaks at the theoretical minima split. This phenomenon can be ex-
plained by dislocation–dislocation interactions and dislocation dynamics, see
eq. (4.36) and section 4.4.4 respectively. Two dislocations may glide into each
other and change their orientation if compatible; the reverse is also possible.
For example two dislocations of opposite orientation can annihilate but can
be spontaneously created. Likewise two dislocations with an orientational
di�erence of 2𝜋

3 may form one dislocation with a mean angle. The latter is
responsible for the peak splitting. Using the color coding as given in �g. 4.6 we
observe that dislocation of e.g. cyan orientation at their equilibrium position
occasionally split up in to two dislocations with green and blue orientation.
This newly formed dislocation will then glide to to its new respective mini-
mum. Since gliding motion is strictly one-dimensional these new minima are
farther radially inward than the energetic minima described by the modi�ed
dislocation potential as plotted in �g. 4.8. The described mechanism is depicted
in �g. 4.10.
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Figure 4.5: The simulated dislocation density on a Gaussian bump. The dark bands
indicate the theoretically predicted minima. This plot was compiled from 1200 simu-
lations done at 𝐴

𝐿 = 0.125 and 𝐾𝐿 = 5
√
5 , for 10000 time steps. The temperature

is initialized at 𝑇 = 0.0022 (a.u.). The color map is given on page 92 footnote ♡.
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Figure 4.7: The simulated dislocation density as depicted in �g. 4.5 color coded as
de�ned by �g. 4.6 on page 101. We observe that the color coded dislocations align as
expected by energy minimization done by eq. (4.49). The occurrence of cyan in the
red minimum is due to the branch cut in the arctan2 function.
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Figure 4.8: The modi�ed theoretical density of dislocations according to eq. (4.49)
for a Gaussian bump with 𝐴

𝐿 = 0.125 and 𝐾𝐿 = 5
√
5 . The color map is given on

page 92 footnote ♡.



4.4. Melting on curved substrates 99

Figure 4.9: A 3 × 3 tiling of �g. 4.7. We observe that the color coded dislocations
align as expected by energy minimization done by eq. (4.49). Additionally, we observe
that an important number of dislocations do not �t in this sixfold pattern. They glide
away from their nucleation point towards a lower energetic point. The red and cyan
dislocation are trapped between the opposite minima, the blue, magenta, yellow and
green dislocations are free to roam around (one-dimensionally) forming a long tail.
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Figure 4.10: The depiction of the mechanism by which the energetic minimum is split.
The large colored nodes are the predicted dislocation potential minima. The smaller
and inner colored nodes are the minima by the dislocation splitting and gliding. The
solid arrows are glide directions for their respective node, the dashed arrows are the
climb directions. A dislocation that for instance resides at the red node and then
splits into two dislocations with their Burgers vectors rotated by 𝜋

3 compared to the
initial dislocation will glide towards their new inner minima. The dislocation cannot
climb because this requires di�usive mechanisms, and is therefore stuck in its new
minimum.
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A similar analysis can be conducted on the egg carton surface, see
eq. (4.40). Theoretically, the dislocation density for the egg carton surface is
plotted �g. 4.11. The dislocation density of the simulations are found in �g. 4.12.
As this structure is periodic, the periodic boundary conditions interfere less
with the dislocation distribution. The theoretical dislocation density does not
account, however, for dislocation–dislocation interactions, which is likely the
reason why the minima in the simulations di�er a little from the theoretical
estimate.

4.4.8 Conclusions and outlook

0

𝜋
3

2𝜋
3

𝜋

4𝜋
3

5𝜋
3

Figure 4.6: The arrows color coding
the six distinct orientations of the Burg-
ers vectors as imposed by the six prin-
ciple lattice directions. The colored
circles schematically indicate the spa-
tial positions of distinct minima per
orientation of the Burgers as found by
eq. (4.49).

It is hard to draw any �rm conclusions.
It seems, however, that for low temper-
atures, the simulations theoretical esti-
mates and numerical experiment are in
qualitative agreement, although more in-
vestigation is required. A thorough test
would be to compare the results of the
dynamics to a Monte Carlo simulation.
Such Monte Carlo simulations would
simulate dislocation dynamics in the
presence of curvature similar to Pafka et
al. [140] and Saito [165] using the Hamil-
tonian stated in eq. (4.37) — without ne-
glecting the dislocation–dislocation po-
tential eq. (4.36). If the Monte Carlo
simulations match the molecular dynam-
ics simulations we will understand the
behavior of multiple dislocations in the
presence of curvature. The results might
di�er because curvature in�uences the dislocation–dislocation interaction.
One could measure the dislocation–dislocation interaction from the simula-
tions and plug them back into the Monte Carlo, see also Crocker et al. [150].♠

♠See the forthcoming doctorate thesis of C. van der Wel (Leiden University) for a general-
ization of Crocker et al. [150] in the presence of curvature.
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Figure 4.11: The theoretical density of dislocations according to eq. (4.38) for a egg
carton surface with𝐾𝑥𝐿 = 𝐾𝑦𝐿 = 2𝜋. The color map is given on page 92 footnote♡.
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Figure 4.12: The simulated dislocation density on a egg carton surface. This plot was
compiled from 1200 simulations done at 𝐴

𝐿 = 0.1 and 𝐾𝑥𝐿 = 𝐾𝑦𝐿 = 2𝜋, for 10000
time steps. The temperature is initialized at 𝑇 = 0.001 (a.u.). The color map is given
on page 92 footnote ♡.




