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Chapter 3.

Chiral active liquids with self-rotation

The last two decades have seen signi�cant progress in our un-
derstanding of active matter. Early theoretical progress [33, 52, 69]
has been accompanied by the engineering of soft materials made of

self-propelled polymers, colloids, emulsions, and grains [11, 43, 56, 59, 76, 79,
84, 85], which exhibit novel nonequilibrium phenomena. Prominent examples
include phase separation of repulsive spheres, giant number �uctuations away
from criticality, and long-range orientational order in two-dimensional �ocks
[27, 110, 148].

The systems mentioned above share the characteristic that constituents
acquire translational momentum due to active propulsion, but rotate only in
response to collisions or di�usion. By contrast, insights into the consequences
of active rotation without self-propulsion remain scarce, even though this
situation is relevant to a wide range of experimental systems [6] including
spinning microorganisms [21, 91], treadmilling proteins [2], sperm cell and
microtubule aggregates [67, 108], shaken chiral grains [111], light-powered
chiral colloids [23], thermally and chemically powered liquid crystals [17, 123],
electrorheological �uids [98], and biological and synthetic cilia driven by rotary
molecular motors [47].

Until now, theoretical and numerical studies on ensembles of active
spinners have separately addressed their phase dynamics and their spatial
organization. The emergence and robustness of synchronized rotation in
lattices of hydrodynamically-coupled rotors [87, 88] has been studied as an
archetype of Kuramoto dynamics in coupled oscillator systems [105]. In these
models the lattice geometry is imposed, a situation relevant, for instance, to
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54 Chapter 3. Chiral active liquids with self-rotation

the propagation of metachronal waves at the surface of ciliated tissues [10,
64, 81, 127]. Local orientational synchronization has also been observed in
self-organized disordered arrays of rotating rods [48, 107]. A separate class of
numerical studies has been devoted to the spatial structures of ensembles of
active spinners interacting either via contact or hydrodynamic interactions [1,
12, 22, 24, 32, 41, 120]. Special attention has been paid to phase separation in
binary mixtures of counterrotating spinners and to hydrodynamic interactions
yielding spatial ordering.

Here, we bridge the gap between these two lines of research. Combining
numerical simulations and analytical theory we demonstrate the inherent
interplay between the spatial structure and the phase dynamics of active spin-
ners. We uncover a generic competition between monopole-like interactions
that dominate at large separations, and shorter-range multipole gear-like in-
teractions. We �nd that their interplay frustrates ordered states but also yields
novel spatiotemporal order and unanticipated collective �ows including edge
currents.

We study a prototypical system of soft dimers interacting via repulsive
interactions and undergoing unidirectional active rotation as sketched in
�g. 3.1. When isolated, dimers spin in response to the active torque, attaining
a steady-state spinning speed due to background friction. As they get closer,
the multipole character of the pair interactions resists the rotation of adjacent
dimers, �g. 3.1 b–c. At very high densities, the relative motion of neighbours
is completely obstructed, �g. 3.1 d. By tuning the density, we explore how
the frustration between monopole and multipole interactions plays out as
their relative strengths are varied. We observe transitions from collections of
independently spinning dimers to unusual crystal states which are ordered in
particle position as well as orientation over time, to active spinner liquids, to
jammed states. Repulsive interactions with boundaries also obstruct spinning
�g. 3.1 e; to compensate, the system channels the rotational drive into linear
momentum, giving rise to robust edge currents and collective motion.

Our model system consists of a two-dimensional ensemble of 𝑁 like-
charge dimers, each consisting of two point particles of mass 𝑚 connected by
a sti� link of length 𝑑, �g. 3.1 a. Point particles interact only via a repulsive
pair potential of the Yukawa form 𝑏𝑒−𝜅𝑟/𝑟, where 𝑏 sets the overall strength
of the repulsion, 𝑟 is the inter-particle separation distance, and 𝜅 is the inverse
screening length, see �g. 3.1. By setting 𝜅−1 ∼ 𝑑, we discourage dimer links
from crossing each other and also maximize the orientational dependence of
the e�ective pair interaction between dimers.
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Each dimer is actively driven implemented by a torque 𝜏 = 𝐹𝑑 imple-
mented as a force dipole, �g. 3.1 a. Energy is dissipated by drag forces acting
on each particle with associated drag coe�cient 𝛾. The equations of motion
for the position, r𝑖 and orientation 𝜃𝑖 of the 𝑖th dimer are

2𝑚r̈𝑖 = −2𝛾ṙ𝑖 − 𝜕r𝑖
∑︁
𝑗 ̸=𝑖

𝑉 (r𝑗 − r𝑖, 𝜃𝑖, 𝜃𝑗), (3.1)

𝐼𝜃𝑖 = 𝜏 − 𝛾Ω𝜃𝑖 − 𝜕𝜃𝑖
∑︁
𝑗 ̸=𝑖

𝒱(r𝑗 − r𝑖, 𝜃𝑖, 𝜃𝑗), (3.2)

where 𝐼 = 1
2𝑚𝑑

2 and 𝛾Ω = 1
2𝛾𝑑

2 are the moment of inertia and rotational
friction coe�cients respectively, and the position- and orientation-dependent
interaction potentials 𝑉 and 𝒱 are derived from the Yukawa pair interactions
between the point particles. An isolated dimer attains a steady state of counter-
clockwise rotation about its center with a constant spinning speed Ω0 = 𝜏/𝛾Ω,
see �g. 3.1 b. We emphasize, however, that the instantaneous orientation of
the dimer is not dictated by the drive, in contrast to systems where the dimer
orientation is slaved to an external �eld, e.g. colloids driven by a rotating
magnetic �eld [30, 70].

Upon rescaling distances by 𝜅−1 and time by Ω−1
0 , the dynamical equa-

tions are characterized by three dimensionless quantities: 𝜅𝑑, 𝛼 ≡ 𝐼𝜏/𝛾2Ω
which measures the characteristic dissipation time for angular momentum
in units of the spinning period, and 𝛽−1 ≡ 𝜏/𝜅𝑏 which quanti�es the drive
in units of the characteristic interaction energy scale. We focus here on the
competition between rotational drive and interactions as the dimer density is
varied for �xed 𝛼 and 𝛽, as sketched in �g. 3.1 b–d. We constrain ourselves to
the asymptotic limit where both 𝛼≫ 1 and 𝛽 ≫ 1.

3.1 Systems of Active Spinners

In order to study systems of active interacting spinners, we conducted molec-
ular dynamic simulations for eqs. (3.1) and (3.2). First, we characterized the
bulk behavior of systems of active interacting spinners through simulations
under periodic boundary conditions in which the dimer density was varied
by changing the dimensions of the simulation box with constant screening
parameter 𝜅 = 0.725/𝑑, particle number 𝑁 = 768, and activity parameters
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Figure 3.1: Competing rotation and interactions in active spinners. a, Make-
up of a single self-spinning dimer, consisting of a pair of identically-charged particles
(black dots), connected by a rigid rod of length 𝑑 (double line). Particles repel each
other with a Yukawa interaction with screening length 𝜅−1 which determines the soft
exclusion zone (light blue discs), beyond which the repulsion falls o� exponentially
with distance. Each particle experiences a force of magnitude𝐹 and direction indicated
by dotted arrows, oriented to provide zero net force and a net torque 𝜏 = 𝐹𝑑 on
the dimer at all times. b–d, The density determines the in�uence of interactions on
dimer dynamics. At large separations (b), interactions are negligible and dimers freely
rotate at the terminal angular velocity set by the activity and the background drag.
As separations become comparable to the screening length (c), adjacent dimers still
rotate past each other but experience interaction forces (red dashed arrows show
instantaneous force due to the interaction between two of the particles) that depend
on their instantaneous orientations. At very high densities (d), interactions completely
obstruct dimer rotation. e, Hard boundaries also obstruct dimer rotation, and their
e�ect is transmitted into interior dimers by interactions.



3.1. Systems of Active Spinners 57

𝛼 = 131 and 𝛽 = 133. Second, we characterized the behavior of bulk and
edge of systems of active interacting spinners by con�ning such a system in a
circular or slab-like geometry while we varied the density — similarly to the
method used when characterizing the bulk behavior.

3.1.1 Phase behavior

We characterized the bulk behavior of interacting spinners through simulations
under periodic boundary conditions in which the dimer density was varied
by changing the dimensions of the simulation box with constant screening
parameter 𝜅 = 0.725/𝑑, particle number 𝑁 = 768, and activity parameters
𝛼 = 131 and 𝛽 = 133. Density is quanti�ed by the packing fraction 𝜑 = 𝐴𝜌,
where 𝜌 is the number density of dimers and 𝐴 = 𝜋(𝑑 + 2𝜅−1)2/4 is the
soft excluded area of a spinning dimer on time scales 𝑡 ≫ 1/Ω0. Figure 3.2
characterises the phase behavior of our system via changes in particle order-
ing, orientational ordering and dynamics in the nonequilibrium steady states
reached at long times. Nearly identical behavior is observed for simulations
with 𝑁 = 3072, indicating that �nite-size e�ects are negligible.

3.1.2 Active spinner crystals

At low packing fractions, the dimers self-organize into a hexagonal crystalline
pattern, with little or no change in position, as shown for two representative
densities in the �rst two panels of �g. 3.2 a. In this regime, the repulsions
between dimers give rise to a Wigner-like crystal, quanti�ed by high values of
the bond-orientational order parameter |⟨𝜓6⟩| �g. 3.2 d [triangles]. Although
the dimers are highly restricted in their position, they continue to spin without
hindrance, attaining the same angular speed as an isolated dimer (⟨𝜃⟩ ≡ Ω ≈
Ω0, �g. 3.2 e). Apart from small �uctuations, the orientation of dimer 𝑖 at time
𝑡 has the form 𝜃𝑖(𝑡) = Ω0𝑡 + 𝛿𝑖 with the angular phase 𝛿𝑖 de�ned up to a
global phase shift. This state is reminiscent of plastic crystals, but with the
equilibrium �uctuations of the orientational degrees of freedom replaced by
active rotation: we term this state an active spinner crystal.

The crystals display ordering not only in dimer positions, but also in
dimer orientations which are phase-locked into regular spatial patterns. The
angular phases 𝛿𝑖 take on a few discrete values determined by the lattice
position. We �nd evidence for two distinct con�gurations. At low densities, 𝛿𝑖
acquires one of three values {0, 𝜋/3, 2𝜋/3}, with no two neighbors sharing
the same value �g. 3.2 c [�rst panel]. This pattern is identical to the equilibrium
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Figure 3.3: Ensemble measurements of steady-state physical quantities as a function
of 𝜑 for a system with𝑁 = 3072 dimers, four times the system size of the simulations
reported in �g. 3.2. Top row: bond-orientational order parameter, and di�usivity of
dimer positions; Middle row: average angular speed. These quantities identify three
distinct phases in di�erent density ranges: crystal (blue background), liquid (red),
and jammed (green). The rotational speed abruptly drops to zero (within numerical
precision) in the jammed phase. Bottom row: order parameters quantifying Potts
antiferromagnet (𝜓AFM) and striped herringbone (𝜓H) order in the phase relationships
between rotating dimers in the crystal. The vertical lines are at the same values of
𝜑 as in �g. 3.2. The density ranges for the distinct phases are almost identical for
𝑁 = 768 and 𝑁 = 3072. The transition from liquid to jammed occurs at a slightly
higher density, 𝜑J ≈ 3.5 for 𝑁 = 3072 (compared to 𝜑J ≈ 3.3 for 𝑁 = 768).
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ground state of the 3-state Potts antiferromagnet (3P-AFM) on the triangular
lattice [167]. When 𝜑 > 𝜑𝐶3-𝐶2 ≈ 1.2, the rotational symmetry of the pattern
changes from 𝐶3 to 𝐶2 as stripes of alternating 𝛿𝑖 ∈ {0, 𝜋/2} form along a
spontaneously-chosen lattice direction �g. 3.2 c [second panel]. This phase
is a dynamical analogue of the striped herringbone (H) phase observed in
lattices of elongated molecules [164]. Local order parameters 𝜓AFM and 𝜓H,
de�ned in section 3.1.3, measure the extent to which phase di�erences among
neighbouring dimers match those prescribed by the respective ordered states.
As shown in �g. 3.2 f, the 3P-AFM and H states are each observed over a range
of densities.

To understand the origin of the phase-locked patterns, we study a mini-
mal model of the dimer–dimer interactions. To lowest order in dimer size 𝑑,
each dimer is a superposition of a charge monopole and a charge quadrupole.
The monopole repulsion arranges the dimer centers into a triangular crystal
with lattice constant 𝑎 ∼ 1/

√
𝜑 . We assume that the dimer positions are thus

�xed and focus on the orientation dynamics, (3.2), due to the quadrupolar
interactions. When averaged over the common rotation period 2𝜋/Ω0, (3.2)
reduces to 𝜕𝜃𝑖⟨

∑︀
𝑗 ̸=𝑖 𝒱(r𝑗 − r𝑖, 𝜃𝑖, 𝜃𝑗)⟩𝑡 = 0; i.e. the nonequilibrium steady

states extremize the time-averaged potential energy as a function of orienta-
tion.

Upon ignoring �uctuations around the constant-speed evolution 𝜃𝑖(𝑡) =
Ω0𝑡+ 𝛿𝑖, and considering only nearest-neighbour interactions among dimers,
the average e�ective energy takes the compact form:

𝑉e� ≡ ⟨
∑︁
𝑗 ̸=𝑖

𝒱(𝜃𝑖 − 𝜃𝑗)⟩𝑡 =
∑︁
⟨𝑖𝑗⟩

[︃
𝐴1 +𝐴2

(︂
𝑑

𝑎

)︂4

cos 2(𝛿𝑖 − 𝛿𝑗)

]︃
, (3.3)

where𝐴1 and𝐴2 vary with density, see section 3.1.4 for details. For an in�nite
lattice of dimers, 𝑉e� has arbitrarily many extrema. However, the extrema can
be exhaustively listed for a triangle of neighbouring dimers. Up to a global
phase shift and vertex permutations, the e�ective energy as a function of the
phase shifts {𝛿1, 𝛿2, 𝛿3} on the triangle vertices has three unique extrema at
{0, 𝜋/3, 2𝜋/3}, {0, 0, 𝜋/2}, and {0, 0, 0}. The 3P-AFM and H phases respec-
tively extend the �rst and second of these extrema onto the in�nite triangular
lattice, and are thus also extremal states of the periodic crystal. In fact, the
3P-AFM state is the global energy minimum for 𝑉e�, as seen by mapping the
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e�ective energy to the antiferromagnetic 𝑋𝑌 model on the triangular lattice
[162]♠. The extremum with phase values 𝛿𝑖 = 0, which would correspond to
all dimers sharing the same orientation at all times, maximizes the frustration
of spinning by interactions and is not observed in our simulations.

In summary, spinning dimers are frustrated. The spatiotemporal-crystal
states that are compatible with the mutual frustration of the position and
orientation degrees of freedom are captured by the extrema of the e�ective
potential 𝑉e�. However, in principle, active spinner crystals could harbour a
multitude of other phase-locked patterns, which cannot be reduced to repeti-
tions of a single triangular unit but nevertheless extremize 𝑉e�. These may be
accessible by modifying the initial or boundary conditions, or the dynamics of
approaching the nonequilibrium steady state.

3.1.3 Order parameters

The local bond-orientational order parameter 𝜓6,𝑖 =
∑︀𝑛𝑖

𝑗=1 𝑒
6i𝜃𝑖𝑗/𝑛𝑖, where

𝑗 indexes the 𝑛𝑖 nearest neighbours of 𝑖 and 𝜃𝑖𝑗 is the angle made by the
bond connecting 𝑖 and 𝑗 with the 𝑥 axis, measures the extent to which the
neighbours of dimer 𝑖 match the orientational order of the triangular lattice.
The global order parameter |⟨𝜓6⟩| = |

∑︀𝑁
𝑖=1 𝜓6,𝑖/𝑁 | measures the extent

to which local bond orientations are aligned across the system. A perfect
triangular lattice has |⟨𝜓6⟩| = 1.

The local order parameters 𝜓AFM,𝑖 and 𝜓H,𝑖 report whether the orienta-
tions of dimer 𝑖 and its nearest neighbours 𝑗 (identi�ed via a Delaunay trian-
gulation) are consistent with the expected phase di�erences for the 3P-AFM
and H crystal phases respectively. To identify the 3P-AFM phase, we check
whether orientation di�erences between neighbours are ±𝜋/3, by computing:

𝜓AFM,𝑖 =
1

𝑧𝑖

𝑧𝑖∑︁
𝑗=1

1− 1

3

[︀
4 cos2(𝜃𝑖𝑗)− 1

]︀2
, (3.4)

♠The e�ective energy inherits a discrete and a continuous ground-state degeneracy from
the antiferromagnetic 𝑋𝑌 model. An arbitrary global phase shift gives the same state, but this
is equivalent to a choice of 𝑡 = 0 in the description of the orientations. The discrete degeneracy
is in the chirality of phase order (0 → 𝜋/3 → 2𝜋/3 vs. 0 → 2𝜋/3 → 𝜋/3) upon circling a
plaquette. Adjacent plaquettes always have opposite chirality, and the two possible chirality
arrangements on the triangular lattice provide two distinct ground states.
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where 𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 and 𝑧𝑖 is the number of neighbours of dimer 𝑖. The
expression evaluates to unity if [(𝜃𝑖 − 𝜃𝑗) mod 𝜋] ∈ {𝜋/3, 2𝜋/3} for all
neighbours, and has an expectation value of zero if angle di�erences are
randomly distributed.

For the H phase, we �rst arrange the neighbours in order of increasing
angle made by the link connecting 𝑖 and 𝑗 with the 𝑥 axis. Our goal is to eval-
uate the closeness of all possible circular shifts of this neighbour arrangement
with the sequence 𝑆 ≡ {0, 𝜋/2, 𝜋/2, 0, 𝜋/2, 𝜋/2}. We de�ne the shift 𝑘 as
the integer in {0, 1, 2} which minimizes sin2(𝜃𝑖𝑘) + sin2(𝜃𝑖 − 𝜃𝑘+3) in the
ordered arrangement. The local order parameter is then computed via:

𝜓H,𝑖 = − 1

𝑧𝑖

𝑧𝑖∑︁
𝑗=1

cos

(︃{︃
2𝜃𝑖𝑗 + 𝜋, if 𝑗 mod 3 = 𝑘

2𝜃𝑖𝑗 , otherwise

)︃
, (3.5)

which evaluates to unity only if the sequence of 𝜃𝑖𝑗 starting from 𝑗 = 𝑘
matches 𝑆 and is close to zero for a random distribution of dimer orientations.

Under periodic boundary conditions, the crystals form phase-locked
domains separated by defects and grain boundaries which bring down the
value of the order parameters from unity when averaged over all points. In
�g. 3.2 f, we identify the predominant local order within domains by plotting
the most probable values 𝜓AFM and 𝜓H. These are obtained by binning the
local values 𝜓𝑖 from every 50th frame in the range 8000 ≤ 𝑝 ≤ 10000 into
20 equally spaced bins, and reporting the coordinate of the bin with highest
occupancy.

3.1.4 E�ective interaction between dimer pairs

In the limit that the dimer length 𝑑 is small compared to the dimer separation,
each dimer can be considered a superposition of a monopole carrying the net
charge 2𝑏 and a quadrupole charge distribution. Therefore, the interaction
between a pair of dimers can be written as a sum of monopole–monopole,
monopole–quadrupole, and quadrupole–quadrupole terms. The monopole–
monopole contribution is independent of dimer orientation. Suppose the angle
made by dimer 𝑖 evolves in time as 𝜃𝑖 = Ω0𝑡 + 𝛿𝑖. By symmetry considera-
tions, the monopole–quadrupole contribution integrates to a quantity which
is independent of the phases 𝛿𝑖. The quadrupole–quadrupole contribution
does depend on the relative phases, and has the form

𝐸𝑖𝑗 = 𝐽(𝑟𝑖𝑗) cos(2𝜃𝑖 − 2𝜃𝑗) +𝐾(𝑟𝑖𝑗) cos(2𝜃𝑖 + 2𝜃𝑗 − 4𝜑𝑖𝑗), (3.6)
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where 𝜑𝑖𝑗 is the angle made by the link connecting 𝑖 and 𝑗 with the 𝑥-axis,
and 𝐽,𝐾 are functions of the center-of-mass separation 𝑟𝑖𝑗 , set by the Yukawa
parameters:

𝐽(𝑟) =
𝑏

128𝑟

(︂
𝑑

𝑟

)︂4

𝑒−𝜅𝑟[9(1 + 𝜅𝑟) + 5(𝜅𝑟)2 + 2(𝜅𝑟)3 + (𝜅𝑟)4], (3.7)

𝐾(𝑟) =
𝑏

128𝑟

(︂
𝑑

𝑟

)︂4

𝑒−𝜅𝑟[105(1 + 𝜅𝑟) + 45(𝜅𝑟)2 + 10(𝜅𝑟)3 + (𝜅𝑟)4].

(3.8)

For the rotating dipoles with constant angular speed Ω0 with �xed center-
of-mass positions separated by the lattice spacing 𝑎, we have

𝐸𝑖𝑗 = 𝐽(𝑎) cos(2𝛿𝑖 − 2𝛿𝑗) +𝐾(𝑎) cos(4Ω0𝑡+ 2𝛿𝑖 + 2𝛿𝑗 − 4𝜑𝑖𝑗). (3.9)

When the energy is integrated over a cycle, the second term integrates to zero,
and hence the average potential energy over the cycle is (1/𝑇 )

´ 𝑇
0 𝐸𝑖𝑗 𝑑𝑡 =

𝐽(𝑎) cos(2𝛿𝑖 − 2𝛿𝑗).

3.1.5 Melting and kinetic arrest

We now elucidate how synchronized spinning motion frustrates positional
order and melts dense spinner crystals. As the packing fraction is increased,
we observe a loss of crystalline ordering, signalled by a sharp drop in |⟨𝜓6⟩|
from 1 to 0.2 at 𝜑 = 𝜑melt ≈ 1.9. This drop coincides with the onset of
di�usive dynamics of the dimer centers of mass at long times. The di�usivity
𝐷 ≡ lim𝑡→∞⟨|r𝑖(𝑡0 + 𝑡) − r𝑖(𝑡)|2⟩𝑖/𝑡 is nonzero for a range of densities
above 𝜑melt, characteristic of a liquid phase. Melting is accompanied by a
disruption of the phase-locked spinning dynamics, as quanti�ed by (i) a drop
in the average spin velocity to below 0.1Ω0, �g. 3.2 e, (ii) a marked increase in
spin speed �uctuations, �g. 3.4, and (iii) a loss of H order in the orientations,
�g. 3.2 f. Figure 3.2 a–c (third column) shows a typical liquid con�guration
with no discernible order in the positions, orientations, or spinning speeds.

The melting of the dimer crystal upon increasing the density, at odds with
the typical behavior of athermal or equilibrium repulsive particles, is a direct re-
sult of the orientational dependence of dimer–dimer interactions coupled with
the active spinning. The monopole part of the pair interaction is responsible
for the crystalline arrangement of dimer centers. The quadrupolar component
generates a gearing e�ect, which hinders the activity-driven co-rotation of
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Figure 3.4: Fluctuations in dimer spin velocities 𝜃𝑖 around their mean value Ω in
the steady state for the simulations under periodic boundary conditions with 𝛼 =
131, 𝛽 = 0.0075. The �uctuations are quanti�ed by the standard deviation of spin
velocities, normalized by their mean. The normalized �uctuations are negligible in
the 3P-AFM crystal phase (𝜑 < 1.2) and small in the H crystal phase (1.2 < 𝜑 < 1.9).
They become very large in the liquid phase (𝜑 > 1.9), showing that dimers no longer
rotate uniformly in the liquid; their rotational dynamics are dominated by interactions,
which change constantly as dimers di�use through the liquid. In the jammed phase
(𝜑 > 3.3), the mean spin velocity Ω = 0 and the normalized spread in spin velocities
is unde�ned.
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Figure 3.5: Snapshot of a simulation in the jammed phase (𝛼 = 131.026, 𝜑 = 3.7)
coloured by (top) orientation angle and (bottom) orientation angle multiplied by 3.
Regions of uniform colour on the right indicate regions where dimers are aligned
modulo 𝜋/3.
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adjacent dimers as shown schematically in �g. 3.2 1c. The competition between
interactions and active spinning results in geometrical frustration of the crys-
talline order, akin to the frustration of antiferromagnetic Ising spins on the
triangular lattice. Increasing the density strengthens the quadrupolar compo-
nent of the interactions relative to the monopole component, destabilizing the
crystal at the threshold packing fraction 𝜑melt. In the liquid state, the frustra-
tion of in-place dimer rotation by interactions is partially relieved by dimers
constantly sliding past each other, at the cost of crystalline and phase-locked
order.

Upon increasing the packing fraction beyond 𝜑melt, the di�usive and
spinning dynamics slow down as interactions become more prominent. At
𝜑 = 𝜑J ≈ 3.3, the di�usivity and spinning speed of the ensemble both drop
abruptly to zero, signifying a sharp transition from a liquid to a frozen solid in
which interactions completely overwhelm the external drive [36]. As shown by
representative snapshots �g. 3.2 a–c [fourth column] and the hexagonal order
parameter �g. 3.2 d, the dimer positions and orientations in the frozen state do
not exhibit the ordering of the crystalline phases. However, a di�erent form
of short-range orientational order persists: dimers tend to form ribbon-like
assemblies which share a common alignment, see �g. 3.2 c [fourth panel], and
�g. 3.5. This structure, which locally resembles smectic ordering in liquid
crystals, is a consequence of the constraints on tightly packing repulsive
dimers. The full description of this state, reminiscent of a degenerate crystal
[156], goes beyond the scope of our work.

3.2 Con�nement-induced collective motion

At a microscopic level, the bulk phases are distinguished by the relative im-
portance of rotational drive and orientation-dependent interactions. For a
steady state to be attained, torques must be balanced globally as well; in a
con�ned system, the overall torque may be balanced by viscous drag as well
as boundary forces. To investigate the interplay between rotational drive,
interactions, and con�nement, we simulated a system con�ned by a circular
frictionless boundary as depicted in �g. 3.6 a, for the same particle number
(𝑁 = 768), activity level and density range as in �g. 3.2. Densities are changed
by varying the circle radius, since 𝜑 = 𝑁𝐴/𝜋𝑅2. Figure 3.6 a shows the
dimer center-of-mass motion for three representative densities across di�erent
phases, all of which display spontaneous macroscopic �ows.
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Measurements of the coarse-grained azimuthal velocity 𝑣𝜃(𝑟) as a func-
tion of distance 𝑟 from the disc center, see section 3.3, reveal qualitative dif-
ferences in the collective �ows across phases. In both the crystal (𝜑 = 0.827)
and frozen (𝜑 = 3.750) phases, the angular velocity about the disc center,
𝜔(𝑟) = 𝑣𝜃(𝑟)/𝑟, is constant throughout the disc �g. 3.6 b, showing that the
ensemble rotates around the center in unison as a rigid body. By contrast, the
angular velocity pro�le is nonuniform for the liquid (𝜑 = 2.395), growing
monotonically with distance from the disc center. These distinct behaviors
persist over the entire phase diagram, as shown in �g. 3.6 c which compares the
steady-state values of the �ow angular velocity at the center [𝜔(0)] and edge
[𝜔(𝑅)] of the disc as a function of density. The center and edge values coincide
in the solid phases, consistent with rigid-body rotation, whereas the liquid
phase shows a persistent enhancement of �ow at the edge. Collective vortical
motion and boundary �ows were previously demonstrated in suspensions
of swimming cells [40, 62]. Their spatial structure and physical origin are,
however, profoundly di�erent from the con�nement-induced �ows reported
here, which depend on the chiral activity of the spinners as we now elucidate.

3.2.1 Spontaneous collective rotation of rigid phases

The rigid-body rotation in the two solid phases, ordered and jammed, can be
understood by balancing torques about the center of the circular boundary to
obtain an acceleration-free steady state. The forces exerted by the boundary,
being radially oriented, do not exert torque. Thus, the driving torques acting
on the dimers must be balanced by drag forces. In the crystal interior, dimers
homogeneously and steadily spin about their individual centers at a rate Ω0,
�g. 3.6 a, and the resulting friction balances the driving torques at all times.
However, the spinning of the outermost layer of 𝑁e dimers is obstructed by
the hard boundary as shown schematically in �g. 3.1 e, which implies that the
driving torques on these dimers are not balanced by spinning. Rather, these
torques drive an overall rotation of the crystal. The corresponding rigid-body
rotation speed, 𝜔rb, is obtained by balancing the net drive 𝑁e𝜏 against the net
drag torque due to the rigid-body rotation which scales as 𝑁𝛾Ω𝑅2, thereby
leading to 𝜔rb ∼ (𝑁e/𝑁)𝜏/𝛾𝑅2 ∝ 𝜑.

In the frozen phase, local spinning of dimers relative to their neigh-
bours is completely frustrated by interactions. Therefore, the entire external
torque 𝑁𝜏 is balanced solely by the drag due to orbital motion, giving rise to
𝜔rb ∼ 𝜏/𝛾𝑅2 ∝ 𝜑. The measured rotation speeds quantitatively match the
predictions due to overall torque balance — solid and dashed lines in �g. 3.6 c.
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3.2.2 Emergent edge current in active spinner liquids

The rigid-body motion of the two solid phases relies on the transmission of
torque via shear stresses throughout the sample. If the disc is partitioned into
circular annuli, the net external drive acting on each annulus di�ers from the
net drag torque; neighboring annuli must exert shear forces on each other to
balance the total torque. Unlike the solid phases, the liquid cannot support
a shear stress through elastic deformations, which qualitatively explains the
absence of pure rigid-body rotation, �g. 3.6 a and b. For a quantitative descrip-
tion of the emergent �ow, we use a continuum theory of an active chiral liquid
coupled to a solid substrate. This phenomenological model, introduced in
Stark et al. [109] and Tsai et al. [111], generalizes the so-called micropolar-�uid
hydrodynamics [66, 171] by including couplings to a frictional substrate.

Assuming incompressibility (as justi�ed by the lack of signi�cant spatial
variations in dimer density), the hydrodynamic description relies solely on the
conservation of momentum and angular momentum, and therefore involves
two coarse-grained �elds: the �ow velocity v(r), and the internal angular
rotation, or spin, �eld Ω(r). The hydrodynamic equations take on a compact
form when written in terms of Ω(r) and the scalar vorticity, 𝜁(r) = 1

2 ẑ · ∇ ×
v(r). In the viscous steady-state limit, these equations, which respectively
amount to local torque and force balance, are [109, 111]:

𝐷Ω∇2Ω− ΓΩΩ− Γ(Ω− 𝜁) + 𝜌𝜏 = 0, (3.10)
(4𝜂 + Γ)∇2𝜁 − 4Γ𝑣𝜁 − Γ∇2Ω = 0, (3.11)

where 𝜌 is the active-spinner-�uid density, 𝜂 is the shear viscosity, and 𝐷Ω is
a spin viscosity controlling the di�usive transport of angular momentum. The
coe�cients ΓΩ and Γ𝑣 quantify the dissipation of angular and linear momen-
tum respectively due to substrate friction. The crucial spin-vorticity coupling
is embodied in the rolling friction Γ, which coarse-grains the frustration be-
tween rotations and interactions outlined in �g. 3.1 c. Orientation-dependent
interactions hinder the free spinning of adjacent �uid elements, causing shear
stresses proportional to Γ unless the elements �ow past each other in such a
way that the vorticity cancels the local spin.

Analysis of the hydrodynamic equations reveals that spatial variations
in the local spin �eld induce persistent �ows. In the absence of boundaries,
the equations admit the �ow-free solution Ω = 𝜌𝜏/(ΓΩ +Γ) = Ω, 𝜁 = 0. If a
hard boundary hinders spinning, however, Ω(r) varies from its value imposed
by the boundary to the constant interior value Ω over a length scale 𝜆Ω =
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[𝐷Ω/(Γ + ΓΩ)]
1
2 set by the competition between di�usion and dissipation of

local spin. The spatial variations in Ω, con�ned to the boundary, act as a source
for vorticity which itself decays over a length scale 𝜆𝜁 = [(4𝜂 + Γ)/(4Γ𝑣)]

1
2

set by drag. These predictions match the simulation results, and a �t to radially
symmetric spin and �ow �elds (dashed lines in �g. 3.6 b second panel) provides
quantitative agreement with four �tting parameters, see section 3.2.3 for more
details.

The spontaneous liquid �ow only requires the obstruction of spinning
by the boundary, independently of its geometry. To highlight the robustness
of this emergent �ow, we also study active spinner liquids in a slab geometry
with two edges aligned perpendicular to the 𝑥 axis and periodic boundary
conditions along 𝑦, as shown in �g. 3.6 e. This geometry suppresses rigid-
body rotation in all phases; excess driving torques are balanced by normal
boundary forces. Accordingly, no dimer motion is measured in the crystal
and jammed phases, �g. 3.6 d. However, a persistent �ow parallel to the slab
edges arises in the liquid phase, demonstrating that the emergence of localized
shear �ows at edges is a robust feature of geometrically con�ned active spinner
liquids. The mechanism for the edge current is the exchange between local spin
and vorticity described above, which hinges on the orientation dependence
of dimer-dimer interactions. The hydrodynamic description quantitatively
reproduces the �ow velocity pro�le 𝑣𝑦(𝑥) and spin �eld Ω(𝑥), �g. 3.6 e [dashed
lines].

3.2.3 Hydrodynamic model

In this section, we derive closed-form approximate solutions to the hydro-
dynamic equations, eqs. (3.10) and (3.11) of the main text, which are useful
for numerical �tting to the spin and velocity pro�les of the active spinner
liquid under con�nement. We follow Tsai et al. [111] and introduce lengths
via 𝜆2Ω = 𝐷Ω/(Γ + ΓΩ) and 𝜆−2

𝜁 = 4Γ𝑣/(4𝜂 + Γ), and unitless parameters
𝑝 = Γ/(Γ + ΓΩ) and 𝑞 = Γ/(4𝜂 + Γ). Then the equations become:

(𝜆2Ω∇2 − 1)Ω + 𝑝𝜁 + 𝜏 = 0, (3.12)
(∇2 − 𝜆−2

𝜁 )𝜁 − 𝑞∇2Ω = 0, (3.13)

where 𝜏 = 𝜌𝜏/(ΓΩ + Γ) ∼ 𝜏/(𝛾Ω + Γ/𝜌). In the interior of a sample,
away from the edges, we expect (and observe) Ω ≈ 𝜏 − 𝑝𝜁 . We also observe
numerically that 𝑝𝜁 is negligible compared to the other two terms. Since
⟨Ω⟩ ≪ Ω0 in the liquid phase, this implies Γ ≫ ΓΩ ⇒ 𝑝 ≈ 1. With these
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Figure 3.6: Collective motion re�ects phase changes. . .
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Figure 3.6: Collective motion re�ects phase changes. a, Snapshots showing the
drift of 𝑁 = 768 dimers con�ned by a circular boundary. Arrows indicate the
displacements after Δ𝑡 = 164/Ω0 for (from left to right) 𝜑 = 0.827 (crystal), 𝜑 =
2.395 (liquid), and 𝜑 = 3.750 (jammed). Arrows are scaled di�erently for visibility.
b, Time-averaged steady-state radial distributions of the orbital angular speed 𝜔(𝑟)
around the disc center (orange) and the local spin speed (blue), for the simulations
shown in a. Dashed lines are �ts to the hydrodynamic theory. c, Steady-state orbital
angular speed 𝜔(𝑟) in simulation units as a function of density, measured at the disc
center (𝑟 = 0) and edge (𝑟 = 𝑅). Coincidence of the two values is consistent with
rigid-body rotation. The solid and dashed red lines show the theoretical prediction for
the rigid-body rotation speed in the crystal and jammed phases respectively. d, Steady-
state tangential speed of dimers at the wall as a function of density, for 𝑁 = 768
dimers con�ned by two parallel walls perpendicular to the 𝑥 direction and periodic
boundary conditions along 𝑦. Density is varied by changing the area between the slabs
while keeping the aspect ratio 𝐿𝑦/𝐿𝑥 = 2 unchanged. e, Snapshot of dimer motion
for 768 dimers con�ned between parallel slabs at 𝜑 = 2.410, with 𝐿𝑦/𝐿𝑥 = 1/3. f,
Averaged steady-state velocity pro�le between the slabs (orange) and local spin speed
(blue line) for the simulation shown in e. Dashed lines are �ts to the hydrodynamic
theory. g Snapshots zoom in showing the drift of 𝑁 = 768 dimers con�ned by a
circular boundary in the liquid phase. Arrows indicate the time averaged velocity.
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simpli�cations, and the requirement of zero spin and zero tangential forces at
the boundary, we get a closed-form solution for the two hydrodynamic �elds.
In the slab geometry, with slab boundaries at 𝑥 = ±𝐿/2, they have the form:

Ω(𝑥) = 𝜏

[︂
1− sech

(︂
𝐿

2𝜆Ω

)︂
cosh

(︂
𝑥

𝜆Ω

)︂]︂
, (3.14)

𝜁(𝑥) =
𝑞𝜏
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𝐿
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2
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. (3.15)

The corresponding velocity �eld is obtained by integrating the vorticity. The
current magnitude at the edges (𝑥 = ±𝐿/2) is:

𝑣edge =
2𝑞𝜏

[︁
𝜆𝜁 tanh

(︁
𝐿
2𝜆𝜁

)︁
− 𝜆Ω tanh

(︁
𝐿

2𝜆Ω

)︁]︁
1− 𝜆2Ω/𝜆

2
𝜁

. (3.16)

Using these results, we can extract the values of the lengths and dimen-
sionless parameters from the simulations. We �rst �t the spin �eld Ω(𝑥) since
the decay length 𝜆Ω tends to be much smaller than 𝜆𝜁 , allowing the former
to be �t accurately for narrow slabs where the width might be comparable to
the latter. The �t to the spin �eld �xes the parameters 𝜏 and 𝜆Ω. The second
�tting of the velocity �eld then �xes the remaining two parameters 𝑞 and 𝜆𝜁 .

The parameter values obtained from the �t for the slab simulation in
main text �g. 3.6 f, with 𝐿 = 121.43𝑑, are 𝜏 = 0.06627, 𝑞 = 0.0150, 𝜆Ω =
3.554𝑑, 𝜆𝜁 = 22.65𝑑. The approximation that 𝑝𝜁 ≪ Ω requires 𝑞 ≪ 1,
satis�ed by the �t.

The same procedure is used for a liquid con�ned to a disc of radius𝑅, for
which the approximate radially symmetric solution for the spin and vorticity
�elds is:

Ω(𝑟) = 𝜏 −
𝜏𝑅(1−𝜆2Ω/𝜆

2
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Here, 𝐼𝑚 is the modi�ed Bessel function of �rst kind of order 𝑚. The parame-
ters obtained from the �t to the approximate solution for the disc simulation
in �g. 3.6 b of the main text (𝜑 = 2.395, 𝑅 = 33.65𝑑) are 𝜏 = 0.1475, 𝑞 =
0.0161, 𝜆Ω = 2.484𝑑, 𝜆𝜁 = 15.61𝑑.

3.3 Computational methods

Our molecular dynamics simulations solve Newton’s equations for a system of
point particles with speci�ed pairwise interactions, external forces, and drag
coe�cients. Particles interact with a pairwise repulsive Yukawa potential with
identical charge 𝑏 and screening length 𝜅, enabled for all particle pairs with
separation 𝑟 < 10𝜅−1. Dimers are created by connecting pairs of particles with
sti� harmonic springs of equilibrium length 𝑑 and spring constant 𝑘 = 104𝑏𝜅3.
Torques are applied via an external force 𝐹 = 𝜏/𝑑 oriented perpendicular
to the link at all times. Each point particle also experiences a drag force
proportional to velocity with coe�cient −𝛾. Simulations are initialized with
dimers at random positions and orientations within the simulation box. Particle
positions and velocities are updated by integrating Newton’s equations using a
symplectic Euler method with time stepΔ𝑡 = 0.0086/Ω0. A typical simulation
runs for 107 time steps, taking roughly 100CPU hours for system size𝑁 = 768
at the highest densities, with a snapshot of dimer data saved every 103 steps.
Ensemble averages are carried out over the �nal 8000 snapshots.

Con�ning boundaries are implemented using a steep one-sided harmonic
repulsive potential 𝑉 (𝑥) = 1

2𝑘w𝑥
2 experienced by all particles, where 𝑥 is

the penetration distance into the boundary, and 𝑘w = 3.14 × 102𝑏𝜅3. For
simulations con�ned by a circular boundary, coarse-grained �elds of the form
𝑓(𝑟) are computed by dividing the simulation region into 39 concentric annuli
with widths inversely proportional to their mean radius 𝑟 so that the number of
dimers is the same in each annulus on average. The relevant quantity averaged
over all dimers occupying the annulus at 𝑟 provides a discretized numerical
estimate of the coarse-grained �eld value 𝑓𝑝(𝑟) in frame 𝑝. The estimate is
then averaged over the �nal 8000 snapshots to obtain the coarse-grained �eld
𝑓(𝑟) = ⟨𝑓𝑝(𝑟)⟩𝑝. A similar averaging provides the coarse-grained �elds Ω(𝑥)
and 𝑣𝑦(𝑥) for the slab geometry, but with the simulation area between the
slabs divided into 40 strips with edges parallel to the 𝑦 axis. Averaging the
relevant quantity over dimers occupying a strip centerd at 𝑥 provides the
discrete coarse-grained �eld value 𝑓𝑝(𝑥).
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Figure 3.7: Mean squared displacement (MSD) of dimers over time, for the periodic
system under four representative densities which are the same as in �g. 3.2. The
MSD is calculated independently for 76 randomly chosen dimers (one-tenth of the
total) and averaged over them. The bottom plot shows the same data on a logarithmic
scale. The system in the liquid phase (𝜑 = 2.168) has di�usive dimer dynamics with
the mean square displacement growing linearly with time. Dimers in the crystal
(𝜑 = 0.717 and 𝜑 = 1.523) and jammed (𝜑 = 3.700) states do not di�use over long
times. However, in the crystal phases there is a �nite displacement at short times
re�ecting the vibrations of the dimers around their mean positions which are �xed
over time. These vibrations are larger in the H phase compared to the AFM phase.
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3.4 Conclusion

Combining numerical simulations and analytical theory, we have elucidated
the phase behavior of interacting active spinners. The mutual frustration of
positional and time-periodic orientational order has been shown to yield a
variety of crystal and disordered phases. Although we have focused on the
density dependence of the bulk and edge phenomena, the phases and their
associated emergent �ows persist over a broad range of activity strengths,
see �g. 3.8, which makes experimental realizations feasible. Colloidal dumb-
bells [58, 121] spun by phoretic stresses [3] or Quincke rotation [43] would
provide a near-literal realization of our model. More broadly, the essential
ingredients of active spinners with orientation-dependent repulsive interac-
tions are present in a wide variety of experimental systems including chiral
liquid crystals con�ned to a monolayer and driven via the Lehmann e�ect [54],
rotating nanorods propelled by biomolecular motors [134], and light-driven
micromotors [15]. We also envision macroscopic realizations using chiral par-
ticles driven by air�ow [35] or vibrations [111], with soft interactions provided
by electrostatic or magnetic repulsion. Besides opening up new avenues to
explore nonequilibrium physics in simple settings, the novel phases arising
from the interplay between interactions and spinning may be exploited for
tunable torque transmission [29] or for self-assembly of anisotropic particles
into ordered patterns.
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Figure 3.8: Bulk phases are re�ected in edge currents and persist over a range
of torques. The �ow at the edge plotted as a function of activity level 𝛼 and packing
fraction 𝜑 in the disc geometry. In these simulations, the disc radius 𝑅 = 48.27𝑑 was
kept constant and the density was varied by changing the number of dimers con�ned
to the disc. The tangential �ow velocity 𝑣𝜃(𝑟) was measured as for the systems in main
text �g. 3.6, and the edge �ow is reported as the di�erence in 𝜔(𝑟) = 𝑣𝜃(𝑟)/𝑟 at the
edge and center of the disc. Symbols are coloured by edge current magnitude, whereas
symbol shapes are chosen by values of bulk properties that identify the di�erent phases.
Circles, Active rotator crystals, identi�ed by ⟨Ω⟩ > 0.4 and ⟨𝜓6⟩ > 0.45. Diamonds,
Frozen phase, identi�ed by ⟨Ω⟩ < 10−5. Squares, Dynamic and disordered liquid-like
states, that do not satisfy the previous criteria for the crystal and frozen phases.


