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Chapter 2.

Topological chiral sound in active liquids

TR

selves in a certain direction. The study of self propelled particles has

been a popular subject of research for the last two decades. Early
theoretical progress [33, 52, 69] has been accompanied by the engineering of
soft materials made of self-propelled polymers, colloids, emulsions, and grains
[11, 43, 56, 59, 76, 79, 84, 85], which exhibit novel nonequilibrium phenomena.
Prominent examples include phase separation of repulsive spheres, giant num-
ber fluctuations away from criticality, and long-range orientational order in
two-dimensional flocks [27, 110, 148].

P OLAR ACTIVE FLUIDS are fluids formed by particles that propel them-

On the other hand, the study of topological states has been a topic of
intense study in the quantum domain. One of the most notable topological
effect in the quantum realm is the so called quantum Hall effect which is an
precursor of a class of topological insulators.

Schematically, the quantum Hall effect is found when a two-dimensional
electron gas is put in the presence of a strong external magnetic field — breaking
time-reversal-symmetry [82]. The magnetic field causes the electrons to form
classical cyclotron orbits. At edges of the system, however, the electrons
are interrupted in their orbit causing an edge current. Upon analysing this
system, it turns out that the bulk of this system is insulating, as the system is
band-gapped. At the edge, however, the system will conduct. This property
can be linked to the existence of a topological invariant that makes it robust
to various perturbations that do not change the topology. This robustness is
often referred to as topological protection.
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It turns out these topological states are not exclusive to the quantum
domain but are thus also present in the classical domain [14, 25, 28, 49, 57, 95].
Recent studies have shown that interesting topological quantum electronic
effect often translate to similarly interesting topological acoustic effects [16, 18,
19, 34]). Here, we will combine topological mechanics and active matter to find
topological insulating states. As active matter naturally breaks time-reversal-
symmetry, it is an excellent candidate to achieve a self-assembled analogue of
a certain class of topological insulators.

2.1 Classical quantum Hall fluids

Liquids composed of self-propelled particles have been experimentally realized
using molecular, colloidal, or macroscopic constituents [8, 39, 43, 79, 85].
These active liquids can flow spontaneously even in the absence of an external
drive [52, 69, 110]. Unlike spontaneous active flow [7, 9], the propagation
of density waves in confined active liquids is not well explored. Here, we
exploit a mapping between density waves on top of a chiral flow and electrons
in a synthetic gauge field [14, 31] to lay out design principles for artificial
structures termed topological active metamaterials. We design metamaterials
that break time-reversal symmetry using lattices composed of annular channels
filled with a spontaneously flowing active liquid. Such active metamaterials
support topologically protected sound modes that propagate unidirectionally,
without backscattering, along either sample edges or domain walls and despite
overdamped particle dynamics. Our work illustrates how parity-symmetry
breaking in metamaterial structure combined with microscopic irreversibility
of active matter leads to novel functionalities that cannot be achieved using
only passive materials.

We design active metamaterials with transport properties akin to those of
quantum Hall fluids [82] by confining active liquids in periodic geometries that
generate gapped density-wave spectra. Recent studies of topological acoustics
have revealed that spectral bands characterized by topological invariants host
(in their spectral gaps) robust mechanical states [18, 34, 49] and sound modes
that propagate unidirectionally along sample edges and interfaces [4, 13, 14, 16,
25, 28, 31, 95]. However, the translation of topological-acoustic designs from
macroscopic prototypes to soft materials has so far proven challenging, because
overdamped particle dynamics overcome inertia and suppress the propagation
of ordinary sound waves at the microscale. To address this challenge, we
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elucidate the relationship between emergent active flow and the spectrum
of topological density waves in a confined liquid composed of self-propelled
particles that have overdamped dynamics and align their velocities, i.e., a
confined polar active liquid.

In order to obtain generic results, we use a continuum mechanics de-
scription of polar active flow. The analog of Navier-Stokes equations that
describe a one-component fluid of self-propelled particles (with overdamped
particle dynamics, see section 2.2.3) are the Toner-Tu equations [52, 110, 148],
which in their simplest form read

Ao + vV - (op) = D,V?o, (2.1)
v
ap+ Mvo(p- V)p = (Blp|> —a) p — Q—;VQ 1 vAp, (2.2)

where o(r, t) is the density of active particles that fluctuates around its mean
value gg. The polarization field of the material, p(r,t), denotes the local
average orientation of the velocities of the self-propelled units which, when
isolated, all move at the same speed vg. The effective viscosity, v, the diffusivity,
D,, and the other (positive) hydrodynamic coefficients A, v1, @, and 3 have
been computed from a number of microscopic models in Suzuki et al. [26],
Bricard et al. [43], Solon et al. [61], Farrell et al. [65], and Bertin et al. [102];
« and [ are the Landau coefficients used to model the spontaneous breaking
of rotational symmetry; v; relates pressure and density. In section 2.3, we
provide a concise introduction to the Toner-Tu model and explain how the
left hand side of eq. (2.2) originates from overdamped dynamics of p and not
from momentum conservation.

Numerically solving eq. (2.1) and eq. (2.2) in the connected-annuli ge-
ometry of fig. 2.1a, we find the emergence of a uniform steady chiral flow
in each annulus. As this flow is a consequence of spontaneous symmetry
breaking, left-handed and right-handed orientations are equally likely to occur.
These general continuum-mechanics results are confirmed by particle-velocity
maps measured from a prototypical microscopic model shown in fig. 2.1b, see
section 2.2.3. As particle velocities align in the region shared between two
adjacent annuli, the fluid within these annuli circulates in opposite directions,
in analogy with either engaged counter-rotating gears or antiferromagnetic
spins. Similar behavior was observed in bacterial fluids experiments [7] and
simulations of agent-based models [20].
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Figure 2.1: Steady states of polar active liquids in coupled annular channels.
(a) Steady state of a polar active liquid described by the hydrodynamic egs. (2.1)
and (2.2), in a confinement geometry based on the Lieb lattice. Note that the inter-
annular coupling leads to a stable steady-state order reminiscent of either engaged
gears or spins in an antiferromagnet. The colors indicate the azimuthal component
vg of the velocity field (also shown in arrows) around the center of the corresponding
annulus. (b) Steady state of the same liquid simulated using a particle-based model
that is described in section 2.2.3. (Dashed lines indicate periodic boundary conditions.)

When a homogeneous polar liquid flows through interconnected an-
nuli, the channel geometry determines the mean polarization pg(r), which
is proportional to the steady-state velocity field. We now elucidate how
this emergent spontaneous flow impacts sound propagation. We linearize
eq. (2.1) and eq. (2.2) deep in the polar liquid phase, in which case both o and
( are only weakly dependent on p. We define 7(r,¢) = p(r,t) — po(r) and
p(r,t) = o(r,t) — 0o, and confirm that density waves propagate over a finite
range of wave numbers ¢: |o|/c < ¢ < ¢/(v + Dy), where ¢ = \/vgu; sets
the magnitude of the speed of sound, see [52, 110] and section 2.4. In this
regime, density fluctuations obey a wave equation that depends on py:

[0 4+ Mg (po - V][0 + vo(po - V)]p = 2V?p. (2.3)

Whereas (acoustic) density waves in simple driven fluids [14, 31] arise only
in systems with inertial dynamics, such waves in polar active liquids survive
even in the overdamped limit — in the latter case, these waves originate from
Goldstone modes associated with broken rotational symmetry, see [110] and
section 2.4. Figure 2.2 a shows the dispersion relation of density waves for a ho-
mogeneous polar liquid uniformly flowing along the x-direction (po(r) = po).
Note that the speed of sound depends on the orientation of the wavevector q
relative to pg, because Galilean invariance is broken in eq. (2.2).
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Figure 2.3: Topologically protected waveguides composed of an active metamaterial. (a) The chiral edge state in fig. 2.2 d is
robust against defects along the edge: the state goes around a defect instead of backscattering. (b) This robustness extends to domain
walls separating two different topological phases, constructed by taking advantage of antiferromagnetic interannular coupling and
deleting a row of the Lieb lattice. Note that the edge state follows the domain wall, no matter the wall’s shape. (c) By contrast,
along a domain wall that doesn’t separate different topological phases, the edge states are not robust to backscattering. They can
scatter off kinks in the wall shape, in the middle of the sample. (bottom row, b—c: zoom-ins of the steady-states.) (d) Profile of the
density within edge states shows that the state decays exponentially into the bulk. These exponentially localized edge states are
characterized by their penetration depth, which can be controlled by changing the flow speed (top: py = 0.42, bottom: pg = 0.5).
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Our design of topological metamaterials exploits (i) microscopic irre-
versibility induced by activity and (ii) parity-symmetry breaking of the struc-
ture. To highlight how the interplay between activity and structural design
leads to metamaterials that globally break time reversal symmetry, we contrast
two simple geometries of interconnected channels: one based on the square
lattice, fig. 2.2 b, and one based on the Lieb lattice, fig. 2.2 c. Solving eq. (2.3)
numerically in a square lattice geometry (see section 2.2.2), we show that
the wave spectrum contains degeneracies at the edge of the Brillouin zone
where two spectral branches intersect (point M). Note that the corresponding
steady-state flow is invariant with respect to simultaneously inverting the
arrow of time and performing a lattice translation. By contrast, the degeneracy
at point M is lifted for the Lieb lattice and a gap opens. Unlike the square
lattice, the Lieb lattice has an odd number of rings per unit cell and, therefore,
a net circulation of steady-state flow. Heuristically, the spectral-gap opening
stems from the frequency difference between density waves propagating along
versus opposite to flow with a non-vanishing net circulation. As a result, a gap
opens only for unit cells that are chiral. In the limit vgpg/c < 1, we rewrite

eq. (2.3) as
(7 —iA) +w?/e] p =0, (2.9

where A = w(A + 1)vgpy/(2¢?), and note that the steady-state velocity field
voPo couples minimally to the wavenumber of the density wave [31]. The
emergent chiral flow plays the role of a synthetic gauge field for a charged
quantum particle, whereas its curl, the vorticity, acts analogously to a magnetic
field that lifts spectral degeneracies.

We establish the topological nature of the band structure corresponding
to eq. (2.3) in the Lieb lattice by calculating (for each band) an integer-valued
topological invariant called the Chern number, C),, see section 2.2.1 and Hasan
et al. [82] for an introduction. For almost all of the bands in the spectrum, and
for a wide range of values of the mean polarization pg, we find that C, # 0,
fig. 2.2 c-d. As C,, is an integer, it cannot vary smoothly from within the sample
to the exterior (where C,, = 0). Therefore, C), can only change if the band gap
closes along the sample edge, locally enabling edge-mode propagation [82].
Such edge modes, shown in fig. 2.2 d, are called topologically protected because
they arise from the presence of topological invariants in the bulk, irrespectively
of the sample’s shape or disorder. As in quantum Hall fluids, the topological
edge modes are chiral, i.e., they propagates along a single direction. The
chirality of the edge modes reflects the chirality of the flow within the unit
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cell. The system edge acts as a robust acoustic diode — topological density
waves, unlike ordinary waves, propagate unidirectionally along the boundary
and do not backscatter even if obstacles or sharp corners are introduced, as
demonstrated in fig. 2.3 a.

Similarly, along the boundary between two regions of distinct flow chi-
rality, C), varies from one integer value to another. Therefore, in this region
of space, the band gap must vanish, which leads to the existence of topologi-
cally protected waves along this interface. A topological waveguide can be
sculpted in the bulk by deleting a row of annuli, as in fig. 2.3 b. For this sample,
topologically robust density waves propagate through the irregularly shaped
domain wall in the bulk of the metamaterial. However, if the domain wall has
both a row deletion and a half-column displacement, then the chirality of flow
does not change across the wall. Consequently, modes associated with the
domain wall are not topologically protected and do backscatter in the bulk, as
exemplified in fig. 2.3 c.

Whereas the existence of edge waves in polar active liquids is topologi-
cally protected, their penetration depth into the bulk can be tuned by changing
the flow speed. As shown in the section 2.6, by considering the minimal
coupling form of eq. (2.4) relevant to the motion of density waves in the limit
vopo/c < 1, we expect the penetration to be exponential with a penetration
depth ¢ scaling as £ ~ |A|~! ~ ac/(vopo), where a is the lattice spacing. We
stress that this spatial structure differs from the Gaussian profiles of quantum
Hall states that share similar topological properties. These predictions are in
good agreement with the numerical resolution of the full equations of motion:
as shown in fig. 2.3 d, the penetration of the edge modes is exponential and
decreases with the mean-flow speed.

Having explored the phenomenology of chiral states in confined active
liquids, we can now compare this realization of a topological metamaterial
with those achieved in driven liquids [14, 31]. First, in both cases, to achieve a
small penetration depth it is necessary that the speed of flow be appreciable
relative to the speed of sound. For a simple fluid, this is a limitation — driving
the fluid at speeds near the speed of sound leads to flow instabilities either in
the bulk or in the boundary layer of the fluid. By contrast, for active liquids, the
speed of flow vgpg and the speed of sound c are distinct parameters entering
the hydrodynamic eq. (2.2) and may, in general, be comparable, so that the
chiral edge state may be readily observable. Second, whereas metamaterials
composed of driven fluids require motors at each component to provide the
drive, for an active liquid the drive is provided by the particles composing
the liquid, whereas the confining channels prescribe the emergent chiral
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flow. Third, topological density waves in polar active liquids originate from
Goldstone modes due to broken rotational symmetry. As a consequence, they
can propagate even if particle dynamics are overdamped — paving the way
towards colloidal and other soft matter realizations of mechanical topological
insulators.

We examined topological sound in metamaterials based on polar active
liquids, but our approach can be applied to wave propagation in other time-
reversal-symmetry-broken active systems. Our results epitomize the defining
feature of topological active metamaterials: they combine the microscopic
irreversibility inherent in active matter with structural design to achieve func-
tionalities absent in passive materials.

2.2 Methods

2.2.1 Chern numbers

We establish the topological nature of the active-liquid metamaterial by calcu-
lating (for the Lieb-lattice spectrum) an integer-valued topological invariant
called the Chern number associated with each band, see [82]. The Chern
number C), is analogous to the Euler characteristic of a closed surface with
Gaussian curvature. Using the Gauss-Bonnet theorem, we can compute C), by
integrating a curvature called the Berry curvature By, (q) over a closed surface
formed by the first Brillouin zone (which by construction is periodic in both
directions):

1
= B .
Cn 5 /B , n(a)dq, (2.5)

where B, (q) = VxA,(q), A.(q) = z'(ug)Jr -(Vquyg) is the Berry connection
calculated from the ug eigenstate of band n and wavenumber q. For our
discrete data set, we use the gauge-choice-independent protocol described
in Fukui et al. [46] to efficiently calculate the Chern number using a coarse

discretization of the first Brillioun zone.

2.2.2 Finite element simulations

We solve eq. (2.3) for both a finite geometry and for a unit cell with Floquet
boundary conditions (i.e., periodic boundary conditions with an additional
phase factor) using COMSOL Multiphysics finite element analysis simulations
on a highly refined mesh. To obtain the dispersion relations shown in fig. 2.2 b—
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¢, we perform a sweep through the wavenumbers (g,, g,) along the MT'M
cut and assign the appropriate phase factors for (Floquet) boundary conditions
across the unit cell. Then, we solve the corresponding eigenvalue problem at
each wavenumber and plot the corresponding bands. We numerically obtain
the solutions in the form of frequencies w;, (q) as well as the density eigenstates
5(w, q), for which the density waves are o(x,t) = §(w, q)e"“!~9%)_ Unless
otherwise noted, to obtain good numerical accuracy, we use for the correspond-
ing background flow a simplified model with constant |v| = povg = 0.5¢,
pointed along the azimuthal direction of the corresponding annulus (see visu-
alizations in insets of fig. 2.3b—c). In the regions of annular overlap, we patch
the flow field using an interpolation that is linear along the z-direction, and
then normalize the result. For fig. 2.2 d, we begin with a quasi-one-dimensional
lattice geometry (also see fig. 2.3 d), and impose a phase factor only along the
periodic boundaries in the z-direction. Again, the eigenvalues are plotted, and
those forming a solid region corresponding to the bulk bands are shaded in
blue. For parts of fig. 2.2 d and fig. 2.3 a—c, we use a finite geometry and plot a
single eigenmode located in the band gap that contains topological states.

2.2.3 Particle-based model

We used a particle-based model as an illustrative example to check the steady-
state flow that we obtained from the Toner-Tu equations. We emphasize
that the conclusions obtained in the section 2.1 are based on the continuum
Toner—Tu equations, which form a description that has a more general appli-
cability than the specific particle-based model presented below. We choose a
continuous-time model that includes Vicsek-like alignment interactions and
repulsive interactions that prevent clustering [128, 149]. The position x; and
velocity v; of the i particle is evolved using a symplectic Euler integrator®
for Newton’s laws of motion with the force term

Fi=mvi=—v,+F | vi+ Z vi/N

i ;) (2.6)
N ~
+ > ViU(Ixi = xk]) + /27kBT (D),
k

#The symplectic Euler integration scheme is described in appendix K.
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where 7 is a friction coefficient, m is the particle mass, and Fj is the active
force such that v9 = Fj/~. The neighbors in the F{y term are denoted as
(x4, %) and include all particles x; within a distance R (= a/20) of x;, see
fig. 2.4. We use a Yukawa potential U (r):

U(r) = b (2.7)

refr

to account for excluded-volume effects, where k™1 = R/6 sets the repul-
sion range, and b = 4 x 103Fy/x? sets the Yukawa coupling constant. The
white-noise stochastic forcing term ¢;(t), where <&Z(t)é’z(t’ )> =0(t—1t),
mimics thermal fluctuations. The temperature is set by kgT = 1073bx =
2 % 10*2mv8. The nonlinear forcing term Fyv, where v = v/|v|, breaks
the equilibrium fluctuation-dissipation relation for this far-from-equilibrium
system. The overdamped limit is defined as the regime for which the velocity
relaxation time 7, = m/~y is much smaller that the characteristic oscillation
time 7, associated with the interaction potential: 7, = \/mb~1p=3, where p
is the particle density. Time integration is done using the following time step
At = 107°m /~, where m is the mass of an individual particle.

Both the square and Lieb lattices have lattice spacing a = 120x~! and are
implemented by confining particles in overlapping annuli.® A single annulus
has an inner radius Ry, = %a and Ry = 2Rj,. The confining boundaries
are implemented using a steep one-sided harmonic repulsive potential %kwa
with k,, = 3.14 x 1042 /m experienced by all particles. The area fraction of

particles is

¢

NR?
= ~ 6.17, (2.8)

2
- Rin

out

where N is the number of particles per annulus. (We choose units in which
m =1,a = 6,and a/vy = 60.)

In the steady state, the flow for the k-th annulus is measured by the
azimuthal component of the velocity field

LSy (2.9)
Vg = — i 5 2.
0 %0 £ k 9

*For a possilbe algorithm to generate square lattices and Lieb lattices respectively see
appendix sections Q.1 and Q.4.
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where 0}, is the azimuthal unit vector around the annulus center, and (...)
denotes a time average over 8000 configuration, with 1000 timesteps between
subsequent configurations. vg = %1 for an ideally flowing system; the sign
indicates flow chirality. Two examples of steady states are plotted in fig. 2.5
and the dependence of vy on ¢ within the Lieb lattice is plotted in fig. 2.6.
At low area fraction, the particles undergo the alignment transition for their
velocities, whereas at high area fraction they jam. The flowing steady state
occurs over a wide range of intermediate area fractions.

2.3 Toner-Tu hydrodynamics of polar active liquids

The hydrodynamic equations of a passive polar liquid take into account three
slow variables: the usual density, p(r, t), and velocity, v(r, t) fields, as well as
a broken-symmetry field, the polarization p(r), defined as the local average
of the particle orientations. When the polar units that form the liquid propel
themselves on a solid surface, momentum is no longer conserved, because
the substrate acts as a momentum sink. Such systems are referred to as dry
active matter, even though the particles may propel in a fluid medium as
in, e.g., Bricard et al. [43] and Schaller et al. [85]. The substrate enables
preferential alignment of the particles’ velocities with their polar orientation.
The hydrodynamic equations of the resulting polar active liquid read

dro+ Vi(ovi) = DPV?p, (2.10)
8t(gvj) -+ VZ (Qvﬂ}j) = Viaij — FU(U]' — Uopj), (2.11)
OH

, (2.12)
op;

Opj +viVipj + wjipi = v1vj + vousip; — I'P
where we have introduced the symmetric part of the strain-rate tensor v;; =
% (0jv; + 0jv;) and the vorticity tensor wj; = % (0jv; — Ojvj). Note that the
components of the velocity vector v; for this one-fluid model are the coarse-
grained velocities of the self-propelled particles composing the active liquid and
not of the potential surrounding fluid (e.g., air or solvent). The first (continuity)
equation reflects mass conservation and includes a diffusive term D?V?p. The
second equation includes the liquid stress tensor o as well as an active frictional
term proportional to I'”. This terms differentiates eq. (2.11) from the usual
Navier-Stokes equations as it explicitly breaks momentum conservation. For
the sake of simplicity, we consider here a linear coupling between the velocity
and the polarization (the hydrodynamic coefficient vg has the dimensions of a
speed and scales with the speed of an isolated active particle). Equation (2.12)
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Figure 2.4: One configuration of the particle-based simulation in a periodic geometry
based on the Lieb lattice. For each particle, the radius of the short-range repulsive
interaction is indicated in green. For a few chosen particles, the radius of the longer-
range alignment interaction is indicated in pink. For some particle, their instantaneous
velocity is indicated by a red arrow.
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Figure 2.5: The steady state for the flow of a polar active liquid in active metamaterials for (a,c) square lattice and (b,d) topological
Lieb lattice, all obtained from molecular dynamics (MD) simulations. For both geometries we also reproduce parts of fig. 2.2, showing
< the spatially-dependent flow within a single unit cell (c,d), with the color scale for the azimuthal component of the flow field.
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vo

Figure 2.6: (a) The average normalized azimuthal component vy /vy (measured rel-
ative to the center of each annulus) as a function of particle density ¢ in the Lieb

lattice geometry measured relative to the (large) radius of the alignment interaction
(see section 2.2.3, fig. 2.4).
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describes the relaxational dynamics of the polarization, see [52]. The left-
hand side of eq. (2.12) contains the comoving (2nd term), corotational (3rd
term) time-derivative of the polarization. The right-hand side of eq. (2.12)
includes the effective Hamiltonian H and the dissipative coefficient I'” along
with two frictional terms. The first frictional term in eq. (2.12) contains the
friction coefficient v; and describes the friction between particle and substrate
— this terms is responsible for the “weathercock effect” i.e., the polar particles’
local alignment with the flow see, e.g., Kumar et al. [39] and Brotto et al.
[44]. The second friction term in eq. (2.12) contains the friction coefficient v,
and originates from the friction between an individual polar particle and the
surrounding active fluid (itself composed of polar particles). The sign and the
magnitude of v controls the strength of alignment of the particle polarization
with the local elongation (or compression) axis of the flow.

We can also consider egs. (2.10) to (2.12) in the limit for which the frictional
I'Y term dominates eq. (2.11). In this overdamped limit, eq. (2.11) reduces to
a constraint equation, v = vgp, and the hydrodynamics is fully captured by
mass conservation and the dissipative dynamics of the polarization field. A
gradient expansion of A then yields [110, 148]:

Ao+ vV - (0p) = DoV, (2.13)

v
op + Ayp - Vp = (B]p\Q — a) P— —IVQ + VvAp

00 (2.14)
+ XvoVIp|* — A2vop(V - p),

where all of the hydrodynamic coefficients depend a priori on the local density.
Note that whereas for a system with Galilean invariance, A = 1 and A\ = 0,
for the polar active liquid, which lacks this symmetry, these parameters may be
arbitrary. Studies of realistic microscopic models have found A to be positive,
less than, and of order 1, and for the numerical computations performed in
this work, we assume \ = 0.8 [43, 65, 102]. The lack of Galilean invariance
as well as momentum conservation leads to the o and § terms in eq. (2.14),
which suggests a preference for either zero or nonzero velocity — depending
on the sign of c. In the article, for the sake of simplicity we focus on the case
in which the )\ terms are negligible. In this case, eqgs. (2.13) and (2.14) reduce
to egs. (2.1) and (2.2), and are reproduced here:

dro+ vV - (ep) = D,V?, (2.15)
v
op+ o(p-V)p= (Blp]*—a)p — Q—;Vg + vAp. (2.16)
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Equations (2.15) and (2.16) are sufficient to capture the phenomena associated
with linear density waves in a polar active liquid relevant to our analysis. In
that limit, the polarization field itself defines the fluid velocity, so that the
coupling between the polarization field and the density gradient has an effect
analogous to that of a pressure gradient in an equilibrium liquid.

2.4 Linear density waves for Toner-Tu liquids

For the case v < 0, the Toner-Tu equations result in a steady state of the fluid
with spontaneous flow in the bulk, such that p3 = |py|? = —a/j3. Although
in the bulk, the spontaneous flow direction p, could be arbitrary, in physical
realizations of active liquids, the boundaries fix p. For example, in an open
channel, p is parallel to the channel walls. In the Lieb lattice geometry, we
have solved egs. (2.15) and (2.16) for a sufficient time for the dynamics to relax
to a steady state. We find that this steady state, plotted in fig. 2.1a (also see
fig. 2.5), has the features of the spatial profile observed from our particle-based
simulations, although the particle-based simulations lead to a smoother profile,
fig. 2.1b.

In the analysis performed for the density wave computations, we take a
particularly simple form of the steady state, based on the profile we observe.
We postulate the polarization has magnitude unity everywhere and is oriented
azimuthally, i.e., perpendicular to the vector connecting the position of the
fluid to the nearest annulus center. In the regions of overlap between annuli,
we linearly interpolate between the two annular flow profiles. This spatial
profile is plotted in a large sample in fig. 2.1a.

Thus, given a spontaneous steady-state flow field p,, we expand

7(r,t) = p(r,t) — po(r) and p(r,t) = o(r,t) — oo to find

dp + (vopg - V)p = —v0poV - v + DoV7p, (217)
v + Mg(pg - V)V = —(v1/p0)Vp + 2a(v - Po)Po + vV3v.  (2.18)

For the case of propagating waves, the right-hand side can be decomposed as
the sum of a dominant anti-Hermitian matrix that governs wave dispersion
and a perturbatively small Hermitian matrix that governs wave attenuation.
As we are interested in the behavior of an active fluid deep in the ordered
phase, we have assumed « to be constant. The p dependance of o, which
leads to additional dissipative terms, would be most significant near the phase
transition from an isotropic to a flowing steady state. There are two notable
differences for the propagation of density waves in an active liquid compared
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to a simple fluid: (1) the @ term acts as an additional dissipative term for sound
in an active liquid, and (2) one of the convection terms contains the coefficient
A (# 1). Due to this second difference, the equation of motion can no longer be
“Galilean boosted” into a different reference frame by replacing the lab-frame
derivative 0; by a convective derivative.

To closely examine the mode structure in egs. (2.17) and (2.18), we split the
vector v into components v and v, respectively parallel and perpendicular
to py. Note that due to the confinement of the active liquid inside a channel,
we can assume that the density waves only propagate along the channel and,
therefore, the derivatives of p and p along the direction perpendicular to p,
can be ignored. Under this assumption, egs. (2.17) and (2.18) reduce to:

Oip + vopod)p = —vopodyv) + Doaﬁm (2.19)
O + Apody v = —(v1/po)9)p + 2av) + V@ﬁ’l)w (2.20)
o + )\p()a”UJ_ = u@ﬁm. (2.21)

Let us now consider egs. (2.19) to (2.21) for the density and the longitudinal
velocity modes in an active liquid. Ignoring, for now, the effects of the flow,
we can calculate the dispersion relation for density waves in active liquids
in the limit ¢ < ¢/(Dg + v), where ¢ is the wavenumber of the density
wave and ¢ = ,/vgv; is the speed of sound. The frequency is then given by
w(q) = ila|++/q?vovy — a2 +i(Do+v)q? /2 (also see fig. 2.2 a). Whereas the
real component of w governs the propagation of sound waves, the imaginary
component governs their dissipation. Due to spontaneous flow, the sound
wave frequency may, generically, have a real component, which is plotted in
fig. 2.1a. Furthermore, in the limits ¢ > |a|/c, the imaginary component will
always be much smaller than the real component. Thus, in the regime |o|/c <
q < ¢/(Dg + v), there exist longitudinal density waves that propagate and
decay slowly in the ordered active liquid. Provided we are in this regime, for
phenomena on sufficiently short time scales, we may ignore the dissipative
terms and concentrate on the wave-like solutions to the equations of motion.
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2.5 Analogy with Schrodinger equation

Note that when the dissipative components of the density wave equation can
be neglected, eq. (2.3) may be recast as a single wave equation. By applying the
convective derivative 9; + Avg(po - V) to the continuity equation, eq. (2.19),
and then substituting the velocity equation of motion, eq. (2.20), one obtains:

[0 + Avo(po - V)][0r + vo(po - V)]p = CQVQ,O. (2.22)

The eigenvalue problem for the above wave equation has solutions in terms
of the frequency w of a time-dependent oscillation p(x,t) = p(x,w)e™?. The
corresponding equation has the form, provided that M = vgpy/c < 1,

[C2V2 + w? —iw(\ +vo)pg - V]p=0, (2.23)
or,
[(V —iA)? + w2/02] p=0, (2.24)

where A = w(\ + 1)vgpy/(2¢?). This shows that the velocity field vop, acts
as an effective vector potential for the propagation of density waves.

2.6 Scaling argument for penetration depth

From the form of eq. (2.24), we can deduce the following scaling argument
for the penetration depth of a topological edge state in the relevant limit
vopo/c < 1. Consider the first term, (V — iA)2, which shows the minimal
coupling between density gradients and spontaneous flow [31]. The penetra-
tion depth is a lengthscale that originates from density gradients and therefore
scales as ¢ ~ A~!. Furthermore, A ~ vypow / ¢ and depends on a character-
istic frequency w ~ c/a, where c is the speed of sound and a is a characteristic
lengthscale of the material, i.e., the lattice spacing. In addition, A is approx-
imately the same from one unit cell to the next. Combining these scaling
relations, ¢ ~ ac/(vopo). The length ¢ diverges as the flow velocity goes to
zero and, therefore, as the material loses its bulk bandgap.

We also note that we expect and observe topological edge states to be
localized near the edge with an exponential profile, see fig. 2.3d. To see why
we expect eq. (2.24) to lead to exponentially localized states, note that if we
assume p ~ f(x/¢), and the scaling law derived above for ¢, £ ~ ac/(vopo),
eq. (2.24) predicts f” ~ f, with a dimensionless proportionality constant.
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An exponential profile satisfies this approximate scaling form. Such a profile
is a consequence of the fact that A does not vary over lengthscales larger
than a unit cell, an argument that relies on the metamaterial structure of the
topological state. By contrast, in the quantum Hall fluid, the frequency scale
depends on the field strength and A varies over large distances, which leads to
both a Gaussian profile of states in a Landau level as well as a different scaling
for the penetration depth [172].

2.7 Conclusion

We have shown how polar active fluids confined in a two-dimensional Lieb
lattice form a time-asymmetric steady state. Upon analyzing the dispersion of
density waves in this system we find it is gapped between bands with a well-
defined Chern number. In these gaps we find chiral topological edge states,
similar to quantum Hall effect, yet in the classical domain. In order to probe the
robustness of these states, we show that these edge states remain in a system
with defects or domain walls with systems of different topological phases.
Additionally, we show how the edge states of these systems are exponentially
localized, with a penetration depth controlled by the flow speed of the active
fluid.



