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Chapter 1.

Chiral texture in toroidal liquid crystals

Nematic liqid crystals can be thought of as liquids compounds
of elongated particles which tend to be axially aligned. The elongated
particles can be thought of as rod-like molecules with a typical size of

few nanometers. The nematic order refers to the alignment in the orientation of
the rods, which is the ground state of nematic liquid crystals. Mathematically,
nematic liquid crystals can be described by a double headed vector �eld n(x),
often called the director �eld. The director �eld is assumed to align with the
average orientation of the particles in a small patch. As the particles — or
rods — are biaxially symmetric, their orientation is locally invariant under
a rotation of 𝜋 radians. Hence, an energy 𝐹 [n(x)] describing such particles
should be invariant under the following transformation:

𝐹 [n(x)] = 𝐹 [−n(x)] . (1.1)

As the director �eld purely contains orientational information we will assume
n(x)2 = 1 for any given x; the directory �eld is a unitary vector �eld.

As nematic liquid crystals align to yield the lowest-energy con�guration,
any distortion from this alignment comes at an energetic cost [119, 132, 154]. To
account for these energetic costs, a phenomenological energy is constructed,
called the Frank free energy 𝐹 [n(x)]. As the Frank free energy is essentially
an elastic energy, for a strain 𝑢𝑖𝑗 the most general form is given by

𝐹 = 1
2

ˆ
d𝑉 𝐾𝑖𝑗𝑘𝑙𝑢𝑖𝑗𝑢𝑘𝑙, (1.2)
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12 Chapter 1. Chiral texture in toroidal liquid crystals

where 𝐾𝑖𝑗𝑘𝑙 is the elastic tensor. In the case of a nematic, the strain is given
by the gradient of the nematic director �eld 𝑢𝑖𝑗 = ∇𝑖𝑛𝑗 , which yields

𝐹 = 1
2

ˆ
d𝑉 𝐾𝑖𝑗𝑘𝑙∇𝑖𝑛𝑗∇𝑘𝑛𝑙. (1.3)

In three dimensions, the elastic tensor𝐾𝑖𝑗𝑘𝑙 has only three independent compo-
nents in the bulk due to the biaxial properties of the energy and the unitariness
of n(x). This results in three terms. The �rst term, the splay energy, is given
by

𝐹1 =
1
2

ˆ
d𝑉 𝐾1(∇ · n)2. (1.4)

The second term, the twist energy is given by

𝐹2 =
1
2

ˆ
d𝑉 𝐾2(n · ∇ × n)2. (1.5)

The third term, the bend energy is given by

𝐹3 =
1
2

ˆ
d𝑉 𝐾3(n×∇× n)2. (1.6)

It turns out, however, that there is also a physically relevant surface term:
saddle-splay, given by: [119]

𝐹24 = −𝐾24

ˆ
dS · (n∇ · n+ n×∇× n) . (1.7)

The total Frank free energy for nematic liquid crystals con�ned in a space is
the sum of all these energies, as given by eq. (1.8).

At low temperatures, the nematic liquid crystal would like to align com-
pletely throughout space, as it yields the lowest-energy state. This is, however,
not always possible due to the geometry and topology of the con�ning space.

1.1 Toroidal con�nements

The con�nement of liquid crystals in non-trivial geometries forms a rich
and interesting area of study because the preferred alignment at the curved
bounding surface induces bulk distortions of the liquid crystal — that is, the
boundary conditions matter. This results in a great diversity of assemblies and
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Figure 1.1: Schematic of (a) achiral, (b) right-handed and (c) left-handed toroidal
nematic liquid crystals. The black lines are director �eld lines on the bounding torus.

mechanical phenomena [72, 130, 137, 138, 146]. Water droplets dispersed in a
nematic liquid crystal interact and assemble into chains due to the presence
of the anisotropic host �uid [139, 141, 145], defect lines in cholesteric liquid
crystals can be knotted and linked around colloidal particles [71, 77, 100, 101],
and surface defects in spherical nematic shells can abruptly migrate when the
thickness inhomogeneity of the shell is altered [50, 73]. In these examples,
spherical droplets (or colloids), either �lled with — or dispersed in — a liquid
crystal, create architectures arising from their coupling to the orientational
order of the liquid crystal. Nematic structures where the bounding surface
of the colloid or the liquid crystal droplet is topologically di�erent from a
sphere have also been studied [45, 51, 60]. Though there has been much
interest in the interplay between order and toroidal geometries [45, 63, 74,
90, 96, 97, 112, 114, 135], it was only recently that experimental realisations of
nematic liquid crystal droplets with toroidal boundaries were reported [55,
86]. Polarised microscopy revealed a twisted nematic orientation in droplets
with planar degenerate (tangential) boundary conditions, despite the achiral
nature of nematics. This phenomenon, which we will identify as spontaneous
chiral symmetry breaking♠, is subject of theoretical study in this article. The
chirality of nematic toroids is displayed by the local average orientation of the
nematic molecules, called the director �eld and indicated by the unit vector n.
Motivated by experiment, we will assume this director �eld to be aligned in
the tangent plane of the bounding torus. Figure 1.1a shows an achiral nematic
toroid which has its �eldlines aligned along the azimuthal direction, 𝜑. In
contrast, the chiral nematic toroids in �g. 1.1 b and �g. 1.1 c show a right- and
left-handedness, respectively, when following the �eldlines anticlockwise (in
the azimuthal direction).

♠Technically, it is spontaneous achiral symmetry breaking since the symmetry is the lack
of chirality. We will, however, conform to the standard convention.
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The origin of the chirality lies in two elastic e�ects of geometric con-
�nement. Firstly, there is a trade-o� between bend and twist deformations.
Secondly, another type of director distortion called saddle-splay couples the
director to the curvature of the boundary, and can consequently favor the
chiral state.

These nematic toroids share similarities with polymer bundles [53, 75,
83, 92, 93, 114, 143]. In fact, twisted DNA toroids have been analysed with
liquid crystal theory [68, 75, 114]. Under the appropriate solvent conditions
DNA condenses into toroids [143, 166]. These e�cient packings of genetic
material are interesting as vehicles in therapeutic gene delivery; it has been
argued [114] that a twist in DNA toroids, for which there are indications both
in simulations [122, 131] and experiments [118], would unfold more slowly and
could therefore be bene�cial for this delivery process. Thus, besides a way
to engineer complex structures, the theory of geometrically con�ned liquid
crystals may also provide understanding of biological systems.

The organisation of this article is as follows. In section 1.2 we will discuss
our analytical method, which involves a single variational ansatz only for the
director �elds of both chiral and achiral toroidal nematics. In section 1.3 we
will consider its energetics in relation to the slenderness, elastic anisotropies,
cholesteric pitch and external �elds, and discuss the achiral–chiral transition
in the light of the mean �eld treatment of the Ising model.

1.2 Toroidal director �elds

1.2.1 Free energy of a nematic toroid

We will study the general case in which the director lies in the tangent plane
of the boundary assuming that the anchoring is strong so that the only energy
arises from elastic deformations captured by the Frank free energy functional
[119, 154]:

𝐹 [n (x)] =
1

2

ˆ
d𝑉
(︁
𝐾1(∇ · n)2

+ 𝐾2(n · ∇ × n)2 + 𝐾3(n×∇× n)2
)︁

−𝐾24

ˆ
dS · (n∇ · n+ n×∇× n) ,

(1.8)
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where dS = 𝜈 d𝑆 is the area element, with 𝜈 the unit normal vector (outward
pointing) and where d𝑉 is the volume element. Due to the anisotropic nature
of the nematic liquid crystal, this expression contains three bulk elastic moduli,
𝐾1, 𝐾2, 𝐾3, rather than a single one for fully rotationally symmetric systems.
In addition, there is a surface elastic constant 𝐾24. 𝐾1, 𝐾2, 𝐾3 and 𝐾24

measure the magnitude of splay, twist, bend and saddle-splay distortions,
respectively. We now provide a geometrical interpretation of the saddle-splay
distortions. Firstly, observe that under perfect planar anchoring conditions
n · 𝜈 = 0, so the �rst term in the saddle-splay energy does not contribute:

𝐹24 = −𝐾24

ˆ
d𝑆 𝜈 · (n×∇× n) . (1.9)

This remaining term in the saddle-splay energy is often rewritten as

𝐹24 = 𝐾24

ˆ
d𝑆 𝜈 · (n · ∇)n, (1.10)

because

(n×∇× n)𝑎 = 𝜖𝑎𝑏𝑐𝑛𝑏𝜖𝑐𝑝𝑞𝜕𝑝𝑛𝑞

= (𝛿𝑎𝑝𝛿𝑏𝑞 − 𝛿𝑎𝑞𝛿𝑏𝑝)𝑛𝑏𝜕𝑝𝑛𝑞

= −𝑛𝑏𝜕𝑏𝑛𝑎
(1.11)

where in the last line the identity 0 = 𝜕𝑎 (1) = 𝜕𝑎 (𝑛𝑏𝑛𝑏) = 2𝑛𝑏𝜕𝑎𝑛𝑏 is
used. In other words, the bend is precisely the curvature of the integral
curves of n. Employing the product rule of di�erentiation 0 = 𝜕𝑎 (𝜈𝑏𝑛𝑏) =
𝜈𝑏𝜕𝑎𝑛𝑏 + 𝑛𝑏𝜕𝑎𝜈𝑏 yields:

𝐹24 = −𝐾24

ˆ
d𝑆 n · (n · ∇)𝜈. (1.12)

Upon writing n = 𝑛1𝑒1 + 𝑛2𝑒2, with 𝑒1 and 𝑒1 two orthonormal basis
vectors in the plane of the surface, one obtains

𝐹24 = 𝐾24

ˆ
d𝑆 𝑛𝑖𝐿𝑖𝑗𝑛𝑗 , (1.13)

where we note that 𝑖, 𝑗 = 1, 2 (rather than running till 3). Thus the nematic
director couples to the extrinsic curvature tensor [126], de�ned as

𝐿𝑖𝑗 = −𝑒𝑖 · (𝑒𝑗 · ∇)𝜈. (1.14)
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If𝑒1 and𝑒2 are in the directions of principal curvatures, 𝜅1 and𝜅2, respectively,
one �nds:

𝐹24 = 𝐾24

ˆ
𝑑𝑆
(︀
𝜅1𝑛

2
1 + 𝜅2𝑛

2
2

)︀
. (1.15)

We conclude that the saddle-splay term favors alignment of the director along
the direction with the smallest principal curvature if 𝐾24 > 0. The controver-
sial surface energy density 𝐾13n∇ · n is sometimes incorporated in eq. (1.8),
but is in our case irrelevant, because the normal vector is perpendicular to n,
and so n · 𝜈 = 0.

We will consider a nematic liquid crystal con�ned in a handle body
bounded by a torus given by the following implicit equation for the Cartesian
coordinates 𝑥, 𝑦, and 𝑧:(︁

𝑅1 −
√︀
𝑥2 + 𝑦2

)︁2
+ 𝑧2 ≤ 𝑅2

2. (1.16)

Here, 𝑅1 and 𝑅2 are the large and small radii, respectively, of the circles that
characterise the outer surface: a torus obtained by revolving a circle of radius
𝑅2 around the 𝑧-axis (�g. 1.2).

Figure 1.2: Left panel: Schematic of the boundary of the geometry-speci�ed eq. (1.16)
including graphical de�nitions of 𝜑 and𝑅1. The torus is characterised by a large (red)
and a small (blue) circle. The large circle, or centerline, has radius 𝑅1. Right panel:
Schematic of a cut including graphical de�nitions of 𝑟, 𝜓 and 𝑅2.
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We can conveniently parametrise this solid torus by the coordinates
𝑟 ∈ [0, 𝑅2], 𝜑 ∈ [0, 2𝜋) and 𝜓 ∈ [0, 2𝜋) (illustrated in �g. 1.2):

𝑥 = (𝑅1 + 𝑟 cos𝜓) cos𝜑, (1.17)
𝑦 = (𝑅1 + 𝑟 cos𝜓) sin𝜑, (1.18)
𝑧 = 𝑟 sin𝜓. (1.19)

The metric reads:

𝑔𝜇𝜈 =

⎛⎝1 0 0

0 (𝑅1 + 𝑟 cos𝜓)2 0
0 0 𝑟2

⎞⎠ , (1.20)

with 𝜇, 𝜈 ∈ {𝑟, 𝜑, 𝜓}. It follows that dS = 𝜈
√
𝑔 d𝜓 d𝜑 and d𝑉 =√

𝑔 d𝑟 d𝜓 d𝜑, where 𝑔 = det 𝑔𝜇𝜈 .
For a torus the 𝜑 and 𝜓 directions are the principal directions. The

curvature along the𝜓 direction is negative everywhere (measured with respect
to the outward pointing normal) and the smallest of the two, so when𝐾24 > 0,
the director tends to wind along the small circle with radius 𝑅2.

1.2.2 Double twist

To minimise the Frank energy we formulate a variational ansatz built on
several simplifying assumptions [114]. We consider a director �eld which
has no radial component (i.e. 𝑛𝑟 = 0), is tangential to the centerline (𝑟 =
0), and is independent of 𝜑. Furthermore, since we expect the splay (𝐾1)
distortions to be unimportant, we �rst take the �eld to be divergence-free
(i.e. ∇ · n = 0). Recalling that in curvilinear coordinates the divergence is
∇ · n = 1√

𝑔 𝜕𝜇
(︀√
𝑔 𝑛𝜇

)︀
, we write

𝑛𝜓 =
𝑓 (𝑟)𝑅1√
𝑔𝜑𝜑

, (1.21)

where the other terms in √
𝑔 play no role as they are independent of 𝜓. The

𝜑-component of the director follows from the normalisation condition. For
the radial dependence of 𝑓 (𝑟) we make the simplest choice,

𝑓 (𝑟) =
𝜔𝑟

𝑅2
, (1.22)
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Figure 1.3: Schematic of the ansatz for the director �eldlines (𝜔 = 0.6 and 𝜉 = 3),
displaying a twist when going radially outward, including a graphical de�nition of 𝛼.

and obtain

𝑛𝜓 = 𝜔
𝜉𝑟/𝑅2

𝜉 + 𝑟
𝑅2

cos𝜓
, (1.23)

where we have introduced 𝜉 ≡ 𝑅1/𝑅2, the slenderness or aspect ratio of
the torus. The variational parameter 𝜔 governs the chirality of the toroidal
director �eld. If 𝜔 = 0 the director �eld corresponds to the axial con�guration
in �g. 1.1 a. The sign of 𝜔 determines the chirality: right-handed when 𝜔 >
0 (�g. 1.1 c) and left-handed when 𝜔 < 0 (�g. 1.1 b). The magnitude of 𝜔
determines the degree of twist. Note that the direction of twist is in the radial
direction, as illustrated in �g. 1.3. Therefore the toroidal nematic is doubly
twisted, resembling the cylindrical building blocks of the blue phases [119,
154]. It may be useful to relate 𝜔 to a quantity at the surface, say the angle,
𝛼, that the director makes with 𝜑. For the ansatz, this angle will be di�erent
depending on whether one measures at the inner or outer part of the torus,
but for large 𝜉 we �nd:

𝜔 ≈ 𝑛𝜓 (𝑟 = 𝑅2) = sin𝛼. (1.24)
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1.3 Chiral symmetry breaking

1.3.1 Results for divergence-free �eld

Since 𝜔 only determines the chirality of the double-twisted con�guration but
not the amount of twist, the free energy is invariant under reversal of the sign
of 𝜔, i.e. 𝐹 (−𝜔) = 𝐹 (𝜔). This mirror symmetry allows us to write down a
Landau-like expansion in which 𝐹 only contains even powers of 𝜔,

𝐹 = 𝑎0 ({𝐾𝑖}, 𝜉) + 𝑎2 ({𝐾𝑖}, 𝜉)𝜔2 + 𝑎4 ({𝐾𝑖}, 𝜉)𝜔4 +𝒪
(︀
𝜔6
)︀

(1.25)

where {𝐾𝑖} is the set of elastic constants.♠ If the coe�cient 𝑎2 > 0, the achiral
nematic toroid (𝜔𝑒𝑞 = 0) corresponds to the minimum of 𝐹 provided that
𝑎4 > 0. In contrast, the mirror symmetry is broken spontaneously whenever
𝑎2 < 0 (and 𝑎4 > 0). The achiral–chiral critical transition at 𝑎2 = 0 belongs
to the universality class of the mean-�eld Ising model. Therefore, we can
immediately infer that the value of the critical exponent 𝛽 in 𝜔𝑒𝑞 ∼ (−𝑎2)𝛽
is 1

2 . To obtain the dependence of the coe�cients 𝑎𝑖 on the elastic constants
and 𝜉, we need to evaluate the integral in eq. (1.8). For the bend, twist and
saddle-splay energies we �nd:

𝐹3

𝐾3𝑅1
=

2𝜋2

𝜉

(︁
𝜉 −

√︀
𝜉2 − 1

)︁
+ 𝜋2

𝜉 − 9𝜉3 + 6𝜉5 + 6𝜉2
√︀
𝜉2 − 1 − 6𝜉4

√︀
𝜉2 − 1

(𝜉2 − 1)
3
2

𝜔2 +𝒪
(︀
𝜔4
)︀
,

(1.26)
𝐹2

𝐾2𝑅1
= 4𝜋2

𝜉3

(𝜉2 − 1)
3
2

𝜔2 +𝒪
(︀
𝜔6
)︀
, (1.27)

𝐹24

𝐾24𝑅1
= −4𝜋2

𝜉3

(𝜉2 − 1)
3
2

𝜔2. (1.28)

Though the bend and twist energies are Taylor expansions in 𝜔, the saddle-
splay energy is exact. The large 𝜉 asymptotic behavior of the elastic energy
reads:♡

𝐹

𝐾3𝑅1
≈ 𝜋2

𝜉2
+ 4𝜋2

(︂
𝑘 − 5

16𝜉2

)︂
𝜔2 +

𝜋2

2
𝜔4 +𝒪

(︀
𝜔6
)︀
, (1.29)

♠Explicitly: {𝐾𝑖} = {𝐾1,𝐾2,𝐾3,𝐾24}
♡The fourth-order term in the bend energy for general 𝜉, that reduces to 𝜋2

2
𝐾3𝑅2𝜉𝜔

4 in
eq. (1.29), is not given in eq. (1.26), because it is too lengthy.
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where 𝑘 ≡ 𝐾2−𝐾24
𝐾3

is the elastic anisotropy in twist and saddle-splay. The
achiral con�guration contains only bend energy. For su�ciently thick toroids,
bend distortions are exchanged with twist and the mirror symmetry is broken
spontaneously, as expected; see �g. 1.4. Interestingly, if 𝐾24 > 0 the saddle-

Figure 1.4: Left panel: The free energy as a function of 𝜔 for 𝜉 = 6 (dashed) and 𝜉 = 5
(solid), when (𝐾2 −𝐾24) /𝐾3 = 10−2. For 𝜉 = 5 the chiral symmetry is broken
spontaneously: the minimum values of the energy occur for nonzero 𝜔. Right panel:
The free energy as a function of 𝜔 for 𝑞 = 0 (dashed) and 𝑞𝑅2 = 10−3 (solid), when
𝜉 = 6, (𝐾2 −𝐾24) /𝐾3 = 10−2 and 𝐾2/𝐾3 = 0.3. For 𝑞𝑅2 = 10−3 the chiral
symmetry is broken explicitly: the minimum value of the energy occurs for a nonzero
𝜔, because 𝐹 contains a linear term in 𝜔.

splay deformations screen the cost of twist. If 𝐾24 < 0 on the other hand,
there is an extra penalty for twisting. Setting the coe�cient of the 𝜔2 term
equal to zero yields the phase boundary:

𝑘𝑐 =
−1 + 9𝜉2𝑐 − 6𝜉4𝑐 − 6𝜉𝑐

√︀
𝜉2𝑐 − 1 + 6𝜉3𝑐

√︀
𝜉2𝑐 − 1

4𝜉2𝑐

≈ 5

16𝜉2𝑐
if 𝜉 ≫ 1. (1.30)

Figure 1.5 shows the phase diagram as a function of 𝜉 and 𝑘. It is interesting
to look at the critical behavior. The degree of twist close to the transition is

𝛼𝑒𝑞 ≈ 𝜔𝑒𝑞 ≈ 2

(︂
5

16𝜉2
− 𝑘

)︂1/2

, (1.31)



1.3. Chiral symmetry breaking 21

Figure 1.5: Phase diagram as a function of the toroidal slenderness and the elastic
anisotropy in twist and saddle-splay constant, 𝑘 ≡ (𝐾2 −𝐾24) /𝐾3. The twisted
(yellow region) and axial (cyan region) con�guration are separated by a boundary line
in the absence of an external �eld (solid black), when H =

√
0.1𝐾3 /

(︀√
𝜒𝑎 𝑅2

)︀
𝜑

(dashed blue) and when H =
√
0.1𝐾3 /

(︀√
𝜒𝑎 𝑅2

)︀
ẑ (dash-dotted red).
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where we have used the identity sin𝛼𝑒𝑞 ≈ 𝛼𝑒𝑞 for small 𝛼𝑒𝑞 . Upon expanding
𝜉 = 𝜉𝑐+ 𝛿𝜉 (with 𝛿𝜉 < 0) and 𝑘 = 𝑘𝑐+ 𝛿𝑘 (with 𝛿𝑘 < 0) around their critical
values 𝜉𝑐 and 𝑘𝑐, respectively, we obtain the following scaling relations, while
keeping 𝑘 and 𝜉 �xed, respectively:

𝛼𝑒𝑞 ≈
√
5

2

(︂
−𝛿𝜉
𝜉3𝑐

)︂1/2

, (1.32)

𝛼𝑒𝑞 ≈ 2(−𝛿𝑘)1/2. (1.33)

Equations (1.32) and (1.33) are analogues to 𝑚𝑒𝑞 ∼ (−𝑡)1/2, relating the equi-
librium magnetization, 𝑚𝑒𝑞 (in the ferromagnetic phase of the Ising model in
Landau theory), to the reduced temperature, 𝑡.

1.3.2 E�ects of external �elds and cholesteric pitch

Due to the inversion symmetry of nematics, 𝐹 [n] = 𝐹 [−n], an external
magnetic �eld, H, couples quadratically to the components of n rather than
linearly as in spin systems. The magnetic free energy contribution reads

𝐹𝑚 = −𝜒𝑎
2

ˆ
d𝑉 (n ·H)2, (1.34)

where 𝜒𝑎 = 𝜒‖ − 𝜒⊥, the di�erence between the magnetic susceptibilities
parallel and perpendicular to n. Consequently, there is no explicit chiral
symmetry breaking due to H as is the case in the Ising model. Rather, H shifts
the location of the critical transition in the phase diagram. For concreteness,
we will consider two di�erent applied �elds, namely a uniaxial �eld H =
𝐻𝑧ẑ = 𝐻𝑧 sin(𝜓)r̂ + 𝐻𝑧 cos(𝜓)𝜓 and an azimuthal �eld H = 𝐻𝜑𝜑, as if
produced by a conducting wire going through the hole of the toroid. For
H = 𝐻𝑧ẑ we �nd:

𝐹𝑚 = −𝜋2𝜒𝑎𝐻2
𝑧𝑅1𝑅

2
2𝜉

2
(︁
2𝜉
(︁
𝜉 −

√︀
𝜉2 − 1

)︁
− 1
)︁
𝜔2

≈ −𝜋
2

4
𝜒𝑎𝐻

2
𝑧𝑅1𝑅

2
2𝜔

2 if 𝜉 ≫ 1. (1.35)
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For a positive 𝜒𝑎 this energy contribution is negative, implying that a larger
area in the phase diagram is occupied by the twisted con�guration. The new
phase boundary — �g. 1.5 — which is now a surface in the volume spanned by
𝜉, 𝑘 and 𝐻𝑧 instead of a line, reads

𝑘𝑐 =
1

(4𝜉2𝑐 )

[︁
−1 + 9𝜉2𝑐 − 6𝜉4𝑐 − 6𝜉𝑐

√︀
𝜉2𝑐 − 1 + 6𝜉3𝑐

√︀
𝜉2𝑐 − 1

−
𝜒𝑎(𝐻𝑧)

2
𝑐𝑅

2
2

𝐾3

(︀
𝜉2𝑐 − 1

)︀
𝜉𝑐

(︁
−2𝜉𝑐 + 2𝜉3𝑐 +

√︀
𝜉2𝑐 − 1 − 2𝜉2𝑐

√︀
𝜉2𝑐 − 1

)︁]︁
≈ 5

16𝜉2𝑐
+
𝜒𝑎(𝐻𝑧)

2
𝑐𝑅

2
2

16𝐾3
if 𝜉 ≫ 1.

(1.36)

In contrast, an azimuthal �eld favors the axial con�guration, contributing a
positive 𝜔2-term to the energy when 𝜒𝑎 > 0:

𝐹𝑚 = −𝜋2𝜒𝑎𝐻2
𝜑𝑅1𝑅

2
2 +

2𝜋2

3
𝜒𝑎𝐻

2
𝜑𝑅1𝑅

2
2𝜉

×
(︁
2𝜉2

(︁
𝜉 −

√︀
𝜉2 − 1

)︁
−
√︀
𝜉2 − 1

)︁
𝜔2

≈ −𝜋2𝜒𝑎𝐻2
𝜑𝑅1𝑅

2
2 +

𝜋2

2
𝜒𝑎𝐻

2
𝜑𝑅1𝑅

2
2𝜔

2 if 𝜉 ≫ 1.

(1.37)

Consequently, this yields a shifted phase boundary, see �g. 1.5:

𝑘𝑐 =
1

(4𝜉2𝑐 )

[︁
−1 + 9𝜉2𝑐 − 6𝜉4𝑐 − 6𝜉𝑐

√︀
𝜉2𝑐 − 1 + 6𝜉3𝑐

√︀
𝜉2𝑐 − 1

−
2𝜒𝑎(𝐻𝜑)

2
𝑐𝑅

2
2

3𝐾3

(︀
𝜉2𝑐 − 1

)︀ (︁
1 + 𝜉2𝑐 − 2𝜉4𝑐 + 2𝜉3𝑐

√︀
𝜉2𝑐 − 1

)︁]︁
≈ 5

16𝜉2𝑐
−
𝜒𝑎(𝐻𝜑)

2
𝑐𝑅

2
2

8𝐾3
if 𝜉 ≫ 1.

(1.38)

Similar results of eq. (1.35) to eq. (1.38) hold for an applied electric �eld E
instead of a magnetic �eld; the analog of 𝜒𝑎 is the dielectric anisotropy. There
could however be another physical mechanism at play in a nematic insulator,
namely the �exoelectric e�ect [154, 169]. Splay and bend deformations induce
a polarisation

P = 𝑒1n∇ · n+ 𝑒3n×∇× n, (1.39)
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where 𝑒1 and 𝑒3 are called the �exoelectric coe�cients. Note that the �rst
term in eq. (1.39) is irrelevant for the divergence-free ansatz. A coupling of P
with E:

𝐹𝑃 = −
ˆ
𝑑𝑉P ·E (1.40)

could potentially lead to a shift of the transition. In the particular case when
E = 𝐸𝑧ẑ = 𝐸𝑧 sin(𝜓)r̂ + 𝐸𝑧 cos(𝜓)𝜓, however, the 𝜔2 contribution from
eq. (1.40) vanishes, thus not yielding such a shift.

If we now consider toroidal cholesterics rather than nematics, the chiral
symmetry is broken explicitly, �g. 1.4. A cholesteric pitch of 2𝜋/𝑞 gives a
contribution to the free energy of:

𝐹𝑐𝑛 = 𝐾2 𝑞

ˆ
d𝑉 n · ∇ × n. (1.41)

Substituting eq. (1.23) yields:

𝐹𝑐𝑛 = −8𝜋2𝐾2 𝑞 𝑅1𝑅2 𝜉
(︁
𝜉 −

√︀
𝜉2 − 1

)︁
𝜔 +𝒪

(︀
𝜔3
)︀

≈ −4𝜋2𝐾2 𝑞 𝑅1𝑅2 𝜔 +𝒪
(︀
𝜔3
)︀

if 𝜉 ≫ 1. (1.42)

Therefore, at the critical line in the phase diagram spanned by 𝑘 and 𝜉, the
degree of twist or surface angle scales (for large 𝜉) with the helicity of the
cholesteric as:

𝛼𝑒𝑞 ≈ (2𝐾2𝑅2 𝑞/𝐾3)
1/3 ∼ 𝑞1/3. (1.43)

This is the analog scaling relation of 𝑚𝑒𝑞 ∼ 𝐻1/3 in the mean-�eld Ising
model.

1.3.3 Results for the two-parameter ansatz

Motivated by experiments [55], we can introduce an extra variational parame-
ter 𝛾 to allow for splay deformations, in addition to 𝜔:

𝑛𝜓 = 𝜔
𝜉𝑟/𝑅2

𝜉 + 𝛾 𝑟
𝑅2

cos𝜓
. (1.44)

(Note that eq. (1.23) is recovered by setting 𝛾 = 1 in eq. (1.44).) In section 1.3.1
analytical results for 𝛾 = 1 were presented. In this subsection we will slightly
improve these results by �nding the optimal value of 𝛾 numerically. First, we
discretize the azimuthally symmetric director �eld in the 𝑟 and 𝜓 direction.
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Figure 1.6: Twist angle 𝛼 (in units of 𝜋) at 𝜓 = 𝜋/2 versus the slenderness 𝜉 for
𝑘 = 0.012 (green), 𝑘 = 0.006 (red), 𝑘 = 0 (blue), 𝑘 = −0.006 (magenta) and
𝑘 = −0.012 (cyan). The dashed lines represent 𝛼 for 𝛾 = 1, the solid lines represent
𝛼 found for the optimal 𝛾.

Next, we compute the Frank free energy density eq. (1.8) by taking �nite
di�erences [158] — see appendix section G.1 for details — of the discretized
nematic �eld. After summation over the volume elements the Frank free
energy will become a function of 𝜔 and 𝛾 for a given set of elastic constants
and a given aspect ratio. Because of the normalisation condition on n, the
allowed values for 𝜔 and 𝛾 are constrained to the open diamond-like interval
for which −𝜉 < 𝛾 < 𝜉 and |𝛾|−𝜉

𝜉 < 𝜔 < 𝜉−|𝛾|
𝜉 holds.

The minima of the energy surface can be found by employing the con-
jugate gradient method — see appendix N for details. We have looked at the
di�erence between the 𝛾 = 1 case and the case where the value of 𝛾 is chosen
to minimise the energy. This was done for various choices of 𝑘. We have cho-
sen the material properties of 5CB, i.e. 𝐾1 = 0.64𝐾3 and 𝐾2 = 0.3𝐾3 [119].
The value of𝐾24 has not been so accurately determined, but previous measure-
ments [55, 147, 151, 152, 153, 155] seem to suggest that𝐾24 ≈ 𝐾2, corresponding
to 𝑘 ≈ 0.
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We are interested in how the phase boundary changes when the varia-
tional parameter 𝛾 is introduced. Therefore, the twist angle 𝛼, evaluated at
the surface of the torus at 𝜓 = 𝜋

2 , versus the slenderness 𝜉 is shown in �g. 1.6.
For the particular choices of 𝑘 there are two noticeable di�erences between
the single-parameter ansatz and the two-parameter ansatz. Firstly, for small
values of 𝜉, 𝛼 is changed signi�cantly. Secondly, for larger values of 𝜉 we
see that if there is a chiral–achiral phase transition, 𝜉𝑐 is shifted by a small
amount. In �g. 1.7 we further investigate how introducing 𝛾 in�uences the
phase boundary, by plotting the phase boundary as a function of the toroidal
slenderness 𝜉 and elastic anisotropy 𝑘 for both 𝛾 as a variational parameter
(solid) and for 𝛾 = 1 (dashed). Observe that, for both the small 𝜉 and small 𝑘
regime, the di�erence is signi�cant.

Figure 1.7: The phase boundary as a function of the toroidal slenderness 𝜉 and elastic
anisotropy 𝑘 for 𝛾 as a variational parameter (solid) and for 𝛾 = 1 (dashed). The inset
zooms in on the phase boundary for small 𝜉.
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1.4 Experiments

Chiral symmetry breaking in toroidal nematics has been veri�ed experimen-
tally at Georgia Tech in the Fernandez-Nieves lab [55]. The experiment was
done by �rst developing a method to construct nematic liquid crystals in a
toroidal shape, and then exploiting the light-polarising properties of liquid
crystals to measure the presence of a twist. Additionally, higher-order tori —
tori with multiple handles — were measured as well.

The construction of the toroidal nematic droplet is done by injecting
5CB♠ through a rotating needle into a bath. The bath contains a mixture with
a high yield stress. The mixture consists of 64.5 wt% ultra pure water, 30 wt%
ethanol, 3 wt% glycerin, 1.5 wt% polyacrylamide microgels (carbopol ETD 2020),
and 1 wt% polyvinyl alcohol. The polyvinyl alcohol ensures that the nematic
liquid crystals align tangentially at the boundary as con�rmed by making
spherical droplets and checking their bipolar character. Also the continuous
phase is neutralized to pH 7, where the sample transmission is more than
90% [125]. The most relevant property of this phase, however, is its yield stress,
𝜎𝑦 . During formation of the torus — the injection of 5CB into the bath — the
stresses involved are larger than 𝜎𝑦 and hence the continuous phase essentially
behaves as if it were a liquid. The combination of the viscous drag exerted by
the outer phase over the extruded liquid crystal and its rotational motion causes
the liquid crystal to form a curved jet, as shown in �g. 1.8 A, which eventually
closes onto itself, resulting in a toroidal nematic droplet, such as that shown
in �g. 1.8 B in bright �eld and in �g. 1.8 C between cross-polarizers. Once the
torus has been formed, the elasticity of the continuous phase provides the
required force to overcome the surface tension force that would naturally tend
to transform the toroidal droplet into a spherical droplet [94]. Remarkably,
when these droplets are observed along their side view under cross polarizers,
their central region remains bright irrespective of the orientation of the droplet
with respect to the incident polarization direction, as shown in �g. 1.8 D–F;
the corresponding bright-�eld images are shown in �g. 1.8 G–I. Note that for
an axial torus with its director �eld along the tube, the cross-polarized image
should appear black for an orientation of 0 and 90° with respect to the incident
polarization direction. Hence our result is suggestive of a twisted structure. In
fact, twisted bipolar droplets also have a central bright region, when viewed
between cross-polarizers, irrespective of their orientation [146, 157, 161, 163].

♠5CB is short for 4-n-pentyl-4’-cyanobiphenyl which is a commonly used material for liquid
crystals.
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Figure 1.8: Toroidal droplets. (A) Formation of a toroidal liquid crystal droplet inside
a material with yield stress 𝜎𝑦 . (B and C) The top view of a typical stable toroidal
droplet of nematic liquid crystal, having tube and inner radii 𝑎 and 𝑅, is shown in (B)
when viewed in bright �eld and in (C) when viewed under cross-polarizers. (D–F) Side
view of a typical toroidal droplet with 𝜉 = 1.8 when viewed under cross-polarizers
for orientations of 0°, 45°, and 90° with respect to the incident polarization direction.
Note that the center part of the toroid remains bright irrespective of its orientation.
(G–I) Corresponding bright-�eld images. The dark regions of the toroid in these
images are due to light refraction. (Scale bar: 100𝜇m.) [55]
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The results are then quanti�ed by measuring the twist angle in the
toroidal droplets along the 𝑧 direction, from (𝑟 = 𝑎, 𝜃 = 90°) to (𝑟 = 𝑎, 𝜃 =
270°), see �g. 1.2. The method relies on the fact that linearly polarized light
follows the twist of a nematic liquid crystal if the polarization direction is
either parallel or perpendicular to the nematic director at the entrance of the
sample, provided the Mauguin limit is ful�lled [89]; the corresponding mode
of propagation is referred to as extraordinary or ordinary waveguiding, respec-
tively. We then image the torus is from above (�g. 1.9 A), rotate the polarizer
to ensure that the incident polarization direction is parallel or perpendicular
to the nematic director at (𝑟 = 𝑎, 𝜃 = 90°), and then rotate the analyzer by
an angle 𝜑exit with respect to the polarizer while monitoring the transmitted
intensity, 𝑇 . The minimum in 𝑇 , shown in �g. 1.9 B, re�ects the lack of light
propagation through the analyzer, indicating that the incident polarization
direction has rotated an amount 𝜏 such that it is perpendicular to the analyzer
after exiting the torus at (𝑟 = 𝑎, 𝜃 = 270°). The image of the torus in this situ-
ation exhibits four black regions where extinction occurs, as shown in �g. 1.9 C;
these correspond to waveguiding of ordinary and extraordinary waves. It is
along these regions that we measure 𝑇 . The counterclockwise rotation of the
incident polarization direction by an angle of −0.98 exactly corresponds to
the twist angle of the nematic along the 𝑧 direction through the center of the
circular cross section. However, to increase the precision of our estimate, we �t
the 𝑇 vs. 𝜑exit results to the theoretically expected transmission [89], leaving
𝜏 as a free parameter. We �nd 𝜏 = (52.9±0.4)° for 𝜉 = 3.5. Moreover, within
the experimentally accessed 𝜉-range, we �nd that the twist is nonzero and that
it monotonously decreases with increasing aspect ratio, as shown in �g. 1.9 D.
Remarkably, these features are captured by our theoretical calculations for
large 𝜉, as shown by the dashed line in �g. 1.9 D. We note that the deviations
of the experiment and the theory for small 𝜉 result from the inadequacy of the
ansatz in describing the highly twisted structures observed experimentally at
these low values of 𝜉. This can be partially resolved by lifting the constraint
that 𝛾 = 1. This introduces a second variational parameter in the ansatz,
which allows the nematic �eld to splay. The result qualitatively captures the
experimental trend for all aspect ratios, as shown by the solid line in �g. 1.9 D.
By further comparing the experiment to the theory in the high 𝜉-region, we
obtain a value for the saddle-splay elastic constant of 𝐾24 = 1.02𝐾2, which
is slightly larger than the twist elastic constant, con�rming our previous con-
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clusions and supporting our interpretation on the relevance of saddle-splay
distortions. However, our analysis cannot exclude the possibility of a slightly
smaller value of 𝐾24 and hence of a twisted-to-axial transition for extremely
large 𝜉.

1.5 Conclusions

We investigated spontaneous chiral symmetry breaking in toroidal nematic
liquid crystals. As in the case of nematic tactoids [78, 116], the two ingredients
for this macroscopic chirality are orientational order of achiral microscopic
constituents and a curved con�ning boundary. This phenomenon occurs when
both the aspect ratio of the toroid and 𝐾2−𝐾24

𝐾3
are small. The critical behavior

of this structural transition belongs to the same universality class as the
ferromagnet–paramagnet phase transition in the Ising model in dimensions
above the upper critical dimension. The analogues of the magnetization,
reduced temperature and external �eld are the degree of twist (or surface angle),
slenderness or 𝐾2−𝐾24

𝐾3
, and (cholesteric) helicity in liquid crystal toroids,

respectively. Critical exponents are collected in table 1.1.

Liquid crystal toroid Mean-�eld Ising model Exponent

𝛼𝑒𝑞 ∼ (−𝛿𝜉)𝛽 𝑚𝑒𝑞 ∼ (−𝑡)𝛽 𝛽 = 1/2

𝛼𝑒𝑞 ∼ (−𝛿𝑘)𝛽

𝛼𝑒𝑞 ∼ 𝑞1/𝛿 𝑚𝑒𝑞 ∼ 𝐻1/𝛿 𝛿 = 3

Table 1.1: Dictionary of the critical behavior of the structural transition in liquid
crystal toroids and the thermal phase transition in the mean-�eld Ising model.

Thus, the helicity rather than an external �eld breaks the chiral sym-
metry explicitly. Remarkably, since an external �eld couples quadratically to
the director �eld, it induces a shift of the phase boundary. An azimuthally
aligned �eld favors the mirror symmetric director con�guration, whereas a
homogeneous �eld in the 𝑧-direction favors the doubly twisted con�guration.

A minimization of the elastic energy analogous to the one presented
in this article for toroidal droplets has also been carried out for spherical
droplets [161]. The analytical results qualitatively reproduce the twisted tex-
tures observed experimentally in spherical bipolar droplets [163]. In this case,
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Figure 1.9: Determination of the twist angle and its dependence with slenderness.
(A) A torus with 𝜉 = 3.5 when viewed from the top and between cross-polarizers.
(B) Transmission, 𝑇 , as a function of the angle between the incident polarization
direction and the analyzer, 𝜑exit. The line is a �t to the theoretical expectation in the
Mauguin limit [89] with the twist angle, 𝜏 , as the only free parameter. We obtain
𝜏 = (52.9±0.4)°. (C) Top view of the same torus at the minimum of the transmission
curve. We measure 𝑇 along the four black regions that are observed, which are darkest
for the indicated direction of the polarizer and analyzer. The sense of rotation of
the analyzer indicates the nematic arrangement is right-handed; this likely results
from the way the torus is generated, as all tori generated in the same way have the
same handedness. (D) Twist angle as a function of 𝜉. The dashed line represents
the theoretical prediction based on eq. (1.23), for 𝐾24 = 1.02𝐾2. The solid line
represents the theoretical prediction based on the improved ansatz including the
second variational parameter 𝛾 for the same value of 𝐾24, where we have used the
values 𝐾1 = 0.64𝐾3 for 5CB [119]. (Scale bar: 200𝜇m.) [55]
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detailed measurements of the dependence of the twist angle on the elastic mod-
uli were carried out by changing temperature which in turn a�ects the elastic
moduli. The measured exponent 𝛽 was 0.75± 0.1 for 8CB♠ and 0.76± 0.1
for 8OCB♡ [157], rather than the 1

2 exponent we calculated in our mean �eld
energy minimizations that entirely neglect thermal �uctuations.

♠8CB is short for 4’-n-octyl-4-cyano-biphenyl.
♡8OCB is short for 4-cyano-4’-octyloxybiphenyl.


