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Introduction

Materials and metamaterials consist of fundamental units
called particles. The material properties of these microscopic com-
ponents often determine the macroscopic properties of the resulting

material. In many cases, however, it turns out that the underlying geometrical
and topological properties of the many-body system or con�ning space also
have a tremendous impact on the macroscopic properties of matter. From a
solid understanding of how materials and metamaterials achieve their prop-
erties one can start designing materials and metamaterials with useful and
novel functionalities [18, 19, 34, 37].

Chiral symmetry

The concept of spontaneous symmetry breaking is one of the cornerstones of
modern physics. Spontaneous symmetry breaking occurs when the laws of
physics are invariant under a certain symmetry. One of these symmetries is
chirality — or handedness. Spontaneous symmetry breaking due to chirality
is often referred to as chiral symmetry breaking. The concept of chirality is
perhaps easily understood when observing our hands. Our right hand cannot
possibly be superimposed on our left hand, unless the palms are facing the
opposite directions. Our hands are each other’s mirror image. Chiral objects
are all around us: examples are screws, fusilli pasta, guitars, bikes, cars, etc.
The test for chirality is simple: as long as we cannot recreate the mirror image
of the object by translating and/or rotating the object in its entirety, the object
is chiral; otherwise it is not. For example, a co�ee mug is not chiral as its
mirror image can be found by rotating the mug by half a turn. A simple system
showing chiral symmetry breaking is depicted in �g. 1 where we �nd that
both chiral states are energy symmetric yet can not be transformed into one
another.
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Figure 1: A simple setup showing chiral symmetry breaking. Center: an unstable-
state achiral state made with LEGO gray bars can rotate freely. Gears are equally
magnetized such that they repel one another. Left–right: two stable chiral states
found using a numerical minimization. Both states have an equal energy lower than
the unstable state. Both chiral states can be found in the LEGO setup as well.

The chirality of our hands is a spatial asymmetry. Chirality, however,
can also exist as a temporal asymmetry. Imagine an analog clock. The second
hand moves in a clockwise direction. A clock therefore possesses left-handed
temporal chirality.♠ When we mirror the arrow of time, meaning that time
now goes backwards, the second hand of the clock moves backwards too. In
such an event, the orbit of the second hand becomes anti-clockwise. There is,
however, a class of systems imaginable where the chirality does not change
upon time reversal. Suppose the clock is driven by a digital signal, and the
second hand represents a time interval as measured by a crystal oscillator.
Then, regardless of the arrow of time, the clock’s chirality is de�ned by the
internal mechanics of the device. An experimental system with temporal chiral
particles is depicted in �g. 2.

Naively, the macroscopic chirality of systems follows from the micro-
scopic chirality of the particles of which they consist. Remarkably, however,
this is not necessarily the case. Achiral particles con�ned in an achiral geome-
try may still spontaneously manifest a chiral macroscopic state. This means
that due to the achiral nature of the microscopic particles, the particular choice
of chirality — left-handed or right-handed — is energetically indi�erent and

♠Some may argue that canonical clock is left-handed. This is purely semantical and mostly
concerned with how we label things, hence irrelevant for this discussion. Physics would not
change if we consistently relabeled left as right and right as left. We have implicitly assumed
here that the unit vector 𝑧 points from the book towards your eyes as this is the canonical right
way — and incidentally also the right-handed way.
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Figure 2: A setup showing temporal chiral symmetry. Top: a custom-built air hockey
table with 3D-printed chiral pucks �oating and rotating due to air�ow. Pucks may
appear blurred as some are rotating fast. Bottom: illustration of the air�ow through
the puck causing both lift and spin, the latter breaking temporal chiral symmetry.
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hence a chiral state is spontaneously chosen. In this thesis, we will examine
two examples of this e�ect: one spatial, chapter 1, and one temporal, chapter 2.
Additionally, we will give an example of how the temporal chirality of particles
determines the temporal chirality of the system in chapter 3.

Active matter

Particles are often thought of as static units. In recent attempts to understand
the collective behavior of biological and robotic systems, however, physicists
have researched particles which are internally or externally driven. Systems
containing such particles manifest much more complex physics [52, 110, 148,
149]. These self driven systems are often called active systems, as energy
is actively pumped into to the system at the microscale. Hence, the system
consumes energy. Unlike passive systems, which tend to reside in equilibrium,
active systems often reside in steady states, where the energy pumped into
the system is on average equal to the energy dissipated from the system. In
addition, as the fundamental units that form matter become increasingly more
complex, so may their interactions. For instance, while a simple charged
particle merely exchanges positional information with other particles — and
possibly information about its velocity as well — a more complex particle
may also exchange non-trivial information like a list of its neighbors, the
availability of nutrition or other resources in its surroundings, etc. On the
receiving end, more complex particles with a little processing power may use
all this information to decide on their course of action — which likely also
requires energy. These active systems o�er exciting possibilities for more
complex material and metamaterial design.

The canonical toy model for active matter is called the Vicsek model [133,
142, 149]. This model can be used to describe a school of �sh, a �ock of birds,
a large group of bacterial swimmers, a swarm of robots etc. There are two
assumptions the Vicsek model makes. First, particles are self-driven, yielding
some stationary speed. Second, particles try to align the direction of that speed
with the velocity of their neighbors. Additionally, the Vicsek model allows for
noise in the alignment procedure, mimicking temperature, communication
errors or similar perturbations. It relies on an overdamped version of Newton’s
equations of motion♠ where inertia does not play a role. The result is that,
if the noise term is su�ciently low, the particles align and �ock, swarming
around through their con�nement space, never in equilibrium but possibly in a

♠Newton’s equations of motion are brie�y introduced in appendix A.
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steady state. In two dimensions, mean �eld theory �nds that the model de�es
the Mermin–Wagner theorem, stating that long-range order cannot exist in
two-dimensional equilibrium systems at �nite temperature. It is therefore
possible for the alignment of the self-driven particles to spontaneously emerge
throughout the system.

As active matter is driven externally or internally, it naturally breaks
time reversal symmetry.♠ Time reversal symmetry is the property that enables
the mapping of 𝑡 to 𝑡 → −𝑡. As time reversal symmetry breaking is a key
ingredient for a class of topological insulators, active matter might be a perfect
candidate to achieve a classical topological insulator [16, 31, 82], as we will see
in chapter 2.

Topology and geometry

The macroscopic properties of materials are tremendously impacted by the
geometrical and topological properties of the con�nement space [5, 38, 115,
132]. For passive matter this means that the ground state structure often fails
to propagate throughout the system, often introducing defects or changing the
structure altogether. An example of the latter will be shown in chapter 1. For
active matter it means the �ow of the particles is dominated by the topology
and geometry of its con�ning space. If the con�nement is for instance tubular,
particles will likely �ow along the long axis of the tube. Similarly, if the
con�nement is circular or annular, particles will tend to �ow along the circle.
The chirality of the �ow in a circular con�nement is chosen spontaneously;
the same goes for an annular con�nement, as we will see in chapter 2.

The concept of topology has changed both modern mathematics and
physics. Topology is roughly a way to characterize a mathematical space in
such a way that the characterization is invariant under continuous transforma-
tions. Suppose we have an in�ated bicycle inner tube. The number of handles
or holes in such a system is conserved regardless of linear transformations,
geometrical irregularities and/or di�erent embeddings. In fact, the number
of handles serves as a topological index, an integer number that allows us to
topologically characterize objects. As our bicycle tire has exactly one handle,
we classify its index as one. Comparing this to, for instance, a ball which has
exactly zero handles, we conclude that there is no possible way to continuously
transform an inner tube into a ball — or vice versa. It is, however, possible to

♠Strictly speaking, a system with just a damping term already breaks time reversal symmetry
although such a system might also demonstrate somewhat dull physics.
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continuously transform an inner tube into a co�ee mug — and vice versa — as
the number of handles in both objects is equal. The number of handles is one
of the many imaginable topological indices. A more sophisticated topological
index for spatial objects is the Euler characteristic. In momentum space one
may use the Chern number to conclude if certain band gaps are topologically
protected, as these band gaps cannot be closed by smoothly deforming the
system.

Computational physics

Performing analytical calculations on passive systems in equilibrium often
requires complicated mathematics. As activity and complexity are introduced
to these systems, calculations become increasingly harder. Fortunately, the
discipline of computational physics may often help. Numerical methods have
shown both to be an excellent way to validate analytical theories, as well as
revealing new hidden physics from known analytical theories — the latter
often unreachable from the analytical point of view. Combined with analytical
methods and possibly experiments, the computer allows us to make great leaps
forward in science as a whole.

One of the powerful numerical methods we will employ in this thesis is
called molecular dynamics. Molecular dynamics is, very brie�y, a method to
solve the classical 𝑁 -body problem numerically — in general, 𝑁 bodies with
arbitrary de�ned interactions. At its core, molecular dynamics employs one
of the most validated equations in physics: Newton’s equations of motion,
eq. (A.2). A brief explanation of how molecular dynamics works is given in
appendix O.

For this thesis a custom molecular dynamics computer library called
libmd was written; see appendix P for more details. The library di�ers from
other libraries as it is speci�cally designed to solve problems in passive and
active matter with geometrical and topological constraints. More explicitly,
it contains an implementation of a novel symplectic integrator that solves
Newton’s equation in the presence of curvature numerically, as described in
chapter 4. Additionally, it employs computational techniques like automatic
di�erentiation, appendix section G.3, to make simulations more accurate,
simpler and more reliable.
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Outline of this thesis

In this thesis we will study the interplay of topology and geometry with
chirality for several passive and active systems, employing both analytical
and numerical methods. Speci�cally, this thesis discusses the systems brie�y
mentioned here.

In chapter 1 we explain how nematic liquid crystals con�ned in toroidal
geometries undergo structural phase transitions depending on the slenderness
of the con�ning toroid. We will see that, although the nature of the nematic
liquid crystal is achiral, the toroidal geometry will force the system to choose
a chiral state. As both states yield the same Frank free energy the choice of
chirality is spontaneous. This structural phase transition falls in the same
universality class as the famous Ising model, a model for ferromagnetism: both
are perfect examples of spontaneous symmetry breaking. For a schematic see
�g. 3.

In chapter 2 we consider a system of active polar swimmers that align
with their neighbors. When con�ned in the right geometry, the system will
self-assemble into a state with topologically protected chiral acoustic modes.
The chirality in this system manifests itself as a temporal one, rather than a
spatial chirality. For a schematic see �g. 4.

Chapter 3 shows how systems of Yukawa charged active spinning dimers
self-assemble into a crystal phase with spatiotemporal order, a liquid phase
or a glass phase depending on the density. The chirality in this system is
determined by the handedness of spin of the dimers. Depending on the phase
and the con�nement geometry of these systems of actively spinning dimers,
the system will allow for rigid body rotations or edge currents. The chirality
of rotations and edge currents are set by the chirality of the spinning dimers.
For a schematic see �g. 5.

Finally, in chapter 4 we introduce a novel method of doing molecular
dynamics on curved surfaces by developing a symplectic integrator. Although
this new method can be applied to many topics, see for instance �g. 6, we
present preliminary results on two-dimensional crystal melting in the presence
of curvature. As melting in two dimensions is mediated by topological defects
which are spatially positioned by the curvature, we �nd that the crystal may
melt inhomogeneously.
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Figure 3: Schematic of left-handed (left) and right-handed (right) toroidal nematic
liquid crystals.

Figure 4: Schematic of a con�ned polar active liquid �ow �eld with spontaneously
broken chirality and left-handed (left) or right-handed (right) polarization.
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Figure 5: Snapshots of simulations done with 20 chiral dimers con�ned in a disk.
We observe spatiotemporal order and edge currents. Left: a left-handed spinning
system. Right: a right-handed system.
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Figure 6: Geodesic lines on a Gaussian bump found using our developed integrator.
The integrator solves Newton’s equations of motion in the presence of Riemannian
curvature symplectically. In the absence of a force term Newton’s equations of motions
are equal to the geodesic equation.




