
The use of computational toxicology in hazard assessment of engineered
nanomaterials
Chen, G.; Chen G.

Citation
Chen, G. (2017, September 19). The use of computational toxicology in hazard assessment of
engineered nanomaterials. Retrieved from https://hdl.handle.net/1887/55947
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/55947
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/55947


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/55947 holds various files of this Leiden University 
dissertation 
 
Author: Chen Guangchao 
Title: The use of computational toxicology in hazard assessment of engineered 
nanomaterials 
Date: 2017-09-19 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/55947


 

 

The use of computational toxicology in hazard assessment 

of engineered nanomaterials 

 

 

 

 

 

 

 

 

 

陈广超 

Guangchao Chen 

  



 

 

 

 

 

 

 

 

 

© 2017 Guangchao Chen 

The use of computational toxicology in hazard assessment of engineered 

nanomaterials. 

Ph.D. Thesis Leiden University, The Netherlands 

 

 

ISBN: 978-94-6182-823-1  

Cover design: Guangchao Chen 

Printed by: Off Page, www.offpage.nl 

  



The use of computational toxicology in hazard assessment of 

engineered nanomaterials 

 

Proefschrift 

 

 

ter verkrijging van de graad van 

Doctor aan de Universiteit Leiden, 

op gezag van de Rector Magnificus Prof. mr. C.J.J.M. Stolker 

volgens besluit van het College van Promoties 

te verdedigen op 19 september 2017 

klokke 13:45 uur. 

 

door 

 

 

 

Guangchao Chen 

Geboren te Qiqihar, China 

In 1987 

  



 

Promotiecommissie: 

Promotor: Prof. dr. W.J.G.M. Peijnenburg 

Co-promotor: Dr. M.G. Vijver 

Overige leden: Prof. dr. ir. D. van de Meent (RIVM) 

 Dr. K. Jagiello (University of Gdansk) 

 Dr. I. Tetko (Helmholtz Zentrum München) 

 Prof. dr. Arnold Tukker (Universiteit Leiden) 

 Prof. dr. ir. P.M. van Bodegom (Universiteit Leiden) 

 

  



Table of Contents 

Chapter 1 General introduction 1 

Chapter 2 Summary and analysis of the currently existing literature data on 

metal-based nanoparticles published for selected aquatic 

organisms: Applicability for toxicity prediction by (Q)SARs 

Alternatives to Laboratory Animals. 2015, 43:221-40 

21 

Chapter 3 Recent advances towards the development of (quantitative) 

structure-activity relationships for metallic nanomaterials: A 

critical review 

Materials. Under revision 

51 

Chapter 4 Development of nanostructure–activity relationships assisting the 

nanomaterial hazard categorization for risk assessment and 

regulatory decision-making 

RSC Advances. 2016, 6:52227-52235 

97 

Chapter 5 Developing species sensitivity distributions for metallic 

nanomaterials considering the characteristics of nanomaterials, 

experimental conditions, and different types of endpoints 

Food and Chemical Toxicology. 2017. doi: 10.1016/j.fct.2017.04.003 

129 

Chapter 6 General discussion 

International Journal of Molecular Sciences. 2017, 18:1504 

161 

Summary 191 

Samenvatting 194 

论文概要 197 

Acknowledgements 200 

Curriculum Vitae 201 

 

  



 

  



 

 

1 

1 

 

 

 

 

 

 

CHAPTER 1 

 

GENERAL INTRODUCTION 

  



 

 
2 

1 General introduction 

1.1 Nanotechnology and nanomaterials 

1.1.1 Background 

Nanotechnology has become a trending topic in the 21st century. It basically deals with 

controlling the structure of matter at the nanoscale (1-100 nm) with respect to one or more 

external dimensions in order to produce new materials, i.e. nanomaterials (Maynard et al., 

2006; European Commission, 2011). The prefix ‘nano’ originates from the Greek word for 

“dwarf” (Boholm, 2016). As a prefixing unit of time, length, mass etc., nano signifies “a 

billionth” (e.g. of a meter or a gram). Therefore one nanometer (nm) is equal to one-

billionth of a meter, i.e. 10-9 m. To put this scale into perspective, a human hair is about 

80,000 nm wide; a DNA molecule is around 2.5 nm wide; and a red blood cell is estimated 

to be approximately 7,000 nm wide (Sahoo et al., 2007; Thakkar et al., 2010). 

Nanomaterials are tailored to the needs of inimitable characteristics (e.g. electromagnetic, 

catalytic, optical, and thermal properties) which are often not observed in their bulk 

counterparts (Kleandrova et al., 2014; Puzyn et al., 2009). As such, nanomaterials have been 

designed and engineered for a broad spectrum of applications. An online database called the 

“Nanotechnology Consumer Products Inventory” has listed eight general categories 

(including 37 sub-categories) of nano-enabled products, namely appliances, automotive, 

cross cutting, electronics and computers, food and beverage, goods for children, health and 

fitness, and home and garden (Project on Emerging Nanotechnologies, 2013; Vance et al., 

2015). By 5 December, 2016, this inventory contained in total 1827 consumer products on 

the market from 715 companies in 33 countries, which were manufacturer-identified as 

incorporating engineered nanomaterials (ENMs). Meanwhile by the same date, another data 

and analysis repository named the “Nanotechnology Products Database” provided a total 

number of 6396 nanotechnology products introduced by 910 companies in 49 countries 

(Nanotechnology Products Database, 2016). The controllable production and widespread 

commercial applications of ENMs have shown the immense promise of nanomaterials to 

benefit the world economy and quality of life. As reported, the direct employment in the 

EU involving nanotechnology is estimated to be up to 400,000 jobs according to the 

European Commission (Lynch, 2016). 

1.1.2 Rapid development of nanotechnology 

Reportedly, every week about 3 to 4 new ENM-incorporated products are likely to enter the 

market (Kar et al., 2014). The worldwide production capacity of ENMs is estimated to 

increase from only 2000 tons per year in 2004 to 50,000 tons per year by 2020 (Heggelund 

et al., 2014). As predicted, the global production rates for ENMs involved in structural 
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applications (e.g. catalysts, films & coatings, composites) will see an increase from an order 

of 103 tons per year in 2010 to an order of 104-105 tons per year by 2020 (Dowling et al., 

2004; Borm et al., 2006). During the same period, the global production of ENMs applied 

in information and communication technologies is expected to increase from 102 to >103 

tons per year; global production volume of ENMs used for environmental applications 

(such as nanofiltration, membranes) is expected to rise from 102 to 103-104 tons per year; 

worldwide production of ENMs for skincare products (e.g. TiO2, ZnO ENMs) is estimated 

to see a steady growth of 103 tons per year (Dowling et al., 2004). By 2020, the global 

market of nanotechnology is likely to continue to grow at double-digit rates (around 17% 

annually) for the coming decade and reach a global value of $75 billion in 2020 (Mulvaney 

and Weiss, 2016). 

 

1.2 Safety concerns of nanomaterials 

1.2.1 Release of ENMs into the environment 

The rapid development of nanotechnology and extensive use of ENMs for industrial and 

commercial applications have caused safety concerns (Nel et al., 2006; Valsami-Jones and 

Lynch, 2015). The ongoing production of ENMs of all types certainly increases the 

likelihood of the release of ENMs into the environment. A proposed life-cycle of ENMs 

showed that the release of ENMs into the environment can be traced back to the stages of 

ENM production, incorporation of ENMs into products, and consumption, recycling, and 

disposal of the ENM-containing products (Gottschalk et al., 2010). As estimated, every year 

about 189,200 tons of ENMs are released into landfills; 69,200 tons of ENMs into water 

bodies; 51,600 tons of ENMs into soil; and 8,100 tons of ENMs into the air (Keller and 

Lazareva, 2014). In Europe, the concentration of Ag ENMs in the air was estimated to be 

around 0.008 ng/m3 in 2008 (volume of air in EU was estimated to be 4.33×1015 m3); in 

surface water (estimated volume in EU 3.89×1014 liter) the predicted concentrations are 

0.764 ng/L for Ag ENMs, 0.010 µg/L for ZnO ENMs, and 0.015 µg/L for TiO2 ENMs 

(Gottschalk et al., 2009; Sun et al., 2014). Since 2008, the annual increases of ENM 

concentrations in soil (0.05 m depth as for natural soil, 0.2 m depth as for agricultural soil, 

estimated total volume in EU 7.59×1014 kg) are predicted to be 0.0227, 0.093, and 1.28 

µg/kg for Ag, ZnO, and TiO2 ENMs, respectively (Gottschalk et al., 2009; Sun et al., 2014). 

1.2.2 Exposure to ENMs 

Undoubtedly, the ongoing release of ENMs into the environment inevitably results in a 

higher exposure of humans and ecosystems to ENMs. As illustrated in Figure 1.1, the 

exposure of humans to ENMs may occur via a number of exposure routes: 
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(i) Dermal contact, for instance by applying personal care products incorporating ENMs 

such as TiO2 and ZnO ENMs (Keller et al., 2014); 

(ii) Inhalation. In an environment where ENMs are released into the air, the manufactured 

nanomaterials can be inhaled directly and thus get to deposit in the lung (Methner et al., 

2010); 

(iii) Ingestion. This is due to the ENMs added to food items, or unwarranted ENMs that 

leach off of package materials into food (Magnuson et al., 2011; McCracken et al., 2016), or 

the ENM-polluted water (Wang et al., 2008). 

 

Figure 1.1. Possible exposure routes of humans and the environment to ENMs (adapted 

from Dowling et al., 2004; Gottschalk et al., 2010). 

 

Meanwhile, therapeutic and medical applications of ENMs can also result in direct uptake 

of those materials into the human body, even though this option is still seen as 

underdeveloped (Dowling et al., 2004). Theoretically, the proposed exposure routes of 
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ENMs also apply for environmental organisms just as for humans. However, given the 

diversity of organisms that live in the outside world, exposure of ENMs to environmental 

species seems to be much more complicated, and additional exposure and uptake routes do 

certainly exist. For instance, the gill is concluded as being the principal site of the uptake of 

Cu and Ag ENMs for fishes and other gill-keeping species (Kwok et al., 2012; Griffitt et al., 

2007). Plants could interact with ENMs adsorbed on soil and sediments via roots 

(Oberdörster et al., 2005). ENMs deposited and aggregated on the leaves or other aerial 

parts of plants are able to penetrate through stomatal pathways (Eichert et al., 2008; 

Miralles et al., 2012). ENMs have shown to be taken up through bacterial cell membranes 

(Klaine et al., 2008; Kumar et al., 2011). 

1.2.3 Potential toxicity of ENMs and possible mechanisms 

The uptake of nanomaterials may lead to adverse effects. Previously, consensus was drawn 

across a majority of studies regarding the occurrence of damage triggered by ENMs at the 

cellular level (Bondarenko et al., 2013). A comprehensive study of Shaw et al. (2008) 

evidenced the effects of ENMs on the cellular viability and physiology of different mammal 

cell lines. Gajewicz et al. (2015) also reported the impacts of metal oxide ENMs on cell 

viability (human keratinocyte cells) which confirmed the observations of other independent 

reports (Zhang et al., 2012; Liu et al., 2011; Zhou et al., 2008). Experimental assays of 

nanotoxicity have also been generally performed on various trophic levels of organisms 

(Juganson et al., 2015; Donaldson et al., 2001; Oberdorster, 2000), such as algae (e.g. 

Pseudokirchneriella subcapitata), bacteria (e.g. Escherichia coli), crustaceans (e.g. Daphnia magna, 

Daphnia pulex), fish (e.g. Danio rerio, Oryzias latipes), nematodes (e.g. Caenorhabditis elegans), 

plants (e.g. Lemna minor), protozoa (e.g. Tetrahymena thermophila), yeast (e.g. Saccharomyces 

cerevisiae), and mammals (e.g. Rattus). 

The introduction of ENMs to different species may lead to the occurrence of (not limited 

to) mortality, immobilization, malformation, inflammatory response, and the inhibition of 

cell viability, growth, luminescence, reproduction, feeding, and fertilization, etc. which varies 

from case to case (Juganson et al., 2015). For instance, exposure of algae (e.g. Chlamydomonas 

reinhardtii, Pseudokirchneriella subcapitata, and Scenedesmus obliquus) to ENMs may result in the 

inhibition of growth and the loss of cell viability (Navarro et al., 2008; Angel et al., 2013; 

Dalai et al., 2013). Bacteria that were exposed to ENMs appeared to exhibit mortality (e.g. 

Escherichia coli), luminescence inhibition (e.g. Escherichia coli, Vibrio fischeri, Pseudomonas putida), 

and growth inhibition (e.g. Escherichia coli) (Samberg et al., 2011; Ivask et al., 2010; Hu et al., 

2009; Dams et al., 2011; Heinlaan et al., 2008). Exposure of crustaceans, such as Daphnia 

magna, Ceriodaphnia dubia, and Daphnia pulex to ENMs was found to cause mortality, 

immobilization, and inhibition of growth, feeding, and reproduction (Gao et al., 2009; Li et 



 

 
6 

1 General introduction 

al., 2011; Jo et al., 2012; Lopes et al., 2014; Griffitt et al., 2008). ENMs tested on fish are 

likely to induce mortality, growth inhibition, delay of hatching, and developmental 

malformation (Wang et al., 2012; Massarsky et al., 2013; Zhu et al., 2012; Hall et al., 2009). 

The introduction of ENMs to nematodes, protozoa, and yeast may cause mortality, growth 

inhibition, inhibition of cell viability, reproduction inhibition, and immobilization (Tyne et 

al., 2013; Yang et al., 2012; Ma et al., 2009; Kvitek et al., 2009; Shi et al., 2012; Mortimer et 

al., 2010; Galindo et al., 2013; Kasemets et al., 2013). For rats, in vivo experiments have also 

evidenced the harmful effects of ENMs such as hepatotoxicity and nephrotoxicity after oral 

gavage (Lei et al., 2008). 

 

Figure 1.2. Schematic illustration of possible mechanisms of ENM toxicity. 1) The direct 

contact of ENMs with subcellular structures which could promote the leaching of ions and 

reactive oxygen species (ROS); 2) ENMs releasing ions; 3) ENMs contact-mediated ROS 

generation; 4) The phenomenon of Trojan-horse mechanism; 5) Released ions enhancing 

the formation of ROS; 6) Ion-dependent interactions which may result in cellular damage or 

trigger ROS formation (Drawn by G. Chen). 

 

As hypothesized, ENMs may pose effects via a single or via combinations of a few possible 

pathways (see Figure 1.2). ENMs can for instance induce the generation of reactive oxygen 

species (ROS), or induce direct steric hindrance or interferences with important reaction 

sites (Puzyn et al., 2011). ENMs are also considered to be able to act as vectors for 

transporting other toxic chemicals into cells, a phenomenon which is described as the 

Trojan-horse mechanism (Park et al., 2010). Nanotoxicity could as well occur due to the 

shedding of ions from ENM crystals. This process is generally believed to be one of the 

important pathways of toxicity for soluble metallic nanoparticles (Xiao et al., 2015). The 

released ions are able to interact with subcellular structures initiating cellular damages, or 

stimulate ROS formation, which in turn has been reported to induce oxidative stress 
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resulting in the disturbance of cellular physiological redox-regulated functions (Nel et al., 

2009; Fu et al., 2014). The released ions can also promote the production of ROS (von 

Moos and Slaveykova, 2014). 

 

1.3 Handling nanosafety 

1.3.1 Environment risk assessment and safe-by-design of ENMs 

To ensure the nanosafety and optimal benefit from nanotechnology, two strategies stand 

out in this regard: the first is designing and producing ENMs that are safe and 

environmentally benign while with desired properties. This strategy aims at minimizing the 

potential risks of ENMs from the very beginning of the development of an ENM 

application. It is referred to as the safe-by-design of ENMs and relates to ex ante safety 

assessment. The second strategy is to assess the risks of existing and also newly introduced 

ENMs, which manages to control relevant risks during the stages of manufacturing, use, 

and disposal of ENMs with prospective risk assessment. In order to answer the question 

whether an ENM is environmentally safe or not, a series of key steps including hazard 

assessment, exposure assessment, and risk characterization are required, and measures will 

be taken based on the established conclusion (Commission of the European Communities, 

1996). As suggested by the European Chemicals Agency (ECHA), the process of risk 

assessment of ENMs (as of any chemical to be regulated within the EU) begins with the 

identification and assessment of ENM hazard if the ENMs subjected to registration under 

the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) 

regulation reaches an annual production or import of at least 10 tons (ECHA, 2011). 

Exposure assessment and risk characterization are also required when an ENM fulfils the 

criteria for any of the listed physical, health, or environmental hazard categories in the 

released guideline of ECHA (ECHA, 2011). The hazard assessment of ENMs meanwhile 

also provides important feedbacks to safe-by-design approaches for ENMs with regard to 

key characteristics of ENMs governing relevant toxicity pathways, upon which 

modifications towards designing safer materials could be determined (Sealy, 2011). 

As described in Figure 1.3, the hazard assessment for human health and the environment as 

recommended by ECHA comprises of evaluation of information, classification and labelling, 

and identification of predicted no effect concentrations (PNECs) or derived no effect levels 

(DNELs). The gathering and evaluation of relevant physicochemical, (eco)toxicological 

information of ENMs is certainly fundamental to support the assessment of ENM hazard 

as the very first step. This is outlined by REACH as part of the registration of chemicals. It 
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involves the retrieval and sharing of existing data, consideration of needed information, 

identification of information gaps, and the generation of new data or preparation of a 

proposal for a tailored testing strategy (ECHA, 2011). Based on the first step, ENMs will be 

determined as whether or not meeting the criteria for any of the hazard classes or categories 

proposed by ECHA, i.e. the step of classification and labeling. Once an ENM is categorized 

in at least one of the listed classes, derivation of the hazard threshold levels of ENM for 

human health and the environment, e.g. PNECs and DNELs, is required in light of a 

qualitative risk characterization for relevant ENMs. 

 

Figure 1.3. Schematic explanation of the safe handling of engineered nanomaterials. PNECs 

- predicted no effect concentrations; DNELs - derived no effect levels. Figure adapted from 

the ECHA guidance (ECHA, 2011). 

 

Therefore, as for the safe handling of nanomaterials including the approaches of safe-by-

design and risk assessment of ENMs, gathering and evaluation of hazard information of 

ENMs is essential. In a survey provided by the NanoSafety Cluster Database working group, 

a total number of 38 online ENM databases developed under various projects were listed. 

These were provided with the names of databases and website addresses (Mustad et al., 

2014). Another online inventory named StatNano was established in 2010 for the access of 
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up-to-date information and statistics in nano-based science, technology and industry 

(StatNano, 2010). This website also provides a so-called Nanotechnology Products 

Database (established in January 2016) for the analysis and characterization of 

nanotechnology-based consumer products (Nanotechnology Products Database, 2016). 

Another effort to gather relevant data and to address the safety of ENMs is the EU 

NanoSafety Cluster which aims to maximize the synergies between various projects at the 

European-level (EU NanoSafety Cluster, 2017). This cluster comprises of nine working 

groups addressing different aspects involved in nanotechnology and nanosafety, namely the 

working groups of materials, hazard, exposure, database, risk, modeling, dissemination, 

systems biology, and safe-by-design and industrial innovation. Undoubtedly, those databases 

and platforms are of significant importance as the first step in gathering, evaluation, and 

processing of information regarding the hazard of ENMs. As a follow up, it is crucial to 

develop comprehensive databases containing reliable and sufficient information on ENM 

characterization, experimental conditions, and toxicity of ENMs for the need of ENM 

hazard assessment. 

1.3.2 Handling nanosafety with the aid of computational toxicology 

By far, a large amount of ENMs have been carefully tested on various species and cell lines 

(Bondarenko et al., 2013; Juganson et al., 2015). However, given the substantial number of 

existing, non-tested ENMs and the enormous growth of nanotechnology, testing every 

single type of ENM to support the comprehensive evaluation of ENM safety is expensive, 

time-consuming, and thus virtually impossible. Testing of all hitherto non-tested ENMs and 

of all newly developed ENMs also conflicts with the 3R's principle (refine, reduce, and 

replace) of animal use in toxicity testing (Russell and Burch, 1959). Thus researchers have 

been seeking and developing alternatives of testing assays for assisting the risk management 

of ENMs. One of the very helpful tools in this task as an alternative of testing is 

computational toxicology. It is defined as a discipline that integrates information from 

various sources in order to develop computer-based models for the better interpretation 

and prediction of chemical effects (Reisfeld and Mayeno, 2012). A few typical tools in this 

field are for example (quantitative) structure–activity relationship ((Q)SAR), structural alerts, 

read-across extrapolations, dose–response and time–response models which aim to 

contribute to the prediction and classification of chemical toxicity. 

The (Q)SAR method enables the correlation of chemical characteristics with experimental 

toxicity data and thus enables to encode existing knowledge into predictive models. To 

build a (Q)SAR model, the measured or calculated descriptors characterizing key structures 

of chemicals and the toxicity endpoints reflecting the chemical biological effects are 

required. The role of (Q)SARs in predictive toxicology is: 
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(i) To provide efficient and inexpensive screening tools for the evaluation of chemical 

hazards; 

(ii) To assist the categorization and labeling of chemicals based their hazard effects; 

(iii) To help interpreting the underlying toxicity mechanisms of substances (Peijnenburg, 

2009). 

1.3.3 Hazard prediction by (Q)SARs for ENMs 

(Q)SARs have already been successfully used as very helpful tools for conventional 

chemicals in relating structural characteristics to chemical properties and biological effects in 

order to fill data gaps (Chen et al., 2014; Singh et al., 2014; Modarresi et al., 2007). 

According to REACH, data derived from (Q)SARs may support the waiving of laboratory 

testing or serve as a trigger for proposing further testing; when certain required conditions 

are met, (Q)SAR results could be used instead of testing data for the registration under 

REACH (ECHA, 2008a). Based on the OECD principles for (Q)SAR validation, a (Q)SAR 

model suited for regulatory purposes is suggested to contain at least the following 

information: 

(i) A well-defined endpoint; 

(ii) An explicit algorithm; 

(iii) A well-defined applicability domain; 

(iv) Suitable measures of goodness-of-fit, robustness and predictivity; 

(v) If possible an interpretation of relevant mechanisms (OECD, 2007). 

The limited data availability on ENM hazards necessitates the need of extending 

conventional (Q)SAR approaches to nanotoxicology, i.e. nano-(Q)SARs. For the hazard 

assessment of ENMs, nano-(Q)SARs could be potentially used to generate non-testing data 

during the gathering of information in the first step, or to assist the second step of 

classification and labeling of ENMs by directly categorizing ENMs into different hazard 

classes. The descriptors in nano-(Q)SARs may also be helpful for understanding related 

mechanisms and identifying key factors affecting ENM toxicity, which as well provides 

guidance to the modification of ENM characteristics for the safe-by-design of ENMs. To 

date, attempts have already been made to correlate the characteristics of ENMs to their 
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biological responses (Sizochenko and Leszczynski, 2016; Raies and Bajic, 2016; Tantra et al., 

2015). Those studies showed the tantalizing possibility that the (Q)SAR method may indeed 

be feasible and useful in predicting the biological activity profiles of novel ENMs. However, 

it meanwhile also revealed that nano-(Q)SAR is now still in its infancy and further 

challenges in this field need to be overcome. One issue standing out on this background 

relates to the comprehensive representation of ENM structures. As known, ENMs often 

exist as populations of materials varying in structural characteristics, e.g. composites, sizes, 

shapes, functional groups. The structural ambiguousness of ENMs makes it difficult for 

experimentalists to provide precise information on ENM characterization which 

consequently hinders the calculation of representative descriptors for ENMs. Another issue 

of importance in this context concerns the dynamics of ENMs in media. ENMs often 

strongly interact with constituents in the medium and undergo dramatic changes to their 

surface properties, and dissolution and aggregation behavior (Winkler, 2016). These changes 

consequently alter the mobility, bioavailability, and ultimately, toxicity of ENMs. Therefore 

in some cases the toxicity information of ENMs can be poorly correlated to ENMs’ 

characteristics without considering the dynamics of ENMs in the media. Thus (Q)SARs 

based on initial structural features of ENMs are now also extended incorporating the 

experimental descriptors for this consideration (Liu et al., 2011; Zhang et al., 2012). 

1.3.4 Hazard prediction models such as SSDs for ENMs 

Meanwhile, to derive hazard threshold levels of (soluble) chemicals such as PNEC for 

ecosystems and their communities, the species sensitivity distribution (SSD) method is 

commonly used (Posthuma et al., 2002). SSDs are derived by ranking species according to 

their sensitivity to certain chemicals based on retrieved ecotoxicity data (Posthuma et al., 

2002; Garner et al., 2015). An SSD can provide the potentially affected fraction of species 

under a chemical concentration of interest given the sensitivity distributions. Among others, 

the 5th percentile (HC5) of the SSD is commonly used to assist in getting protection levels 

in the ecosystem. The PNEC of a chemical is the maximum acceptable concentration in the 

environment below which unacceptable chemical effects are unlikely to occur (ECHA, 

2008b). It is required for the risk characterization once a chemical is classified into the 

hazard categories listed in Article 14(4) of REACH (ECHA, 2011). Alternatively, PNEC 

values can be estimated by the assessment factor method (ECHA, 2011). 

1.3.5 Risk characterization for ENMs 

PNEC is based on ecotoxicity data and is often coupled with an assessment factor. The 

obtained values of the hazard thresholds together with the predicted environmental 

concentrations (PECs) of ENMs are commonly utilized for risk characterization. A ratio of 
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PEC/PNEC greater than or equal to 1 indicates that potential risks are likely to occur, and 

further assessment is needed; a ratio of PEC/PNEC less than 1 means that risks are not 

expected. Even though the risk characterization of PEC/PNEC is originally set up for 

dissolved chemicals, it is now accepted and widely used for the risk characterization of 

ENMs as well (Gottschalk et al., 2013; Coll et al., 2016). 

 

1.4 Objectives and outlines of this thesis 

As indicated above, assessing and managing the risks of ENMs is of significant importance 

for the advancement of nanotechnology. Two approaches capable of contributing to this 

crucial task are principle of safe-by-design of ENM and the risk assessment of ENMs, both 

of which need to be supported by ENMs’ hazard assessment. Computational toxicology as 

a promising tool has shown its great potential in assisting the evaluation of the hazard of 

conventional chemicals, from the very beginning of assembling and evaluating data, to 

classification and labeling, and to generation of hazard threshold values for risk 

characterization. The use of computational toxicology in supporting the hazard assessment 

of ENMs is still a field of research that needs further development. This PhD study aims to 

explore the use of computational toxicology to contribute to the safe handling of metal-

based ENMs, by evaluating the availability of existing nanotoxicity data and identifying data 

gaps, developing nano-(Q)SARs, and deriving hazard threshold values. The objectives of 

this PhD thesis are: 

(i) To evaluate the currently existing literature data on metal-based ENMs for the use of 

computational toxicology in light of the safety assessment of ENMs; 

(ii) To develop nano-(Q)SARs for the prediction and categorization of ENM hazard; 

(iii) To derive SSDs and maximum acceptable environmental concentrations of metal-based 

ENMs as toxicity measures characterizing relevant risks. 

 

1.5 Outline of the thesis 

On the basis of the presented research objectives, this thesis contains six chapters. 
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Chapter 1 Background information is presented about the development of nanotechnology, 

concerns of nanosafety, safe handling of ENMs, and the application of computational 

toxicology in assisting the safe use of ENMs. The research objectives and the layout of this 

thesis are described; 

Chapter 2 An inventory of existing toxicity data of metal-based ENMs is established to 

evaluate relevant data availability and to identify data gaps. The developed database contains 

866 data entries on endpoints related to the toxicity of metallic ENMs to algae, yeast, 

bacteria, protozoa, nematodes, crustacean, and fish; 

Chapter 3 In this chapter the development of nano-(Q)SARs is reviewed. The used datasets, 

constructed models, and underlying mechanisms of ENM uptake and toxicity are discussed; 

Chapter 4 Nano-SARs are developed for the categorization of the environmental hazards 

of metal-based ENMs. Both global nano-SARs across different species and species-specific 

nano-SARs (for Danio rerio, Daphnia magna, Pseudokirchneriella subcapitata, and Staphylococcus 

aureus) are presented. Possible mechanisms of toxicity are interpreted based on the 

descriptors used in the models; 

Chapter 5 Species sensitivity distributions for metal-based ENMs and relevant HC5 values 

are obtained. SSDs are developed and compared considering the characteristics of ENMs, 

the experimental conditions, and different types of endpoints. The most sensitive species 

and organism groups to certain ENMs are also discussed; 

Chapter 6 Based on the presented studies in the thesis and other results in this field, the 

current knowledge on the use of computational toxicology in assisting the hazard 

assessment of metallic ENMs is discussed. The development of nano-(Q)SARs and read-

across for ENMs, and the development of relevant SSDs are reviewed. Hint messages from 

the commonly used descriptors in the models are extracted; the toxicity of metal-based 

ENMs is profiled based on these descriptors. Suggestions and outlook are presented to 

facilitate the further development of this new frontier. 
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Abstract 

This review establishes an inventory of existing toxicity data on nanoparticles (NPs) with 

the purpose of developing (Quantitative) Structure–Activity Relationships for NPs (nano-

(Q)SARs) and also of maximizing the use of scientific sources for NP risk assessment. 

From a data search carried out on 27 February 2014, a total of 910 publications were 

retrieved from the Web of Science™ Core Collection, and a database comprising 886 

records of toxicity endpoints was built based on these publications. The test organisms 

mainly comprised bacteria, algae, yeast, protozoa, nematode, crustacean, and fish. The NPs 

consisted mainly of metals, metal oxides, nanocomposites, and quantum dots. The data 

were analyzed further, in order to: i) categories each toxicity endpoint and the biological 

effects triggered by the NPs; ii) survey the characterization of the NPs used; and iii) assess 

whether the data were suitable for nano-(Q)SAR development. Despite the efforts of 

numerous scientific programmes on nanomaterial safety and design, our study concluded 

that lack of data consistency prevents the use of experimental data in developing and 

validating nano-(Q)SARs. Finally, an outlook on the future of nano-(Q)SAR development is 

provided. 

 

Key words: ecotoxicity, metal-based, models, nanoparticle, (quantitative) structure–activity 

relationship 
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2.1 Introduction 

Tremendous advances in the utility of synthetic nanoparticles (NPs) have raised global 

concerns about potential nano-specific effects on ecosystems. The likelihood of NPs 

triggering negative impacts on ecosystems, as well as on human health, has already been 

addressed by various studies (Gajewicz et al., 2012; Ivask et al., 2014; Schrand et al., 2010). 

This likelihood necessitates a comprehensive risk assessment of NPs, to determine whether 

their benefits outweigh the risks, before initiating large-scale production. Such a task, 

however, is prevented by insufficient scientific information, as evident from the observation 

that the number of studies investigating the harmful effects of NPs severely lags behind the 

rapid growth of nanotechnology (Bondarenko et al., 2013; Kahru and Ivask, 2013). In 

addition, the exponential increase in the number and variety of NPs makes it impossible to 

test every newly-synthesized NP, taking into account the high study-cost, the time-

consuming nature of toxicity testing and the Three Rs (replacement, reduction, and 

refinement) concept governing animal use (Russell and Burch, 1959). If the use of 

alternative non-animal approaches was maximized for testing, 1.9 million fewer animals 

would be required (Gajewicz et al., 2012). Therefore, reliable protocols for in silico screening 

of the effects of NPs are required for adequate NP risk assessment (Cumming et al., 2013; 

OECD Quantitative Structure–Activity Relationships Project). Meanwhile, the mission of 

safe-by-design for nanotechnology (Maynard et al., 2006), which was aimed at designing 

biologically and environmentally benign NPs, has also driven the need for predicting the 

toxicity of NPs from their pristine (i.e. unmodified) structures. Thus, recently, there have 

been many attempts to predict the toxicity of NPs based on computational methods. 

Following its successful application in formalizing relationships between structural 

characteristics and biological effects (Altschuh et al., 1999; Arnot and Gobas, 2006; Pavan 

and Worth, 2006; Pavan et al., 2006; Chen et al., 2014), the (Quantitative) Structure–

Analysis Relationship ((Q)SAR) approach offers a rapid way of filling data gaps caused by 

limited availability, or the absence, of experimental information. Attempts have also been 

made to use experimentally-obtained data to link the physical-chemical characteristics of 

NPs to their cellular uptake, cytotoxicity (Epa et al., 2012; Ehret et al., 2014; Fourches et al., 

2010; Gajewicz et al., 2015; Ghorbanzadeh et al., 2012; Kar et al., 2014a; Liu et al., 2011; 

2013; Luan et al., 2014; Singh and Gupta, 2014; Sizochenko et al., 2014; Toropov et al., 

2013), and ecotoxicity (Kar et al., 2014b; Kleandrova et al., 2014; Pathakoti et al., 2014; 

Puzyn et al., 2011; Singh and Gupta, 2014; Sizochenko et al., 2014; Toropov et al., 2012). 

The nano-(Q)SARs reported and the data sets used are summarized in Table 2.1. As can be 

seen from this table, despite the fact that intensive research is being carried out on NP-

related toxicity, the nano-(Q)SARs developed so far have mainly employed toxicity 

information from a limited number of studies on a restricted number of classes of NPs, and 
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used data generated under consistently similar conditions. To improve the development of 

nano-(Q)SARs, with the ultimate goal of employing nano-(Q)SARs as alternative in silico 

screening methods in toxicity testing, it is essential that all published nanotoxicity data is 

summarized and organized into potentially useful data for modeling researchers. Meanwhile, 

NP-related regulatory frameworks also require the gathering of nanotoxicity information to 

enable the optimal use of the existing scientific sources. For instance, according to EU 

Directive 93/67/EEC, it is preferable that the classification of chemical hazard to aquatic 

organisms is based on toxicity data from at least three standard test organisms (i.e. algae, 

crustacean, and fish), with hazard initially determined by the lowest median L(E)C50 value 

(the chemical concentration found to cause 50% death or effect of interest) of the species 

tested: if the L(E)C50 value is < 1 mg/L, the compound is considered very toxic to aquatic 

organisms; if the L(E)C50 value is 1–10 mg/L, the compound is considered toxic to aquatic 

organisms; if the L(E)C50 value is 10–100 mg/L, the compound is considered harmful to 

aquatic organisms; if the L(E)C50 value is > 100 mg/L, the compound is not classified as 

being toxic or harmful (Ivask et al., 2014; Commission of the European Communities, 

1996). Blaise et al. (2008) and Sanderson et al. (2003) have subsequently extended this 

classification scheme by adding one more category: L(E)C50 value < 0.1 mg/L corresponds 

to compounds that are extremely toxic to aquatic organisms (Ivask et al., 2014; Kahru and 

Dubourguier, 2010). 

Two kinds of data are essential for developing predictive (Q)SAR models: data that 

characterize the physico-chemical properties of groups of pristine NPs (NP descriptors), 

and data that describe the relevant biological effects of NPs on test organisms (toxicity 

endpoints), including a detailed description of the experimental conditions, or of the test 

protocols used (Ivask et al., 2014). It is also generally acknowledged that NP dynamics in 

the test medium (e.g. aggregation, agglomeration, dissolution) greatly impact their toxicity 

(El Badawy et al., 2010; Tiede et al., 2009); the applicability of (Q)SARs would be 

broadened, if such transformations could be incorporated into the data input when linking 

NP characteristics to toxicity. Nevertheless, the few successful efforts that have been made 

to develop nano-(Q)SARs were restricted to correlating the characteristics of pristine NPs 

with NP toxicity. Puzyn et al. (2011) modeled the toxicity of 17 metal oxide NPs in 

Escherichia coli (E. coli) employing only one descriptor ∆HMe+ (the enthalpy of formation of a 

gaseous cation having the same oxidation state as that in the metal oxide structure). Based 

on the same data set, Singh and Gupta (2014) recently built a nano-(Q)SAR model with 

three descriptors: oxygen percentage, molar refractivity, and polar surface area. Other 

models were also constructed by using the same data set (Table 2.1), solely on the basis of 

the descriptors of pristine NPs (Kar et al., 2014b; Toropov et al., 2012; Sizochenko et al., 

2014). Metal electronegativity (χ) and the charge of the metal cation corresponding to a 

given oxide (χox) were also employed to predict photo-induced toxicity of 17 oxide NPs to 
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E. coli (Pathakoti et al., 2014). Those studies indicated that it is indeed possible to predict 

NP toxicity based on the characteristics of pristine NPs, which would benefit the 

development of in silico screening protocols as an alternative to experimental assays, as well 

as complying with the ‘safe-by-design’ initiative for nanotechnology. 

 

2.2 Methods 

As a first step toward the development of nano-(Q)SARs, and based on a Web of Science™ 

Core Collection bibliometric data search, we established an inventory of toxicity data of 

metal-based NPs that are widely used in a variety of applications (Schrand et al., 2010). 

Information on NP characterization, if it was associated with the reported toxicity data, was 

also included. The focus of organisms were based on the studies of Ivask et al. (2014), 

Bondarenko et al. (2013), and Kahru and Dubourguier (2010). These are mainly algae, yeast, 

bacteria, protozoa, crustacean, nematodes, and fish. The findings were evaluated in the light 

of nano-(Q)SAR development and were based on the characteristics of pristine NPs. The 

toxicity endpoints reported in the literature, and hence included in the database, mainly 

consisted of the lethal concentration (LC), the effect concentration (EC, or IC when the 

effect refers to inhibition), the lowest observed effect concentration (LOEC), the no 

observed effect concentration (NOEC), the minimum bactericidal concentration (MBC), 

and the minimum inhibitory concentration (MIC; more commonly used in antimicrobial 

assays). Information on these common toxicity endpoints was extracted from the retrieved 

publications. The test species and metal-based NPs covered in this review provide an 

overview of the database. For (Q)SAR modeling purposes, further analysis focused on the 

numbers of different toxicity endpoints, the type of biological effects induced by the NPs, 

data availability (i.e. the amount of accessible toxicity data), and also the characterization of 

the NPs provided. 

2.2.1 Bibliometric data search 

To access the experimental information available, a bibliometric data search was performed 

on 27 February 2014 by using the Advanced Search features in the Web of Science Core 

Collection. To ensure that the data search, and subsequent analysis, covered a broad range 

of test species, different hierarchies of organisms were selected based on the studies by 

Ivask et al. (2014), Bondarenko et al. (2013), and Kahru and Dubourguier (2010). The test 

organisms analyzed in this review mainly comprised: bacteria, algae, yeast, protozoa, 

nematode, crustacean, and fish. The NPs selected for this review included a variety of 

metal-based NPs, based on an empirical analysis of existing nanotoxicity-related 
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publications. The test species and metal-based NPs were subsequently identified by using 

(truncated) search terms (i.e. key words) as given in Tables S2.1 and S2.2 in the 

Supplemental Information. NPs with no search records evident after a preliminary search in 

the Web of Science Core Collection were excluded. To eliminate redundant records, the 

data search was restricted by two conditions: a) the research area had to be toxicology, or 

the topic contain “*toxicity” and “effect*” but not “function*”, “synthesis”, “label” or 

“agent”, to exclude studies on related applications; and b) either title or abstract had to 

contain “nano” or “quantum”. The language and type of document were restricted, 

respectively, to “English” and “article”. Finally, 23 different kinds of metal-based NPs were 

included in the study: silver (Ag), aluminium (Al), gold (Au), bismuth (Bi), cadmium (Cd), 

cerium (Ce), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), indium (In), lanthanum 

(La), manganese (Mn), molybdenum (Mo), nickel (Ni), platinum (Pt), antimony (Sb), 

selenium (Se), silicon (Si), titanium (Ti), vanadium (V), zinc (Zn), and zirconium (Zr). 

 

2.3 Results and Discussion 

2.3.1 Overall analysis of the NP-related studies 

A total of 982 papers were retrieved, according to the data search refined by condition (a). 

Most papers featured bacteria as the test organisms and with silver NPs as the metal-based 

NPs (Table S2.3). After assigning condition (b), a total of 910 papers were obtained. A 

detailed analysis showed that 406 papers described studies on bacteria, 245 on fish, 193 on 

crustacean, 134 algae, 102 yeast, 43 nematodes, and 17 protozoa (Figure 2.1). With regard to 

the metal-based NPs, 383 papers were related to the toxicity induced by silver NPs, 

followed by 238 on titanium, 139 on copper and 137 on zinc NPs (Figure 2.2 and Table 

S2.4). Of the 910 papers, 45 dealt specifically with quantum dots, with either the title or 

abstract containing the key word “quantum dot”. 

2.3.2 Analysis of toxicity endpoints 

Of the 910 papers retrieved, a manual selection was subsequently carried out to screen data 

related to the aforementioned toxicity endpoints (LC, EC, LOEC, NOEC, MBC, and MIC). 

A database with 886 records of the toxicity endpoints was obtained and summarized in a 

Microsoft Excel® spreadsheet (see Supplementary Information, available on the ATLA 

website www.atla.org.uk). The original data were presented according to the following 

features: 
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Table 2.1. Summary of experimental data used for the reported nano-(Q)SARs 

Reference of 

dataset 

Nanomaterials 

(NMs) covered 

Biologic 

effects 

Type of organisms 

or cells 

Reported nano-

(Q)SARs 

Weissleder et al., 

2005 

146 NMs with 

(Fe2O3)m(Fe3O4)n core 

but different surface 

modifiers 

Cellular 

uptake 

Pancreatic cancer 

cells; macrophage cell 

line; resting primary 

human macrophages; 

activated primary 

human macrophages; 

human umbilical vein 

endothelial cells 

Chau and Yap, 2012 

Kar et al., 2014a 

Epa et al., 2012 

Fourches et al., 2010 

Ghorbanzadeh et al., 

2012 

Singh and Gupta, 

2014 

Puzyn et al., 

2011 (data 

partly from Hu 

et al., 2009) 

17 metal oxide NMs Ecotoxicity Escherichia coli Kar et al., 2014b 

Puzyn et al., 2011 

Singh and Gupta, 

2014 

Sizochenko et al., 

2014 

Toropov et al., 2012 

Shaw et al., 

2008 

48 (Fe2O3)m(Fe3O4)n 

core based NMs and 

two quantum dots 

Cytotoxicity Endothelial cells; 

vascular smooth 

muscle cells; 

hepatocytes; murine 

RAW 264.7 leukemic 

monocyte/macropha

ge cells 

Epa et al., 2012 

Singh and Gupta, 

2014 

Ehret et al., 2014 

Fourches et al., 2010 

Gajewicz et al., 

2015 

18 metal oxide NMs Cytotoxicity Human keratinocyte 

cells 

Gajewicz et al., 2015 

Sizochenko et al., 

2014 

Pathakoti et al., 

2014 

17 metal oxide NMs Ecotoxicity Escherichia coli Pathakoti et al., 2014 

Liu et al., 2011 9 metal oxide NMs Cytotoxicity Transformed 

bronchial epithelial 

cells 

Liu et al., 2011 

Zhang et al., 

2012 

24 metal oxide NMs Cytotoxicity Human bronchial 

epithelial cells; rat 

alveolar macrophage 

cells 

Liu et al., 2013 

Multi data sources 

Kleandrova et al., 

2014 

Luan et al., 2014 
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(i) References, including first author, publication year, journal and title of the publication; 

(ii) Organism details, i.e. the categorical group, the species, bacterial strain or life-stage used; 

(iii) Experimental conditions, including the duration of exposure, type of light exposure and 

emittance of light (for phototoxicological studies), media composition, and pH (when the 

experiments were based on standardized tests, e.g. OECD guidelines, the name of the test 

was given instead); 

(iv) Toxicity endpoints, as described by the biological effect addressed, type of endpoint, 

experimental value of toxicity endpoint, and the unit used; and 

(v) NP characterization, consisting of the type of NP, core, size, coating, purity, crystallinity, 

surface area, surface charge, shape, and zeta potential. 

 

Figure 2.1. Number of retrieved papers on the organisms in the Web of ScienceTM Core 

Collection. Data search was performed in the Web of ScienceTM Core Collection on 27 

February, 2014; key words used characterizing tested organisms were listed in Table S2.1. 

The organism-wise analysis based on 910 retrieved publications from the data search 

indicates that bacteria is the most generally studied organism for testing nanotoxicity, 

followed by fish, crustacean, algae, yeast, nematode, and protozoa. 

 

The database covered 62 species (55 species that comprised the original seven test 

organisms, plus additional data on seven species) and 29 kinds of metal-based NPs in total. 
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It included 20 species of bacteria, 12 species of algae, 5 species of yeast, 4 species of 

protozoa, 2 species of nematodes, 7 species of crustacean, and 5 species of fish. These 55 

species were found to be related to 866 toxicity endpoints presented in the database. The 

main journals where these toxicity endpoints were published were: Nanotoxicology (128 

records), Environmental Toxicology and Chemistry (94 records), Environmental Science and Technology 

(91 records), Chemosphere (67 records), and Science of the Total Environment (61 records). To 

highlight the main points of the database, test species with at least six records (in total 28 

species with 802 records) are shown in Figure 2.3. Toxicity endpoints in other organisms 

that were studied simultaneously in the retrieved publications were also collected and 

included in the Supplementary Information. As Figure 2.3 shows, most of the NPs were 

metals, metal oxides, nanocomposites, and quantum dots. With regard to toxicity endpoints, 

E(I)C was the most recorded (accounting for 444 records), followed by LC (with 187 

records, two of which lethal dose), MIC (112 records), NOEC (50 records), LOEC (44 

records), and MBC (49 records). The numbers of toxicity endpoints involving certain 

species and specific metal-based NPs were also analyzed, as shown in Figure 2.3. 

 

Figure 2.2. Number of retrieved papers on metal-based NPs in the Web of ScienceTM Core 

Collection. A comparison on number of publications concerning the toxicity studies of 

different metal-based NPs. NPs with less than ten papers are shown in the group “others”, 

namely Pt, Cr, In, Zr, Bi, La, Mn, Mo, Sb, and V NPs. Data search was performed on 27 

February, 2014 in the Web of ScienceTM Core Collection, key words used characterizing the 

NPs were given in Table S2.2. It can be seen that Ag NPs attracted the most research 

attention among the metal-based NPs. 
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The analysis indicated that Ag NPs were the most widely studied NPs (with a total of 332 

records of endpoints), with a particular focus on two bacteria, Staphylococcus aureus (S. aureus) 

and E. coli, and a crustacean, Daphnia magna (D. magna). Meanwhile, more than average 

attention was also paid to TiO2 (126) and ZnO (109) NPs. As for the test organisms most 

often used, D. magna, E. coli (a bacterium), and Pseudokirchneriella subcapitata (an alga) were the 

dominant species in the database, with 173, 139, and 106 toxicity records, respectively. They 

were followed by S. aureus (49 toxicity records), Vibrio fischeri (a bacterium; 47 records), and 

Danio rerio (the zebrafish; 44 records). Given the numbers of available records, these data are 

potentially useful for nano-(Q)SAR modeling, but care should be taken regarding data 

consistency. If we take the endpoints in D. magna as an example, the 173 records retrieved 

on this water flea consisted of 51 values for LC50, 67 values for EC50, 19 values for NOEC, 

13 values for LOEC, and 23 others (e.g. LC10, LC20, EC10, EC20, etc.). In addition, there 

was further variation with regard to the various biological effects that were assessed and the 

duration of the exposure of the organisms to the NPs. 

The NP-induced biological effects and relevant toxicity endpoints are shown in Table 2.2. 

The biological effects commonly investigated include: mortality, cell viability inhibition, 

growth inhibition, immobilization, luminescence inhibition, malformation, and reproduction 

inhibition. Mortality and growth inhibition are two significant indices that are generally 

applied in ecotoxicity assays; the rest of the endpoints are used as appropriate on different 

groups of organisms. Unsurprisingly, as the standard test organisms in OECD guidelines, 

algae, bacteria, crustacean, and fish are paid relatively more research attention. 

Immobilization, for instance, is an important factor that is often used to characterize the 

effects of NPs on crustacean. Inhibition of reproduction is another commonly studied 

endpoint. Meanwhile, luminescence inhibition is examined only with bacteria. With regard 

to the issue of data availability of toxicity endpoints for nano-(Q)SAR modeling, the EC50 

(growth inhibition) to algae accounts for 91 records. Concerning bacteria, 110 MIC data 

records and 86 EC50 (luminescence inhibition) values were retrieved. For crustacean, 82 

LC50 (mortality) and 59 EC50 (immobilization) values were found. For fish, 44 LC50 

(mortality) values were obtained. 

Besides the test species used and the biological effects and toxicity endpoints measured, the 

diversity of metal-based NPs in a data set is also of major importance for the development 

of nano-(Q)SARs. In this context, two issues stand out: first, regardless of the number of 

records available in a data set with the same toxicity endpoint, the data set should cover 

different NPs in order to be potentially modeled against NP properties; second, the NPs of 

interest should share a degree of structural similarity in order to be grouped and described 

in terms of descriptors suitable for modeling. 
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Figure 2.3. Overview of the database regarding various metal-based NPs, tested species, and 

numbers of records of the toxicity endpoints. This analysis is based on the database 

provided in the Supplementary Information (Excel spreadsheet), which was retrieved on 27 

February, 2014. To illustrate the main information in the database, test species with fewer 

than six records are not shown (in total, 34 species with 84 records). Details of the 

references, test organisms, experimental conditions, NP properties, and toxicity endpoints 

are also listed in the Supplementary Information. 

 

A diversity analysis of the metal-based NPs was performed on the toxicity data of the six 

species mentioned above (Table S2.5): D. magna (173 records), E. coli (139 records), P. 

subcapitata (106 records), S. aureus (49 records), V. fischeri (47 records), and D. rerio (44 

records). LC50 values for D. magna, E. coli, and D. rerio are reported for eight NPs. 

Meanwhile, growth inhibition to P. subcapitata (EC50) was reported for ten NPs. These 

endpoints could possibly be considered for building nano-(Q)SAR models. Moreover, 

median L(E)C50 values of the metal-based NPs to the organisms were analyzed for three 
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purposes, as shown in Figure 2.4 (see details in Table S2.6). The first purpose was to 

identify potentially hazardous NPs, with the aim of focusing modeling for the most 

hazardous NPs. Adhering to EU Directive 93/67/EEC (Commission of the European 

Communities, 1996; Kahru et al., 2010), and studies of Blaise et al. (2008) and Sanderson et 

al. (2003), the metal-based NPs were classified in five hazard categories, as shown in Figure 

2.4. Based on this distinction, Ag and Cu NPs needed to be classified as ‘very toxic’ to 

aquatic organisms. The ‘toxic’ category included Ce, Co, Ni, Se, Ti, and Zn NPs, while Al, 

Au, and Fe NPs were considered to be ‘harmful’. Data on La, Sb, and Sn NPs were totally 

absent, which might be due to less research interest and/or missing information in the data 

search. 

We also compared toxicity data on specific NPs or organisms in order to identify the most 

toxic NP for each organism, or the most sensitive organism to a certain NP. For instance, 

among NPs, those that are Ag-based have the lowest median L(E)C50 values (most toxic) 

to algae (0.1 mg metal/L), crustacean (0.01 mg metal/L), and nematodes (2.85 mg metal/L). 

Crustaceans are more sensitive to Ag (0.01 mg metal/L) and Cu NPs (0.61 mg metal/L), as 

compared to other test organisms. In order to develop nano-(Q)SARs, a range of values for 

the toxicity data for a given species is also needed, to permit modeling against NP 

properties. According to the study by Song et al. (2011), a feasible strategy might be to 

model a large variation of toxicity values of certain NPs against the ecological traits of the 

organisms. The analysis of the data retrieved shows that our toxicity data have a large 

variation of toxicity values for both metal-based NPs and for the test organisms used, thus 

potentially allowing the development of nano-(Q)SARs for a limited number of endpoints 

or for a limited number of species. 

2.3.3 Characterization of the metal-based NPs 

In addition to data availability on toxicity endpoints, NP characterization in the form of 

measured and/or calculated NP properties, also plays an essential role in the development 

of nano-(Q)SARs. Figure 2.5a shows the frequency distribution of the measured NP 

properties in the data retrieved. The NP properties analyzed included: zeta potential, surface 

charge and surface area, size, shape, purity, crystallinity, and coating. Our results show that 

the size (primary) of metal-based NPs was generally provided (847 records), followed by the 

zeta potential (316 records), surface area (224 records), coating (117 records), and purity (87 

records). Only a limited number of studies offered information about the shape (67 records), 

crystallinity (57 records), and surface charge (three records). It is worth noting that some of 

the data on these properties are hardly suited for the purpose of nano-(Q)SAR studies. For 

instance, NP size is on occasions given as a range between 20–60 nm or < 100 nm (Gladisa 

et al., 2010; Jo et al., 2012), which is not precise enough for developing models. Thus, for 
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the purpose of nano-(Q)SAR development, data availability on measured NP properties is 

even more limited than that reported. As shown in Figure 2.5b, after an analysis of the 

number of measured properties for a certain NP in a publication, it is clear that relatively 

few NP features are usually investigated. Most of the published toxicity endpoints contain 

one or two NP properties, and only 5.3% of the assembled records contain more than three 

NP properties. Thus, according to our analysis of the availability of NP properties, the 

development of nano-(Q)SAR models simply on the basis of the reported experimentally 

determined descriptors would, at this time, be a challenging task. 

2.3.4 Comparing the results to other databases 

Recently, Oksel et al. (2015) reviewed literature data that was suitable for developing nano-

QSARs. They summarized data sets from eight studies concerning both the toxicity 

endpoints of interest and relevant NP characterization; the data are presented in the 

supplementary information of the original publication. In addition to the experimental data 

published in the scientific literature, some online databases are being developed under 

various projects and can be used as sources for retrieving experimental data, as described in 

the Summary of the Spring 2014 NSC Database Survey (2014). For example, the 

Nanomaterial-Biological Interactions (NBI) Knowledgebase (http://nbi.oregonstate.edu/) 

is an online database that also contains information on the toxicity of nanomaterials. It 

includes data on NP toxicity to zebrafish embryos, based on an indicator that integrates 

observed mortality, immobilization, and malformation. The distribution of the types of 

metal-based NPs and NP characterization in the NBI was analyzed and compared to that in 

our database (Figure S2.1 and S2.2). The results show that both databases contain toxicity 

data of metal and metal oxide NPs and nanocomposites, of which metal oxide NPs are the 

dominant group, followed by metal NPs. With regard to NP characterization, except for NP 

primary size, the two databases emphasize different properties (see Figure S2.2): the NBI 

database provides more data concerning the functional group, shape, purity, and surface 

charge; our database has relatively more records of zeta potential and surface area. This 

comparison reveals differences in the NP properties measured for characterization, but it 

also suggests a high similarity between the main types of NPs presented. We thus conclude 

that our review of the literature on NP toxicity should be considered representative of the 

actual situation with regard to data availability and data quality. 
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Figure 2.4. Median L(E)C50 values of metal-based NPs to organisms. The classification of 

hazard categories for the NPs adheres to the EU-Directive 93/67/EEC (Commission of 

the European Communities, 1996), and the studies of Blaise et al. (2008) and Sanderson et 

al. (2003). NPs are grouped as not classified, harmful, toxic, very toxic, and extremely toxic 

to aquatic organisms based on the lowest median L(E)C50 value for the organisms (algae, 

crustacean, and fish): < 0.1 mg/L = extremely toxic to aquatic organisms; 0.1–1 mg/L = 

very toxic to aquatic organisms; 1–10 mg/L = toxic to aquatic organisms; 10–100 mg/L = 

harmful to aquatic organisms; > 100 mg/L = not classified. Data are summarized from the 

database provided in the Supplemental Information. 
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Figure 2.5. NP characterization in the publications retrieved. (a) Shows the number of 

records with the measured properties in the data assembled; (b) shows the number of 

properties studied in a given NP, per publication. The data were extracted from the 

database accessed on 27 February 2014, as shown in the Supplementary Information. 

 

2.4 Outlook 

As the number and variety of NPs is expected to increase rapidly, the development of 

reliable models that allow the prediction of potential toxicity is of vital importance to NP 

risk assessment. The task of safe-by-design for nanotechnology, amongst others, 

necessitates the prediction of nanotoxicity based on the pristine structure and basic 

properties of NPs. The (Q)SAR approach is considered as a possible way forward in this 

respect. However, several challenges lie ahead regarding a number of vital issues. 

2.4.1 Data consistency 

Even though 886 toxicity records were retrieved, based on 910 publications from the Web 

of Science Core Collection, the availability of experimental data on specific toxicity 

endpoints for nano-(Q)SAR model development remains limited because of poor data 
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consistency. The data collected is, to some degree, influenced by a range of protocols and 

experimental conditions, such as the target organisms, type of endpoints, and biological 

effects. Based on the analysis depicted in Figure 2.3, Table 2.2, and Table S2.5, only growth 

inhibition (EC50 to P. subcapitata) and mortality (LC50 to D. magna, E. coli, and D. rerio) 

could be potentially modeled with the data retrieved. This finding stems from the fact that 

only toxicity data generated under consistent experimental conditions for a large variety of 

NPs are appropriate for (Q)SAR development — e.g. toxicity data generated according to 

widely accepted and applied guidelines, such as OECD guidelines, US Environmental 

Protection Agency guidelines. Meanwhile, nano-(Q)SAR modelers could also consider 

databases like the NBI database when assembling the information of interest. 

2.4.2 Data evaluation 

Poor quality or unreliable data may lead to models with limited statistical significance or 

predictivity. Notwithstanding the limitation of data availability, it is to be noted that the use 

of suitable protocols for evaluating the quality of the toxicity data tested/measured by 

different methods, and in various laboratories, remains crucial. Previously, different 

schemes have been described for assessing data quality, and are expected to be interpreted 

in the light of the purpose for which the data are to be used (Tielemans et al., 2002; Hobbs 

et al., 2005; Schneider et al., 2009; Klimisch et al., 1997; Przybylak et al., 2012). Specifically, 

Lubinski et al. (2013) proposed a data quality evaluation framework, with a focus on data 

applicability to (Q)SARs. These studies offer possible ways of filtering assembled data for 

the development of nano-(Q)SARs. It is worth noting that a suitable protocol for this task 

ought to reach a balance between data quality and data availability, ensuring that sufficient 

data but of good quality could be put into use. In this review, we did not consider the 

application of a data quality evaluation framework. 

2.4.3 Characterization of NPs 

NP characterization plays a vital role in the development of nano-(Q)SARs. The obvious 

first step in nano-(Q)SAR modeling is to link characteristics of pristine NPs to toxicity 

endpoints. Based on our analysis (Figure 2.5), only a few measured NP properties were 

provided, and their importance with regard to proper characterisation of pristine NPs is 

remarkably limited. If more properties of existing NPs could be derived, then there would 

be a greater possibility that metal-based NPs could be adequately characterized for nano-

(Q)SAR modeling. However, challenges to the derivation of adequate descriptors for nano-

(Q)SARs still remain, mainly in two areas. First, rather than being characterized as a defined 

entity, NPs can generally only be defined in a somewhat arbitrary way before being 

described in terms of descriptors suitable for modeling. Often, NPs are complicated 
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assemblies, probably coated or functionalized with diverse molecules, the composition of 

which may vary over time. This makes it impossible to define them strictly as an entity that 

is interacting with a biological species and causing toxicity. Secondly, the high complexity of 

the 3-D structure of NPs hinders the calculation of descriptors based on current 

computational approaches. Uncertainty surrounding the 3-D structure of an NP still exists, 

even when NP compositions are apparently properly reported (Fourches et al., 2011). These 

issues pose a big challenge in the feasibility and efficiency of descriptor derivation for nano-

(Q)SARs (Gajewicz et al., 2012). Accordingly, descriptors of pristine NPs that describe the 

essential structural properties without missing crucial structural information and consuming 

much time for calculation ought to be developed for modeling. 

2.4.4 The dynamics of pristine NPs in exposure media 

Even though the possibility of building nano-(Q)SAR models based on the characteristics 

of both pristine and medium-related NPs has already been shown, the feasibility of applying 

(Q)SARs in nanotoxicity prediction is still largely unknown. According to the (Q)SAR 

paradigm, it is possible to predict the toxicological effects directly from the physical-

chemical properties of the entities of interest (Winkler et al., 2013), which leads to the 

potential use of (Q)SARs as possible alternative in silico screening protocols for testing, 

without obtaining experiment-related information. However, when in contact with artificial 

and natural aqueous media, very often the metal-based NPs interact strongly with 

constituents in the medium (Tiede et al., 2009) and undergo dramatic changes to their 

surface properties (El Badawy et al., 2010), as well as to their dissolution and aggregation 

behavior (Baalousha et al., 2008; Tso et al., 2010). These changes affect NP mobility, 

bioavailability, and ultimately toxicity to organisms (El Badawy et al., 2011; Handy et al., 

2008; Hua et al., 2014; Suresh et al., 2013). It should be acknowledged that these 

interactions are dynamic in nature, and often kinetically rather than thermodynamically 

controlled, as is usually the case for non-particulate chemicals. Therefore, it is possible that, 

in some cases, toxicity information can be poorly modeled if the information available is 

solely based on the characteristics of pristine NPs. Relationships developed between toxicity 

endpoints and characteristics of pristine NPs without considering the dynamic 

transformations of NPs in the media, will most likely result in models of low statistical 

significance, predictability and relevance. In such a context, better interpretation of the 

dynamic processes influencing NPs in aqueous environments is highly required for 

modeling and predicting the biological effects of NPs. 
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2.5 Conclusions 

This study identified and collated nanotoxicity data on metal-based NPs, based on the 

characteristics of pristine NPs. The resulting database, put together from information 

available in peer-review journals and which will be available as supplementary information 

on the ATLA website, provides a list of toxicity data of metal-based NPs and should assist 

toxicologists who work with metal-based NPs.  

Our results show that the existing data cannot currently be used to the extent that would be 

needed to efficiently develop predictive toxicity models for metal-based NPs. Data 

consistency is shown to play a vital role when performing in-depth quantitative analysis of 

the experimental data, and numerous data gaps were identified when comparing species and 

NPs tested. To this end, we recommend that further testing is performed on additional key 

species and NPs, in order to accurately assess the impacts of metal-based NPs on 

ecosystems and to develop widely applicable nano-(Q)SARs. It should be emphasized that, 

to obtain data that will be acceptable for use in further modeling applications, experiments 

need to be based on consistent experimental conditions or on generally accepted and widely 

applied guidelines (e.g. OECD or US Environmental Protection Agency guidelines). 

We conclude from this review that (Q)SAR approaches have limited potential when used 

for predicting NP toxicity based on the characteristics of pristine NPs. However, the review 

nevertheless provides insight into a number of issues vital to the development of nano-

(Q)SARs. 
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Chapter 2 Supplemental Information 

Table S2.1. The key words used to select the test species for the data search 

Tested species Key words 

bacteria bacter* OR Escherichia* OR Staphylococcus* OR Bacillus* 

yeast yeast* OR Candida* OR fungi* OR Saccharomyces* 

algae *alga* OR Pseudokirchneriella* OR Chlamydomonas* 

protozoa protozoa* OR Paramecium* OR Tetrahymena* 

crustacean crustacea* OR daphni* OR Thamnocephalus* 

nematode nematode* OR Caenorhabditis* 

fish *fish* OR Oryzias* OR Pimephales* OR Danio* 

In the search query of each group of organism, a general key word characterizing the organism was 

firstly considered (i.e. bacter*, yeast*, *alga*, protozoa*, crustacea*, nematode*, and *fish*). A further 

search with other key words referring to different species was subsequently carried out to enclose 

some studies which addressed the nanotoxicity to these organisms but did not use the key words 

bacter*, yeast*, *alga*, protozoa*, crustacea*, nematode* or *fish* in either the title, abstract or key 

words of the publications. The extra key words were chosen empirically. 

 

 

 

Figure S2.1. Comparison of types of NPs in our database (left) and the NBI database (right). 

(a) Distribution of NP types in our database; (b) Distribution of NP types in the NBI 

database. Number of records are shown in the figures. 
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Table S2.2. Key words characterizing the metal-based nanoparticles (NPs) for data search 

NPs Key words 

Ag nano* AND Silver* OR “nano* AND Ag*” 

Al nano* AND Aluminum* OR Al2O3 OR “nano* AND Al*” 

Au nano* AND gold* OR “nano* AND Au*” 

Bi nano* AND Bismuth* 

Cd nano* AND Cadmium* OR CdO OR “nano* AND Cd*” 

Ce nano* AND Cerium* OR CeO2 

Co nano* AND Cobalt* OR Co3O4 OR “nano* AND Co*” 

Cr nano* AND Chromium* OR CrO3 OR “nano* AND Cr*” 

Cu nano* AND Copper* OR CuO OR “nano* AND Cu*” 

Fe nano* AND Iron* OR Fe2O3 OR Fe3O4 OR “nano* AND Fe*” 

In nano* AND Indium* OR In2O3 

La nano* AND Lanthanum* OR La2O3 

Mn nano* AND Manganese* OR MnO OR Mn3O4 OR “nano AND Mn*” 

Mo nano* AND Molybdenum* OR MoO3 OR “nano AND Mo*” 

Ni nano* AND Nickel* OR NiO OR “nano* AND Ni*” 

Pt nano* AND Platinum* OR PtO2 OR “nano* AND Pt*” 

Sb nano* AND Antimony* OR Sb2O3 OR “nano* AND Sb*” 

Se nano* AND Selenium* OR SeO2 OR “nano* AND Se*” 

Si nano* AND Silic* OR SiO2 

Ti nano* AND Titanium* OR TiO2 “nano* AND Ti*” 

V nano* AND Vanadium* OR V2O5 

Zn nano* AND Zinc* OR ZnO “nano* AND Zn*” 

Zr nano* AND Zirconium* OR ZrO2 OR “nano* AND Zr*” 

 

 

Figure S2.2. Comparison of characterization of NPs in respective database. 
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Table S2.3. The numbers of papers retrieved from the Web of Science Core Collection by 

condition (a). The search was carried out on 27 February 2014 

 
 
 

Bacteria Yeast Algae Protozoa Crustacean Nematode Fish Total 

1  Ag 219 29 40 7 63 27 112 394 

2  Al 16 6 9 2 10 5 9 39 

3  Au 41 21 10 1 14 3 37 110 

4  Bi 0 0 0 0 0 0 2 2 

5  Cd 18 11 9 2 18 5 25 74 

6  Ce 26 0 6 1 11 3 11 41 

7  Co 9 3 3 0 1 0 5 18 

8  Cr 6 2 0 0 1 0 1 10 

9  Cu 62 14 35 4 42 5 45 148 

10  Fe 41 13 9 4 9 1 13 76 

11  In 2 0 1 0 2 0 1 3 

12  La 3 0 0 0 0 1 0 3 

13  Mn 6 1 1 0 2 0 1 8 

14  Mo 2 0 0 0 0 0 0 2 

15  Ni 12 2 4 0 2 0 5 20 

16  Pt 3 3 0 0 0 0 1 7 

17  Sb 3 1 0 0 0 0 0 3 

18  Se 6 3 1 0 4 0 7 16 

19  Si 41 14 11 1 14 2 21 90 

20  Ti 82 13 42 6 99 10 88 249 

21  V 1 0 0 0 1 0 1 2 

22  Zn 67 13 39 3 42 9 25 143 

23  Zr 3 0 0 0 0 0 1 4 

 Total 445 114 141 19 200 46 259 982 

 

 

Table S2.4. The numbers of papers focusing on different metal-based NPs and retrieved 

with condition (b) 

NPs Ag Al Au Bi Cd Ce Co Cr Cu Fe In La 

Number of papers 383 35 107 2 72 40 18 5 139 70 3 2 

             

NPs Mn Mo Ni Pt Sb Se Si Ti V Zn Zr  

Number of papers 2 2 14 6 1 16 79 238 1 137 3  
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2 

Table S2.6. Median L(E)C50 values of metal-based NPs to tested species. The number of 

toxicity records is indicated in parentheses 

 Algae Bacteria Crustacean Fish Nematode Protozoa Yeast 

Ag 0.10 (25) 19.25 (20) 0.01 (57) 1.36 (33) 2.85 (19) 38.00 (5)  

Al 20.86 (3) 172.83 (1) 45.79 (7)  43.25 (1)   

Au 38.00 (5) 0.32 (6)     38.0 (1) 

Ce 7.07 (18) 28.96 (12) 29.89 (7)     

Co  33.08 (2) 1.67 (1)     

Cu 2.80 (4) 17.36 (20) 0.61 (22) 0.83 (4)  127.00 (3) 4.38 (13) 

Fe  309.81 (2) 36.00 (3) 37.35 (3)  0.57 (1)  

La  388.37 (1)      

Ni 25.50 (3) 111.43 (2) 2.28 (2)     

Sb  344.57 (2)      

Se    1.00 (1)    

Si    112.80 (1)  208.02 (1)  

Sn  826.02 (1)      

Ti 18.96 (27) 
111.00 
(16) 

3.90 (31) 93.00 (13) 47.94 (1)   

Zn 1.94 (2) 24.80 (27) 1.20 (15) 1.543 (4) 635.00 (5) 5.00 (3) 100.80 (2) 
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3 Review of nano-(Q)SARs for metallic ENMs 

Abstract 

The exponential increase of nanotechnology has raised concerns on the risks posed by 

engineered nanomaterials (ENMs). Recent studies on the ecotoxicity of ENMs addressed 

that these materials could potentially cause adverse effects to human health and to biota. A 

comprehensive assessment of ENMs’ risks is thus urgently needed, which is, however, 

severely hindered by time, financial burden, and ethical considerations. Gathering the 

required information in a fast and inexpensive way seems essential. In such a context, the 

extension of the conventional (quantitative) structure-activity relationships ((Q)SARs) 

approach to nanotoxicology, i.e. nano-(Q)SARs, is a possible solution. Recently, various 

attempts have been made to correlate ENMs’ characteristics to the biological effects elicited 

by ENMs. This highlighted the potential applicability of (Q)SAR in the nanotoxicity field to 

aid in prioritizing information on nanotoxicity and in rationalizing the risk assessment of 

ENMs. This review summarizes and discusses the current knowledge on nano-(Q)SARs for 

metallic ENMs with regard to the aspects (i) sources of data; (ii) existing nano-(Q)SARs; (iii) 

mechanistic interpretation; and (iv) an outlook on the further development of this frontier. 

The review aims to present key advances in relevant nano-modeling studies and to stimulate 

future research efforts in this quickly developing field of research. 

 

Key words: cellular uptake, metallic, nanomaterials, (Q)SARs, toxicity 
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3.1 Introduction 

Manipulating matter at the nanoscale (1-100 nm) has provided a way forward to designing 

materials that exhibit inimitable magnetic, electrical, optical, and thermal properties 

compared to the bulk counterparts (Puzyn et al., 2009). The products of engineered 

nanomaterials (ENMs) are consequently finding routine use in a wide range of commercial 

applications (Linkov et al., 2009). It was expected that the exponentially growing nano-

market would reach a turnover of $65 billion by 2019 (Winkler, 2016). The release of ENMs 

into landfills, air, surface waters, and other environmental compartments therefore seems 

inevitable. In such a context, it is very likely for humans and for biota to encounter these 

nano-products and to be at risk given the potential adverse effects induced by ENMs. 

Studies on the cytotoxicity (Asare et al., 2012; Nirmala et al., 2011; Wiesner et al., 2006), 

neurotoxicity (Long et al., 2006; Win-Shwe and Fujimaki, 2011; Wu et al., 2011), 

genotoxicity (Asare et al., 2012; Kumari et al., 2011; Sharma et al., 2011), and ecotoxicity 

(Ellegaard-Jensen et al., 2012; Thill et al., 2006; Tran et al., 2010) of ENMs have shown that, 

miniaturization of materials to the nanoscale may result in the appearance of evident ENM 

toxicity on organisms and human cell lines, which does not always occur at the bulk scales. 

This highlighted the potential risks associated with the fast developing field of 

nanotechnology. Hence, seeking ways for the risk assessment of ENMs becomes imperative. 

According to the commonly accepted procedures of chemical risk assessment, both 

exposure and hazard assessment are key to evaluate the risks of ENMs (Gajewicz et al., 

2012; Worth, 2010). Hazard characterization, which aims at defining the dose-responses for 

targets or target-species is supposed to be mainly derived according to standardized test 

guidelines (e.g., Organization for Economic Co-operation and Development (OECD) 

guidelines). However, despite the existence of these powerful testing protocols, the 

possibility of covering all the existing and also newly synthesized ENMs in the “nano pool” 

is reduced taking into account the need of cost-effectiveness testing whilst minimizing the 

use of test animals. Considering the exponential increase of nanotechnology, the scarcity of 

data on ENM toxicity poses a major barrier to perform comprehensive hazard assessment 

of ENMs. As a result, development of fast and inexpensive alternative approaches filling the 

data gaps and assisting in rationalizing ENMs’ risk assessment is of significant importance. 

Moreover, the principle of the 3R (replacement, reduction, and refinement) rule also calls 

for a reduction in the animal use and developing alternative non-animal testing approaches 

(Puzyn et al., 2011; Russell and Burch, 1959). 

One of the most promising approaches that has long been particularly helpful for predicting 

biological effects of chemicals is the (quantitative) structure-activity relationship ((Q)SAR) 

method (Fernández et al., 2012; Kar and Roy, 2010; 2012). The (Q)SAR approach enables 
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the encoding of existing knowledge into predictive models which directly correlate the 

molecular structure with toxicity of a chemical. The role of (Q)SARs in predictive 

toxicology is (Peijnenburg, 2009; Raymond et al., 2001): 

(i) To provide fast and inexpensive high-throughput screening methods estimating the 

toxicity of chemical entity; 

(ii) To assist the classification of chemicals according to their toxicity; 

(iii) To help understand the underlying toxic mechanisms. 

Two issues especially figure in the extraction of meaningful relationships between structures 

and biological effects to yield (Q)SAR models: the so-called molecular descriptor (measured 

or calculated) characterizing vital structural information of chemicals, and the so-called 

endpoint describing the biological effects of interest (Ivask et al., 2014). According to the 

OECD Principles for (Q)SAR Validation (OECD, 2007), it is essential for a (Q)SAR model 

considered suited for regulatory purposes to include information on: (i) a defined endpoint; 

(ii) an unambiguous algorithm; (iii) a defined domain of applicability; (iv) appropriate 

measures of goodness-of-fit, robustness, and predictivity; and (v) a mechanistic 

interpretation, if possible. 

Facing the strong need of extending the conventional (Q)SAR approach to nanotoxicology, 

some attempts have been made to link ENMs’ biological effects with the characteristics of 

ENMs. A summary of recent advances towards this field is thus presented in Table 3.1 to 

offer an overview of the research achievements obtained so far. The underlying literature 

search was performed by means of an Advanced Search in the Web of ScienceTM Core 

Collection on the 22th of February, 2017. The search was manually supplemented with 

relevant publications not included in the search records. The query is ((((TS=(nano* AND 

metal)) AND (TS=(toxic*))) AND (TS=(quantitative *structure activity relationship) OR 

TS=(*QSAR) OR TS=(QNAR) OR TS=(predict*) OR TS=(computation*) OR 

TS=(model*)))), where the field tag TS refers to the topic of a publication. As can be seen, 

various nano-(Q)SARs were constructed based on a variety of modeling techniques such as 

linear and nonlinear regression, support vector machine (SVM), artificial neural networks 

(ANN), and k nearest neighbor (kNN). Distinct biological responses induced by ENMs 

such as cellular uptake and cytotoxicity in different cell lines, and the ecotoxicity of ENMs 

were addressed. The studies provided in Table 3.1 highlight the potential of (Q)SAR 

methods to be adopted as a tool in predicting nanotoxicity. Thus, to provide an overview of 

recent key advances in this field, the state-of-the-art of reported nano-(Q)SARs is discussed 

on the following aspects: (i) sources of data for modeling; (ii) existing nano-(Q)SARs; (iii) 
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mechanistic interpretation; and (iv) an outlook on the further development of nano-

(Q)SARs identifying major research gaps in the field. 

Table 3.1. Overview of the peer-reviewed literatures on nano-(Q)SARs, as generated by 

means of an advanced literature search in the Web of ScienceTM Core Collection on 22th of 

February, 2017, and supplemented with a manual collection of relevant publications not 

included in the search record. Apart from the references obtained, a general description is 

given for the models reported 

Reference Description 

Burello and 
Worth, 2011 

A model was proposed to show that the oxidative stress potential of metal oxide ENMs could 
be possibly predicted by looking at the their band gap energy 

Chau and Yap, 
2012 

Developed a final consensus model based on top 5 candidate models constructed by naive 
Bayes, logistic regression, k-nearest neighbor (kNN), and support vector machine (SVM), 
predicting the cellular uptake of 105 ENMs (single metal core) by PaCa2 pancreatic cancer cells 

Chen et al., 
2016 

Global classification models were developed to predict the ecotoxicity of metallic ENMs to 
different species; classification models were also built for Danio rerio, Daphnia magna, 
Pseudokirchneriella subcapitata, and Staphylococcus aureus 

Epa et al., 2012 Modeled (i) cytotoxicity of 31 ENMs to vascular smooth muscle cells based on multiple linear 
regression and Bayesian regularized artificial neural network; (ii) cellar uptake of 108 ENMs in 
human umbilical vein endothelial cells (HUVEC) and PaCa2 cells using multiple linear 
regression with expectation maximization  method 

Fourches et al., 
2010 

Generated models predicting (i) cytotoxicity of 44 ENMs with diverse metal cores using SVM 
method; (ii) cellular uptake of 109 ENMs in PaCa2 cells using kNN method 

Gajewicz et al., 
2015 

Applied the multiple linear regression method combined with a genetic algorithm to describe 
the toxicity of 18 metal oxide ENMs to the human keratinocyte cell line (HaCaT) 

Ghorbanzadeh 
et al., 2012 

Cellular uptake of 109 magnetofluorescent ENMs in PaCa2 cells was modeled using multiple 
linear regression and multilayered perceptron neural network, descriptor selection was 
performed by combining the self-organizing map and stepwise multiple linear regression 

Kar et al., 2014a Developed a model establishing the cellular uptakes of 109 magnetofluorescent ENMs in 
PaCa2 cells 

Kar et al., 2014b Using the toxicity dataset of 17 metal oxide ENMs to Escherichia coli (E. coli), models were built 
with the multiple linear regression and partial least squares methods 

Kleandrova et 
al., 2014 

Perturbation model was introduced for the prediction of ecotoxicity and cytotoxicity of ENMs; 
molar volume, electronegativity, polarizability, size of the particles, hydrophobicity, and polar 
surface area were involved in the model 

Liu et al., 2011 Classification-models (logistic regression) were developed to predict the cytotoxicity of nine 
ENMs to the transformed bronchial epithelial cells (BEAS-2B) 

 



 

 
56 

3 Review of nano-(Q)SARs for metallic ENMs 

Table 3.1. (Continued) 

Liu et al., 2013a A nano-SAR was developed classifying 44 iron-based ENMs into bioactive or inactive, using a 
naive Bayesian classifier based on 4 descriptors: primary size, spin-lattice and spin-spin 
relaxivities, and zeta potentials 

Liu et al., 2013b SVM nano-SAR model was constructed on basis of the cytotoxicity data of 24 metal oxide 
ENMs to BEAS-2B cells and murine myeloid (RAW 264.7) cells 

Luan et al., 2014 Perturbation model was presented predicting the cytotoxicity of ENMs against several 
mammalian cell lines; influence of molar volume, polarizability, and size of the particles were 
indicated 

Mu et al., 2016 A quantitative model was developed based on the toxicity data of 16 metal oxide ENMs to E. 
coli using enthalpy of formation of a gaseous cation (ΔHMe+) and polarization force (Z/r). The 
toxicity of 35 other metal oxide ENMs was predicted and depicted in the periodic table 

Pan et al., 2016 Models were constructed to predict (i) the toxicity of 17 metal oxide ENMs to E. coli; (ii) 
cytotoxicity in HaCaT cells of 18 different metal oxide ENMs. The factors of molecular 
weight, cationic charge, mass percentage of metal elements, individual and aggregation sizes 
were discussed 

Papa et al., 2015 Cytotoxicity of TiO2 and ZnO ENMs were modeled by LMR and C4.5 algorithm 

Pathakoti et al., 
2014 

Toxicity and photo-induced toxicity of 17 metal oxide ENMs to E. coli was assessed using a 
self-written least-squares fitting program 

Puzyn et al., 
2011 

Predicted cytotoxicity of 17 metal oxide ENMs to E. coli with only one descriptor: enthalpy of 
formation of a gaseous cation having the same oxidation state as that in the metal oxide 
structure 

Singh and 
Gupta, 2014 

Predictive models were built based on (i) cytotoxicity of different ENMs (with diverse metal 
cores) in four cell lines (endothelial and smooth muscle cells, monocytes, and hepatocytes); (ii) 
cellular uptake of 109 ENMs in PaCa2 cells; (iii) cytotoxicity of 17 different metal oxide ENMs 
to E. coli 

Sizochenko et 
al., 2014 

Based on random forest regression, developed predictive classification models for (i) toxicity 
of 17 metal oxide ENMs to E. coli; (ii) cytotoxicity of 18 metal oxide ENMs to HaCaT cells 

Sizochenko et 
al., 2015 

Structure-activity relationship models (random forest) were introduced for toxicity of 24 metal 
oxide ENMs towards BEAS-2B and RAW 264.7 cell lines 

Toropov et al., 
2012 

Estimated toxicity of 17 metal oxide ENMs to E. coli by employing the SMILES-based optimal 
descriptors 

Toropov et al., 
2013 

Cellular uptake of 109 ENMs with the same core but different surface modifiers in the PaCa2 
cells was modeled based on SMILES-based optimal descriptors 

Zhang et al., 
2012 

A classification model was built for 24 metal oxide ENMs based on the dissolution of metals 
and energy of conduction band (Ec) 
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3.2 Sources of data for modeling 

As a data-driven approach, the field of nano-(Q)SARs highly relies on generating or 

assembling qualified experimental data. To integrate the existing information obtained from 

the various datasets that were successfully used in nano-QSARs, and therefore to aid further 

studies of nano-modeling, the underlying experimental data in the nano-(Q)SARs 

mentioned in Table 3.1 were analyzed. As can be seen in Table 3.2, research attention was 

found to be mainly on the cellular uptake of ENMs by different cell lines, on cytotoxicity, 

and on the toxicity of ENMs to Escherichia coli (E. coli). Despite the numerous nano-related 

tests that are being carried out, it is to be concluded that only a few datasets (with data 

variety and consistency) were generally used as the data source for nano-(Q)SARs 

developed so far. The most widely applied data in QSAR-like studies (Table 3.2) are from 

Weissleder et al. (2005), Puzyn et al. (2011), and Shaw et al. (2008). These experimental 

datasets are presented and arranged in the order of cellular uptake, cytotoxicity in cell lines, 

and toxicity to E. coli concerning the following aspects: (when available) types and numbers 

of ENMs, targets or target-species, toxicity endpoints, characteristics of the ENMs 

provided, and accessibility of relevant information. 

3.2.1 Cellular uptake assays 

Weissleder et al. (2005) modified the surface of monocrystalline magnetic ENMs (3-nm 

core of (Fe2O3)n(Fe3O4)m) with 146 various small molecules (modifiers) and created a library 

of 146 water-soluble, magnetic and fluorescent ENMs. ENMs were made magneto-

fluorescent by adding the fluorescein isothiocyanate to the ENM surfaces. Uptake of these 

ENMs by five cell lines was screened afterwards. The cell lines used include pancreatic 

cancer cells (PaCa2), a macrophage cell line (U937), resting primary human macrophages, 

activated primary human macrophages, and human umbilical vein endothelial cells 

(HUVEC). A diversity of cellular uptake of various functionalized ENMs and a high 

dependence of ENM uptake on the composition of their surface were observed especially in 

the PaCa2 cells (Chau and Yap, 2012; Fourches et al., 2011). Data on PaCa2 cellular uptake 

of ENMs can be retrieved from Fourches’ studies (Fourches et al., 2010; 2011) and also the 

studies of Chau and Yap (2012), Kar et al. (2014a), and Ghorbanzadeh et al. (2012). In the 

absence of data on calculated descriptors for the whole dataset, methods of characterizing 

ENMs in previous studies are presented in Table 3.3. An analysis of the methods reported 

in literature shows that emphasis in ENM characterization was so far largely put on the 

characteristics of ENM surface modifiers, given the conclusion of Weissleder et al. (2005) 

that the PaCa2 cellular uptake of ENMs highly depends on the surface modification of the 

ENMs. Descriptor calculation of the modifiers was performed within different softwares 

(e.g., PaDEL-Descriptor, DRAGON, ADRIANA) providing various molecular descriptors. 
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Table 3.2. Summary of the experimental data of ENMs used in nano-(Q)SAR studies 

nano-(Q)SAR Dataset used 
Number 
of ENMs 

Core of ENMs Tested organism 

Kar et al., 2014b 

Puzyn et al., 2011 17 Metal oxide E. coli 

Mu et al., 2016 

Pan et al., 2016 

Puzyn et al., 2011 

Singh and Gupta, 2014 

Sizochenko et al., 2014 

Toropov et al., 2012 

Chau and Yap, 2012 

Weissleder et al., 
2005 

146 Metal oxide 
PaCa2 pancreatic cancer 
cells 

Epa et al., 2012 

Fourches et al., 2010 

Ghorbanzadeh et al., 2012 

Kar et al., 2014a 

Singh and Gupta, 2014 

Toropov et al., 2013 

Epa et al., 2012 

Shaw et al., 2008 50 
Metal oxide and 
quantum dots 

Endothelial cells, vascular 
smooth muscle cells, 
human HepG2 cells, RAW 
264.7 cells 

Fourches et al., 2010 

Liu et al., 2013a 

Singh and Gupta, 2014 

Gajewicz et al., 2015 

Gajewicz et al., 2015 18 Metal oxide HaCaT cells Pan et al., 2016 

Sizochenko et al., 2014 

Liu et al., 2013b 

Zhang et al., 2012 24 Metal oxide 
BEAS-2B cells; RAW 264.7 
cells 

Sizochenko et al., 2015 

Zhang et al., 2012 

Liu et al., 2011 Liu et al., 2011 9 Metal oxide BEAS-2B cells 

Papa et al., 2015 
Sayes and Ivanov, 
2010 

24 TiO2, 
18 ZnO 
ENMs 

TiO2, ZnO 
ENMs 

Rat L2 lung epithelial cells; 
rat lung alveolar 
macrophages 

Pathakoti et al., 2014 Pathakoti et al., 2014 17 Metal oxide E. coli 

Burello and Worth, 2011 

Others 
Chen et al., 2016 

Kleandrova et al., 2014 

Luan et al., 2014 
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Table 3.3. Overview of reported information of the data published by Weissleder et al. 

(2005) 

Reference Method of ENM characterization Data accessibility 
ENM 
number 

Other 
information 

Weissleder et 
al., 2005   

146 
Molecular 
weight and 
structures 

Chau and Yap, 
2012 

679 one-dimensional (1D),  two-
dimensional (2D) chemical descriptors 
of modifiers were calculated using 
PaDEL-Descriptor (v2.8) 

Values of PaCa2 
cellular uptake were 
available (unit: 
number of ENMs 
per cell) 

109 

SMILES 
(simplified 
molecular input 
line entry 
system) 

Epa et al., 
2012 

691 molecular descriptors of modifiers 
from DRAGON (v5.5), ADRIANA 
(v2.2) and an in-house modeling 
software package 

 
108 

List of 
modifiers 

Fourches et 
al., 2010 

MOE descriptors for modifiers were 
used, including physical properties, 
surface areas, atom and bond counts, 
Kier & Hall connectivity indices, kappa 
shape indices, adjacency and distance 
matrix descriptors, pharmacophore 
feature descriptors, and molecular 
charges 

Values of PaCa2 
cellular uptake were 
available 
(log10[ENM]/cell 
pM) 

109 SMILES 

Ghorbanzadeh 
et al., 2012 

Hyperchem program (v7) for 
constructing molecular structure of 
modifiers; geometry was optimized 
with the Austin Model 1 (AM1) 
semiempirical method; DRAGON for 
descriptor calculation 

Values of PaCa2 
cellular uptake were 
available 
(log10[ENM]/cell 
pM ) 

109 
List of 
modifiers and 
SMILES 

Kar et al., 
2014a 

A pool of 307 descriptors of modifiers 
was calculated using Cerius 2 (v4.10), 
DRAGON 6 and PaDEL-Descriptor 
(v2.11) 

Values of PaCa2 
cellular uptake were 
available 
(log10[ENM]/cell 
pM) 

109 
List of 
modifiers 

Singh and 
Gupta, 2014 

174 molecular descriptors for the 
modifiers (topological, electronic, 
geometrical, and constitutional) were 
calculated using Chemistry 
Development Kit (CDK v1.0.3) 

 
109 

List of 
modifiers, 
chemical 
structures and 
SMILES 

Toropov et al., 
2013 

SMILES-based optimal descriptors 
were used  

109 

SMILES, 
correlation 
weights (CWs) 
of SMILES 
attributes (SA) 

 

3.2.2 Toxicity to various cell lines 

One of the most widely used cell line-based toxicity data for ENMs is from the work of 

Shaw et al. (2008). In their study, four cell-based assays were performed based on four cell 

types at four different doses. The four types of cells namely endothelial cells (human aorta), 
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vascular smooth muscle cells (human coronary artery), hepatocytes (human HepG2 cells), 

and murine RAW 264.7 leukemic monocyte/macrophage cells were employed to assess the 

cytotoxicity of 50 ENMs (iron-based ENMs, pseudocaged ENMs, and quantum dots). The 

four cell-based assays were mitochondrial membrane potential, adenosine triphosphate 

(ATP) content, apoptosis and reducing equivalents assays. Concentrations of 0.01, 0.03, 0.1, 

and 0.3 mg/mL Fe for iron-based ENMs, and 3, 10, 30, or 100 nM for quantum dots were 

used. The ENMs were characterized by their coating, surface modification, size, the spin-

lattice (R1) and spin-spin (R2) relaxivities, and the zeta potential. Experimental values were 

expressed in units of standard deviations of the distribution assessed when cells were only 

treated with PBS (Z score). Fourches et al. (2010) afterwards transformed the 64 features (4 

assays × 4 cell lines × 4 doses) of 48 iron-based ENMs into 1 by calculating their arithmetic 

mean (Zmean) which enabled binary classification studies based on this dataset (data are 

accessible in the original paper). 

Gajewicz et al. (2015) tested the cytotoxicity of 18 metal oxide ENMs to the human 

keratinocyte cell line (HaCaT). ENMs covered in the dataset include aluminum oxide 

(Al2O3), bismuth oxide (Bi2O3), cobalt oxide (CoO), chromic oxide (Cr2O3), ferric oxide 

(Fe2O3), indium oxide (In2O3), lanthanum oxide (La2O3), manganese oxide (Mn2O3), nickel 

oxide (NiO), antimony oxide (Sb2O3), silicon dioxide (SiO2), tin oxide (SnO2), titanium 

oxide (TiO2), vanadium oxide (V2O3), tungsten oxide (WO3), yttrium oxide (Y2O3), zinc 

oxide (ZnO), and zirconium oxide (ZrO2) ENMs. The cytotoxicity of these ENMs was 

characterized by cell viability of HaCaT and was expressed in terms of LC50 (concentration 

of the ENMs that leads to 50% fatality). Experimental data are accessible in the original 

publication. Moreover, 18 quantum-mechanical and 11 image descriptors were calculated 

for modeling purposes (Table 3.4). Information on the (aggregation) size for this dataset 

was provided by Sizochenko et al. (2014) as shown in Table 3.5. Size (50 nm) and 

aggregation size (180 nm) of WO3 are not included in the table due to its absence in other 

datasets depicted in Table 3.5. 

By measuring the plasma-membrane leakage via Propidium Iodide (PI) uptake in 

transformed bronchial epithelial cells (BEAS-2B), Liu et al. (2011) studied the cytotoxicity 

of a variety of ENMs: Al2O3, cerium oxide (CeO2), Co3O4, TiO2, ZnO, copper oxide (CuO), 

SiO2, Fe3O4, and WO3 ENMs. The cytotoxicity was expressed in terms of percentage of 

membrane-damaged cells (data available in the supplemental information of the original 

publication). Descriptors calculated were number of metal and oxygen atoms (NMetal and 

NOxygen), atomic mass of the ENM metal (mMe), molecular weight of the metal oxide (mMeO), 

group and period of the ENM metal (GMe and PMe), atomization energy of the metal oxide 

(EMeO), ENM primary size (d), zeta potential, and isoelectric point (IEP). 
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Table 3.4. Overview of quantum-mechanical and image descriptors of 18 metal oxide 

ENMs, as retrieved from the study of Gajewicz et al. (2015) 

Quantum - mechanical descriptors Image descriptors 

• Standard enthalpy of formation of metal oxide nanocluster (ΔHf
c) 

• Total energy (TE) 

• Electronic energy (EE) 

• Core–core repulsion energy (Core) 

• Solvent accessible surface (SAS) 

• Energy of the highest occupier molecular orbital (HOMO) 

• Energy of the lowest unoccupied molecular orbital (LUMO) 

• Chemical hardness (η) 

• Total softness (S) 

• HOMO-LUMO energy gap (Eg) 

• Electronic chemical potential (μ) 

• Valance band (Ev) 

• Conduction band (Ec) 

• Mulliken’s electronegativity (χc) 

• Parr and Pople’s absolute hardness (Hard) 

• Schuurmann MO shift alpha (Shift) 

• Polarizability derived from the heat of formation (Ahof) 

• Polarizability derived from the dipole moment (Ad) 

• Volume (V) 

• Surface diameter (dS) 

• Equivalent volume diameter 
(dV) 

• Equivalent volume/surface 
(dSauter) 

• Area (A) 

• Porosity (Px) 

• Porosity (Py) 

• Sphericity (Ψ) 

• Circularity (fcirc) 

• Anisotropy ratio (ARX) 

• Anisotropy ratio (ARY) 
 

 

Another dataset that was provided by Zhang et al. (2012) contains information on the 

toxicity of 24 oxide ENMs: Al2O3, CuO, CeO2, Co3O4, CoO, Cr2O3, Fe2O3, Fe3O4, 

gadolinium oxide (Gd2O3), hafnium oxide (HfO2), In2O3, La2O3, Mn2O3, NiO, Ni2O3, 

Sb2O3, SiO2, SnO2, R-TiO2, WO3, Y2O3, ytterbium oxide (Yb2O3), ZnO, and ZrO2 ENMs 

(data available in the original paper). The toxicity was expressed in terms of logEC50, in 

which EC50 means the effective concentration that causes 50% response. The lactate 

dehydrogenase (LDH), 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium (MTS), and ATP assays were implemented to assess the 

nanotoxicity to BEAS-2B and rat alveolarmacrophage cells (RAW264.7) cells in the study. 

Information on the crystalline structure of the ENMs (crystal system, space group, and unit 

cell parameters), primary and hydrodynamic sizes of metal oxide ENMs, and parameters for 

calculating ENM band energies (conduction and valence band, band gap energy, absolute 

electronegativities, and point of zero zeta-potential) were also provided by these authors. 

Liu et al. (2013b) built a nano-SAR model based on these data along with a summary of the 

calculated physicochemical properties of the ENMs. Information on 13 descriptors was 

provided including the ENM primary size (d), energy of conduction band (EC), energy of 

valence band (EV), metal oxide atomization energy (EAmz), metal oxide electronegativity 

(χMeO), metal oxide sublimation enthalpy (∆Hsub), metal oxide ionization energy (∆HIE), 

metal oxide standard molar enthalpy of formation (∆Hsf), metal oxide lattice enthalpy 

(∆HLat), first molar ionization energy of metal (∆HIE,1+), ionic index of metal cation (Z2/r), 
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IEP, and zeta potential in water at PH of 7.4 (ZP). Data of these descriptors can be 

accessed in the relevant articles. 

3.2.3 Toxicity to E. coli 

Puzyn et al. (2011) tested the toxicity of 10 metal oxide ENMs to an E. coli (Migula) 

Castellani & Chalmers (ATCC#25254) strain. Metal oxide ENMs covered in the test are 

Bi2O3, CoO, Cr2O3, In2O3, NiO, Sb2O3, SiO2, V2O3, Y2O3, and ZrO2 ENMs. Meanwhile, 

results of another 7 metal oxide ENMs tested with the same protocol, namely Al2O3, CuO, 

Fe2O3, La2O3, SnO2, TiO2, and ZnO ENMs, were taken from a previous study (Hu et al., 

2009) and a dataset consisting of 17 metal oxide ENMs was built. Toxicity to E. coli was 

expressed in terms of the logarithmic values of molar 1/EC50. Data are shown in Table 3.5. 

Meanwhile, information on the characterization of these ENMs in the reported nano-

QSARs was presented in light of integrating existing resources and offering reference. As 

shown in Table 3.5, Kar et al. (2014b) calculated 7 molecular descriptors in their study: 

metal electronegativity (χ), sum of metal electronegativity for individual metal oxide (∑χ), 

sum of metal electronegativity for individual metal oxide divided by the number of oxygen 

atoms present in a particular metal oxide (∑χ/nO), NMetal, NOxygen, the charge of the metal 

cation corresponding to a given oxide (χox), and molecular weight (MW). Two studies (Singh 

and Gupta, 2014; Toropov et al., 2012) provided 2-dimensional structural information of 

the ENMs in the form of SMILES (Simplified Molecular Input Line Entry System). 

Information on ENM size and aggregation size can also be found in Sizochenko’s study 

(Sizochenko et al., 2014). In addition, 12 electronic descriptors were provided (structural 

parameters of the ENMs were given by Puzyn et al. (2011)), including the standard heat of 

formation of the oxide cluster (HoF), total energy of the oxide cluster (TE), electronic 

energy of the oxide cluster (EE), core-core repulsion energy of the oxide cluster (Core), area 

of the oxide cluster calculated based on COSMO (CA), volume of the oxide cluster 

calculated based on COSMO (CV), energy of the highest occupier molecular orbital 

(HOMO) of the oxide cluster, energy of the lowest unoccupied molecular orbital (LUMO) 

of the oxide cluster, energy difference between HOMO and LUMO energies (GAP), 

enthalpy of detachment of metal cations Men+ from the cluster surface (ΔHClust), enthalpy of 

formation of a gaseous cation (ΔHMe+), and lattice energy of the oxide (ΔHL). Mu et al. 

(2016) also presented data of 26 computational descriptors for this dataset, detailed 

information can be found in the supplemental information of the original publication. 

Using the same types of 17 ENMs as in Puzyn’s study (Puzyn et al., 2011), Pathakoti et al. 

(2014) examined the nanotoxicity to the E. coli (Migula) Castellani & Chalmers 

(ATCC#25254) strain under dark conditions and sunlight exposure for 30 minutes. Toxicity 



 

 
63 

3 

of ENMs was expressed by the logarithmic values of LC50. Information was provided 

regarding the ENM size (by suppliers), TEM (transmission electron microscopy) particle 

size, hydrodynamic size, zeta potential in water and in KCl solution, and surface area. 

Moreover, 6 electronic descriptors for metal oxides and 3 for metal atoms were calculated: 

the larger (less negative) of the HOMO energies of the alpha spin and beta spin orbitals 

(HHOMO), the alpha and beta LUMO energies (LUMOA and LUMOB, respectively), the 

absolute electronegativity of the metal oxide calculated from HHOMO and LUMOA 

(LZELEHHO), the average of LUMOA and LUMOB (ALZLUMO), molar heat capacity 

of the metal oxide at 298.15 K (Cp), the alpha HOMO and LUMO energies of metal atoms 

(MHOMOA and MLUMOA, respectively), and the absolute electronegativity of the metal 

atom calculated from MHOMOA and MLUMOA (QMELECT).  

3.3 Existing nano-(Q)SARs 

Suitable modeling tools are capable of extracting meaningful relationships between the 

nano-structures and nanotoxicity, thus yielding predictive models. The widely employed 

methods concluded from the state-of-the-art of nano-(Q)SARs are linear and logistic 

regressions, together with the approaches of support vector machines (SVM), artificial 

neural networks (ANN), and k-nearest neighbors (kNN) etc. Details on the workflows for 

model development and the resulting equations (if applicable) are subsequently summarized, 

including the number of ENMs, predictive performances, descriptors calculation and 

selection. The datasets used for these nano-(Q)SARs are previously described in Table 3.2. 

Descriptors used in the developed models or identified factors by relevant studies are 

summarized in Table 3.6 for further discussion. 

3.3.1 Linear regression models 

Cellular uptake 

In Epa’ study (Epa et al., 2012), linear models have been reparameterized for the cell uptake 

of 108 ENMs (87 in training set, 21 in test set) in PaCa2 and HUVEC cells (Weissleder et al., 

2005). A method called multiple linear regression with expectation maximization (MLREM) 

sparse feature reduction was employed to optimize the descriptor set from a pool of 691 

descriptors. DRAGON (v5.5), ADRIANA (v2.2), and an in-house modeling software 

package were used for descriptor calculation. The best performing models used 19 

descriptors for PaCa2 cells (R2
training = 0.76, R2

test = 0.79, SEE = 0.19, SEP = 0.24) and 11 

for HUVEC cells (R2
training = 0.74, R2

test = 0.63, SEE = 0.34, SEP = 0.36). 
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A partial least squares (PLS) model predicting the cellular uptake (log10[ENM]/cell pM) of 

109 magnetofluorescent ENMs in PaCa2 cells (Weissleder et al., 2005) was constructed by 

Kar et al. (2014a). In this study, a set of 307 descriptors was calculated using the Cerius 2 

(v4.10), DRAGON (v6), and PaDEL-Descriptor (v2.11) which was afterwards filtered by 

the genetic function approximation (GFA). Finally, six molecular descriptors appeared in 

the developed model: 

𝑙𝑜𝑔10[𝑁𝑃]/𝑐𝑒𝑙𝑙 = 3.335 + (0.774 ×< 1 − 𝐴𝑡𝑦𝑝𝑒 − 𝑁 − 66 >) − (0.222 × 𝐴𝑡𝑦𝑝𝑒 − 𝑁 − 67)

+ (7.360 ×< 0.600 −∑𝛽′ >) − (0.101 × 𝐽𝑢𝑟𝑠 − 𝑅𝑃𝐶𝑆)

− (0.00002 ×𝑊𝑎𝑝) − (0.462 × 𝑛𝑅𝑁𝑂2) 

ntraining = 89, LV = 5, R2 = 0.806, Q2LOO = 0.758, Q2Leave-10%-out = 0.634, Q2Leave-25%-out = 0.648, 

SEE = 0.20, 𝑟2𝑚(𝐿𝑂𝑂)𝑆𝑐𝑎𝑙𝑒𝑑  = 0.665, ∆r2m(LOO)Scaled = 0.113, ntest = 20, Q2F1 = R2pred = 0.879, 

SEP = 0.12,  

Q2F2 = 0.868, 𝑟2𝑚(𝑡𝑒𝑠𝑡)𝑆𝑐𝑎𝑙𝑒𝑑  = 0.793, ∆r2m(test)Scaled = 0.115, 

𝑟2𝑚(𝑜𝑣𝑒𝑟𝑎𝑙𝑙)𝑆𝑐𝑎𝑙𝑒𝑑  = 0.679, ∆r2m(overall)Scaled = 0.116 

In the model, the descriptors Atype - N - 66 and Atype - N - 67 are the hydrophobicity of the 

N atom in respectively a primary and a secondary aliphatic amine (Al-NH2 and Al2-NH, 

respectively), ∑𝛽′ characterizes the measure of electronic features of the molecule relative 

to molecular size, Jurs–RPCS stands for the relative positive charge surface area, Wap 

represents for the all-path Wiener index, and nRNO2 is the number of aliphatic nitro groups. 

The leverage and distance to model in X-space (DModX) approaches (Gramatica, 2007; 

Wold et al., 2001) was applied to check model’s domain of applicability. 

Using the same data from Weissleder et al. (2005), Ghorbanzadeh et al. (2012) proposed a 

predictive model of cellular uptake (log10[ENM]/cell pM) on the basis of a multilayered 

perceptron neural network technique. A self-organizing map (SOM) strategy was employed 

combined with stepwise MLR to promote the feature reduction. This procedure provided 

six most informative descriptors, namely number of donor atoms (N and O) for H-bonds 

(nHDon), Geary autocorrelation of lag 1 weighted by van der Waals volume (GATS1v), 

3D-MoRSE-signal 29/unweighted (Mor29u), D total accessibility index/weighted by 

Sanderson electronegativity (De), 3D-MoRSE-signal 14/unweighted (Mor14u), as well as 

the mean electrotopological state (Ms). The linear model has the form: 

𝑙𝑜𝑔10[𝑁𝑃]/𝑐𝑒𝑙𝑙 = 2.970 − 0.130 × nHDon + 0.412 × GATS1v − 0.398 × Mor29u + 1.243

× De − 0.163 × Mor14u + 0.045 × Ms 
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The model gave a correlation coefficient (R) of 0.782 for the training set (RMSE = 0.369) 

and 0.755 for the prediction (RMSE = 0.357). Williams plot was subsequently put into use 

for visualizing the domain of model’s applicability. 

Cytotoxicity 

Based on the apoptosis assay of smooth muscle cells from Shaw et al. (2008), Epa et al. 

(2012) developed a model consisting of three descriptors for the core material (IFe3O4), 

surface coating (Idextran), and surface charge (Isurf.chg) of ENMs. The descriptors are 

considered to have a value of 1 when the condition is present, and 0 when the condition is 

absent. For instance, IFe3O4 is set to be 1 for the ENM with Fe2O3 core, and 0 when the 

ENM core is Fe3O4; Idextran is equal to 1 in case of a dextran coating and 0 for others; 

surface functionality is encoded as 1 (basic), −1 (acidic), or 0 (neutral). Smooth muscle 

apoptosis was used as the endpoint in the constructed model: 

𝑆𝑀𝐴 = 2.26(±0.72) − 10.73(±1.05) × 𝐼Fe2O3 − 5.57(±0.98) × 𝐼dextran − 3.53(±0.54)

× 𝐼surf.chg 

where n = 31, R2
training = 0.81, R2

test = 0.86, SEE = 3.6, SEP = 3.3. 

Papa et al. (2015) reported three MLR models predicting the potential of ZnO and TiO2 

ENMs inducing the release of LDH in rat lung cells. Data was retrieved from the study of 

Sayes and Ivanov (2010) which provided values of five descriptors including engineered size 

(X0), size in water (X1), size in phosphate buffered saline (X2), concentration (X4), and zeta 

potential (X5). The first linear model combined information on both TiO2 and ZnO ENMs 

(all together 31 ENMs): 

LDH(TiO2+ZnO) = 0.66 + 0.003X4 + 0.005X0 − 4.46E − 5X2 

R2 = 0.82, Q2
loo = 0.76, Q2

lmo30% = 0.74, r2
YS = 0.10, s = 0.11, F= 40. The Williams plot for 

applicability domain of the model was depicted in the original publication. Besides, linear 

models were also built separately for TiO2 (22 ENMs) and ZnO ENMs (15 ENMs): 

LDH(TiO2) = 0.599 + 0.003X4 + 0.004X0 

R2 = 0.84, Q2
loo = 0.79, Q2

lmo30% = 0.78, r2
YS = 0.10, s = 0.12, F = 48 

LDH(ZnO) = 1.041 + 0.001X1 − 0.001X2 + 0.001X4 
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R2 = 0.91, Q2
loo = 0.80, Q2

lmo30% = 0.76, r2
YS = 0.22, s = 0.08, F = 35. 

Another approach explicitly and completely based on MLR is reported by Gajewicz et al. 

(2015). In this case, the cytotoxicity of 18 metal oxide ENMs to the HaCaT cell line was 

modeled. A set of 27 descriptors were calculated including 16 quantum-mechanical 

descriptors and 11 image descriptors derived from Transmission Electron Microscopy 

(TEM) images. For calculating the quantum-mechanical descriptors, the molecular geometry 

was optimized at the level of the semi-empirical PM6 method (Stewart, 2007) encoded in 

MOPAC 2009 (Stewart, 2009). Information on the size, size distribution, shape, porosity, 

and surface area of ENMs was extracted based on TEM images to generate the 11 image 

descriptors. Two descriptors were afterwards selected by the genetic algorithm (GA), i.e., 

∆Hf
c and χc. The model can be expressed as: 

log(𝐿𝐶50)
−1 = 2.47(±0.05) + 0.24(±0.05) × ∆𝐻𝑓

𝑐 + 0.39(±0.05) × 𝜒𝑐 

F = 44.6, p = lx10-4, n = 18, R2 = 0.93, RMSEC = 0.12, Q2
CV = 0.86, RMSECV = 0.16, Q2

EXT 

= 0.83, RMSEP = 0.13 

where ∆Hf
c is the enthalpy of formation of metal oxide nanocluster representing a fragment 

of the surface and χc represents the Mulliken’s electronegativity of the cluster. The domain 

of applicability of the model was described by means of a Williams plot. 

Using the dataset reported by Gajewicz et al. (2015), Pan et al. (2016) developed two 

predictive models incorporating the so-called Improved SMILES-Based Optimal 

Descriptors. The models predicting the cytotoxicity of metal oxide ENMs to HaCaT cells 

have the forms: 

log (
1

LC50
) = −0.2909(±0.0664) +0.1038(±0.0027) × DCW(1,3) 

n = 13, R2 = 0.9606, Q2
LMO = 0.9393, s = 0.008, F = 268, p < 0.0001; and 

log (
1

LC50
) = 0.0012(±0.0048) + 0.0778(±0.0001) × DCW(1,3) 

n = 12, R2 = 0.9997, Q2
LMO = 0.9996, s = 0.007, F = 1273, p < 0.0001. The number 1 in 

DCW(1,3) is the coefficient for classification of features into two classes (noise and active); 

the number 3 in DCW(1,3) is the number of epochs of the Monte Carlo optimization. The 
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characteristics of ENMs involved in the models are namely molecular weight, cationic 

charge, mass percentage of metal elements, individual size, and aggregation size of ENMs. 

Besides, in the study of Liu et al. (2013b) a linear regression model was developed for 24 

metal oxide ENMs based on a recently reported dataset (Zhang et al., 2012). Three 

descriptors were involved in the model, namely Ec, ∆HIE, and χMeO. The model was 

reported to give an accuracy of 89% for the samples. 

Toxicity to E. coli 

Puzyn et al. (2011) originally built a dataset for the toxicity of 17 metal oxide ENMs to E. 

coli. Based on the data, a simple and statistically significant nano-QSAR model was obtained 

which used a single descriptor ∆HMe+: 

log (1/𝐸𝐶50) = 2.59 − 0.50 × ∆𝐻Me+ 

R2 = 0.85, RMSEC = 0.20, Q2
CV = 0.77, RMSECV = 0.24, Q2

EXT = 0.83, RMSEP = 0.19 

Calculation of a pool of 12 variables (Table 3.5) was executed using the PM6 method as 

implemented in MOPAC 2009. GA was applied for selecting the most informative 

descriptors. PLS Toolbox and the Statistics Toolbox for MATLAB were utilized for model 

development. The leverage approach and Williams plot were employed to visualize model 

applicability domain. 

Working on the same dataset from Puzyn et al. (2011), Kar et al. (2014b) built a stepwise 

MLR model as well as a PLS model. Seven descriptor were used for model construction 

namely χ, Σχ, Σχ/nO, NMetal, NOxygen, χox, and MW (Table 3.5). For the MLR model feature 

reduction was accomplished by the ‘stepping criteria’ (F), and only the descriptor χox was 

seen in the model: 

log (1/𝐸𝐶50) = 4.781 − (1.380 × 𝜒𝑜𝑥) 

n = 17, R2 = 0.84, R2adj = 0.83, Q2LOO = 0.81, Q2L-10percent-OUT = 0.82, 

Q2L-20percent-OUT = 0.83, Q2L-25percent-OUT = 0.80, cR2P = 0.82 

Meanwhile the developed PLS model contained two descriptors χox and χ, and has the form: 

log (1/𝐸𝐶50) = 4.401 − (1.324 × χ𝑜𝑥) + (0.176 × χ) 
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n = 17, LV = 1, R2 = 0.82, Q2LOO = 0.75, Q2L-10percent-OUT = 0.76, 

Q2L-20percent-OUT = 0.74, Q2L-25percent-OUT = 0.76, cR2P = 0.79 

Characterization of the applicability domain of the model was performed by the leverage 

approach (Gramatica, 2007). 

Mu et al. (2016) also reported MLR models building on the data from Puzyn et al. (2011). 

Calculation of descriptor was performed using PM6 methods within MOPAC 2012 

software package. Approaches of Pearson and pair-wise correlations, and clustering and 

principal component analysis were incorporated to obtain optimal structure descriptors for 

modeling. Among the developed models, a simple but statistically significant nano-QSAR 

has the form: 

log (
1

EC50
) = (4.412 ± 0.165) + (−0.121 ± 0.068)𝑍/𝑟 + (−0.001 ± 2.57 × 10−4)∆𝐻Me+ 

where Z is the ionic charge, r is the Pauling ionic radius. Statistical indicators of the model 

are: R2 = 0.8793, RMSE = 0.442, F = 55.654, p = 4.23 × 10-7. Leverage approach and 

Williams plots were used for the characterization of model applicability domain. Based on 

the developed model, toxic potencies of other 35 metal oxide ENMs were predicted and 

visualized in a periodic table. Other models using different descriptors were also described 

in the study. 

Pan et al. (2016) also built in silico models using data from Puzyn et al. (2011). The reported 

models on the basis of the Improved SMILES-Based Optimal Descriptors can be expresses 

as: 

log (
1

LC50
) = 0.0321(±0.1443) + 0.2658(±0.0141) × DCW(6,11) 

n = 10, R2 = 0.8891, Q2
LMO = 0.8378, s = 0.179, F = 164, p < 0.0001; and 

log (
1

LC50
) = −0.0076(±0.0306) + 0.1420(±0.0020) × DCW(6,17) 

n = 9, R2 = 0.9824, Q2
LMO = 0.9745, s = 0.007, F = 391, p < 0.0001. The characteristics of 

ENMs involved in the models are namely molecular weight, cationic charge, mass 

percentage of metal elements, individual size, and aggregation size of ENMs. 
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3.3.2 Logistic regression models 

Liu et al. (2011) constructed logistic regression models to classify the effect of nine metal 

oxide ENMs to BEAS-2B cells into toxic (T) or nontoxic (N). The model with the best 

classification performance is: 

ln (
𝑃(𝑁 𝑃 ∈ 𝑇)

𝑃(𝑁 𝑃 ∈ 𝑁)
) = 3600.6 + 103.5 × 𝑑 + 9.5 × 𝜃𝑣 + 97.6 × 𝑃Me − 58.5 × 𝐸MeO 

where 𝑃(𝑁 𝑃 ∈ 𝑇) and 𝑃(𝑁 𝑃 ∈ 𝑁) are the probabilities of an ENM being classified as 

toxic or nontoxic, respectively. d is the size of ENM; 𝜃𝑣 is the volume concentration derived 

from the mass concentration of ENMs; 𝑃Me is the period of the ENM metal in the periodic 

table; 𝐸MeO is the atomization energy of the metal oxide. Model applicability domain was 

depicted by the principal component analysis. 

Liu et al. (2013b) developed two nano-SAR models based on the logistic regression and 

quadratic logistic regression methods, respectively. The dataset of Zhang et al. (2012) was 

chosen. This dataset covered data on the toxicity of 24 metal oxide ENMs to BEAS-2B and 

RAW264.7 cell lines as described above. The quadratic logistic regression model was shown 

to achieve an accuracy of 89.97 % with only two descriptors EC and Z2/r. Meanwhile a 

marginally better predictability of 90.09% for the logistic regression model was obtained. 

The molecular descriptors that were included in the logistic regression model were EC, EAmz, 

and d. 

Logistic regression models were also built by Liu et al. (2013a) based on an integration of 

multiparametric bioactivity assays of 44 iron oxide ENMs (Shaw et al., 2008). The 

conception of ‘hit’ (significant bioactivity, Signal-to-Noise Ratio > 1.645) was utilized in the 

study, and the number of hits served as the bioactivity class definition (identifying an ENM 

as bioactive or inactive) enabling nano-SAR development. Clustering analysis via SOM was 

also considered besides the number of hits as an alternative to define a class. ENM 

descriptors included the primary size, zeta potential, R1 and R2. Results showed that the 

logistic regression model based on class definition of H5 (five hits) possesses the best 

predictability of 79.3 %, using ENM size and R2 as descriptors. The class definition H6 also 

enabled the construction of a simple logistic regression model (R1 as the sole descriptor) 

with 78.2% accuracy. 

3.3.3 Support vector machine models 
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A SVM classification model has been developed by Fourches et al. (2010) using the 

experimental data of 44 ENMs from Shaw et al. (2008). ENM size, R1, R2, and zeta 

potential were used as input descriptors, and an arbitrary threshold at Zmean = -0.40 was 

applied to enable a binary classification. Three clusters of ENMs were identified after 

assigning a hierarchical clustering procedure. It was found that all monocrystalline iron 

oxide ENMs were in cluster II and all the quantum dots appeared in the cluster I. Results of 

classification confirmed the good predictability of the clustering-based nano-SARs (5-fold 

external cross-validation) in the cluster II: 

Cluster I: n = 13, sensitivity = 0.5, specificity = 0.8; 

Cluster II: n = 18, sensitivity = 0.78, specificity = 0.78; 

Cluster III: n = 13, sensitivity = 0.7, specificity = 0.4 

where sensitivity = (number of true positives)/(total number of true positives), and 

specificity = (number of true negatives)/(total number of true negatives) for the binary 

classification problems. 

Another SVM nano-SAR classifying 23 metal oxide ENMs as toxic or nontoxic was built by 

Liu et al. (2013b), based on measured toxicological responses in BEAS-2B cells and murine 

myeloid RAW 264.7 cells following an established protocol (Zhang et al., 2012). A SOM 

based consensus clustering was employed and afterwards identified three ENM clusters. 

The clusters II and III contained ENMs being reported as toxic, and thus were grouped 

into a single cluster of ENMs classified as having a positive response. ENMs in cluster I 

were labeled as nontoxic. A pool of 30 descriptors were initially considered including 

information on the fundamental metal oxide, energies or enthalpies of metal oxide, ENMs 

size, zeta potential and isoelectric point, and ENM energy. Descriptor selection was 

accomplished by the evaluation of models derived from all possible descriptor combinations. 

The SVM algorithm successfully correlated the cytotoxicity of ENMs with ENM 

conduction band energy (EC) and ionic index of metal cation (Z2/r). The penalty factor and 

the kernel width of the SVM model were determined to be 128 and 2, respectively. The 

discriminant function of the SVM model was given by 

𝑓(𝐱) =∑𝛼𝑖𝑒
−2[(𝑥𝑖,1−𝑥1)

2+(𝑥𝑖,2−𝑥2)
2]

6

𝑖=1

+ 𝑏 

where x refer to the ENM identified by the normalized descriptors vector [Z2/r, EC] (i.e., x1, 

x2), xi,1 and xi,2 stand for the normalized first and second descriptors identified as support 
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vectors. The values of αi (i = 1-6) were represented by ZnO (82.342), Ni2O3 (128), Mn2O3 

(83.696), NiO (-70.471), CeO2 (-95.566), and Fe2O3 (128) with b being -10.888. The model 

was reported to give a predictive accuracy (obtained via 0.632 estimator) of 93.74%. Model 

applicability domain was characterized by a probabilistic approach (Netzeva et al., 2005). 

3.3.4 Artificial neural network models 

Based on the experimental results of Shaw et al. (2008), a Bayesian regularized ANN model 

was constructed predicting the smooth muscle cells’ apoptosis triggered by 31 ENMs (Epa 

et al., 2012). Model statistics were as follows: n = 31, R2
training = 0.80, R2

test = 0.90, SEE = 

2.8, SEP = 2.9. Meanwhile an ANN nano-SAR was also built in the study, modeling the 

cellular uptake in HUVEC and PaCa2 cells (Weissleder et al., 2005): 

cellular uptake in HUVEC cells: R2
training = 0.70, SEE = 0.30, R2

test = 0.66, SEP = 0.33, 

descriptor number = 11; 

cellular uptake in PaCa2 cells: R2
training = 0.77, SEE = 0.15, R2

test = 0.54, SEP = 0.28, 

descriptor number = 19. 

Besides the above-mentioned MLR model developed by Ghorbanzadeh et al. (2012), 

another nano-SAR on the basis of a multilayered perceptron neural network technique was 

also introduced in their study. The SOM strategy combined with stepwise MLR selected six 

most informative descriptors namely nHDon, GATS1v, Mor29u, De, Mor14u, and Ms. The 

derived model gave a performance in terms of values of R2 of 0.934 for the training set, 

0.945 for the internal test set, and 0.943 for the external test set. The calculated RMSE 

values are 0.146, 0.121, and 0.214 for respective training, internal, and external test sets, 

while the corresponding values of F are 531, 142, and 65, respectively. The applicability 

domain of the model was firstly evaluated by the approach based on ranges of individual 

descriptors. A Williams plot was subsequently put into use for visualizing the domain of 

applicability. 

3.3.5 k-nearest neighbor models 

A classification model employing the kNN approach was developed in the study of 

Fourches et al. (2010). The model was proposed to predict the cellular uptakes of 109 

ENMs in PaCa2 cells (Weissleder et al., 2005). Coefficients of correlation Rabs
2 were shown 

to range from 0.65 to 0.80 for the external sets, and from 0.67 to 0.90 taking into account 

the applicability domain which was defined by the Euclidean distance approach. In the 

study, the descriptors were identified that most frequently occurred in the models (1-5 fold 
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cross-validations) with the highest prediction accuracy. The top 10 descriptors ranked by 

averaged frequency were reported to be SlogP_VSA1, SlogP_VSA2, SlogP_VSA5, 

b_double, SlogP_VSA0, PEOE_VSA+1, vsa_don, vsa_other, vsa_base, and 

PEOE_VSA_FPOS. The SlogP_VSA0 and SlogP_VSA1, along with other descriptors with 

relatively low frequency such as GCUT_SLOGP_0 and BCUT_SLOGP_0, are considered 

to be generally related to the lipophilicity. For instance, the PaCa2 uptake of ENMs was 

observed to be positively correlated with the enrichment of lipophilic compounds on ENM 

surfaces (value of GCUT_SLOP_0). Other discriminated factors affecting the PaCa2 uptake 

of ENMs were found to be about the molecular refractivity, the specific van der Waals 

surface area, and the electrostatic properties. The applicability domain of the model was 

characterized by the Euclidean distance. 

An attempt of predicting the cytotoxicity of 44 iron oxide ENMs based on kNN was also 

reported by Liu et al. (2013a). As described above, different numbers of hits were discussed 

in the study for introducing class definitions besides the clustering analysis via SOM. The 

results showed that a kNN model using SOM-based consensus clustering gave the best 

predictive performance of 74.9 % accuracy. Three descriptors, ENM size, R1, and R2 were 

obtained in this model. Meanwhile, H4 class definition was also deemed to be a suitable 

choice which enabled the development of a kNN model correctly predicting 74.3% of the 

samples. 

3.3.6 Other models 

Chau and Yap (2012) attempted to correlate the cellular uptake in PaCa2 with the calculated 

parameters from PaDEL-Descriptor (v2.8). By lowering the threshold value of being 

significant uptake into PaCa2, 56 ENMs with cellular uptake of more than 5000 ENMs per 

cell (Weissleder et al., 2005) were considered as a positive class, and the other 49 were 

defined as the negative class. Based on the four modeling techniques of naive Bayesian 

classifier (NBC), logistic regression, kNN, and SVM, 2100 candidate models were 

developed while only 102 of them were qualified according to the selection criteria. To build 

a final consensus nano-SAR model, the top 5 candidate models were chosen consisting of 3 

kNN, 1 SVM, and 1 NB models. The consensus model gave a good predictive performance 

with sensitivity of 98.2% and specificity of 76.6% for the dataset. Descriptors that 

commonly appeared in the candidate models were number of CH2 groups, primary, 

secondary and tertiary nitrogens, halogens (fluorine, bromine, iodine), sulphur atoms, fused 

rings and hydrogen bonding. Most of the descriptors that contributed to the model were 

interpreted as related to the lipophilicity (e.g., number of lipophilic groups). Other factors 

such as the hydrogen bonding between nitrogen and hydrogen, and the sulphur and various 
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halogen atoms were also found to affect the cellular uptake of ENMs. This is in agreement 

with the study of Fourches et al. (2010). 

Chen et al. (2016) reported several nano-SARs for the categorization of ENM hazards to 

different biota. The toxicity data was retrieved from the database of Chen et al. (2015) and 

the online chemical modeling environment platform (Sushko et al., 2011). Approaches of 

functional tree, C4.5 decision tree, random tree, and Simple CART were employed for 

model development. Global nano-SARs across species using LC50 data were shown to 

correctly predict more than 70% of the samples in training (320 ENMs) and test sets (80 

ENMs) based on functional tree, C4.5 decision tree, random tree methods. The species-

specific nano-SARs were also derived for Danio rerio, Daphnia magna, Pseudokirchneriella 

subcapitata, and Staphylococcus aureus with good predictivity. Summarized from the developed 

models, the molecular polarizability, accessible surface area, and solubility were identified as 

key factors affecting the biological activities of metallic ENMs.  

Moreover, Zhang et al. (2012) reported a regression tree model using the metal dissolution 

of metal oxide ENMs and energy of conduction band to predict the toxicity potential of 24 

metal oxide ENMs. With the data from Zhang et al. (2012), Sizochenko et al. (2015) 

developed causal inference nano-SARs for BEAS-2B and RAW 264.7 cell lines (24 metal 

oxide ENMs for each cell line) with high predictivity. Luan et al. (2014) and Kleandrova et 

al. (2014) developed the novel QSTR-perturbation (quantitative structure–toxicity 

relationship) models assessing the cytotoxicity and ecotoxicity of various types of ENMs. 

The factors of molar volume, polarizability, size of ENMs, electronegativity, and the 

hydrophobicity and polar surface area of surface coatings were indicated by the reported 

models. Singh and Gupta (2014) previously performed three cases of nano-(Q)SAR study 

for metallic ENMs on the basis of the datasets generated by Puzyn et al. (2011), Shaw et al. 

(2008), and Weissleder et al. (2005). In the study, classification and regression models were 

constructed predicting various biological effects of the ENMs by an ensemble learning 

based strategy called stochastic gradient boosting and bagging algorithms. Results showed 

that the developed models are of robustness and no over-fitting of data was present in all 

case studies. Besides, attempts to link the information of ENM structures to corresponding 

biological effects were also made using other modeling techniques, such as Monte-Carlo 

method (Toropov et al., 2012; 2013), NBC and linear discriminate analysis (Liu et al., 

2013a,b), random forest regression (Sizochenko et al., 2014; 2015), and self-written least-

squares fitting program (Pathakoti et al., 2014). 
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3 Review of nano-(Q)SARs for metallic ENMs 
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3.4 Interpret mechanisms of ENM biological activities with developed models 

To enable the fast and inexpensive high-throughput prediction of diverse biological effects 

caused by ENMs, reliable nano-(Q)SARs should be based on mechanistic knowledge 

(OECD, 2007). Only when information on the underlying mechanisms is incorporated in 

modeling, proper and reliable extrapolation towards untested ENMs or organisms can be 

performed. Based on existing experimental data related to the cellular uptake of ENMs as 

well as the toxicity of ENMs to different cell lines and to E. coli, various nano-(Q)SARs 

were developed (Table 3.1). The significant descriptors introduced in the aforementioned 

nano-(Q)SAR studies are shown to be able to provide vital structural information on the 

factors affecting ENMs’ cellular uptake and toxicity. Therefore, information on these 

descriptors as summarized in Table 3.6 is linked to the current understanding of the 

mechanisms of nanotoxicity. 

 

 

Figure 3.1. Overview of hypotheses associated with the responses of cellular membrane to 

the introduction of ENMs. It is assumed that endocytosis, penetration, adhesion of ENMs 

upon the cellular membrane, and cellular membrane rupture could possibly occur. Cellular 

membrane rupture is also considered to lead to the internalization of ENMs via the damage 

sites. Scenario of relevant ion release from ENMs, generation of reactive oxygen species 

(ROS), and ENMs-contacted interactions are also depicted. 

 

Membrane 
rupture

Men+

io
n

 c
h

a
n

n
el

Endocytosis Penetration

Men+

ROS

Metal-based 
nanomaterials

Nucleus

ROS

Dissolution



 

 
80 

3 Review of nano-(Q)SARs for metallic ENMs 

3.4.1 Cellular uptake of ENMs 

Once entering into the medium, ENMs may undergo various extra-and intracellular 

physical-chemical reactions such as dissolution, ion release, reactive oxygen species (ROS) 

generation, interaction with subcellular structures (e.g., cellular membrane, mitochondrion), 

and internalization into the cells (Figure 3.1). Cellular uptake of ENMs is always seen as an 

important process of ENMs’ internalization and subsequently initiating the ENM contact-

mediated or dissolved ion-associated intracellular reactions. As hypothesized, ENMs are 

conventionally transported into cells through endocytosis, a form of active transport in 

which cells take in ENMs by engulfing them (Zhao et al., 2011). Possible endocytotic 

processes proposed include phagocytosis, macropinocytosis, caveolae-dependent and 

clathrin-mediated endocytosis, and non-clathrin-, non-caveolae-mediated endocytosis 

(Unfried et al., 2007; Zhao et al., 2011). Besides, other responses of cellular membranes to 

adsorption of ENMs were also shown to exist. On the basis of a dissipative particle 

dynamics simulation study, Yue and Zhang (2011) concluded that surface adhesion, 

membrane penetration, and even ENM-induced membrane rupture could occur upon the 

ENM attachment to cellular membranes. Lin et al. (2010) and Xia et al. (2008) also 

demonstrated that ENMs could access to the cellular interior through direct membrane 

penetration. 

In these internalization processes, surface properties of ENMs are essential for the ENM-

biomolecule interactions and are deemed to be able to alter the cellular uptake pathways. In 

the experiment of Weissleder et al. (2005), a diversity of cellular uptake processes was 

observed especially for the PaCa2 cells. These authors consequently concluded that the 

translocation process is highly dependent on the surface modification of the ENMs. The 

studies showed that the lipophilicity of the surface molecules is an important discriminating 

factor that determines the chemical ability to interact with the lipid core of membranes (van 

de Waterbeemd et al., 2011). Fourches et al. (2010) reported that four descriptors (out of 

the top ten with the highest averaged frequency) SlogP_VSA0, SlogP_VSA1, SlogP_VSA2, 

and SlogP_VSA5 are intimately correlated with molecular lipophilicity of surface 

compounds. The ENMs with a higher PaCa2 cellular uptake are generally highly enriched 

for lipophilic surface modification (higher descriptor value). This is consistent with the 

results of Epa et al. (2012) in which C-005 (associated with hydrophobicity) was observed as 

a factor affecting ENMs’ cellular uptake. Further confirmation was obtained by the 

appearance of Atype – N – 66 and Atype – N – 67 (Kar et al., 2014a) in a PLS model, and 

number of lipophilic groups (CH2, fused rings) in the consensus model of Chau and Yap 

(2012). Also, the hydrogen bonding capacity of surface modifiers was explained to be one of 

the driving factors of ENMs’ membrane penetrability (Chau and Yap, 2012). An ANN 

model predicting cellular uptake of ENMs by HUVEC was reported to include the 
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descriptors nRCONHR and nArOCON which characterize molecular hydrogen bonding 

capacity (Epa et al., 2012). In the same study, nN, nArOH, H-053, and O-058 were also 

found in the MLR model and were likewise interpreted as affecting the capability of H-

bonding. In other nano-(Q)SARs, descriptors considered to correlate with this factor 

include nHDon (Ghorbanzadeh et al., 2012), WPSA-2, nHBDon, and nHBAcc (Singh and 

Gupta, 2014). Hence, these informative descriptors found in the developed nano-(Q)SARs 

confirmed again the previous experimental observations, that the lipophilicity of surface 

compounds is of significant importance for the cellular uptake of ENMs. 

Additionally, shape, size, and flexibility of the surface compounds also play an important 

role in determining ENMs’ passive transport across biological membranes. For instance, 

descriptors (not exclusively) characterizing molecular branching were constantly observed in 

the studies such as nR10, nCIR, nCs (Epa et al., 2012), Wap (Kar et al., 2014a), GATS1v, 

Mor29u, Mor14u (Ghorbanzadeh et al., 2012), SP-5, VP-4, and VPC-6 (Singh and Gupta, 

2014). The Mor29u, Mor14u, SP-5, VP-4, and VPC-6 meanwhile also contain information 

of the molecular three-dimensional structures (e.g., mass, size, flexibility, and overall shape). 

Other relevant descriptors are namely ASP, DISPm, QZZm, QYYp, SPAM (Epa et al., 

2012), ∑β' (Kar et al., 2014a), De (Ghorbanzadeh et al., 2012), MOMI-XZ, nRotB (Singh 

and Gupta, 2014). Moreover, impacts on ENMs’ cellular uptake were also reported to 

derive from the molecular reactive surface and electronegativity. Molecular reactive surface-

related descriptors in the nano-(Q)SARs are vsa_don, vsa_other, vsa_base, 

PEOE_VSA_FPOS, PEOE_VSA+1 (Fourches et al., 2010), Jurs–RPCS (Kar et al., 2014a), 

WNSA-3 (Singh and Gupta, 2014). Descriptors associated with molecular electronegativity 

were observed to be nRNO2 (Kar et al., 2014a), primary, secondary, and tertiary N, 

halogens (Chau and Yap, 2012). It is not surprising that these factors of ENM surface 

modifiers may influence the ENM-biosurface interactions and pose effects on the cellular 

uptake of ENMs, independently or cooperatively. Either shape or size, or flexibility of 

surface modifiers of ENMs would affect the interactions between these molecules and the 

molecular sites of biosurfaces, change the conformation of binding complexes, and 

ultimately mediate the subsequent ENM-biosurface reactions in which the nature of the 

reactive surface and electronegativity also play a role. 

As seen in Figure 3.1, internalization of ENMs into cells is generally considered as a crucial 

biological process triggering nanotoxicity. However, the adsorption of ENMs on cellular 

membranes may also affect cellular membrane integrity and lead to the formation of detects 

through the membranes (Lin et al., 2010; Thevenot et al., 2008; Xia et al., 2008; Yue and 

Zhang, 2011). This could probably result in the direct internalization of ENMs through the 

damage sites of membranes and the release of intracellular components that causes cell 

death. Notably, extracellular release of ions and formation of ROS are also considered to be 
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factors affecting the toxicity of ENMs in some cases. von Moos and Slaveykova (2014) 

reported that intracellular ROS generation can be stimulated by the presence of extracellular 

ROS as a response. The released ions and derived ROS may as well interact with cellular 

membranes, and dependently and/or independently influence ENMs’ cellular uptake. This 

gives a possible explanation on the presence of the descriptor ionization potential (IP) in 

the nano-SAR of Singh and Gupta (2014), and may also be able to explain why the 

electronegativity-related descriptors nRNO2 (Kar et al., 2014a), primary, secondary, and 

tertiary N, and the halogens (Chau and Yap, 2012) generally appeared in relevant nano-

(Q)SAR studies. 

3.4.2 ENMs-induced biological effects 

It is well-known that ENMs are capable of eliciting adverse biological effects by directly or 

indirectly triggering a series of physical-chemical reactions and ultimately causing cell 

damage. Reportedly, toxicity of ENMs could occur via a single mechanism or via 

combinations of the following mechanisms: (i) direct interactions with subcellular structures 

or biomolecules (e.g., membranes, mitochondria, proteins, DNA) which could lead to, for 

instance, mitochondrial damage, denaturation of proteins, formation of corona; (ii) release 

of chemical constituents from ENMs such as metal ions; (iii) surface property-based 

chemical reactivity of ENMs, e.g., photochemical, catalytic and redox properties; (iv) 

Trojan-horse type mechanisms, so called intruders in which ENMs act as vectors for 

transporting toxic chemicals (Figure 3.2). 

 

Figure 3.2. Schematic illustration of possible mechanisms of ENMs triggering nanotoxicity. 

1) ENMs directly in contact with subcellular structures, which could promote the release of 

ions and ROS generation; 2) ENMs releasing ions; 3) ENMs contact-mediated ROS 

generation; 4) Trojan-horse mechanism triggered by ENMs; 5) Released ions increasing the 

formation of ROS; 6) Ion-dependent interactions which may lead to cellular damage or 

trigger ROS formation. 
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Generally, there is no doubt that metal-ions leaching from ENMs could act as a key factor 

causing biological effects of ENMs. Once the ENMs release dissolved ions surrounding the 

cells, it is often difficult to experimentally distinguish the effects caused by conventional 

metal ion release from the nano-specific effects. In such a context, the toxicity induced by 

ENMs is always considered to be intimately correlated with ENM dissolution. Comparable 

results on the toxicity of ZnO ENMs and Zn salts have been observed for the examples of 

Pseudokirchneriella subcapitata (Franklin et al., 2007), Thamnocephalus platyurus and Daphnia magna 

(Heinlaan et al., 2008; Wiench et al., 2009), and E. coli (Li et al., 2011). Result of studies on 

the toxicity of CuO ENMs to multiple species was also in agreement with this conclusion 

(Bondarenko et al., 2012; Heinlaan et al., 2008). It is commonly believed that ion release 

could occur after the cellular internalization of ENMs which consequently results in 

different mechanistic pathways of nanotoxicity. For instance, Stohs and Bagchi (1995) 

proposed a Haber-Weiss-Fenon cycle describing the stimulation of ion-leaching to ROS 

generation, taking Cu2+ as an example: 

O2
− + Cu2+ → O2 + Cu

+ 

Cu+ + H2O2 → Cu
2+ + OH− + OH 

where the ROS such as superoxide anion radicals (O2
−) could be derived from the one-

electron reduction of molecular oxygen O2: 

O2 + 𝑒 → O2
− 

In the Haber-Weiss-Fenton cycle, Cu2+ acts as catalysts of the formation of hydroxyl 

radicals which enhances the generation of ROS. Meanwhile, it was suggested that the release 

of ions could be accompanied by ROS formation as well such as in the Fenton reaction 

(Gajewicz et al., 2015): 

Fe + O2 + 2H
+ → Fe2+ + H2O2 

Fe2+ + H2O2 → Fe
3+ + OH + OH− 

Evidences from nano-(Q)SAR studies also demonstrated the contribution of ion release to 

nanotoxicity. Influence of metal solubility on nanotoxicity was indicted by the developed 

models (Zhang et al., 2012; Chen et al., 2016). Puzyn et al. (2011) developed a linear model 

based on the sole descriptor ∆HMe+ predicting toxicity of metal oxide ENMs to E. coli. It 

was explained that ∆HMe+ is an efficient descriptor characterizing the stability of metal 

oxides, which is associated with both the lattice energy of oxides and the sum of the 
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ionization potentials of a given metal. The release of cations with smaller charge is seen as 

more energetically favorable than that with larger charge (Mu et al., 2016). This explains the 

observations of previous studies giving an order of oxides toxicity as : Me2+ > Me3+ > Me4+ 

(Puzyn et al., 2011). According to Kar et al. (2014b), the charge of the metal cation 

corresponding to a given oxide (χox) was also used for the parameterization of nanotoxicity 

data. In the study of Liu et al. (2013b), the descriptor ionic index of metal cation Z2/r was 

involved in building classification nano-SARs. Z is the ionic charge and r represents the 

Pauling ionic radius of the released ions (Pan et al., 2016). Z2/r is a measure of the 

involvement of a metal ion into electrostatic interactions, and is able to provide information 

on the affinity of a metal ion for water molecules. Likewise, such form of index was also 

used in random forest models (Sizochenko et al., 2014; 2015), coupled with a parameter (S1) 

describing the van der Waals interactions between surface molecules or cations. Other 

descriptors related to ionic charge and/or radius are polarization force (Mu et al., 2016), 

covalent index, tri-atomic descriptor of atomic charges, tetra-atomic descriptor of atomic 

charges (Sizochenko et al., 2015). 

Accordingly, Gajewicz et al. (2015) employed two descriptors, i.e., enthalpy of formation of 

metal oxide nanocluster (∆Hf
c) and the Mulliken’s electronegativity of the cluster (χc), to 

linearly explain the cytotoxicity of metal oxide ENMs to HaCaT. The ∆Hf
c is associated with 

the energy of a single metal-oxygen bond in oxides (E∆H
o) which can be expressed as 

(Portier et al., 2004): 

𝐸∆𝐻𝑜 =
2∆𝐻𝑓

𝑜 ∙ 2.612 × 1019

𝑁𝐴𝑛𝑒
 

where NA is the Avogadro number and ne is the number of electrons involved in the 

formation reaction. A high ∆Hf
c value indicates a strongly bound cation of large formal 

charge in the oxides, and thus affects the detachment of metal cation from the surface of 

the ENMs. As for χc, Burello and Worth (2011) introduced that the electronegativity value 

of metal oxide (χoxide) can be calculated from that of the corresponding cation (χcation) using 

the equation (Portier et al., 2001): 

χ𝑜𝑥𝑖𝑑𝑒 ≈ 0.45𝜒𝑐𝑎𝑡𝑖𝑜𝑛 + 3.36 

Therefore, a higher value of χcation indicates a stronger ability of a cation to attract electrons 

in the Haber-Weiss-Fenton cycle which in turn results in higher reactivity of the metal oxide 

ENMs (Gajewicz et al., 2015). The two descriptors ∆Hf
c and χc meanwhile also refer to 

ENMs’ surface redox activity. Burello and Worth (2011) reported that energy of a band gap 

(Eg) can be obtained based on the ∆𝐻𝑓
0: 
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𝐸𝑔 = 𝐴𝑒
0.34∆𝐻𝑓

0

 

and thus the conduction and valence band energies of oxides become: 

𝐸𝑐 = −χ𝑜𝑥𝑖𝑑𝑒 + 0.5𝐸𝑔 + 𝐸𝑠ℎ𝑖𝑓𝑡 

𝐸𝑣 = −χ𝑜𝑥𝑖𝑑𝑒 − 0.5𝐸𝑔 + 𝐸𝑠ℎ𝑖𝑓𝑡 

where Eshift represent the value changes of band edges in respect to the solution’s pH. As 

hypothesized, the redox potentials of relevant biological reactions could be unbalanced if 

they lie closer to the Ec or Ev, thereby causing cellular oxidative stress (Zhang et al., 2012). 

This was confirmed by Liu et al. (2013b) who identified Ec and χoxide for the development of 

nano-(Q)SAR models, and Kar et al. (2014b), Kleandrova et al. (2014), Luan et al. (2014), 

and Sizochenko et al. (2015) who used metal electronegativity as one of the modeling 

parameters. Pathakoti et al. (2014) as well obtained two descriptors (absolute 

electronegativity of the metal and metal oxide) for describing the toxicity of metal oxide 

ENMs to E. coli under darkness. Other descriptors considered to be associated with the 

surface redox properties of ENMs and causing oxidative stress are namely ∆HIE, EAmz (Liu 

et al., 2011; 2013b), CI, S3 (Sizochenko et al., 2014), Cp, ALZLUMO (Pathakoti et al., 2014), 

and polarizability (Chen et al., 2016; Kleandrova et al., 2014; Luan et al., 2014) in relevant 

nano-(Q)SAR studies. 

On the other hand, other than the general consensus taking ion release and ROS generation 

as driving factors in nanotoxicity, it is evident that other mechanisms of toxicity also play a 

vital role in certain cases. Xiao et al. (2015) reported that for both Cu and ZnO ENMs, the 

particles per se, rather than the dissolved ions, provided the major contribution to the 

toxicity to Daphnia magna (26% and 31%, respectively). Similarly, Hua et al. (2014) also 

revealed a dominant contribution of ZnO ENMs over the Zn ion tested for zebrafish 

embryos, for which the dissolution-driven mechanism of ENMs toxicity apparently does 

not apply. More precisely, it was shown that the shape of ENMs significantly affect ENMs’ 

toxicity, as needle-shaped ZnO ENMs were proven to be the most toxic to Phaeodactylum 

tricornutum as compared to morphologically different ENMs with equal solubility and ion 

release (Peng et al., 2011). Observations of nanotoxicity affected by the shape of ENMs 

were also reported for ZnO nanospheres, nanosticks, and cuboidal submicron particles 

(Hua et al., 2014). Computational studies proved the involvement of surface property-

related descriptors in nano-(Q)SAR modeling, such as the surface area and coating (Chen et 

al., 2016; Epa et al., 2012; Singh and Gupta, 2014; Sizochenko et al., 2015), hydrophobicity 

and polar surface area of surface molecules (Kleandrova et al., 2014; Luan et al., 2014), 

surface-area-to-volume ratio (Sizochenko et al., 2015), zeta potential (Papa et al., 2015), and 
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the Wigner-Seitz radius of oxide’s molecule which describes the available fraction of 

molecules on the surface of ENMs (Sizochenko et al., 2014; 2015). The Wigner-Seitz radius 

also relates to molecular weight and density, and therefore as well the molecular volume 

which all have been indicated in the models (Kleandrova et al., 2014; Luan et al., 2014; Pan 

et al., 2016; Sizochenko et al., 2015). Descriptors relating to ENMs size (Kleandrova et al., 

2014; Liu et al., 2011; 2013a,b; Luan et al., 2014; Pan et al., 2016; Papa et al., 2015; Singh 

and Gupta, 2014), material composition (Epa et al., 2012; Liu et al., 2011; Pan et al., 2016; 

Singh and Gupta, 2014; Sizochenko et al., 2014), and aggregation behaviors (Pan et al., 2016; 

Papa et al., 2015; Sizochenko et al., 2014; 2015) were also concluded to affect nanotoxicity 

(Suresh et al., 2013) from the aspects of relevant computational studies. 

As mentioned above, ENMs may induce toxicity by direct steric hindrance or by binding 

with important reaction sites, or by indirect behaviors such as ion release, ENM surface-

contacted interactions, or by acting as carriers for toxic chemicals (as in Figure 3.2). Take 

the case of TiO2 as a typical example of ENM surface-mediated photochemical reaction, in 

which detachment of an electron could be activated by solar radiation (Kar et al., 2014b): 

TiO2
ℎ𝑣
⇒ TiO2

+ + 𝑒̅ 

𝑒̅ + O2 → O2
− 

O2
− + 2H+ + 𝑒̅ → H2O2 

O2
− +H2O2 → OH

 + OH− + O2 

H+ + H2O⇒  OH
 + H+ 

The binding of ENMs with organelles could also cause a release of ions from interior 

storage due to the loss of membrane integrity. Unfried et al. (2007) reported that ENMs 

interacting with mitochondria are able to promote the release of interior-stored Ca2+. The 

released ions are capable of triggering ROS production by direct catalysis, e.g., the Haber-

Weiss-Fenton cycle, or indirect interference of biological functions such as interrupting the 

mitochondrial electron transduction (von Moos and Slaveykova, 2014). Besides, the ions per 

se could unbalance intracellular biological functions, eliciting inflammation, lysosomal 

damage, and inhibiting cellular respirations (He et al., 2014). The interactions of ENMs with 

subcellular structures (e.g., membrane-bound enzymes) were also shown to be capable of 

enhancing ROS production. Interestingly, presence of extracellular ROS was reported to be 

able to elevate intracellular ROS generation as depicted in Figure 3.2 (von Moos and 

Slaveykova, 2014). 
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In summary, the characteristics of ENMs may pose effects on the toxicity of ENMs as 

related to a single mechanism or to combinations of possible mechanisms. Analysis of the 

descriptors discussed in existing nano-(Q)SAR studies assists in offering statistical overview 

extracted from the complicated mechanistic pathways, and enables a mechanistic 

interpretation on the basis of the main driving factors. As discussed above, ENMs’ surface 

properties are vital for their uptake by cells concerning the lipophilicity, hydrogen bonding 

capacity, electronegativity, shape, size, and flexibility of the surface modifiers. As for ENM-

triggered toxicity, properties correlating with the ability of ion release and ROS generation 

could be important indicators, along with the information about the size, surface redox 

properties, and composition of ENMs. 

 

3.5 Conclusions and Outlook 

Enabling the development of reliable nano-(Q)SARs is capable of reducing the time and 

cost needed for conventional experimental evaluations, and thus benefits the risk evaluation 

and assessment of ENMs for regulatory purposes. Even though the promising potential of 

extending (Q)SARs into nanotoxicity has been addressed, the nano-(Q)SAR approach is still 

in its infancy. As far as it is understood, scarcity of (properly documented) experimental 

data is regarded as one of the major drawbacks in building nano-(Q)SAR models. The 

information provided in Table 3.2 indicated a very limited availability of existing data as 

only a few datasets constantly appeared in the overview of nano-(Q)SAR studies, in spite of 

the numerous scientific programs on ENMs’ safety and design. This suggests that (i) most 

of the studies reported do not meet the modeling criteria which, amongst others include 

lack of relevant pristine or characterization data, lack of a description of the method used, 

or lack of reporting of a consistent endpoint; or (ii) the integration of existing experimental 

data based on various studies is currently lacking, which hinders the inclusion of this 

valuable information into the nano-modeling field (Chen et al., 2017). Therefore, in light of 

advancing computational nanotoxicology, a summary and also organization of potentially 

useful nanotoxicity is essential. Besides the data quantity, the quality of experiment data 

collected should also be taken care of for the data-driven nano-(Q)SAR approach, which 

was found absent in the relevant studies owing to the single-source strategy of retrieving 

data for a model. It is suggested that the quality of experimental information assembled 

from various sources ought to be evaluated by suitable tools before model construction. 

This is seen as helpful for improving the statistical significance and predictability of a model. 

Meanwhile, the grouping and characterization of ENMs as well remain crucial for 

developing nano-(Q)SARs. In general, the strategies of grouping ENMs are considered to 
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be ENM composition-based, toxic mode of action-based, or further clustering-based 

(Fourches et al., 2010; Liu et al., 2013a). Characterization of ENMs will subsequently be 

carried out for the ENM groups in terms of molecular structural descriptors. However, 

concerns have always been expressed with regard to the question whether it is possible to 

build nano-(Q)SARs without considering ENMs’ dynamic transformations in the exposure 

medium. On the one hand it is well-known that once entering into a medium, ENMs are 

more likely to strongly react with the components of the test medium and undergo dramatic 

changes of surface properties. These surface transformations would in return affect ENMs’ 

reactivity and subsequent biological behaviors (e.g., cellular uptake, interaction with 

subcellular structures). In such a context, modeling based solely on the information of 

ENMs’ pristine structures could be biased and could result in poor predictability and 

reliability of the models generated. Meanwhile, on the other hand, a few efforts did provide 

evidences regarding the feasibility of building nano-models using the characteristics of 

pristine ENMs (Kar et al., 2014a; Pathakoti et al., 2014; Puzyn et al., 2011; Singh and Gupta, 

2014; Sizochenko et al., 2014). Actually the possibility exists that the characteristics of 

pristine ENMs influence the biological effects of ENMs by affecting ENMs’ dynamic 

transformations in media, and it can be hypothesized that even though changes of ENM 

property could occur in the exposure media, the characteristics of the pristine ENMs still 

are linked to adverse biological effects of ENMs. In this circumstance, constructing nano-

(Q)SARs with only characteristics of pristine ENMs could enable the development of high-

throughput protocols for non-testing nanotoxicity evaluation. This is expected to allow to 

reduce the high cost and time needed by conventional evaluation methods. However, all the 

proposed hypotheses should be further confirmed by more nano-(Q)SAR studies in pace 

with the advance of computational nanotoxicology. 

In conclusion, the added value of this review can be summarized as: 

(i) a general overview was provided of the datasets being widely used in nano-(Q)SAR 

studies coupled with the provided characterization of ENMs. Experimental data were 

shown to be mainly available concerning the cellular uptake by different cell lines (e.g., 

PaCa2, HUVEC), cytotoxicity to cells (e.g., HaCaT, BEAS-2B), and the toxicity to E. coli. A 

limited usage of existing data in relevant investigations was observed; 

(ii) an overview was presented on nano-(Q)SARs developed so far, based on a variety of 

modeling techniques such as linear and non-linear regressions (MLR, PLS, logistic 

regression), SVM, ANN, and kNN; 

(iii) an interpretation of the underlying mechanisms of ENMs’ toxicity and cellular uptake 

was provided on the basis of the descriptors discussed in nano-(Q)SAR studies. Surface 
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properties of ENMs were deemed vital for the uptake of ENMs by different cell lines, such 

as lipophilicity, hydrogen bonding capacity, electronegativity, shape, and size. The capability 

of releasing ions and generating ROS, surface redox properties of ENMs were concluded to 

be important indicators for evaluating the toxicity of ENMs; 

(iv) an outlook was presented regarding the experimental data needed for future modeling 

and the need of proper characterization of ENMs. Owing to the limited data availability, 

optimizing the usage of existing information of nanotoxicity should be deliberately 

considered, and thus integrating relevant available data becomes vital for the development 

of nano-(Q)SARs. Meanwhile, whether or not the dynamic transformations of ENMs in 

media play a vital role in the computer-aided nanotoxicity also ought to be further discussed. 
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Abstract 

Categorization of the environmental hazards associated with engineered nanomaterials 

(ENMs) is important for evaluating the potential risks brought by commercialized ENMs. 

Such a task is so far severely hindered because of insufficient amount of available toxicity 

data. As biological assays are costly and time-consuming and also face the ethical issue of 

animal use, computational modeling such as (quantitative) nanostructure-activity 

relationships (nano-(Q)SARs) is valued as a potential tool to fill in the data gaps. With this 

in mind, nano-SARs classifying the ecotoxicity of ENMs were developed in this study with 

the aims: (i) to examine the availability of nanoecotoxicity data in developing nano-SARs; 

and (ii) to build nano-SARs that assist the hazard categorization of ENMs for the regulatory 

purposes. Multi-source ecotoxicity data were retrieved, on basis of which descriptors 

quantifying the ENM structures were calculated. By employing four extensively used tree 

algorithms, global nano-SARs across species and species-specific models were derived with 

significant predictive power. For the LC50 global models, the functional tree, C4.5 decision 

tree, and random tree models all correctly classified more than 70.0% of the samples on 

training (320 ENMs) and test sets (80 ENMs). The functional tree predicting the toxicity of 

metallic ENMs to Danio rerio showed accuracies of 93.4% and 100% on respectively training 

(76 ENMs) and test sets (18 ENMs). Descriptors present in the species-specific models 

were analyzed to discuss the key factors affecting nanotoxicity. With easily obtained 

descriptors and transparent predictive rules, we believe the developed nano-SARs could 

assist the expedited review of ENMs’ hazards and facilitate better-informed regulatory 

decisions of ENMs. 

 

Key words: classification, mechanisms, metallic nanomaterials, nano-(Q)SAR, toxicity 
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4.1 Introduction 

Assessing the potential environmental risks posed by engineered nanomaterials (ENMs) is 

essential to ensure that the marketed ENMs are used as safely as possible. It is believed that, 

a preliminary categorization of ENMs will benefit the early stages of qualitative risk analysis 

either by manufacturers or by regulators, to target the ENMs of high risk concerns and so 

as to prioritize more detailed testing of ENMs (Godwin et al., 2015). The European 

Chemicals Agency, for instance, has released reports and documents alike to address the 

usefulness of ENM grouping serving to the streamline testing for the regulatory purposes 

(Godwin et al., 2015). The U.S.-Canada Regulatory Cooperation Council also reported 

development of the classification scheme for ENMs in order to identify the ‘ENMs of 

concern’ that are likely to behave differently compared to their bulk scale counterparts 

(RCC-NI, 2013). Generally, one of the commonly used strategies of ENM categorization is 

to group ENMs based on different measures of biological activities. An example of this can 

be found in the CLP-Regulation (EC) No 1272/2008, which suggests that chemicals can be 

classified as acutely toxic or as chronically toxic at multiple levels according to the outcomes 

of standardized toxicity tests (Juganson et al., 2015; CEC, 1996). Another example is the EU 

Directive 93/67/EEC that recommends to rank the chemical hazard to aquatic species into 

four hierarchies, i.e. very toxic, toxic, harmful, and not classified, on the basis of at least 

three standard test species algae, crustacean, and fish (CEC, 1996). Unsurprisingly, however, 

those risk potential-based material categorizations require an enormous amount of hazard 

information of ENMs intended for adequately evaluating the safety of the materials. Given 

the substantial number of existing, non-tested ENMs and the rapid growth of ENMs 

innovation, it is, consequently, expected that alternatives of testing assays such as 

(quantitative) nanostructure-activity relationships (termed as nano-(Q)SARs) could be 

effectively used to fill in data gaps while with the minimum of financial cost and time 

consumption. The application of (Q)SARs in ENM categorization is seen to be quite 

advanced as it is capable of promoting the safe use of ENMs (Tantra et al., 2015). 

Meanwhile, employing (Q)SARs in ENMs’ risk assessment also meets the 3R’s principle 

(refine, reduce, and replace) of animal use in toxicity testing (Russell and Burch, 1959). 

Previously, a few nano-(Q)SAR models have been established by linking ENMs’ biological 

responses to the experimental and/or computational characterization of ENMs (Chen et al., 

2015). One of the issues so far in developing nano-(Q)SARs is that a relatively small 

number of datasets were repeatedly used by different studies (Winkler, 2016). This may be 

because of one of the obstacles of using multi-source data in developing nano-(Q)SARs 

being the lack of data consistency between diverse researches. This lack of data leads to the 

difficulty of comprehensively characterizing the structures of ENMs in an entire dataset 

especially for fully quantifying the information on surface coatings and functional groups of 
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ENMs. However, given the constantly increasing amount of scientific resources from 

numerous scientific programs on nanomaterial safety, and given the urgent need of further 

development in computational nanotoxicology to assist the risk assessment of 

nanomaterials, nano-(Q)SARs based on the integration and maximization of the use of 

existing nanotoxicity data also seems to be of particular importance. We hence aimed to 

derive classification nano-SARs by using the currently available and accessible nanotoxicity 

data on environmental species shared in various publications and scientific resources. 

Feasible strategy of computationally characterizing the structures of ENMs was chosen. The 

purposes of this study are summarized as, firstly, to examine the availability of existing 

nanoecotoxicity data in developing nano-SARs; and secondly, to build classification models 

for ENMs assisting the nanomaterial hazard categorization for estimating the risks of metal-

based nanomaterials. 

To begin with, three datasets were obtained from various publications and scientific 

resources, and considered for the use of modeling. The structural descriptors were 

calculated using a web-based platform Online Chemical Modeling Environment (OCHEM) 

which characterize the information of the core of metal-based ENMs (Sushko et al., 2011). 

To acquire transparent and easily applicable classification models, four extensively employed 

tree algorithms embedded in the Weka (version 3.6) were considered for modeling, namely 

functional tree, C4.5 decision tree, random tree, and simple CART (Hall et al., 2009). Based 

on the descriptors and algorithms, global nano-SARs across species as well as species-

specific models were developed with significant predictability. The global models are 

favorable for ranking the general biological effects of ENMs regardless of targeted species, 

while species-specific models are able to offer in depth knowledge of nanotoxicity and may 

also be more applicable when the estimation of nanotoxicity is based on certain species (e.g. 

categorize ENMs based on EU Directive 93/67/EEC). Descriptors appearing in the 

species-specific nano-SARs were analyzed in light of a mechanistic interpretation of the 

toxicity triggered by metallic ENMs. The present study examined the availability of 

published nanoecotoxicity data in deriving nano-(Q)SARs and demonstrated the possibility 

of building nano-SARs using multi-sources datasets. 

 

4.2 Methods 

4.2.1 Datasets 

We previously established a database summarizing and describing the toxicity of metal-

based ENMs to selected organisms in light of the development of nano-(Q)SARs (Chen et 
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al., 2015). Records of the commonly used toxicity endpoints in this database, including 

EC50 (the effective concentration that causes 50% response), EC20, LC50 (the 

concentration which leads to 50% mortality), LC20, MIC (minimum inhibitory 

concentration), and NOEC (no observed effect concentration) were manually uploaded to 

the web-based platform on 18th August, 2015 (Sushko et al., 2011). Using the OCHEM 

platform, an analysis of the available ecotoxicity data of metal-based ENMs was performed 

on 28th August, 2015, which provided us with three datasets containing the toxicity of 

various metal-based ENMs to different hierarchies of species: (I) 400 ENMs from 90 

publications or reports provided with experimental data on LC50; (II) 450 ENM records 

from 79 publications or reports with quantitative information on EC50 values; and (III) 166 

ENMs obtained from 13 publications with experimental values of the MIC. MIC 

characterizes the antimicrobial properties of ENMs and is therefore a common 

experimental endpoint in antimicrobial assays. Even though the use of MIC does not 

currently fit into the scheme of evaluating ENMs’ risks based on different species, we still 

included this case study so as to further examine the feasibility of building nano-SARs for 

different hierarchies of species. Units of the toxicity values were unified into mg/L in the 

datasets. For building global nano-SARs across species, the three datasets I, II, and III were 

used as three case studies. As for constructing models for single species, from each of the 

dataset two species with the most toxicity endpoint records were chosen. As a result, the 

selected species were Danio rerio (94 records including embryo, LC50), Daphnia magna (102, 

LC50), Pseudokirchneriella subcapitata (66, EC50), Daphnia magna (105, EC50), Escherichia coli 

(41, MIC), and Staphylococcus aureus (39, MIC). 

As it is acknowledged, thresholds that discretize the numeric values are of significant 

importance for building classification models, which thus should be carefully discussed and 

selected on the basis of different strategies and application requirements (Liu et al., 2013). 

In this study, we initially examined the tendency of model predictability with the shift of 

threshold values. And afterwards thresholds that lead to the most balanced predictive 

performances were conditionally considered. Referring to the regulations and directives 

nowadays in force, consideration of the thresholds for global models was restricted to the 

values of 0.1, 1.0, 10.0, and 100.0 mg/L, which are, for instance, used by both the 

aforementioned CLP-Regulation (EC) No 1272/2008 and the EU Directive 93/67/EEC. 

For the species specific nano-SARs, thresholds of 1.0, 10, 100 mg/L were taken (for 

Escherichia coli and Staphylococcus aureus only 10 and 100 mg/L because of narrower variation 

of toxicity values). Within each dataset the records were ranked based on the values of the 

toxicity endpoints. ENMs with toxicity values less than pre-specified threshold value were 

assigned to the ‘active’ class, and the rest of ENMs were labeled as ‘inactive’. When building 

models, 20% of the dataset was exclusively utilized for external validation. 
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4.2.2 Descriptor calculation 

Obtaining the structural descriptors of ENMs is essential to characterize the structures of 

ENMs besides the experimental measures. Using the ‘Calculate descriptors’ function 

implemented in OCHEM, three types of descriptors were calculated and acquired, the E-

state, ALogPS, and Chemaxon descriptors. For the E-state, both atom and bond types were 

considered for the indices and counts descriptors during calculation. The selected 

subgroups of Chemaxon descriptors are elemental analysis, charge, geometry, partitioning, 

protonation, and isomers that are generated at the specified pH value 7.4. For deriving 

global nano-SARs, all the three types of descriptors were considered. And as for species 

specific models the selection of descriptors was narrowed down to the ALogPS and 

Chemaxon descriptors in order to allow for easier and better understanding of the 

underlying toxicity mechanisms with the assistance of the descriptors. 

 

Figure 4.1. Decision test in a leaf node of a functional tree. Pactive and Pinactive are the 

categorical possibilities, factive and finactive are the regressions of input descriptors. Samples will 

be assigned to the group with the higher categorical possibility 

4.2.3 Modeling algorithms 

In order to build transparent rule-based nano-SARs that are easy to interpret and are 

capable of revealing information insight into the roles of structural descriptors, tree 

algorithms in Weka (version 3.6) were considered in the study. To avoid coincidence and 

also compare model performance, four extensively employed tree methods were used 

including functional tree, C4.5 decision tree, random tree, and simple CART (Hall et al., 

2009). 

In a functional tree model, both decision nodes and leaf nodes could contain tests based on 

either original input descriptors or the logistic regressions of descriptors (Gama, 2004). For 

binary classifications, prediction in the leaf nodes using logistic regressions of descriptors 

Pactive , Pinactive

Inactive Active

Pactive < Pinactive Pactive > Pinactive

Pactive= Pinactive=
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could be explained as in Figure 4.1, where Pactive and Pinactive are categorical possibilities 

needed to be compared; factive and finactive are the regressions of descriptors generated by the 

algorithm; inactive and active are the class labels to be returned for an observation. 

The C4.5 decision tree is an extension of the earlier ID3 algorithm (Quinlan, 1986). It 

generates decision-based tree models in which each inner node contains a test only on the 

original input descriptors (Quinlan, 1993). For each test, a splitting cut-off value is provided 

and used for value comparison. The classification of ENM toxicity is accomplished by 

traversing a tree model from the root node to leaf nodes. Upon reaching the leaf nodes, 

labels (active or inactive) stored in the nodes will be returned as predictions. 

The random tree algorithm constructs a tree randomly from a set of possible trees in which 

each tree has an equal chance of being sampled (Zhao and Zhang, 2008). A random tree is 

grown (without pruning) from data that has k randomly selected attributes at each node 

(Kukreja et al., 2012). The decision nodes contain queries only employing input descriptors 

and splitting thresholds, and leaf nodes comprise the category labels that an observation will 

be classified as. In the study, the k-value was set at 0 by default and the number of 

randomly chosen attributes was determined as log2(number of attributes) + 1. No depth 

restriction was set as the ‘maxDepth’ was 0 by default. 

As a decision tree learner for classification, the simple CART (classification and regression 

tree) employs the minimal cost-complexity pruning of the CART algorithm when 

constructing predictive trees (Witten et al., 2011). It finds cost-complexity, a measure of 

average error reduced per leaf, and calculates the number of errors for each node when the 

subtrees are replaced by leaves (Rajput and Arora, 2013). The simple CART generates 

binary decision tree models for categorization issues. It handles the missing data by ignoring 

that record (Kalmegh, 2015). 

4.2.4 Model performance evaluation 

To estimate the predictive power of generated models, each dataset was randomly split into 

a training set (80%) and a test set (20%) before model construction. The learning process on 

the training set was executed in 10-fold cross validation to ensure the model stability. 

Predictive accuracy was characterized by four statistical parameters, defined as sensitivity 

(SE=TP/AP), specificity (SP=TN/AN), accuracy (Q=(TP+TN)/(AP+AN)), and correct 

classification rate (CCR=0.5(stability+ specificity)). Thereinto, TP represents the predicted 

number of true positives (or active class), TN stands for the predicted number of true 

negatives (or inactive class). AP and AN are numbers of actual positives and negatives 

observed, respectively. Reportedly, classification accuracy higher than 70% is considered as 
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high predictive performance (Kleandrova et al., 2014). And classification models with CCR 

of both training and test sets higher than 60.0% would be considered acceptable (Fourches 

et al., 2010). Model complexity was characterized by the size of the tree (number of nodes). 

Additionally, the significance of test sets was also verified by randomly permuting class 

labels of the test sets for global nano-SARs. The predictive results on these disjoint datasets 

should be approximately 50% (close to the no-information rate) for binary classifications 

with balanced datasets (Furlanello et al., 2003). 

 

4.3 Results and discussion 

4.3.1 Global nano-SARs across species 

The influence of cut-off thresholds on model performances was primarily studied using the 

datasets I, II, and III. As can be seen in Figure S4.1, both high (0.1 mg/L) and low (100.0 

mg/L) threshold values were evidenced to result in biased predictions. The thresholds 

selected for dataset I (LC50), II (EC50), and III (MIC) are respective 1.0, 10.0, and 10.0 

mg/L to discretize numeric values for the case studies. After data discretization, dataset I 

was found to contain 175 ENMs of the active class and 225 of the inactive class; dataset II 

consisted of 246 ENMs labeled as active and 204 labeled as inactive; and dataset III has 87 

ENMs from the active group and 79 from the inactive group. Using the OCHEM platform, 

107, 95 and 122 computational descriptors were obtained for the datasets I, II, and III, 

respectively. Different nano-SARs were derived based on the descriptors which were linked 

to the nanotoxicity by the functional tree, C4.5 decision tree, random tree, and simple 

CART algorithms. An overview of the generated classification models is given in Table 4.1, 

in terms of modeling method, size of tree, sub-dataset, sensitivity, specificity, accuracy, and 

CCR. More details of the developed nano-SARs can be found in the Supplemental 

Information. 

For case study I, the learning process was executed on the basis of 320 ENMs in the 

training set, while models were validated on the test set comprising 80 ENMs. A cut-off 

value of 1.0 mg/L was applied to enable the derivation of nano-SARs. By comparison, 

functional tree, C4.5 decision tree, and simple CART generated tree models with relatively 

low complexity (size of tree are respective 1, 5, and 11). As shown in Table 4.1, the random 

tree model was observed to be larger with a tree size of 55. These nano-SARs applied to the 

training set yielded accuracies of 70.9% (functional tree), 71.6% (C4.5 decision tree), 70.6% 

(random tree), and 69.1% (simple CART). Except for the simple CART model which 

correctly predicted 68.8% of the observations from the test set, accuracies of the LC50-



 

 
105 

4 

related nano-SARs on the test set were all found to exceed 70.0%. The CCR values 

calculated on sensitivity and specificity are higher than 60.0% for all the four models. 

Specifically, the C4.5 decision tree model merely contains two structural descriptors 

maximalprojectionsize and molecularpolarizability which belong to the Chemaxon 

descriptors. The descriptor maximalprojectionsize relates to the size of the molecule 

perpendicular to the minimal projection area surface (based on the van der Waals radius). 

And molecularpolarizability associates with the polarizability of the molecule. This means 

that the influence of both size and polarizability of the core element of ENMs was indicated. 

The simple CART model consists of five descriptors correlated with the geometrical size 

(minimalprojectionsize, maximalprojectionarea, minimalprojectionradius), molecular 

polarizability (averagemolecularpolarizability), and accessible surface areas of all atoms with 

negative partial charge (asa_ASA-). Owing the higher model complexity, however, the 

simple CART model was found to yield no higher predictive performance compared to the 

C4.5 decision tree. The functional tree has a relatively simpler tree structure with only one 

node but used more input descriptors in the logistic regressions. 

With respect to the case study II, the 450 ENMs were randomly distributed to a training set 

of 360 ENMs and a test set of 90 ENMs. Numeric values of EC50 were discretized by a 

threshold of 10 mg/L. ENMs with EC50 values less than 10 mg/L were labeled as active, 

and the rest of ENMs were considered inactive. From the results show in Table 4.1, 

accuracies of all the models are between 60.0% and 65.0% for both training sets and test 

sets. This resulted from the low specificity of the nano-SARs while the models’ sensitivities 

were considered reasonable. Thus the constructed EC50 models possess relatively low 

predictability for the inactive class. The unbalanced performances on both classes also 

resulted in the low CCRs between 60.0% and 65.0%. 

Moreover, SAR-like models were also developed to predict the MICs of ENMs to various 

bacteria. In case study III, 133 ENMs were used to train the models and 33 ENMs were left 

out for the external validation. A threshold of 10.0 mg/L categorizes the ENMs into the 

active class (MIC < 10.0 mg/L) or the inactive class (MIC ≥ 10.0 mg/L). The results 

depicted in Table 4.1 show that the C4.5 decision tree and the simple CART models 

exhibited the best predictability on the training set (both 75.9%), followed by the functional 

tree (75.2%) and the random tree models (70.7%). Predictive performance of the four nano-

SARs on the test set gave the same results of 69.7% accuracy. CCRs of the training set are 

higher than 70.0% and those of the four test sets are all 69.7%. Except the most complex 

random tree model, the functional tree, C4.5 decision tree, and simple CART models have 

the same tree size of 3. Meanwhile, for both the C4.5 decision tree and the simple CART 

only the structural descriptor ALogPS_logS appeared in the built nano-SARs which is 
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associated with water solubility. The functional tree constructed the models using eight 

descriptors in its logistic regressions as can be seen in the Supplemental Information. 

 

Table 4.1. Classification performances of the derived nano-SARs in case study I, II, and III. 

FT - functional tree; C4.5 - C4.5 decision tree; RT - random tree; ntraing - number of ENMs 

in the training set; ntest - number of ENMs in the test set. Details of the selection of the 

threshold values was described in the Supplemental Infromation 

Method Size of tree Dataset Sensitivity Specificity Accuracy CCR 

Case study I – LC50 (ntraing = 320, ntest = 80), threshold value 1.0 mg/L 

FT 1 
Training set 0.750 0.678 0.709 0.714 

Test set 0.686 0.733 0.713 0.710 

C4.5 5 
Training set 0.671 0.750 0.716 0.711 

Test set 0.686 0.733 0.713 0.710 

RT 55 
Training set 0.679 0.728 0.706 0.704 

Test set 0.629 0.778 0.713 0.704 

Simple CART 11 
Training set 0.707 0.678 0.691 0.693 

Test set 0.686 0.689 0.688 0.688 

Case study II – EC50 (ntraing = 360, ntest = 90), threshold value 10.0 mg/L 

FT 1 
Training set 0.741 0.503 0.633 0.622 

Test set 0.796 0.415 0.622 0.606 

C4.5 9 
Training set 0.695 0.546 0.628 0.621 

Test set 0.816 0.415 0.633 0.616 

RT 39 
Training set 0.741 0.479 0.622 0.610 

Test set 0.816 0.439 0.644 0.628 

Simple CART 17 
Training set 0.650 0.564 0.611 0.607 

Test set 0.796 0.439 0.633 0.618 

Case study III – MIC (ntraing = 133, ntest = 33), threshold value 10.0 mg/L 

FT 3 
Training set 0.743 0.762 0.752 0.753 

Test set 0.706 0.688 0.697 0.697 

C4.5 3 
Training set 0.743 0.778 0.759 0.761 

Test set 0.706 0.688 0.697 0.697 

RT 13 
Training set 0.814 0.587 0.707 0.701 

Test set 0.706 0.688 0.697 0.697 

Simple CART 3 
Training set 0.743 0.778 0.759 0.761 

Test set 0.706 0.688 0.697 0.697 
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Figure 4.2. Developed C4.5 decision tree for the LC50 of metal-based ENMs. If LC50 < 1 

mg/L the ENM is judged as active, and if LC50 ≥ 1mg/L the ENM is inactive. 

 

Figure 4.3. Model classification performances on randomized test sets. To verify the 

significance of the test sets of the three case studies, class labels in each test set were 

permuted for five times which yielded the randomized test sets Random I, II, III, IV, and V. 

For binary classifications, accuracy of the models on these disjoint test sets should be 

approximately 50% (the no-information rate). 
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Figure 4.4. Developed functional tree (left) and C4.5 decision tree (right) models for Danio 

rerio (fish), Daphnia magna (crustacean), and Pseudokirchneriella subcapitata (algae). For the 

functional tree nano-SARs, Pactive and Pinactive can be calculated as 

Pactive=
exp (𝑓𝑎𝑐𝑡𝑖𝑣𝑒)

exp(𝑓𝑎𝑐𝑡𝑖𝑣𝑒)+exp(𝑓𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒)
, Pinactive=

exp (𝑓𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒)

exp(𝑓𝑎𝑐𝑡𝑖𝑣𝑒)+exp(𝑓𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒)
. 

 

The LC50 related functional tree, C4.5 decision tree, and random tree models showed 

reasonable predictability with accuracy (on training and test sets) higher than 70.0% and 

CCR higher than 60.0%, and with balanced performances on both categories. Based on a 

training set of 320 ENMs and test set of 80 ENMs, the C4.5 decision tree model is seen as 

relatively more concise as it only contains 5 nodes in the tree and uses two structural 

descriptors (maximalprojectionsize and molecularpolarizability), as shown in Figure 4.2. 
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Models presented in case study III were also considered acceptable based on the sensitivity, 

specificity, accuracy, CCR, and also tree complexity. As the developed nano-SARs exhibited 

similar predictive results on test sets, the significance of the test sets used in external 

validation was subsequently examined. We permuted the class labels in each test set for five 

times and validated the models with these randomized datasets afterwards. The results are 

depicted in Figure 4.3. As to case study I, the predictive accuracies on permuted test sets are 

between 46.3% and 58.8%. For case study II and III, it is 42.2% - 55.6 and 39.4% - 57.6%, 

respectively. Thus for all three cases, performances of the developed nano-SARs on the 

disjoint datasets are approximately 50% which is close to the no-information rate for binary 

classifications (Furlanello et al., 2003). It is therefore concluded that the original test sets are 

significant for model validation in the case studies I, II, and III. 

 

Table 4.2. Performance of species-specific nano-SARs with the statistically significant 

predictability. FT - functional tree; C4.5 - C4.5 decision tree; ntraing - number of ENMs in the 

training set; ntest - number of ENMs in the test set 

 Threshold 
(mg/L) 

Dataset Sensitivity Specificity Accuracy CCR 

Danio rerio, ntraining = 76, ntest = 18, LC50 

FT 

100 

Training set 0.943 0.913 0.934 0.928 

Test set 1.000 1.000 1.000 1.000 

C4.5 
Training set 0.906 0.913 0.908 0.910 

Test set 1.000 1.000 1.000 1.000 

Daphnia magna, ntraining = 82, ntest = 20, LC50 

FT 

1 

Training set 0.843 0.968 0.890 0.906 

Test set 0.750 1.000 0.850 0.875 

C4.5 
Training set 0.843 0.968 0.890 0.906 

Test set 0.750 1.000 0.850 0.875 

Pseudokirchneriella subcapitata, ntraining = 53, ntest = 13, EC50 

FT 

1 

Training set 0.944 0.914 0.925 0.929 

Test set 0.750 1.000 0.923 0.875 

C4.5 
Training set 0.944 0.914 0.925 0.929 

Test set 0.750 1.000 0.923 0.875 

Staphylococcus aureus, ntraining = 32, ntest = 7, MIC 

C4.5 100 
Training set 0.833 0.875 0.844 0.854 

Test set 0.800 1.000 0.857 0.900 



 

 
110 

4 Development of nano-SARs for metallic ENMs 

4.3.2 Species-specific nano-SARs 

Besides global models, species-specific nano-SARs were also built using the retrieved 

experimental data. This is in accordance with the recommendation of EU Directive 

93/67/EEC ranking the hazards of ENMs to aquatic species. To begin with, from each 

dataset two species with the most data records were chosen for model development, which 

are Danio rerio (94 records) and Daphnia magna (102 records) from dataset I, Daphnia magna 

(105 records) and Pseudokirchneriella subcapitata (66 records) from dataset II, and Escherichia coli 

(41 records) and Staphylococcus aureus (39 records) from dataset III. For building models, two 

typical tree algorithms among the four selected methods, the functional tree and C4.5 

decision tree algorithms were employed along with the ALogPS and Chemaxon descriptors. 

Cut-off thresholds investigated are respective 1, 10, and 100 mg/L. Performances of the 

derived nano-SARs are summarized in Table S4.1, Table S4.2, and Table S4.3 in the 

Supplemental Information. Models that exhibited significant predictive power are 

summarized and described in Table 4.2 and Figure 4.4. Nano-SARs were obtained for 

different hierarchies of species, i.e. Danio rerio (fish), Daphnia magna (crustacean), 

Pseudokirchneriella subcapitata (algae), and Staphylococcus aureus (bacteria). Details of these nano-

SARs are presented in Table 4.3, including the number of ENMs in the training and test 

sets, size of the developed tree model, number of descriptors, and the names of descriptors 

involved. 

The nano-SARs categorizing nanotoxicity to Danio rerio gave accuracies of 93.4% (functional 

tree) and 90.8% (C4.5 decision tree) on corresponding training sets (76 ENMs), and 100% 

accuracy on the two test sets (18 ENMs). Sensitivity and specificity of the two models are all 

above 90.0% on the training and test set (Table 4.2). This demonstrates the high 

predictability of the developed models. Model stability was ensured by executing 10-fold 

cross validation. Size of the corresponding functional tree model is 3 which means the 

nano-SAR only consists of one inner node and two decision nodes. As to Daphnia magna, 

the training set has 82 ENMs as samples for the learning process and the test set is 

comprised by 20 ENMs for validation. Accuracies of both the functional tree and the C4.5 

decision tree models were shown to be 89.0% (training set) and 85.0% (test set) that are 

statistically significant. The CCRs of the model exceeded 85.0%. As shown in Table 4.3, the 

sizes of the functional tree and the C4.5 decision tree are respectively 1 and 3. With regards 

to Pseudokirchneriella subcapitata, functional tree and C4.5 decision tree models were built on 

the basis of 53 ENMs and validated by 13 ENMs. Predictive accuracies are as high as 92.5% 

on training set and 92.3% on test set with regard to both the functional tree and C4.5 

decision tree with high CCR values. Moreover, built on a training set of 32 ENMs, the C4.5 

decision tree model predicting the MIC to Staphylococcus aureus also exhibited significant 

predictability of 84.4% and 85.7% for the training and test set, respectively. 
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Table 4.3. Descriptor details of the species-specific nano-SARs. FT - functional tree; C4.5 - 

C4.5 decision tree 

Nano-SAR Method ENMs 
number 

Tree 
size 

Descriptor 
number 

List of descriptors 

Danio rerio LC50 
values 

FT 94 3 7 
averagemolecularpolarizability, 
molecularpolarizability, mass, volume, 
plattindex, apKb1, ALogPS_logS 

C4.5 94 5 2 exactmass, asa_ASA 

Daphnia magna 
LC50 values 

FT 94 1 8 

molecularpolarizability, 
tholepolarizability_a_xx, 
tholepolarizability_a_zz, exactmass, volume, 
logp, asa_ASA+, asa_ASA_P 

C4.5 94 3 1 asa_ASA- 

Pseudokirchneriella 
subcapitata EC50 
values 

FT 66 1 8 

molecularpolarizability, 
tholepolarizability_a_yy, mass, 
minimalprojectionarea, volume, 
dreidingenergy, hyperwienerindex, 
ALogPS_logS 

C4.5 66 3 1 minimalprojectionarea 

Staphylococcus 
aureus MIC 
values 

C4.5 39 3 1 ALogPS_logS 

 

Notably, even though mechanisms of the toxicity induced by metal-based ENMs to various 

hierarchies of species may vary, some descriptors in the models characterizing similar 

factors of ENMs were commonly observed and identified. As shown in Table 4.3 and 

Figure 4.4, descriptors representing molecular polarizability frequently appeared in the 

functional tree models. Those descriptors include the averagemolecularpolarizability, 

molecularpolarizability, molecularpolarizability, tholepolarizability_a_xx, 

tholepolarizability_a_zz, molecularpolarizability, and tholepolarizability_a_yy, which 

characterize different aspects of the electronic polarizability’s contribution to nanotoxicity. 

Molecular polarizability measures the ability of the outer shell electrons in a molecule to 

move easily toward an external perturbation (Katritzky et al., 2007). Higher polarizability of 

the electrons in a molecule results in easier movement of electrons induced by an external 

electric field, which may trigger a series of biological reactions and lead to the toxicity of the 

materials (Singh and Gupta, 2014). For instance, detachment of an electron activated by 

solar radiation could stimulate the generation of hydroxyl radical OH as described in the 

study of Kar et al. (2014): 
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TiO2
ℎ𝑣
⇒ TiO2

+ + 𝑒̅ 

𝑒̅ + O2 → O2
− 

O2
− + 2H+ + 𝑒̅ → H2O2 

O2
− +H2O2 → OH

 + OH− + O2 

H+ +H2O⇒  OH
 + H+ 

Another discriminating factor is the accessible surface area of ENM cores that is quantified 

by asa_ASA (solvent accessible surface area), asa_ASA+ (solvent accessible surface area of 

all atoms with positive partial charge), asa_ASA_P (solvent accessible surface area of all 

polar atoms), and asa_ASA- (solvent accessible surface area of all atoms with negative 

partial charge) in the nano-SARs. The accessible surface area is defined as the accessible 

surface of molecules to a solvent (Zhang et al., 2008). For uncoated ENMs, the exposed 

surface area to the surroundings reflects the amount of atoms to be displayed on the surface 

and the potential of molecules to interact with the subcellular structures of species. As 

acknowledged, one of the outstanding properties of ENMs is the higher surface/volume 

ratio compared to that of their bulk counterparts which provides them increased surface 

reactivity and therefore possibly high toxicity (Li et al., 2008). As surface coatings are able to 

influence the toxicity of ENMs to species, surface area of ENM core still seems to play a 

role in nanotoxicity for the ENMs with modified surface. Moreover, descriptors quantifying 

the solubility were also observed such as apKb1 (dissociation constant) and ALogPS_logS 

(solubility in water) generated by OCHEM. Previous studies have shown that ENMs with 

less hardness and high solubility tend to exhibit stronger hazard effects (Gajewicz et al., 

2015). This may be because the metal-ion leaching from ENM surface could act as one of 

the key factors inducing nanotoxicity (Hua et al., 2014; Xiao et al., 2015). Take Cu ENMs as 

an example, the release of Cu2+ from Cu-based nanoparticles could cause the generation of 

OH as follows (Stohs and Bagchi, 1995): 

O2
− + Cu2+ → O2 + Cu

+ 

Cu+ + H2O2 → Cu
2+ + OH− + OH 

The toxicity of ENMs may occur when the derived reactive oxygen species and the ions per 

se jointly or independently interact with the subcellular structures of species. Meanwhile, the 

geometrical descriptors minimalprojectionarea and minimalprojectionarea were also utilized 

in the model which indicate the spatial arrangement of the atoms forming a molecule. These 
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descriptors are associated with the molecular surface information obtained from atomic van 

der Waals areas and their overlap (Singh and Gupta, 2014). The descriptors relate to mass 

(mass, exactmass) and complexity (plattindex) were used in the nano-SARs as well. The 

Platt index is the sum of the degrees of all edges in the molecular graph, and is a 

considerably better measure of molecular complexity than merely the number of edges 

(Balaban et al., 1983; Saitta and Zucker, 2013). 

4.3.3 Implications to the risk assessment of ENMs 

On the basis of the computational descriptors offered by OCHEM and the assembled 

ecotoxicity data of metal-based nanomaterials, the developed LC50- and MIC-related global 

models and the species-specific nano-SARs showed reasonable predictive power. This 

demonstrates that it is indeed feasible to build nano-SARs using multi-sources datasets if 

the structures of ENMs are appropriately characterized. It also again confirms that the 

nano-(Q)SARs ought to be viewed as a potentially helpful tool in assisting the expedited 

review of ENM hazard categorization for the risk assessment of nanomaterials. With the 

experimental data retrieved from different scientific resources inconsistently characterizing 

the structures of ENMs, we managed to build nano-SARs classifying the nanoecotoxicity 

using descriptors solely representing the ENM cores. Such modeling tasks employing large 

datasets critically rely on the availability and quality of the datasets, and also on the 

comprehensive representation of ENM structures based on provided information. To 

accelerate the development of (Q)SAR-like models for nanomaterials much needs to be 

improved. Agreement on better data quality and availability are essential for nano-(Q)SARs 

with respect to both the toxicological and the componential aspects of the studied ENMs 

(Winkler, 2016). That is, the problem so far of the successful application of computational 

nanotoxicology is rather experimental, together with inadequate computational 

quantifications of ENM structures, than mathematical or statistical (Winkler, 2016). Unlike 

individual chemicals that are structurally unambiguous and possibly less complex, 

nanomaterials often exist as populations of materials varying in sizes, shapes, composites, 

and functional groups, etc. which can all significantly influence their biological interactions 

with environmental species (Chen et al., 2015). The structural uncertainty of the materials 

brings difficulty to experimentalists to offer complete and precise characterization of ENM 

structures, which subsequently hinders the calculation of representative descriptors for 

ENMs even when the compositions may have been properly provided (Fourches et al., 

2011). The lack of data consistency especially in characterizing the structure of ENMs 

prevents the use of experimental data in developing nano-(Q)SARs, and may be one of the 

driving reasons why only a few datasets have been repeatedly used by the state-of-art of 

nano-(Q)SARs. 
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4.4 Conclusions 

In this study, global nano-SARs across species and species-specific models classifying the 

ecotoxicity of metal-based ENMs were proposed. The models are intended to assist the 

nanomaterial hazard categorization and facilitate the ENM-related risk assessment and 

regulatory decision-making. To test the availability of existing nanotoxicity data in 

developing nano-(Q)SARs, datasets containing ecotoxicity information of ENMs from 

various publications or scientific resources were used including the LC50 (400 ENMs), 

EC50 (450 ENMs), and MIC (166 ENMs) related datasets. Due to the limited information 

characterizing the coating and functional groups of ENMs, descriptors were generated by 

the OCHEM to represent the core of the metal-based ENMs. Using the tree algorithms 

selected, easily interpretable and applicable classification nano-SARs were derived with 

significant predictability. The LC50 and MIC related global nano-SARs exhibited up to 

more than 70% accuracy of classification. The species-specific models were also developed 

to categorize the toxicity of metal-based ENMs to Danio rerio, Daphnia magna, 

Pseudokirchneriella subcapitata, and Staphylococcus aureus. Descriptor analysis indicated the role of 

molecular polarizability, accessible surface area, and metal-ion leaching in affecting the 

ecotoxicity of ENMs. 
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Chapter 4 Supplemental Information 

 

Figure S4.1. Effect of classification threshold values on model performances. Case study I: 

LC50 values of 400 ENMs, the optimal threshold value is 1 mg/L for discretizing the 

numerical values; Case study II: EC50 values of 450 ENMs, the optimal threshold value is 

10 mg/L; Case study III: MIC values of 166 ENMs, the optimal threshold value is 10 mg/L. 
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Influence of Discretization Thresholds on Model Performances 

Before building models, the influences of discretization thresholds on model performances 

were taken into consideration. For global models, a series of thresholds were chosen to 

examine the tendency of model predictability with the shift of thresholds. Values of the 

thresholds were set to be 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 30, 50, 70, and 100.0 

mg/L for the case studies of LC50 and EC50, and 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 50.0, and 

100.0 mg/L for MIC due to a narrower variation of toxicity values. Within each dataset the 

records were ranked based on the values of toxicity endpoints. ENMs with toxicity values 

less than the threshold values were assigned to the ‘active’ class, and the rest of ENMs were 

labeled as ‘inactive’. On the basis of different classification performances, the thresholds 

that lead to the most balanced predictive performances for both active and inactive groups 

were considered for the three case studies. Referring to the regulations and directives 

nowadays in force, choice of the thresholds for global models was restricted to the values of 

0.1, 1.0, 10.0, and 100.0 mg/L, which are, for instance, used by the CLP-Regulation (EC) 

No 1272/2008 and the EU Directive 93/67/EEC to rank the hazard effects of chemicals. 

As results, selected cut-off values for case studies I, II, and III are respective 1, 10, and 10 

mg/L, as described in Figure S1. 

 

Developed Classification Models 

Case study I LC50: 

Functional tree 

 

factive = 2.28 - 0.07×[tholepolarizability_a_zz] - 0.01×[volume] - 0.03×[polarsurfacearea] - 
0.1×[SddTi] + 0.14×[SsAg] - 15.18×[SdAg] - 0.63×[Se1Al1Al1] - 0.34×[SsCo] - 5.56×[SdCa] 
- 0.26×[SsSn] + 0.37×[SsNi] - 0.21×[SsSe] + 1.48×[ALogPS_logP] = -finactive 

 

Pactive , Pinactive

Inactive Active

Pactive < Pinactive Pactive > Pinactive
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Random tree 

asa_ASA_P< 78 
|   minimalprojectionarea < 10.3 
|   |   exactmass < 82.45 
|   |   |   ALogPS_logS < 0.45 
|   |   |   |   ALogPS_logS < 0.1 : Inactive (3/1) 
|   |   |   |   ALogPS_logS >= 0.1 : Active (2/0) 
|   |   |   ALogPS_logS >= 0.45 : Inactive (4/0) 
|   |   exactmass >= 82.45 
|   |   |   maximalprojectionradius < 3.01 
|   |   |   |   wienerindex < 0.5 
|   |   |   |   |   ALogPS_logP < -1.31 
|   |   |   |   |   |   ALogPS_logS < 0.1 
|   |   |   |   |   |   |   ALogPS_logS < 0.02 : Active (4/1) 
|   |   |   |   |   |   |   ALogPS_logS >= 0.02 : Active (7/0) 
|   |   |   |   |   |   ALogPS_logS >= 0.1 
|   |   |   |   |   |   |   ALogPS_logS < 0.13 : Inactive (1/0) 
|   |   |   |   |   |   |   ALogPS_logS >= 0.13 
|   |   |   |   |   |   |   |   ALogPS_logS < 0.31 : Active (1/0) 
|   |   |   |   |   |   |   |   ALogPS_logS >= 0.31 
|   |   |   |   |   |   |   |   |   ALogPS_logS < 0.86 
|   |   |   |   |   |   |   |   |   |   ALogPS_logS < 0.64 : Inactive (17/8) 
|   |   |   |   |   |   |   |   |   |   ALogPS_logS >= 0.64 : Active (31/15) 
|   |   |   |   |   |   |   |   |   ALogPS_logS >= 0.86 : Inactive (1/0) 
|   |   |   |   |   ALogPS_logP >= -1.31 : Active (15/0) 
|   |   |   |   wienerindex >= 0.5 : Active (18/8) 
|   |   |   maximalprojectionradius >= 3.01 
|   |   |   |   logd < -0.87 : Active (1/0) 
|   |   |   |   logd>= -0.87 : Active (57/16) 
|   minimalprojectionarea >= 10.3 : Inactive (8/0) 
asa_ASA_P >= 78 
|   asa_ASA- < 89.7 
|   |   tholepolarizability_a_xx < 5.05 
|   |   |   tholepolarizability_a_xx < 3.26 : Inactive (2/0) 
|   |   |   tholepolarizability_a_xx >= 3.26 
|   |   |   |   exactmass < 101.45 
|   |   |   |   |   maximalprojectionradius < 2.45 
|   |   |   |   |   |   minimalprojectionradius < 1.68 : Active (4/2) 
|   |   |   |   |   |   minimalprojectionradius >= 1.68 : Inactive (40/12) 
|   |   |   |   |   maximalprojectionradius >= 2.45 
|   |   |   |   |   |   minimalprojectionradius < 1.67 : Inactive (4/0) 
|   |   |   |   |   |   minimalprojectionradius >= 1.67 : Inactive (22/9) 
|   |   |   |   exactmass >= 101.45 : Active (2/0) 
|   |   tholepolarizability_a_xx >= 5.05 : Active (1/0) 
|   asa_ASA- >= 89.7 
|   |   molecularpolarizability < 6.67 
|   |   |   chainbondcount < 1.5 : Inactive (3/0) 
|   |   |   chainbondcount >= 1.5 
|   |   |   |   minimalprojectionradius < 2.49 
|   |   |   |   |   dreidingenergy < 61.85 : Inactive (2/0) 
|   |   |   |   |   dreidingenergy >= 61.85 
|   |   |   |   |   |   chainatomcount < 4 : Inactive (43/6) 
|   |   |   |   |   |   chainatomcount >= 4 : Inactive (8/1) 
|   |   |   |   minimalprojectionradius >= 2.49 : Inactive (8/2) 
|   |   molecularpolarizability >= 6.67 : Inactive (11/0) 
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C4.5 decision tree 

 

 

 

 

Simple CART 
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Case study II EC50: 

Functional tree 

 

factive = 0.46 - 0.22×[rotatablebondcount] - 0.11×[SsAg] - 0.35×[Se2Ni1O1] + 

0.49×[Se1Au1Au1] - 0.44×[SdsDy] + 0.61×[Se1Er2O2ds] - 0.6×[SsFe] + 0.23×[SsAl] + 

0.18×[SdsSb] = - finactive 

 

 

 

C4.5 decision tree 
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Random tree 

balabanindex < 1.32 
|   molecularpolarizability < 4.33 
|   |   maximalprojectionarea < 13.35 
|   |   |   logp < -0.65 
|   |   |   |   minimalprojectionarea < 7.07 : Inactive (1/0) 
|   |   |   |   minimalprojectionarea >= 7.07 : Active (66/31) 
|   |   |   logp >= -0.65 
|   |   |   |   minimalprojectionsize < 4.73 : Active (59/29) 
|   |   |   |   minimalprojectionsize >= 4.73 : Active (2/0) 
|   |   maximalprojectionarea >= 13.35 : Inactive (5/0) 
|   molecularpolarizability >= 4.33 
|   |   minimalprojectionsize < 6.45 
|   |   |   maximalprojectionsize < 0.9 
|   |   |   |   ALogPS_logS < -0.03 : Active (16/6) 
|   |   |   |   ALogPS_logS >= -0.03 
|   |   |   |   |   ALogPS_logS < 0.7 
|   |   |   |   |   |   ALogPS_logP < -1.11 
|   |   |   |   |   |   |   ALogPS_logS < 0.31 : Active (3/0) 
|   |   |   |   |   |   |   ALogPS_logS >= 0.31 
|   |   |   |   |   |   |   |   ALogPS_logS < 0.54 : Active (34/4) 
|   |   |   |   |   |   |   |   ALogPS_logS >= 0.54 : Active (1/0) 
|   |   |   |   |   |   ALogPS_logP >= -1.11 : Active (8/2) 
|   |   |   |   |   ALogPS_logS >= 0.7 
|   |   |   |   |   |   ALogPS_logS < 0.95 : Active (24/8) 
|   |   |   |   |   |   ALogPS_logS >= 0.95 : Active (3/0) 
|   |   |   maximalprojectionsize >= 0.9 
|   |   |   |   maximalprojectionradius < 3.19 : Active (12/0) 
|   |   |   |   maximalprojectionradius >= 3.19 : Active (18/4) 
|   |   minimalprojectionsize >= 6.45 : Inactive (1/0) 
balabanindex >= 1.32 
|   logd < -0.43 
|   |   atomcount < 4 
|   |   |   molecularsurfacearea < 88.1 
|   |   |   |   minimalprojectionradius < 2.25 : Inactive (68/22) 
|   |   |   |   minimalprojectionradius >= 2.25 : Inactive (3/0) 
|   |   |   molecularsurfacearea >= 88.1 : Inactive (26/11) 
|   |   atomcount >= 4 : Active (2/0) 
|   logd >= -0.43 : Inactive (8/0) 
 
 

Simple CART 

asa_ASA_H < 61.0 
|  minimalprojectionsize < 4.93 
|  |  minimalprojectionarea < 7.029999999999999: Active(2.0/0.0) 
|  |  minimalprojectionarea >= 7.029999999999999 
|  |  |  averagemolecularpolarizability < 2.94: Active(35.0/31.0) 
|  |  |  averagemolecularpolarizability >= 2.94: Active(30.0/29.0) 
|  minimalprojectionsize >= 4.93 
|  |  averagemolecularpolarizability < 7.52 
|  |  |  tholepolarizability_a_xx < 3.4349999999999996 
|  |  |  |  minimalprojectionarea < 12.55 
|  |  |  |  |  tholepolarizability_a_yy < 4.4: Inactive(15.0/11.0) 
|  |  |  |  |  tholepolarizability_a_yy >= 4.4: Inactive(46.0/22.0) 
|  |  |  |  minimalprojectionarea >= 12.55: Inactive(3.0/0.0) 
|  |  |  tholepolarizability_a_xx >= 3.4349999999999996: Inactive(14.0/0.0) 
|  |  averagemolecularpolarizability >= 7.52: Active(2.0/0.0) 
asa_ASA_H >= 61.0: Active(95.0/25.0) 
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Case study III MIC: 

Functional tree 

 

f1,active = 5.1 + 0.14×[minimalprojectionarea] + 0.01×[asa_ASA_H] - 1.07×[balabanindex] -

0.14×[hararyindex] - 0.01×[asa_ASA+] - 0.61×[SsCu] + 5.91×[ALogPS_logP] + 

0.91×[ALogPS_logS] = -f1,inactive 

f2,active = 59.21 - 0.29×[averagemolecularpolarizability] + 0.14×[minimalprojectionarea] + 

0.01×[asa_ASA_H] -1.07×[balabanindex] -0.14×[hararyindex] - 0.01×[asa_ASA+] - 

0.61×[SsCu] + 46.68×[ALogPS_logP] + 0.39×[ALogPS_logS] = -f2,active 

 

 

C4.5 decision tree 
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Random tree 

tholepolarizability_a_yy < 2.05 
|   ALogPS_logP < -1.31 
|   |   ALogPS_logS < 0.11 : Inactive (5/0) 
|   |   ALogPS_logS >= 0.11 
|   |   |   ALogPS_logS < 0.31 : Inactive (27/13) 
|   |   |   ALogPS_logS >= 0.31 : Inactive (13/4) 
|   ALogPS_logP >= -1.31 : Active (66/14) 
tholepolarizability_a_yy >= 2.05 
|   maximalprojectionarea < 21 : Inactive (18/0) 
|   maximalprojectionarea >= 21 
|   |   chainatomcount < 3.5 : Inactive (3/1) 
|   |   chainatomcount >= 3.5 : Inactive (1/0) 
 
 
Table S4.1. Performances of the LC50 related nano-SARs for Danio rerio and Daphnia magna. 

The best performance of the models were bolded in the table 

 Threshold (mg/L) Data set Sensitivity Specificity Accuracy CCR 

Danio rerio, ntraining = 76, ntest = 18 

Functional tree 

1 
Training set 0.389 0.828 0.724 0.609 

Test set 0.750 0.714 0.722 0.732 

10 
Training set 0.868 0.632 0.750 0.750 

Test set 0.667 0.556 0.611 0.612 

100 
Training set 0.943 0.913 0.934 0.928 

Test set 1 1 1 1 

C4.5 decision tree 

1 
Training set 0.056 0.948 0.737 0.502 

Test set 0 1 0.778 0.500 

10 
Training set 0.947 0.632 0.789 0.790 

Test set 1 0.556 0.778 0.778 

100 
Training set 0.906 0.913 0.908 0.910 

Test set 1 1 1 1 

Daphnia magna, ntraining = 82, ntest = 20 

Functional tree 

1 
Training set 0.843 0.968 0.890 0.906 

Test set 0.750 1 0.850 0.875 

10 
Training set 0.971 0.250 0.866 0.611 

Test set 0.941 0.333 0.850 0.637 

100 
Training set 1 0 0.927 0.500 

Test set 0.947 0 0.900 0.474 

C4.5 decision tree 

1 
Training set 0.843 0.968 0.890 0.906 

Test set 0.750 1 0.850 0.875 

10 
Training set 0.957 0.250 0.854 0.604 

Test set 0.941 0.333 0.850 0.637 

100 
Training set 1 0 0.927 0.500 

Test set 1 0 0.950 0.500 



 

 
126 

4 Development of nano-SARs for metallic ENMs 

Table S4.2. Performances of the EC50 related nano-SARs for Daphnia magna and 

Pseudokirchneriella subcapitata. The best performance of the models were bolded in the table 

 Threshold 
(mg/L) 

Data set Sensitivity Specificity Accuracy CCR 

Daphnia magna, ntraining = 84, ntest = 21 

Functional 
tree 

1 
Training set 0.552 0.909 0.738 0.731 

Test set 0.500 1 0.762 0.750 

10 
Training set 0.926 0.313 0.810 0.620 

Test set 1 0.500 0.905 0.750 

100 
Training set 1 0 0.929 0.500 

Test set 1 0 0.905 0.500 

C4.5 decision 
tree 

1 
Training set 0.550 0.909 0.738 0.730 

Test set 0.500 1 0.762 0.750 

10 
Training set 0.912 0.375 0.810 0.644 

Test set 0.824 0.750 0.810 0.787 

100 
Training set 1 0 0.929 0.500 

Test set 1 0 0.905 0.500 

Pseudokirchneriella subcapitata, ntraining = 53, ntest = 13 

Functional 
tree 

1 
Training set 0.944 0.914 0.925 0.929 

Test set 0.750 1 0.923 0.875 

10 
Training set 0.813 0.667 0.755 0.740 

Test set 0.750 0.800 0.769 0.775 

100 
Training set 1 0 0.906 0.500 

Test set 1 0 0.846 0.500 

C4.5 decision 
tree 

1 
Training set 0.944 0.914 0.925 0.929 

Test set 0.750 1 0.923 0.875 

10 
Training set 0.781 0.667 0.736 0.724 

Test set 0.750 0.800 0.769 0.775 

100 
Training set 1 0 0.906 0.500 

Test set 1 0 0.846 0.500 
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Table S4.3. Performances of the MIC related nano-SARs for Escherichia coli and Staphylococcus 

aureus. The best performance of the models were bolded in the table 

 Threshold 
(mg/L) 

Data set Sensitivity Specificity Accuracy CCR 

Escherichia coli, ntraining = 33, ntest = 8 

Functional 
tree 

10 
Training set 0 1 0.636 0.500 

Test set 0 1 0.625 0.500 

100 
Training set 1 0 0.515 0.500 

Test set 0.882 0.563 0.727 0.723 

C4.5 decision 
tree 

10 
Training set 0.250 0.905 0.667 0.578 

Test set 0 1 0.625 0.500 

100 
Training set 0 1 0.5 0.500 

Test set 0.750 1 0.875 0.875 

Staphylococcus aureus, ntraining = 32, ntest = 7 

Functional 
tree 

10 
Training set 1 0 0.563 0.500 

Test set 0.750 0.667 0.714 0.709 

100 
Training set 1 0 0.750 0.500 

Test set 0.800 1 0.857 0.900 

C4.5 decision 
tree 

10 
Training set 0.667 0.357 0.531 0.512 

Test set 0.750 0.667 0.714 0.709 

100 
Training set 0.833 0.875 0.844 0.854 

Test set 0.800 1 0.857 0.900 
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Abstract 

A species sensitivity distribution (SSD) for engineered nanomaterials (ENMs) ranks the 

tested species according to their sensitivity to a certain ENM. An SSD may be used to 

estimate the maximum acceptable concentrations of ENMs for the purpose of 

environmental risk assessment. To construct SSDs for metal-based ENMs, more than 1800 

laboratory derived toxicity records of metallic ENMs from >300 publications or open 

access scientific reports were retrieved. SSDs were developed for the metallic ENMs 

grouped by surface coating, size, shape, exposure duration, light exposure, and different 

toxicity endpoints. It was found that PVP- and sodium citrate- coatings enhance the toxicity 

of Ag ENMs as concluded from the relevant SSDs. For the Ag ENMs with different size 

ranges, differences in behavior and/or effect were only observed at high exposure 

concentrations. The SSDs of Ag ENMs separated by both shape and exposure duration 

were all nearly identical. Crustaceans were found to be the most vulnerable group to 

metallic ENMs. In spite of the uncertainties of the results caused by limited data quality and 

availability, the present study provided novel information about building SSDs for 

distinguished ENMs and contributes to the further development of SSDs for metal-based 

ENMs. 

 

Key words: ecotoxicity; engineered nanomaterial; modeling; risk assessment; species 

sensitivity distributions 
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5.1 Introduction 

Over the last decade, products that incorporate nano-structured materials have been rapidly 

introduced to the market. In 2014, the value of the global market regarding nanotechnology 

products was estimated to be $26 billion, and is expected to reach about $65 billion by 2019 

(Winkler, 2016). While the benefits of nanotechnology are beyond debate, the concern is 

increasing about the safe use and subsequent environmental impacts of engineered 

nanomaterials (ENMs). Evaluating the environmental risks of ENMs is essential to manage 

relevant risks and ensure the safety of these manufactured materials (Piperigkou et al., 2016; 

Toropova and Toropov, 2013). One of the well-established approaches assisting risk 

assessment of ENMs is the development of species sensitivity distributions (SSDs) 

(Gottschalk and Nowack, 2013). SSDs rank the species based on their sensitivity to a certain 

ENM, and reflect the potentially affected fraction of species under an exposure 

concentration of interest (Garner et al., 2015). From the SSD, among others the 5th 

percentile of the fitted distribution (HC5) can be derived. The HC5 is commonly used as 

the basis for environmental risk assessment of chemicals and is assumed to be the 

concentration that is sufficiently protecting ecosystems following addition of an extra safety 

factor that ranges in between 1 and 5 (European Chemicals Agency, 2008). Risk 

quantification is usually performed by dividing the predicted environmental concentration 

by either the predicted no observed effect concentration in case of specific species or by the 

HC5 in case of generic risk assessment. When the risk quotient is greater than or equals 1, a 

potential risk of the nanomaterials exists and further assessment is required, including the 

option of additional toxicity testing; when the risk quotient is less than 1, environmental 

risks are not expected. 

Previously, a few examples of SSDs have been presented for different ENMs based on a 

limited set of laboratory derived toxicity data. To quantify the environmental risks of nano-

Ag, nano-TiO2, nano-ZnO, carbon nanotubes, and fullerenes in four environmental 

compartments (surface water, sewage treatment plant effluents, soils, and sludge-treated 

soils), SSDs were generated for the five ENMs (Gottschalk et al., 2013). The SSDs 

reflecting the no observed effect concentrations were then compared with the distributions 

of predicted environmental concentrations in the four environmental compartments. The 

results indicated marginal risks of Ag and TiO2 ENMs to surface water species and a low 

level of risk caused by Ag, TiO2, and ZnO ENMs in sewage treatment plant effluents. SSDs 

for the same five metallic ENMs were also generated by Coll et al. (2016) for different taxa. 

The risk quotients that are closest to 1 for both ZnO and TiO2 ENMs among others 

indicated the highest priority of these materials to be studied in more depth. In another 

study, SSDs for seven types of metallic ENMs were built including Ag, Al2O3, CeO2, Cu, 

CuO, TiO2, and ZnO ENMs (Garner et al, 2015). The HC5 values with 95% confidence 
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interval (CI) of each ENM were calculated and compared with those of the corresponding 

ionic and bulk counterparts. The SSDs of PVP-coated and uncoated Ag ENMs were 

separately modeled, allowing to conclude about the influence of surface coatings on SSDs. 

As first attempts of developing SSDs for ENMs, those developed SSDs have provided 

significant information of the potential environmental impacts of ENMs, and contributed 

to the derivation of HC5 values as policy measures of the ENMs of concern. The further 

interest of the development of SSDs for ENMs would be, ideally, to cover more types of 

ENMs to comprehensively evaluate the risks of all the widely applied ENMs; and to include 

the large variety of environmental species in order to build robust and reliable SSDs. 

Meanwhile better estimates could be obtained when specific attention is paid in SSD 

development to specific ENM properties such as surface coating, size, and shape, and also 

to the dynamic behaviors of ENMs in the exposure media (Garner et al. 2015; Gottschalk et 

al., 2013). The consideration of ENM characteristics in developing SSDs may also provide 

hint messages for the safe-by-design of ENMs, if the SSDs of ENMs separated by certain 

characteristics were found to shift significantly compared with that separated by other 

properties. The implementation of the research needs mentioned here, is however strongly 

limited by the quality of published raw data from the ecotoxicity assays and to a lower 

extent by the limited availability of suited exposure and effect data. 

In response to the above-mentioned challenges, the present study aims to investigate the 

availability of currently published ecotoxicity data of ENMs for their suitability in 

developing SSDs for metal-based ENMs; and secondly to build SSDs for ENMs 

considering the structural characteristics (e.g. surface coating, size, shape), experimental 

conditions, and also different types of toxicity endpoints. All together more than 1800 

ecotoxicity records of metallic ENMs from >300 publications or open access scientific 

reports were retrieved from the databases of Chen et al. (2015), Juganson et al. (2015), and 

the online chemical modeling environment (OCHEM) (Sushko et al., 2011). The toxicity 

endpoints in the collected dataset include the lethal concentration (LC), the effect 

concentration at a specific effect level (ECx), the lowest observed effect concentration 

(LOEC), and the no observed effect concentration (NOEC). The studied species originated 

from seven widely investigated organism groups namely algae, bacteria, crustacean, fish, 

nematodes, protozoa, and yeast. Based on the analysis, the development of SSDs focuses on 

Ag, CeO2, CuO, TiO2, and ZnO ENMs due to relatively sufficient information availability. 

Different SSDs were generated for the Ag ENMs grouped by surface coating, size, shape, 

and exposure duration. The SSD for UV exposed TiO2 ENMs was also derived. To 

determine whether and to what extent the shape of the SSD curve might alter and the HC5s 

may vary based on different toxicity endpoints, these topics were also considered in the 

development of SSDs in the present study. To discuss the vulnerability of different 
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organism groups and species to the metallic ENMs, the most sensitive species in each 

developed SSD was analyzed as well. 

 

5.2 Methods 

5.2.1 Datasets 

Experimental data of ENM ecotoxicity were assembled from three databases. The first 

database is that developed by Chen et al. (2015) consisting of 886 records of toxicity 

endpoints of various metal-based ENMs. The second database is the NanoE-tox database 

listing in total 1518 EC50 (the concentration at which 50 % of the test species is affected), 

LC50 (median lethal concentration), and NOEC values regarding eight ENMs including 

carbon nanotubes and fullerenes, Ag, CeO2, CuO, TiO2, ZnO, and FeOx nanomaterials 

(Juganson et al., 2015). The third data source is the OCHEM platform which explicitly 

provided 244 LC50 values and 170 EC50 values of different metallic ENMs (Sushko et al., 

2011). After removing duplicate information, the newly developed dataset counts all 

together more than 1800 values of metallic ENMs from >300 publications or open access 

scientific reports. This information was afterwards filtered by the following conditions: a) 

toxicity of metal-based ENMs solely; b) tested organisms are algae, bacteria, crustacean, fish, 

nematodes, protozoa, and yeast only; c) toxicity endpoints are LC, EC, LOEC, and NOEC. 

In the dataset, units of all toxicity values were unified into mg/L, and the endpoints larger 

than 10000 mg/L were excluded as these are considered to be irrelevant from a 

toxicological point of view. 

As for certain ENMs, the toxicity data was separated by the characteristics of the ENMs (i.e. 

surface coating, size, shape), experimental condition (duration of exposure, light exposure), 

and type of different endpoints (LC, EC, LOEC, NOEC), respectively. The number of 

species in each sub-dataset is required to be at least six in order to construct a reliable SSD 

(Cedergreen et al., 2004). SSDs for the uncoated and differently coated ENMs were 

modeled. With regard to grouping ENMs by size, it was suggested by Garner et al. (2015) to 

divide the data in size ranges in between 1-10, 10-50, and 50-100 nm. Here, we adapted the 

division of sizes as 1-20, 20-50, and 50-100 nm, as it was stated that nanoparticles with size 

<20 nm may have significantly increased surface reactivity and behave differently than 

larger particles (Auffan et al., 2009; 2010), whereas nanomaterials of 20-50 nm appear to be 

taken up more rapidly than particles of other sizes (Iversen, et al., 2011; Jin et al., 2009). 

When generating SSDs based on data separated by the size and shape, ENMs with reported 

surface coatings were excluded. The exposure duration was determined as ≤1 d, 1-2 d, 
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and >2 d, to investigate if over time the shape of SSD-curve might shift as result of both 

the dynamic changes of ENMs in the media and the increased length of the life cycle of an 

organism. The experimental condition of light exposure was also considered in the study as 

nanomaterials like TiO2 ENMs were reportedly able to catalyze reactions under UV 

radiation and cause phototoxicity (Yin et al., 2012; Sanders et al., 2012). 

5.2.2 Modeling algorithm 

Data was grouped regarding LC50 value and ranked from lowest to highest by the following 

equation (US EPA, 1998): 

Proportion =
𝑅𝑎𝑛𝑘 − 0.5

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠
 

For the toxicity data relating sub-lethal effects of ENMs (i.e. EC50, LOEC, NOEC), the 

median toxicity values based on a certain biological effect to a species were initially 

calculated per reported effect. The obtained medians of different effects to that species were 

afterwards compared and the lowest median value was used in ranking the species 

sensitivities. The ranked median values of different species were then plotted against the 

cumulative probability which reflects the proportion of species affected at a certain 

concentration. 

In the study, lognormal distributions of species sensitivity were fitted using the ‘fitdistr’ 

function of the MASS package in the R statistical software (version 3.3.1). This function 

generates a maximum-likelihood fitting of univariate distributions, allowing parameters to 

be held fixed if desired (Venables and Ripley, 2002). The 95% CI of the fitted regressions 

was also estimated by employing the strategy of parametric bootstrap. The HC5 values of 

the SSDs were extracted by the ‘quantile’ function in the R software (Hyndman and Fan, 

1996). 

 

5.3 Results 

We firstly analyzed the data availability for the preparation of building SSDs for the metal-

based ENMs (Table 5.1). Before constructing separate SSDs, the SSDs for Ag, CeO2, CuO, 

TiO2, and ZnO ENMs were generated with all available data for the corresponding ENMs 

(see Figure S5.1 as provided in the Supplemental Information). LOEC and NOEC data for 

Ag and CuO ENMs are available for only five species. These data were nevertheless 
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included in the analysis to allow for a more comprehensive comparison. Separate SSDs were 

afterwards obtained for Ag ENMs grouped by surface coating, size, shape, and exposure 

duration (Figure 5.1); for CuO and ZnO ENMs grouped by size (Figure S5.2); and for TiO2 

ENMs grouped by size and light exposure (Figure S5.2). SSDs based on different toxicity 

endpoints were compared (Figure 5.3). The significance of difference between relevant 

HC5s was discussed (Figure 5.2, Figure 5.4, and Figure S5.3). All the calculated HC5 values 

with corresponding CI were listed in a Microsoft Excel spreadsheet (see Supplemental 

Information). The lists of species that were used to build SSDs were also presented in the 

Supplemental Information. Examples of building SSDs in the present study using LC50, 

EC50, LOEC, and NOEC datasets were presented in the Supplemental Information. 

 

Table 5.1. Number of species tested for Ag, CeO2, Cu, CuO, Ni, TiO2, ZnO, and other 

ENMs. The species are from seven groups of organisms, namely algae, bacteria, crustacean, 

fish, nematodes, protozoa, and yeast. ENMs with species number less than four (for every 

type of endpoint) are in the group ‘Others’ 

ENMs LC50 EC50 LOEC NOEC 

Ag 17 20 5 5 

CeO2 2 6 2 8 

Cu 4 1 0 0 

CuO 9 10 5 5 

Ni 4 4 0 0 

TiO2 10 16 2 17 

ZnO 8 13 6 11 

Others 10 14 4 10 

 

5.3.1 Data availability for generating SSDs 

The information in the newly collected dataset includes but is not limited to: characteristics 

of ENMs (core, size, surface coating, shape, surface area etc.), experimental conditions 

(exposure duration, light exposure etc.), tested species, detected biological effects, type of 

toxicity endpoints, and values of nanotoxicity. The studied ENMs cover a wide range of 

types of ENMs such as Ag, CeO2, CuO, FeOx, NiO, SiO2, TiO2, ZnO ENMs etc. The 

toxicity endpoints that are potentially useful for building SSDs are LC50, EC50, LOEC, and 

NOEC, as data availability of other endpoints is very limited. In order to develop SSDs, the 
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number of species was analyzed for which data with regard to each type of ENMs and with 

respect to each type of the endpoint was available. The results of this analysis are shown in 

Table 5.1. ENMs for which data for each endpoint were available for no more than three 

species were included in the group ‘Others’. 

The analysis showed that Ag, CeO2, Cu, CuO, Ni, TiO2, and ZnO ENMs have received the 

most research attention among all the metallic ENMs. Ag ENMs have been shown to be 

generally studied for their lethal toxicity to different taxa (17 species), as well as its sub-lethal 

biological effects (20 species for which EC50 values were reported). CuO, TiO2, and ZnO 

ENMs were also widely tested on various species, which provided toxicity data for 

respectively 9, 10, 8 species on LC50, and 10, 16, 13 species on EC50. For CeO2 ENMs, 6 

and 8 data points are available on EC50 and NOEC respectively. For Cu and Ni ENMs, the 

retrieved data for constructing SSDs is very limited based on both LC50 and EC50. Based 

on this analysis, we subsequently developed SSDs for the ungrouped Ag, CeO2, CuO, TiO2, 

and ZnO ENMs (Figure S5.1) and the ENMs differentiated by surface coating, size, shape, 

exposure duration, light exposure, and type of endpoint. 

5.3.2 Separate SSDs by ENM characteristics and experimental conditions 

Within the first constructed SSDs, uncoated, polyvinylpyrrolidone (PVP)- and sodium 

citrate- coated Ag ENMs were separated (Figure 5.1a). The SSD of ungrouped Ag ENMs is 

also enclosed for comparison. As can be observed from this figure, the SSD of the PVP-

coated Ag ENMs shifted to the left compared with that of the uncoated Ag ENMs, which 

means that a PVP coating may considerably enhance the toxicity of Ag ENMs to most 

species. This agrees with the results obtained by Garner et al. (2015). Similarly, the sodium 

citrate-coated Ag ENMs also showed increased toxicity at high concentrations compared 

with the uncoated ones. As reported, both PVP and citrate are able to significantly reduce 

the aggregation and deposition to surfaces, and thus increase the bioavailability and toxicity 

(Gutierrez et al., 2015). The SSD of ungrouped Ag ENMs showed little statistical difference 

from that of the uncoated Ag ENMs. This could possibly be due to the counteraction of 

the influences of all kinds of surface coatings on the toxicity of Ag ENMs. The estimated 

HC5 value of uncoated Ag ENMs is 0.0063 mg/L, with the 95% CI ranging from 0.00098 

to 0.068 mg/L. The HC5 of ungrouped Ag ENMs is 0.0036 mg/L (0.00064-0.029 mg/L). 

The HC5 of PVP-coated Ag ENMs is 0.0011 mg/L (0.00012-0.031 mg/L), and that of the 

sodium citrated-coated Ag ENMs is 0.0030 mg/L (0.00040-0.050 mg/L). 
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5 Development of SSDs for metallic ENMs 

Grouped according to different size clusters of 1-20, 20-50, and 50-100 nm, the data were 

also ranked to create SSDs for Ag ENMs of different sizes (no surface coating reported), as 

shown in Figure 5.1b. Only minor differences were seen between the three SSDs especially 

at low concentrations, even though ENMs with smaller sizes are expected to act differently 

(Auffan et al., 2009; 2010). The SSD of ungrouped Ag ENMs unsurprisingly lies between 

those of Ag ENMs of 1-20 and 50-100 nm, which is nearly identical to the SSD of Ag 

ENMs with sizes ranging from 20 to 50 nm. The difference in behavior and/or effect is 

seen according to the separate SSDs when the exposure concentration increases; the group 

of smallest Ag ENMs tends to be relatively more toxic compared with the other two groups. 

One possible explanation for this observation is that the biological effects triggered by Ag 

ENMs are most likely to result from the release of Ag+ ions (Juling et al., 2016). Therefore 

regardless of sizes, the mode of action of Ag ENMs of different sizes at low concentrations 

may be similar. As concentration rises, the proportion of the particle form significantly 

increases and ENM characteristics like size may start to play a role in affecting the toxicity. 

The study of Xiao et al. (2015) showed that the relative contribution of the particle forms of 

Cu ENMs to the accumulation in Daphnia magna increased from 48% to 72% when the 

concentrations of ENM suspensions increased from 0.05 to 0.1 mg/L. The same applies for 

the ZnO ENMs, as the relative contribution of their particle forms increased with the rise 

of concentrations of ZnO ENM suspensions (from 47% to 64% as concentration rised 

from 0.5 to 1 mg/L). The HC5 value of Ag ENMs ranging from 1 to 20 nm is 0.0096 mg/L 

(0.0017-0.11 mg/L). For Ag ENMs of 20-50 and 50-100 nm, the established HC5s are 

0.0028 mg/L (0.00024-0.098 mg/L) and 0.0033 mg/L (0.00015-0.23 mg/L), respectively. 

SSDs of ENMs with different ranges of sizes were also derived for CuO, TiO2, and ZnO 

ENMs as shown in Figure S5.2. The SSDs of CuO and TiO2 ENMs distinguished by size 

highly overlap with those of the corresponding ungrouped ENMs within 95% CI. The SSD 

developed for ZnO ENMs of 50-100 nm also overlaps with that of the ungrouped ZnO 

ENMs especially at low concentrations. 

Grouped within different shapes of ENMs, the data was also ranked to create SSDs. On the 

basis of the available data, only for spherical-shaped Ag ENMs (no reported coatings) a 

sufficient number of data points is available for the modeling. We therefore grouped the Ag 

ENMs as spherical and non-spherical Ag ENMs to determine if there are major differences 

between the distributions, as shown in Figure 5.1c. A comparison shows that the SSDs for 

spherical- and non-spherical- shaped Ag ENMs are nearly identical and the differences are 

minimal within corresponding 95% CI. Also the 95% CI of the ungrouped Ag ENMs 

heavily overlaps with those of the ENMs grouped by shape. This similarity could be 

possibly caused by the physical-chemical transformations of the particles in the medium, of 

which aggregation, agglomeration, and dissolution are the most important processes that 

alter the behaviors of ENMs and thereby the interactions of ENMs with biota (Chen et al., 
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2015; Hua et al., 2016). In this context, the shape of Ag ENMs seems to play a less 

important role in influencing the toxicity of the materials. The calculated HC5 of non-

spherical Ag ENMs is 0.0023 mg/L with the 95% CI ranging from 0.00018 to 0.062 mg/L. 

The HC5 value of the SSD of spherical Ag ENMs is equal to 0.013 mg/L (0.0015-0.27 

mg/L). 

The exposure duration used in the toxicity testing (Figure 5.1d) and light exposure (Figure 

S5.2) were also considered when constructing SSDs for metallic ENMs. No major statistical 

differences were seen between the ungrouped SSDs and the SSDs with distinct groups of 

species ranked as being exposed for ≤1 d and 1-2 d. Even so, at high concentrations 

(particularly above 10 mg/L) the three distributions highly overlap. HC5s derived from the 

SSDs of exposure duration ≤1 d and in between 1-2 d are 0.0046 mg/L (0.00047-0.11 

mg/L) and 0.0012 mg/L (0.00010-0.028 mg/L), respectively. The HC5 generated from SSD 

of ≥ 2 d is 0.029 mg/L (0.0062-0.22 mg/L). For the toxicity of ENMs under different light 

exposures, most experiments followed standardized protocols such as OECD 202 (OECD, 

2004) and US EPA (US EPA, 2002) which recommend a 16/8 h-light/dark-cycle for the 

toxicity testing. However, different lighting regimes were found to be applied for the 

toxicity test of TiO2 ENMs due to their photoactivated toxicity. Sufficient data points based 

on EC50 (six species) were obtained only for UV exposed TiO2 ENMs, and these were 

used in building the relevant SSD together with the SSD of ungrouped TiO2 ENMs based 

on EC50 (Figure S5.2). As can be observed from the figure, the 95% CI of the SSD for UV 

exposed TiO2 ENMs is much wider given the much smaller number of data points, which 

almost fully covers the 95% CI of the SSD for ungrouped TiO2 ENMs (16 species). The 

HC5 value with respect to the ungrouped TiO2 ENMs based on EC50 is 0.57 mg/L (0.16-

2.8 mg/L), the HC5 estimated for the UV exposed TiO2 ENMs is 1.5 mg/L with a 95% CI 

of 0.24-21 mg/L. 

For the purpose of environmental risk assessment of ENMs, the variation of the obtained 

HC5s with 95% CI is of interest, as depicted in Figure 5.2 for Ag ENMs. As observed, most 

of the values of HC5s fall within the range of 10-3 to 10-2 mg/L with established 95% CI 

mainly ranging from 10-4 to 10-1 mg/L. Almost all the calculated 95% CIs of the HC5s 

highly overlap. This indicates that there are actually no statistically significant differences 

between the estimated HC5s from the SSDs of grouped or ungrouped Ag ENMs. The 

obtained HC5s of CuO, TiO2, and ZnO ENMs were also depicted in Figure S5.3. Also no 

statistically significant differences were observed between the HC5s of relevant grouped and 

ungrouped ENMs. 
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5 Development of SSDs for metallic ENMs 

 

Figure 5.2. Comparison of HC5 values derived from SSDs of Ag ENMs differentiated by 

surface coating, size, shape, and exposure duration. Error bars show the 95% confidence 

interval of HC5s. 

5.3.3 SSDs based on different toxicity endpoints 

To compare the SSDs of certain ENMs based on different endpoints, the fitted 

distributions in Figure S5.1 were reorganized according to the type of ENM (Figure 5.3). 

Unexpectedly, only the SSDs of TiO2 ENMs exhibited a reasonable order of NOEC < 

EC50 < LC50 at low concentrations. For Ag ENMs the difference is minimal between the 

NOEC- and LOEC-based SSDs, and also between the LC50- and EC50- based SSDs when 

the concentration is low. As concentration rises an order of NOEC < LOEC < LC50 < 

EC50 is seen. In the case of ZnO ENMs, major differences only appeared between the 

NOEC-SSDs and the SSDs based on other endpoints. The SSDs of ZnO ENMs based on 

EC50, LOEC, and NOEC showed no significant difference. This also applied for the 

NOEC- and LC50- SSDs, and the LOEC- and EC50- SSDs of CuO ENMs. The HC5s 

derived from these SSDs were calculated and compared in Figure 5.4. Based on LC50 (also 

see Figure S5.1), HC5s of the ENMs in an ascending order is Ag (0.0036 mg/L) < ZnO 

(0.022 mg/L) < CuO (0.049 mg/L) < TiO2 (3.1 mg/L); For the HC5s based on EC50, it is 

Ag (0.0057 mg/L) < ZnO (0.058 mg/L) < CeO2 (0.16 mg/L) < TiO2 (0.57 mg/L) < CuO 

(1.3 mg/L); the order of LOEC-HC5s is Ag (0.00018 mg/L) < ZnO (0.086 mg/L) < CuO 

(3.2 mg/L); and in the case of NOEC the order is Ag (0.00036 mg/L) < ZnO (0.0051 

mg/L) < CeO2 (0.057 mg/L) < CuO (0.087 mg/L) < TiO2 (0.19 mg/L). 

2D Graph 1
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Interestingly, in all cases the HC5s of Ag and ZnO ENMs were shown to be lower than 

those of the other ENMs considered, whereas the ranking of the toxicity of CuO and TiO2 

ENMs differs when considering different toxicity endpoints. The predicted HC5s of Ag 

ENMs are always the lowest, and the toxicity of TiO2 ENMs is commonly the lowest as can 

be concluded from the HC5 values (Garner et al., 2015; Coll et al., 2016; Gottschalk et al., 

2013). As can be seen from Figure 5.4, the 95% CI of Ag ENMs is clearly significantly 

different from that of TiO2 ENMs with no overlap of 95% CI with respect to any endpoint 

considered. This situation changes for the 95% CI of Ag and CuO ENMs which appear to 

be significantly different on the basis of EC50 and LOEC, but overlap when LC50 and 

NOEC are used. The conclusions of comparing HC5s (with 95% CI) of different ENMs 

vary when different endpoints are employed for modeling SSDs. For each ENM, no 

significant difference was found when comparing the NOEC-based HC5s with the HC5 

values based on LC50, EC50, and LOEC, even though the NOEC-HC5s tend to be the 

lowest as concluded from the cases of CeO2, TiO2, and ZnO ENMs. Additionally, the ratios 

of LC50-HC5/NOEC-HC5, EC50-HC5/NOEC-HC5, and LOEC-HC5/NOEC-HC5 

were calculated as listed in the Table S5.1. The ratio of LC50-HC5/NOEC-HC5 ranges 

from 0.6 (CuO ENMs) to 16.3 (TiO2 ENMs). The ratio of EC50-HC5/NOEC-HC5 was 

found to range from 2.8 (CeO2 ENMs) to 15.8 (Ag ENMs). With respect to LOEC-

HC5/NOEC-HC5, the values vary from 0.5 (Ag ENMs) to 36.8 (CuO ENMs). 

 

Figure 5.4. Variation of HC5 values of Ag, CeO2, CuO, TiO2, and ZnO ENMs based on 

respectively LC50, EC50, LOEC, and NOEC data. The 95% confidence interval is also 

given as well as the HC5 values. 
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5.4 Discussion 

5.4.1 Data availability 

Even though a large dataset (more than 1800 records) has been retrieved from >300 

publications or scientific reports, it seems like so far only a limited number of ENMs were 

thoroughly investigated with regard to their toxicity to only a limited number of test species 

(Chen et al., 2015). When developing SSDs for the grouped ENMs, the data availability 

becomes even scarcer because of the lack of the data on, for example, ENM surface 

coatings, sizes, shapes, experimental conditions, etc. which are crucial for distinguishing the 

ENMs. The absence of these data could be due to the lack of data in original articles, or the 

missing of data when extracting information from publications to databases. In the present 

study, SSDs could only be developed for Ag, CeO2, CuO, TiO2, and ZnO ENMs based on 

all possible endpoints. According to the study of Bondarenko et al. (2013), Ag, CeO2, CuO, 

TiO2, and ZnO ENMs are indeed among the ENMs that are produced at the highest 

amounts, together with AlOx, FeOx, and SiO2 ENMs. It would benefit the risk assessment 

of ENMs if all these metallic nanomaterials that are produced in high amounts were 

comprehensively evaluated for their safety, as they are all considered to inevitably enter into 

the environment and potentially pose impacts on human beings and environmental species 

(Echegoyen and Nerín, 2013). Developing SSDs for those ENMs of concern is one of the 

keys to manage the risks brought by the marketed nanomaterials. This nevertheless requires 

more types of ENMs to be tested, and also more relevant reliable models to be developed 

to reduce the time consumption and accelerate the process of risk evaluation. For the 

previously studied ENMs, toxicity data covering a wider range of taxa and trophic levels 

other than only standard species are also of significant importance to minimize the 

variabilities and levels of uncertainties. 

In part, the data availability in developing SSDs also depends on firstly if the experimental 

results derived from a wide variety of protocols should be combined for building one SSD; 

and secondly, on the required minimum number of data points (number of species) to 

generate an SSD. Ideally, a distribution of species sensitivity ought to be generated from 

experiments that employed consistent protocols, for example, by using toxicity data 

reflecting the inhibition of growth or reproduction, or mortality, etc (Garner et al., 2015). In 

this context, only experimental results reflecting exactly the same biological effects should 

be grouped and used for the development of SSDs. This unquestionably largely reduces the 

available data for the modeling. According to the standardized toxicity testing protocols, 

different effects are recommended to be assessed for different standard test species, e.g., 

growth inhibition for Pseudokirchneriella subcapitata (OECD 201), immobility (OECD 202) 

and reproduction inhibition (OECD 211) for Daphnia magna, lethality for Oryzias latipes 
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(OECD 203) and Danio rerio embryo (OECD 236), etc. (OECD, 1992, 2004, 2011, 2012, 

2013). Given the scarcity of data, it is as yet technically infeasible to include most of the 

species tested so far in one single SSD on the basis of one consistently measured effect level 

other than lethality. Therefore, data manipulation was adapted in previous studies so as to 

combine data representing different biological effects and to perform regression analysis 

(Coll et al., 2016; Garner et al., 2015; Gottschalk et al., 2013). Additionally, the minimum 

number of data points to build an SSD also determines whether a dataset with a very limited 

number of species can be used for modeling. Although it was proposed by Garner et al. 

(2015) that a minimum of four species is needed to construct SSDs, Cedergreen et al. (2004) 

stated that at least six to eight species must be represented. Therefore, assuming that only 

four data points are required for the SSD derivation, the SSDs for Cu and Ni ENMs could 

also be built based on LC50 data (Table 5.1). This will however induce a quite broad CI. 

5.4.2 Comparison of SSDs and relevant HC5s 

Given the relatively high amount of data, SSDs could be built for Ag ENMs distinguished 

by coating, range of size, shape, and exposure duration. Although a few of the distributions 

(e.g., SSDs in Figure 5.1b) at high concentrations showed some variations, the HC5s that 

were derived from the developed SSDs do not differ significantly. This means that, on the 

basis of the currently available data, all kinds of Ag ENMs entering into the environment 

are supposed to share similar maximum acceptable concentrations, regardless of surface 

coatings, shapes, sizes, exposure durations, or even other structural characteristics. This 

similarity could possibly result from either or both of the two major reasons. The first is the 

physical-chemical transformation of Ag ENMs in the aquatic media which can completely 

change the structural properties of ENMs (Chen et al., 2015). Despite the fact that the 

structural parameters of ENMs have been formerly linked to the toxicity of ENMs (Chen et 

al., 2016), it is still difficult to quantify the relationship between the characteristics of 

pristine ENMs (e.g., size, surface coating, shape, etc.) and the behaviors of ENMs in a 

medium. This behavior may alter the mobility, bioavailability, and ultimately the toxicity of 

the nanomaterials, and thus is of vital significance to understand the mechanisms governing 

nanotoxicity. The second reason is the general mechanism of toxicity of nano-, micro-, and 

bulk- Ag releasing metal ions. As known, one of the major mechanisms of Ag-induced 

toxicity is the leaching of Ag+ ions. Therefore especially at low concentrations, Ag ENMs 

with varied structural properties tend to exhibit analogous biological activities. But as 

concentrations increase, the proportion of the nanoparticulate Ag will as well rise and 

differences would probably emerge between the SSDs of Ag ENMs with different structural 

properties. As for the influence of light exposure, the SSD could only be developed for the 

UV exposed TiO2 ENMs which is incomparable. The different is not significant either 
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between the SSDs of UV exposed and ungrouped TiO2 ENMs based on EC50 (Figure 

S5.2). 

Assessment factors are commonly used when deriving the predicted no observed effect 

concentrations from the HC5s. For instance, a factor of 10 was used by Gottschalk et al. 

(2013) to calculate the predicted no observed effect concentrations from LC50 and EC50, 

while a factor of 2 was applied to generate this value from LOEC. In the study of Coll et al. 

(2016), a factor of 10 was used for LC50 and EC50, and a value of 1 was employed for 

LOEC and NOEC. Based on our results, the ratio of HC5s of L(E)C50/NOEC ranges 

from 0.6 to the highest 16.3 with a median value of 10 (Table S5.1). For the combination of 

LOEC/NOEC the three values are 0.5 (Ag ENMs), 16.9 (ZnO ENMs), and 36.8 (CuO 

ENMs). Although the limited number of data points of Ag and CuO ENMs (only five data 

points for both LOEC and NOEC data, see Table 5.1) will cause larger uncertainties, the 

value of 16.9 (LOEC-HC5/NOEC-HC5) for ZnO ENMs with a relatively sufficient 

number of data (respectively 6 and 11 for LOEC and NOEC data) does not seem to be 

close to a factor of 2. With respect to the SSDs built on different toxicity endpoints, the 

NOEC-SSDs were not as expected significantly lower than that based on LC50, EC50, and 

LOEC except for the case of ZnO ENMs. Neither did the LOEC-SSDs always appear in 

between the NOEC-SSDs and the EC50-SSDs, as expected on forehand. Given the 

situation that NOEC should always represent the most sensitive case, the ratio of L(E)C50-

HC5/NOEC-HC5 and LOEC-HC5/NOEC-HC5 was actually also not considered to be 

lower than 1. This was however observed for the LOEC-HC5/NOEC-HC5 of Ag ENMs 

(0.5) and for the LC50-HC5/NOEC-HC5 of CuO ENMs (0.6). Together with the 

discussed discrepancies of SSDs in Figure 5.3, we understand that this might be attributed 

to the fact that the data used were retrieved from a variety of sources with varying data 

quality. The limited sample sizes of Ag and CuO ENMs based on respectively LOEC and 

NOEC also resulted in the wide CI and low statistical power. These uncertainties could only 

be diminished by future increase of data quality and availability. 

5.4.3 Most sensitive species and organism groups 

Based on the developed SSDs, we listed the most sensitive species of every SSD in Table 

S5.2. Despite that no single species was found to be always the most susceptible, a few 

species were constantly observed to be the most vulnerable to metallic ENMs. These 

species include Ceriodaphnia affinis, Ceriodaphnia dubia, Daphnia magna, Daphnia pulex, Escherichia 

coli, and Pseudokirchneriella subcapitata. Most of these species are crustaceans which account 

for 26 out of 32 of the most sensitive species in the SSDs developed. This indicates that 

crustaceans are more likely to be the organism group that is affected by the metal-based 

ENMs at the lowest concentrations of ENMs. This observation is in line with the study of 
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Garner et al. (2015), in which the most sensitive species to metallic ENMs were all 

crustaceans, namely Ceriodaphnia dubia (in SSDs of uncoated and PVP-coated Ag, Al2O3, Cu, 

and TiO2 ENMs), Daphnia pulex (CuO ENMs), Daphnia similis (CeO2 ENMs), and 

Thamnocephalus platyurus (ZnO ENMs). Since the HC5 represents a concentration where only 

5% of the species could be affected, it seems that the crustaceans would be those that are 

within the 5% of the species. Therefore in the case of a generic risk assessment, it may be 

important to include at least a few representative species from the crustacean group in the 

SSDs such as Ceriodaphnia dubia, Daphnia magna, and Daphnia pulex. 

5.4.4 Conclusions 

To conclude, reliable information on the characteristics of ENMs that govern toxicity and 

the experimental conditions are needed for the development of separate SSDs. More data 

on the highly produced ENMs such as AlOx, CeO2, CuO, FeOx, SiO2, TiO2, and ZnO 

ENMs are favorable for a comprehensive evaluation of the environmental risks of ENMs. 

Sufficient data on Ag ENMs enabled a comparison between the SSDs constructed for the 

grouped Ag ENMs. For the Ag ENMs grouped by shape and exposure duration, the 

separate SSDs of Ag ENMs showed no statistically significant difference. For the Ag ENMs 

of different size ranges, differences in behavior and/or effect were only seen at high 

exposure concentrations. The PVP- and sodium citrate- coatings on the surface of Ag 

ENMs enhance the nanotoxicity as the SSDs shifted to the left compared to the SSD of the 

uncoated Ag ENMs. The derived HC5s for all the grouped Ag ENMs do not differ 

significantly, which implies that only the intrinsic chemical toxicity of Ag ENMs greatly 

affected the corresponding SSDs. HC5s generated from the SSDs of ungrouped Ag, CeO2, 

CuO, TiO2, and ZnO ENMs based on respectively LC50, EC50, LOEC, and NOEC were 

also compared. Median values of 10 for the ratio of L(E)C50-HC5/NOEC-HC5, and of 

16.9 for the ratio of LOEC-HC5/NOEC-HC5 were obtained. An analysis of the most 

sensitive species in every SSD showed that no single species was consistently the most 

sensitive, however crustaceans as an organism group tend to be extra vulnerable to metal-

based ENMs. Due to the limitations caused by data quality and availability, it should be 

noticed that uncertainties still exist associated with our results. For the developed SSDs, 

such uncertainties could be reduced if reliable toxicity information of sufficient species 

became available which could represent a comprehensive ecosystem. Despite these 

considerations, we believe the present study is helpful in gauging the SSDs of ENMs 

grouped by individual ENM properties and other important factors, and in enabling the 

further development of SSDs for metallic ENMs. 
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Figure S5.3. Comparison of HC5 values derived from SSDs of CuO, TiO2, and ZnO ENMs 

separated by size (using LC50 data), and of TiO2 ENMs separated by UV exposure (using 

EC50 data). Error bars show the 95% confidence interval of HC5s. 

 

 

 

Table S5.1. HC5 values of LC50-, EC50-, and LOEC- based SSDs divided by the HC5 of 

NOEC-SSDs 
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0.6 16.3 4.3 

EC50/NOEC 15.8 2.8 14.9 3.0 11.4 

LOEC/NOEC 0.5 
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Examples of developing SSDs for metallic ENMs 

Example I: building SSDs for Ag ENMs separated by shape using LC50 data 

Based on the retrieved LC50 data of Ag ENMs, the toxicity records of spherical Ag and 

non-spherical Ag ENMs were initially separated. Within each of the sub-dataset, the median 

toxicity value of Ag ENMs to each species was calculated, and ranked from the lowest to 

highest by the equation given in 5.2.2 Modeling algorithm of Chapter 5. The obtained 

values are as follows: 

Ag Spherical 

Species LC50 Unit Shape Rank Proportion 

Daphnia magna 0.0175 mg/L Spherical 1 0.0714286 

Fathead minnow 0.0894 mg/L Spherical 2 0.2142857 

Pimephales promelas 0.09 mg/L Spherical 3 0.3571429 

Rainbow trout 0.71 mg/L Spherical 4 0.5 

Ceriodaphnia dubia 3.32 mg/L Spherical 5 0.6428571 

Moina macrocopa 5.77 mg/L Spherical 6 0.7857143 

Danio rerio 13.62483 mg/L Spherical 7 0.9285714 

Ag Non-spherical 

Species LC50 Unit Shape Rank Proportion 

Ceriodaphnia dubia 7.71E-04 mg/L Non-spherical 1 0.0454545 

Daphnia magna 0.00525 mg/L Non-spherical 2 0.1363636 

Daphnia pulex 0.04 mg/L Non-spherical 3 0.2272727 

Pseudokirchneriella subcapitata 0.19 mg/L Non-spherical 4 0.3181818 

Hypophthalmichthys molitrix 0.5155 mg/L Non-spherical 5 0.4090909 

Danio rerio 0.775 mg/L Non-spherical 6 0.5 

Oryzias latipes 1.03 mg/L Non-spherical 7 0.5909091 

Pimephales promelas 5.38 mg/L Non-spherical 8 0.6818182 

Oreochromis mossambicus 12.6 mg/L Non-spherical 9 0.7727273 

Rainbow trout 23.18 mg/L Non-spherical 10 0.8636364 

Paramecium caudatum 39 mg/L Non-spherical 11 0.9545455 
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With these values, the lognormal distributions of species sensitivity were fitted using the 

‘fitdistr’ function of the MASS package in the R statistical software (version 3.3.1), and HC5 

values were also extracted by the ‘quantile’ function. The obtained SSDs are shown in 

Figure S5.4 (also in Figure 5.1c in Chapter 5). In the figure, data points reflecting the 

median values are shown together with the names of corresponding species. The shaded 

region of each curve depicts the 95% confidence interval (CI). The calculated HC5 of 

spherical Ag ENMs is 0.013 with CI ranging from 0.0015 to 0.27 mg/L, the HC5 of non-

spherical Ag ENMs is 0.0023 (0.00018-0.062) mg/L. 

 

Figure S5.4. Developed SSDs for Ag ENMs separated by shape using LC50 data 

 

Example II: building SSDs for ZnO ENMs using EC50 data 

Different from LC50 data that is only based on mortality, the EC50 (and also LOEC and 

NOEC) dataset includes toxicity records on the basis of multiple biological effects. For 

example, in the EC50 data of ZnO ENMs, Caenorhabditis elegans was tested for both 

reproduction inhibition and immobilization; Daphnia magna was tested for feeding inhibition, 

reproduction inhibition, and immobilization. Thus to obtain only one toxicity value from 

the data of one species for plotting the distribution of species sensitivity, the median toxicity 

value based on a certain biological effect to a species was initially calculated per reported 

effect. In the case of Caenorhabditis elegans it is 790.67 mg/L (immobilization) and 57.3 mg/L 

(reproduction inhibition), for Daphnia magna it is 1.6685, 3.1, and 0.156 mg/L based on 

respectively feeding inhibition, immobilization, and reproduction inhibition. Afterwards, the 

obtained medians of different effects to that species were compared and the lowest median 

value was used in ranking the species sensitivities (e.g. 57.3 mg/L for Caenorhabditis elegans 
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based on reproduction inhibition; 0.156 mg/L for Daphnia magna based on reproduction 

inhibition). The ranked median values of different species were then plotted against the 

cumulative probability which reflects the proportion of species affected at a certain 

concentration. With the ‘fitdistr’ function of the MASS package in the R statistical software 

(version 3.3.1), the SSD for ZnO ENMs using EC50 data is obtained, as shown in Figure 

S5.5 (also in Figure 5.3d in Chapter 5, Fig. S5.1b). Data points with corresponding species 

names are also given in the figure. 

 

Figure S5.5. Developed SSD for ZnO ENMs using EC50 data 

 

 

Example III & IV: developing SSDs for CuO (LOEC data) and TiO2 (NOEC data) ENMs 

Same as the data processing for building SSDs using EC50 data, when using LOEC and 

NOEC datasets, the median toxicity value based on a certain biological effect to a species 

was firstly obtained per reported effect, and then the lowest median value for a species was 

used in ranking the species sensitivities. The datasets used for building SSDs for CuO 

(LOEC data) and TiO2 (NOEC data) ENMs were listed in the Supplemental Information 

(Microsoft Excel spreadsheet). The developed SSDs including information on species are 

shown in Figure S5.6 and Figure S5.7 as examples. These SSDs were also depicted in Figure 

5.3 in Chapter 5 and in Figure S5.1 with simplified information for the purpose of 

conciseness. 
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Figure S5.6. Developed SSD for CuO ENMs using LOEC data 

 

 

Figure S5.7. Developed SSD for TiO2 ENMs using NOEC data 
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6 General discussion 

Nanotechnology has been identified as a key-enabling technology by the European 

Commission (European Commission, 2017). It is seen as one of the sectors bringing 

economic benefit and jobs. The extensive use of engineered nanomaterials (ENMs), 

however, has raised concerns about their possible effects on human health and their 

environmental burden (Nel et al., 2006). Laboratory observations on some potentially 

harmful effects of ENMs have in some cases overshadowed the immense promise of these 

materials and their nanotechnology applications (Bondarenko et al., 2013; Juganson et al., 

2015). As concluded by the EU NanoSafety Cluster, the real concern rather than 

fragmentary observations on some hazards of exposure to ENMs, is the lack of systematic 

studies on adverse effects or exposure to ENMs (Savolainen et al., 2013). Since 

experimental testing is significantly constrained by time, financial burden, and ethical 

considerations (such as the principles of the 3Rs of animal testing, i.e. replacement, 

reduction, and refinement), the use of computational tools as alternative or compensation is 

expected to provide an efficient and inexpensive way of meeting the data requirements for 

the purpose of managing ENM risks (Raies and Bajic, 2016). Computational toxicology is 

seen as a potential tool to reduce the tension caused by the lag of evaluating nanosafety in 

respect to the rapid development of nanotechnology and nano-related innovation. 

Computational toxicology is emerging as a tool with active development and great potential 

(Reisfeld and Mayeno, 2012), and is able to create predictive power in the field of toxicology 

with the aid of modern computing and information technology (Kavlock et al., 2008; U.S. 

EPA, 2003). 

Computational tools combined with powerful data-mining technologies, have been 

proposed to model chemical properties of soluble chemicals (Chen et al., 2014; Pavan et al., 

2006; Tunkel et al., 2000), biological activities (Raies and Bajic, 2016), and species sensitivity 

distributions (SSDs) (Posthuma et al., 2002). The successful application of computational 

toxicology for soluble chemicals has promoted the expansion of these in silico approaches 

into the field of hazard identification of ENMs. Reliable computational tools can contribute 

to the supplementation of data for the gathering and evaluation of information as the first 

step of ENM hazard assessment recommended by the European Chemicals Agency 

(ECHA); or assist in the second step of hazard assessment (categorization and labeling of 

ENMs), by directly classifying ENMs into groups of different hazard (ECHA, 2011). For 

ENMs that meet the criteria of any of the hazard categories listed by ECHA, the use of the 

SSD method is helpful for deriving hazard threshold levels, e.g. predicted no effect 

concentration for the ecosystem as the last step of the ENM hazard assessment (ECHA, 

2011). The information obtained on the basis of these steps is crucial for the qualitative risk 

characterization of ENMs. Thereupon, the structural characteristics that are identified by 

computational tools as governing toxicity may provide guidance for the safe-by-design of 

ENMs. However with these exciting promises in mind, challenges undoubtedly lie ahead as 
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this new research area is still in its infancy. This PhD research took the challenge and also 

the opportunity, aiming: 

(i) To evaluate the currently existing literature data on metal-based ENMs for the use of 

computational toxicology in light of the safety assessment of ENMs; 

(ii) To develop nano-(Q)SARs for the prediction and categorization of ENM hazard; 

(iii) To derive SSDs and maximum acceptable environmental concentrations of metal-based 

ENMs as toxicity measures characterizing relevant risks. 

To meet these research objectives, we have initially established an inventory of existing 

toxicity data of metal-based ENMs to selected organisms and identified data gaps as a 

preparation for ENM-related modeling (Chapter 2). The state-of-art of the (quantitative) 

structure–activity relationships for ENMs (nano-(Q)SARs) was reviewed regarding the 

availability of databases, the models developed up till now, the relevant descriptors 

commonly used, and on the basis of these advances, the options for interpretation of 

mechanisms of toxicity (Chapter 3). Later on, nano-SARs were developed for the 

categorization of ENM hazards to assist risk assessment and regulatory decision-making 

(Chapter 4). And finally, different SSDs were derived in Chapter 5 using currently available 

toxicity data for the generation of hazard threshold levels of ENMs. 

With these approaches having been made, details related to each research objective of the 

thesis have been thoroughly discussed in the relevant chapters. To compare the developed 

models in this thesis with existing studies and also to provide implications for further 

advancing this new research frontier, some issues still need to be addressed based on the 

state-of-the-art of the application of computational toxicity in serving the hazard assessment 

of ENMs. The first issue standing out on this background is derived from the doubt of how 

well computational toxicology can heretofore assist ENM hazard assessment, from the 

prediction of ENM toxicity to the classification of ENM hazards, and to the derivation of 

hazard threshold levels as policy measures for the ENMs of concern. This issue 

subsequently leads to the further discussion of the situation of the constant struggle of data 

availability in ENM-related modeling, and to the key factors affecting nanotoxicity as 

indicated by the developed models for ENMs. Last but not least the challenges and outlook 

in this field are highlighted. 
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6 General discussion 

6.1 State-of-the-art of in silico models serving hazard assessment of ENMs 

Given the limited availability and quality of existing data on nanotoxicity, doubt firstly arises 

about how well computational toxicology can contribute to the assessment of ENM hazards 

to date, including the discussion on the number and types of ENMs involved in the models; 

the potential applicability of these models in the assessment of ENM hazards; the 

descriptors used in the models; the information extracted for the safe-by-design of ENMs; 

the levels of the maximum acceptable concentrations of different ENMs; and the identified 

environmental risks of ENMs (if relevant information was presented in the underlying data 

sources). To answer these questions, a literature search of recent advances in the use of 

computational toxicology in developing in silico models for ENMs was performed. This was 

done by means of an Advanced Search in the Web of ScienceTM Core Collection on the 22th 

of February, 2017. The search was manually supplemented with relevant publications not 

included in the search records. The class of ENMs considered was restricted to metal and 

metal oxide ENMs. All relevant articles on the development of models for evaluating ENM 

hazards were selected and the reported models are reviewed and summarized in Tables 6.1 

and 6.2. 

6.1.1 Development of (Q)SARs and read-across models for metallic ENMs 

As seen in Table 6.1, both regression and classification models predicting the biological 

activity profiles of metal-based ENMs have been developed. Ideally, a regression model is 

able to provide quantitative estimates for the hazardous effects of untested ENMs (or to 

untested species) and to fill in data gaps, which is fundamental for the evaluation of ENM 

toxicity. Classification models directly contribute to the categorization and labeling of 

ENMs. According to Table 6.1, 14 out of 22 of the studies originating from the literature 

review focused on the numerical prediction of ENM toxicity, and the rest of the studies 

presented classification models for the grouping of ENM hazards. Among these studies, a 

fair part of them aimed to predict the toxicity of metallic ENMs to Escherichia coli or to 

different cell lines; only three studies constructed models for other types of species (Chen et 

al., 2016; Kleandrova et al., 2014; Liu et al., 2013a). Categorical prediction of ENM toxicity 

could potentially serve the risk assessment of ENMs targeting a relatively broader spectrum 

of species given the current advances. For most of the in silico models, the datasets used are 

relatively small which probably poses major limitation on their potential applicability. Only 

two studies employed datasets of more than 100 ENMs (Chen et al., 2016; Kleandrova et al., 

2014). 

The frequently appearing descriptors in the models may encode important messages on 

ENM characteristics dominating relevant biological activities. This kind of messages 
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benefits both the hazard assessment and the safe-by-design of ENMs. Thus, the presented 

descriptors in existing models are summarized (see Table 6.1) and analyzed to discuss the 

role of different factors in influencing nanotoxicity. As for studies introducing multiple 

models or incorporating a big variety of descriptors, only main factors as highlighted by the 

authors are considered to avoid the impact of possible accidental correlations. The analysis 

show that some of the statistical models comprise merely theoretical descriptors; meanwhile 

the experimental parameters such as zeta potential, concentration of ENMs, aggregation 

parameter, size of the particles in media etc. are also found to be incorporated into other 

models. Subsequently, these descriptors are roughly labeled as belonging to one of three 

general types for further analysis: the intrinsic properties of the metal or metal oxide, the 

nano-specific characteristics of ENMs, and the dynamic changes of ENMs in media. The 

factors affecting ENM toxicity are further discussed here. 

(i) Descriptors regarding the intrinsic properties of metal (oxide): 

a. Surface catalytic properties and redox modifications related factors include: Wigner-Seitz 

radius, mass density, band gap energy, overlap of conduction band energy levels with the 

cellular redox potential, conduction band energy, average of the alpha and beta LUMO 

(lowest unoccupied molecular orbital) energies of the metal oxide, accessible surface area, 

absolute electronegativity of the metal and the metal oxide, aligned electronegativity, 

electronegativity, Mulliken's electronegativity of the cluster, S2 (SiRMS-derived number of 

oxygen's atoms in a molecule, which was described by their electronegativity), S3 (tri-atomic 

fragments[Me]–[O]–[Me] which were encoded by SiRMS-derived descriptors, encoding 

electronegativity), and metal electronegativity; 

b. Characteristics related to the capability of ion and electron detachment and the activity of 

ions include: covalent index, cation polarizing power, atomization energy, metal oxide 

ionization energy, ionic index of metal cation, enthalpy of formation of metal oxide 

nanocluster representing a fragment of the surface, cationic charge, enthalpy of formation 

of a gaseous cation, charge of the metal cation corresponding to a given oxide, solubility, 

polarizability, molar refractivity, and polarization force; 

(ii) The nano-specific descriptors employed in the developed models include: 

a. The size of ENMs; and 

b. Parameters characterizing the surface chemistry of ENMs, e.g., hydrophobicity of surface 

coating chemicals, surface-area-to-volume ratio, surface coating and charge, surface area, 

polar surface area; 
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(iii) The parameters indicating the dynamic changes of ENMs in media include: 

a. Zeta potential; 

b. Concentration of ENMs; and 

c. Descriptors representing the dispersion and aggregation of ENMs in media, e.g., 

aggregation parameter, size in DMEM (Dulbecco’s Modified Eagle’s Medium), relaxivity 

(representing ENM magnetic properties), size in phosphate buffered saline, size in water, 

aggregation size. 

Extraction of the general dependency of nanotoxicity on different factors may be of 

potential help for designing safe and environmentally benign ENMs. This kind of messages 

could be derived from the quantitative models for ENMs. Descriptors reported without 

explicit equations of predictive models cannot serve this purpose. As a result, despite the 

fact that various types of descriptors have been used in different in silico models, only a 

limited number of these parameters exhibited an explicit and unambiguous role in ENM-

induced toxicity. The identified descriptors were roughly concluded here as concerning four 

aspects of the materials: the characteristics of ENMs per se, surface redox activity of metal 

oxides, ease of ion and electron detachment, and activity of the ion detached (see Figure 

6.1). Some of the computational parameters may refer to multiply processes involved in the 

adverse effects triggered by metallic ENMs. 

As can be seen from Figure 6.1, the hydrophobicity of ENM surface coatings and solubility 

of ENMs were shown to positively correlate with observed nanotoxicity. Other factors 

playing the same role in affecting nanotoxicity include the Wigner-Seitz radius and the 

electronegativity of metal oxides (χoxide) which reflect the surface redox activity of the metal 

or metal oxide; and the period in the periodic table of the ENM core metal, polarizability, 

and enthalpy of formation of metal oxide nanoclusters representing a fragment of the 

surface (∆Hf
0), which indicates the ease of detachment of ions and electrons from ENMs. 

The Wigner-Seitz radius describes the available fraction of molecules on the surface of a 

nanocluster (Sizochenko et al., 2014). The χoxide characterizes the ability of atoms of metal 

oxides to attract electrons that contributes to the surface redox activities, and also relates to 

the leaching of ions from the surface of metal oxides (Gajewicz et al., 2015a). The period of 

the ENM metal represents information of atomic radii of the metal which is also associated 

with polarizability (Mahan and Subbaswamy, 1990). 
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Figure 6.1. Generalization of the role of different factors in affecting the toxicity of metallic 

ENMs based on the state-of-the-art of nano-(Q)SARs and read-across models for ENMs. 

Men+ represents the released ions from ENMs; ∆Hf
0 is the enthalpy of formation of metal 

oxide nanocluster representing a fragment of the surface; ∆HMe+ is the enthalpy of 

formation of a gaseous cation having the same oxidation state as that in the metal oxide 

structure; and χcation represents the electronegativity of the metal oxide. 

 

On the other hand, the toxicity of ENMs tends to decrease with increased conduction band 

energy, atomization energy, ionization energy, ∆HMe+ (enthalpy of formation of a gaseous 

cation having the same oxidation state as the metal in the metal oxide structure), cationic 

charge, and ionic index. Zhang et al. (2012) have evidenced the strong correlation between 

the toxicity of Co3O4, Cr2O3, Ni2O3, Mn2O3, and CoO ENMs and the overlap of ENMs’ 

conduction band energy with the cellular redox potential (-4.12 to -4.84 eV). The studied 

ENMs with conduction band energy out of the range failed to exhibit pro-oxidative and 

oxidative stress effects, with two exceptions ZnO and CuO ENMs. The exceptions could 

be explained by their relatively high solubility (Zhang et al., 2012). Decreasing atomization 

energy attributes to the decrease of the stability of metal oxides and corresponding increase 
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of reactivity (Liu et al., 2011). Ionization energy reflects the required amount of energy to 

remove the most loosely bound electron, a lower ionization energy thus indicates the easier 

detachment of electrons from the metal oxides (Bendary et al., 2013). ∆HMe+ describes the 

dissolution of ENMs without oxidation or reduction of ions, and the redox properties of 

metal oxides (Puzyn et al., 2011). Cationic charge was also found to be an important 

parameter in nano-QSARs (Pan et al., 2016). Cations (Men+) with smaller charges are 

considered more energetically favorable than cations of larger charges, which explains why 

the toxicity of metal oxides decreases in the order of Me2+ > Me3+ > Me4+ (Puzyn et al., 

2011). The ionic index of cations is associated with the affinity of metal ions for water 

molecules (measured by the hydration enthalpy); a lower hydration enthalpy means greater 

transport of metal ions across cellular membranes (Liu et al., 2013b). Notably, even though 

most of the employed descriptors characterize the intrinsic properties of the metal or metal 

oxides, several factors related to the characteristics of ENMs per se were also identified as 

affecting toxicity. 

However, the role of some factors as concluded from developed models yielded conflicting 

results compared with experimental observations. For instance, the smooth muscle 

apoptosis (SMA) was modeled by means of the core material (IFe3O4), surface coating (Idextran) 

and surface charge (Isurf.chg) of ENMs (Epa et al., 2012), and can be expressed as: 

𝑆𝑀𝐴 = 2.26(±0.72) − 10.73(±1.05) × 𝐼Fe2O3 − 5.57(±0.98) × 𝐼dextran − 3.53(±0.54)

× 𝐼surf.chg 

Therefore, based on this model it is obvious that a lower surface charge will result in higher 

apoptosis of smooth muscle cells. This, however, does not agree with some previous 

findings (Asati et al., 2010; EI Badawy et al., 2011; Schaeublin et al., 2011). Reportedly, the 

more negative citrate-Ag ENMs were the least toxic to gram-positive bacillus, whereas the 

positively charged Ag ENMs showed the strongest toxicity (EI Badawy et al., 2011). For Au 

ENMs, both the positively and negatively surface-charged Au ENMs were found to induce 

significant cellular mitochondrial stress other than the Au ENMs with neutral surface 

charge (Schaeublin et al., 2011). Another study of Asati et al. (2010) indicated that the 

surface charge of cerium oxide ENMs distinctly affects the internalization of ENMs by 

different cells, and the subsequent internal localization in cells which ultimately leads to the 

different toxicity profiles reported for cerium oxide ENMs. Meanwhile, the roles of some 

employed descriptors also conflict within or between independent studies. One example is 

the size of ENMs. The studies of both Luan et al. (2014) and Kleandrova et al. (2014) 

reported the diminution of ENM toxicity as a result of increasing ENM size. By contrast, 

based on the model developed by Liu et al. (2011), a larger size of ENMs was shown to lead 

to higher nanotoxicity. It was explained that indeed within the narrow domain of the dataset 
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(8–19 nm), toxicity may increase with increased primary size of ENMs. A linear model 

developed by Papa et al. (2015) also showed increased release of lactate dehydrogenase with 

the increment of the size of TiO2 and ZnO ENMs (ranging from 20 to 70 nm). In addition, 

the particle size in phosphate buffered saline (PBS) and in water, indicating the aggregation 

behavior of ENMs in media, contributes oppositely to nanotoxicity as summarized from the 

models developed (Papa et al., 2015). 

6.1.2 Development of SSDs for metal-based ENMs 

The developed SSDs for metallic ENMs are summarized in Table 6.2. The state-of-the-art 

of the development of SSDs for metallic ENMs shows that Ag, Al2O3, Au, CeO2, Cu, CuO, 

FeOx, Silica, TiO2, and ZnO ENMs have been commonly assessed for their adverse effects 

across different taxonomic groups. Compared to the diversity of ENMs involved in nano-

(Q)SARs, the number of ENMs covered in SSD-related studies seems very limited. This 

may be because most of the derived SSDs grouped the materials solely based on their types 

(core material) without considering other structural characteristics. Thus, data of different 

ENMs with the same core was merged into the information of merely one type of ENMs. 

The exception is that, in the study of Garner et al. (2015) separate SSDs were presented for 

uncoated Ag and polyvinylpyrrolidone (PVP)-coated Ag ENMs. In Chapter 5 of this thesis, 

separate SSDs for metallic ENMs were developed considering different ENM 

characteristics, experimental conditions, and toxicity endpoints; separate SSDs were 

obtained for Ag ENMs grouped by surface coating, size, shape, and exposure duration; for 

CuO and ZnO ENMs grouped by size; for TiO2 ENMs grouped by size and light exposure; 

and for Ag, CuO, TiO2, and ZnO ENMs based on different toxicity endpoints (Chen et al., 

2017). The limited variation in types of ENMs included in the SSDs is mostly due to the 

insufficient number of data of other type ENMs originated from experimental assays. 

Nevertheless, the kinds of ENMs studied in the development of SSDs are indeed among 

the types that are largely found in the applications and products on the market. According 

to the study of Keller and Lazareva (2014), the 10 major ENMs (production of >100 t/year) 

used within the global economy are: Ag, Al2O3, CeO2, Cu, Fe, SiO2, TiO2, and ZnO ENMs, 

carbon nanotubes, and nanoclays. An estimate of Bondarenko et al. (2013) on the annual 

production of ENMs showed an order with regard of production volume, from high to low, 

of SiO2 (5500 t/year), TiO2 (3000 t/year), ZnO (550 t/year) ENMs, carbon nanotubes (300 

t/year), FeOx (55 t/year), CeOx (55 t/year), AlOx (55 t/year), Ag ENMs (55 t/year), 

quantum dots (0.6 t/year), and fullerenes (0.6 t/year). Therefore, it seems like it is possible 

to perform safety evaluation of all the metallic ENMs that are produced in high amounts. 

Among these ENMs, Ag ENMs have relatively gained most research attention. Table 5.1 in 

the thesis showed that Ag ENMs have been tested on the highest number of species 
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considering the available data on LC50, EC50, LOEC, and NOEC. This enabled the 

development of SSDs for Ag ENMs separated by the different key factors described above. 

Further studies, ideally, should focus on other types of ENMs for the comprehensive 

evaluation of nanosafety. Meanwhile, besides the aquatic hazards of metallic ENMs, the 

potential risks brought by ENMs in other environmental compartments (e.g., air, soil) 

should also be considered. The implementation of these research needs however strongly 

depends on the quality of laboratory derived raw data. The increase of the quality of 

experimental data combined with robust uncertainty quantification will contribute to the 

improvement of the quality of SSDs. 

The HC5s derived from the SSDs developed for different ENMs are compared as depicted 

in Figure 6.2. The HC5 values from Chapter 5 were taken from the SSDs of ungrouped Ag, 

CuO, TiO2, and ZnO ENMs based on LC50 data and in case of CeO2 ENMs based on 

EC50 data for comparison. As can be seen, Ag, TiO2, and ZnO ENMs have relatively more 

estimates from the studies, which however also yielded much wider ranges of the reported 

HC5 values. The range of the HC5s of Ag ENMs shifted more to the left compared with 

that of the ZnO and TiO2 ENMs, indicting the higher potential of toxic impacts of Ag 

ENMs on the environment. The HC5 values of silica and FeOx ENMs are significantly 

higher than those of Ag ENMs. The median HC5 values of Au ENMs also indicated their 

mild toxicity compared with the toxicity of Ag ENMs. However, without the quantification 

of uncertainty it is hard to conclude whether the difference is significant. 

 

Figure 6.2. Estimated HC5s from SSDs (aquatic) for different types of ENMs. The relevant 

confidence intervals are also given (if available in the original publications). 

2D Graph 3

Concentration (mg/L)

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

Y
 D

at
a

Ag

Au

CuO

FeO

Silica

TiO

ZnO

CeO HC5s from literatures

HC5s from this thesis 

2

x

2



 

 
174 

6 General discussion 

Table 6.2. Summary of the state-of-the-art of the developed SSDs for metal and metal oxide 

ENMs. N/A indicates that relevant information is not available 

Reference Type of ENMs Reported HC5s Number of species in 
SSDs 

Environmental 
compartment 

Jacobs et al., 
2016 

TiO2 N/A 31 Water 

Wang et al., 
2016a 

FeOx 0.218 (0.169-0.267) mg/L, 15-
85% percentiles 

12 Water 

Kwak et al., 
2016 

Ag 0.03173 mg/L (acute toxicity); 
0.000614 mg/L (chronic 
toxicity) 

8 (acute toxicity); 5 
(chronic toxicity) 

Water 

Coll et al., 
2016 

(i) Ag; (ii) 
TiO2; (iii) ZnO 

(i) 0.000017 (0.000014–
0.000021) mg/L in freshwater, 
8.2 (4.3–12.5) mg/kg in soil; 
(ii) 0.0157 (0.0106–0.0207) mg/L 
in fresh water, 91.1 (47.6–134.9) 
mg/kg in soil; 
(iii) 0.001 (0.0006–0.00138) 
mg/L in freshwater, 1.1 (0.6–1.6) 
mg/kg in soil, 95% confidence 
intervals 

(i) 33 (water), 4(soil); 
(ii) 31 (water), 2 
(soil); 
(iii) 21 (water), 7 
(soil) 

Water, soil 

Wang et al., 
2016b 

Silica 1.023 (0.787-1.265) mg/L, 15-
85% percentiles 

8 Water 

Mahapatra 
et al., 2015 

Au N/A 8 (water) Water, soil 

Semenzin et 
al., 2015 

TiO2 0.02 mg/L 34 Water 

Adam et al., 
2015 

(i) ZnO; (ii) 
CuO 

(i) 0.07 (0.04-0.19) mg/L; (ii) 
0.19 (0.06-0.59) mg/L, 90% 
confidence intervals 

(i) 12; (ii) 13 Water 

Garner et 
al., 2015 

(i) Ag; (ii) Cu; 
(iii) CuO; (iv) 
ZnO; (v) 
Al2O3; (vi) 
CeO2; (vii) 
TiO2 

N/A (i) Uncoated-Ag: 8, 
PVP-Ag: 6; (ii) 4; (iii) 
5; (iv) 7; (v) 9; (vi) 7; 
(vii) 8 

Water 

Nam et al., 
2015 

Au 0.29 mg/L 7 Water 

Botha et al., 
2015 

Au 42.78 mg/L 4 Water 

Haulik et al., 
2015 

(i) Ag; (ii) 
TiO2; (iii) ZnO 

(i) 0.00015; (ii) 0.275; (iii) 3.246 
mg/L 

(i) 14; (ii) 11; (iii) 10 Water 

Gottschalk 
et al., 2013 

(i) Ag; (ii) 
TiO2; (iii) ZnO 

(i) 0.00001; (ii) 0.06151; (iii) 
0.00985 mg/L 

(i) 12; (ii) 18; (iii) 17 Water 

Chen et al., 
2017 
(Chapter 5) 

(i) Ag; (ii) 
CuO; (iii) 
ZnO; (iv) 
CeO2; (v) TiO2 

HC5s were calculated for various 
SSDs (detailed information see 
Chapter 5) 

Different hierarchies 
of species were used 
(detailed information 
see Chapter 5) 

Water 

The literature search was performed by means of an Advanced Search in the Web of 

ScienceTM Core Collection on the 22th of February, 2017. The query is (TS=(nano* AND 

*SSDs) OR TS=(nano* AND species sensitivity distributions)), where the field tag TS 

refers to the topic of a publication. 
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Additionally, a few studies have also presented the risk qualifications for metal-based ENMs 

along with the development of relevant SSDs, including Ag, Au, FeOx, silica, TiO2, and 

ZnO ENMs. For Ag ENMs, despite the estimated risks in surface water being shown by 

Haulik et al. (2015) to be below 0.001 (predicted environmental concentration divided by 

the HC5), the studies of both Gottschalk et al. (2013) and Coll et al. (2016) have reported 

significantly higher risk probabilities of respectively 0.7 and 0.038, which necessitates these 

materials to be studied in more depth with the highest priority. Risk coefficients of Ag 

ENMs in soil are calculated to be always <0.01 (Coll et al., 2016; Gottschalk et al., 2013). 

The risk coefficient of Ag ENMs in sewage treatment effluent is however as high as 39.7 

(Gottschalk et al., 2013). Risk characterizations of TiO2 ENMs in surface water and soil 

show that risks are relatively low in all studies except for the estimates reported by Coll et al. 

(2016) as being 0.03 and 0.013, respectively; the risk coefficient of TiO2 ENMs in sewage 

treatment effluent is also relatively high (18.7). A marginal risk of ZnO ENMs in surface 

water (0.09) was indicted (Coll et al., 2016), whereas the risk coefficient of ZnO ENMs is 

again substantially higher (1.1) with respect to sewage treatment effluents (Gottschalk et al., 

2013). For Au, FeOx, and silica ENMs the derived risk probabilities are very low (Mahapatra 

et al., 2015; Wang et al., 2016a,b). In short, marginal risks are reported for Ag, TiO2, and 

ZnO ENMs in surface water, and for TiO2 ENMs in soil, while high environmental risks 

were identified for Ag, TiO2, and ZnO ENMs in sewage treatment effluent. 

6.2 The struggle of data availability 

As was concluded from the state-of-the-art of the development of in silico models for 

metallic ENMs, an issue of vital importance in this field is the availability of reliable toxicity 

data. As described in Chapter 2 in the thesis, we have established a database assembling 

available and accessible data on the toxicity of metallic ENMs to algae, yeast, bacteria, 

protozoa, nematodes, crustacean, and fish. An analysis of the developed database (Figure 

2.3) showed that most of the research attention was paid to merely a few species (e.g. 

Pseudokirchneriella subcapitata, Staphylococcus aureus, Escherichia coli, Daphnia magna, Danio rerio) 

and a few ENMs (e.g. Ag, CuO, TiO2, ZnO ENMs). Despite the fact that in later Chapters 

(4 and 5) more data could be combined into the datasets to build nano-SARs and SSDs for 

ENMs, most of the information was still found available for only this limited number of 

species and ENMs. As shown in Chapter 4, sufficient data could be collected to build 

species-specific nano-SARs only for Danio rerio, Daphnia magna, Pseudokirchneriella subcapitata, 

Escherichia coli, and Staphylococcus aureus. In Chapter 5, SSDs could only be developed for Ag 

ENMs considering different factors and for CuO, TiO2, and ZnO ENMs in some cases. 

As a matter of fact, a total of 866 records of toxicity endpoints were collected in Chapter 2; 

in total 1061 toxicity records were made available within Chapter 4; and in Chapter 5 a total 



 

 
176 

6 General discussion 

of >1800 toxicity records could be retrieved from more than 300 publications or open 

access scientific reports. What has been noticed is that despite the continuing increase of 

the amount of data becoming available, the ENM-related modeling is still significantly 

constrained by the availability of experimental data (Gajewicz et al., 2017). Even with 1061 

retrieved toxicity data in Chapter 3, nano-SARs could still only be developed by using 

descriptors characterizing the core information of ENMs, due to insufficient information 

on other ENM characteristics of importance (e.g. surface coating, shape, surface area, 

crystallinity). In Chapter 5, SSDs could be built solely for Ag ENMs roughly separated by 

the characteristics surface coating (uncoated, sodium citrate, PVP), size, and shape 

(spherical and non-spherical), given the nature of the >1800 toxicity records obtained. 

For other nano-modeling studies as summarized in Table 6.1, in spite of the constantly 

increasing number of scientific resources from diverse nanosafety programs, only a 

relatively small number of datasets, such as those published by Puzyn et al. (2011) and 

Gajewicz et al. (2015a), were found to be repeatedly used in different modeling studies 

(Gajewicz et al., 2015a,b; 2017; Kar et al., 2014; Pan et al., 2016; Puzyn et al., 2011; Singh 

and Gupta, 2014; Sizochenko et al., 2014; Toropov et al., 2012). As shown in Table 6.2, the 

data points used for developing SSDs were also very limited. This leads to doubts about the 

suitability of existing nanotoxicity data in developing models for ENMs. As explained, data 

scarcity may result from data incompleteness and from inconsistency in reporting the 

characteristics of ENMs and relevant experimental information by independent studies. 

This in turn leads to the difficulty of comprehensively characterizing ENM structures for 

performing modeling and to the difficulty of separating ENMs according to different ENM 

characteristics or experimental conditions (Chen et al., 2016; 2017). In this context, 

availability of the vast majority of existing nanotoxicity data is greatly reduced and the use of 

this information in developing computational models for ENMs is severely prevented. 

With limited available data on nanotoxicity, the developed models mostly incorporate 

descriptors representing only the ENM core, an approach that can also be used in the case 

of their corresponding bulk materials. As for further development of in silico models for 

ENMs, the ideal situation is to also involve comprehensive information on many of the 

other characteristics of ENMs such as surface chemistry, shape, dimensional aspects, 

crystallinity etc. for the better prediction and explanation of the biological activities of 

metallic ENMs (Chen et al., 2016). The use of parameters only characterizing ENM cores in 

models is by far not sufficient to address nano-specific toxicity in contrast with their bulk 

counterparts and to distinguish the structural differences of distinct ENMs with the same 

core. This requires a well-defined format for reporting the observed nanotoxicity, the 

experimental conditions, and the used ENMs. Thoroughly curated datasets of nanotoxicity 

are essential for modelers to carry out further researches. Therefore, here we propose that a 
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report of ENM toxicity for this specific purpose should properly describe at least the 

following information: 

 

Figure 6.3. Profiling the toxicity of metal-based ENMs on the basis of identified descriptors. 

Dashed line indicates the simplified (mutual) correlation between the descriptors. The 

descriptors were roughly grouped as relating to the surface characteristics of ENMs or 

metal oxide, the activity of released ions, the bond breaking, ion and electron detachment, 

and the medium-related parameters. Molref - molar refractivity; M - molecular weight;  - 

density; NA - Avogadro's number; RI - refractive index; PZC - point of zero charge; Ev - 

valence band energy; Ec - conduction band energy; Eg - band gap; χoxide - electronegativity 

of metal oxide; χcation - electronegativity of cation; EAmz - atomization energy; ∆HL - lattice 

energy; ∆Hs - enthalpy of sublimation; ∆HMe+ - enthalpy of formation of a gaseous cation 

having the same oxidation state as that in the metal oxide structure; ∆Hf
o - enthalpy of 

formation of metal oxide nanocluster representing a fragment of the surface; E∆H
o - energy 

associated with a single metal-oxygen bond in the metal oxide; PBS - phosphate buffered 

saline. 
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(i) Details of the tested organisms, e.g. taxonomic categorization, name of species, exposure 

route, life-stage or bacterial strain (for bacteria); 

(ii) Conditions of the performed experiments, e.g. test guideline used (if available) and 

possible modifications of the test guideline, preparation of test medium, composition of the 

exposure medium, media pH, light condition, and time-dependent medium stability; 

(iii) Information on the specific toxicity endpoints, e.g. observed biological effects, type of 

endpoint, experimental value of toxicity endpoint, and unit in which the endpoint is 

expressed; and 

(iv) Characteristics of the ENMs tested, e.g. type of ENMs, composition of core, 

distribution of particle size, surface coating, purity, crystallinity, surface area, surface charge, 

shape, agglomerate size and material zeta potential in media, stability in test medium. 

 

6.3 Profiling nanotoxicity on the basis of in silico models 

The development of in silico models enabled the identification of factors of importance 

(represented by different descriptors) in affecting the toxicity of metallic ENMs. The 

hydrophobicity of surface coatings and surface charge of ENMs were shown to play an 

important role in determining nanotoxicity. These descriptors characterize the surface 

chemistry of metallic ENMs and are seen as nano-specific descriptors. The experimental 

conditions related parameters were also found in the reported models, including the 

solubility of ENMs, aggregation of ENMs, and relevant aggregated ENM size in the media. 

The rest of the commonly identified descriptors by nano-(Q)SARS or read-across models 

were seen as representing the intrinsic properties of the metal oxides, and generally belong 

to three groups that address different aspects of the material triggering adverse effects: 

descriptors describing the surface redox and catalytic properties of metal oxides; descriptors 

indicating the process of breaking of chemical bonds, detachment of ion and electron; and 

descriptors revealing the activity of ions released from ENMs. 

For the sake of conciseness, a simplified explanation of the correlations of these descriptors 

is depicted in Figure 6.3. The conduction and valence band energies of metal oxide can be 

derived from their electronegativity, energy gap, point of zero charge, and pH of the media; 

the electronegativity of a metal oxide is derived from the electronegativity of the 

corresponding cation, which can be determined by the cationic charge and ionic radius 

based on the equations described in Figure 6.3 (Zhang et al., 2012). The cationic charge and 
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ionic radius likewise relate to the properties of metal oxides such as ionization energy 

(Ahrens, 1952), ionic index and atomization energy (Liu et al., 2013b), lattice energy (Puzyn 

et al., 2011), enthalpy of sublimation (Liu et al., 2013b; Puzyn et al., 2011), and the enthalpy 

of formation of a gaseous cation having the same oxidation state as in the metal oxide 

structure (Puzyn et al., 2011). Additionally, the cationic charge and ionic radius also relate to 

the polarizability and molar volume of the metal oxide (Mahan and Subbaswamy, 1990), and 

subsequently to other properties which are associated with these descriptors such as molar 

refractivity (Lide, 1998) and Wigner-Seitz radius (Sizochenko et al., 2014). Burello (2015) 

also classified the solubility of metal oxide ENMs in water and acidic media using the 

cationic charge and ionic radius. Therefore, it seems like the metal oxide ENMs which are 

able to release ions with smaller charge and larger ionic radius could induce higher toxicity 

to biota. That is to say, in general, within the same group of the periodic table, the larger the 

period that a metal belongs to (thus bigger atomic radius) the higher is the toxicity for the 

metal oxide ENMs formed by that metal; and within the same period in the table, metals on 

the left (thus smaller cationic charge) tend to form ENMs with higher toxicity compared 

with metals on the right. Meanwhile, metal oxide ENMs with low-valent metals may induce 

higher toxicity compared with ENMs composed of the same metal but of higher-valence. 

This corresponds with the study reported by Mu et al. (2016) which predicted the toxicity of 

51 metal oxide ENMs to Escherichia coli (presented in a periodic table). 

As previously explained in Chapter 1, it is commonly indicated that the release of ions and 

generation of reactive oxygen species (ROS) are two of the main mechanisms of metallic 

ENMs triggering toxicity, besides the possible direct steric hindrance caused by the particles 

per se and the ENMs acting as carriers of toxic chemicals (described as the Trojan-horse 

mechanism). In fact, both the detachment of ions or electrons from an ENM surface could 

lead to the formation of ROS. For instance, according to the Haber-Weiss-Fenon cycle 

(Gajewicz et al., 2015a; Stohs and Bagchi, 1995), Cu2+ could act as a catalyst for the 

formation of hydroxyl radicals (OH), which subsequently leads to the generation of 

superoxide anion radicals (O2
−): 

O2
− + Cu2+ → O2 + Cu

+ 

Cu+ + H2O2 → Cu
2+ + OH− + OH 

O2 + 𝑒 → O2
− 

Meanwhile, the detachment of an electron from the surface of TiO2 ENMs (which could be 

activated by solar radiation) is also able to initiate a series of reactions leading to the 

formation of OH and O2
− (Kar et al., 2014): 
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TiO2
ℎ𝑣
⇒ TiO2

+ + 𝑒̅ 

𝑒̅ + O2 → O2
− 

O2
− + 2H+ + 𝑒̅ → H2O2 

O2
− + H2O2 → OH

 + OH− + O2 

H+ + H2O⇒  OH
 + H+ 

The generation of these ROS will disturb the cellular balance between the levels of oxidized 

and reduced species, and consequently provoke oxidative stress in cells (Gajewicz et al., 

2015a). Thus, the intrinsic properties of a metal oxide (e.g., cationic charge and ionic radius) 

which are of significant importance for the possibility of electron transfer, bond breaking, 

and release of ions, seem to play a pivotal role in affecting the toxicity of ENMs. This is 

why doubt has arisen about whether the toxicity of metallic ENMs is nano-specific or 

comparable with that of corresponding dissolvable materials (Beer et al., 2012; Visnapuu et 

al., 2013; Xiu et al., 2012). However, undoubtedly, the other above-identified factors such as 

ENM surface chemistry, solubility of ENMs, and the experimental conditions are certainly 

able to alter the biological activity of metallic ENMs, by directly modifying the toxicity of 

the materials or by changing the bioavailability of ENMs for different species or cells 

(Fourches et al., 2010). In the study of Zhang et al. (2012), the solubility of metal oxide 

ENMs is one of the discriminating factors for classifying the observed toxicity. Solubility 

successfully explained the high toxicity of CuO and ZnO ENMs as the conduction band 

energy of the two ENMs has no overlap with the cellular redox potential (-4.12 to -4.84 eV). 

Observations of the nanotoxicity affected by ENMs shape were thereupon reported for 

ZnO nanospheres, nanosticks, and cuboidal submicron particles (Hua et al., 2014). The 

needle-shaped ZnO NPs were proven to be more toxic to Phaeodactylum tricornutum than 

other morphologically different NPs with equal solubility and ion release (Peng et al., 2011). 

Therefore, it seems that whether the toxicity induced by metallic ENMs should be 

considered as nano-specific is case-dependent. 

Recently, a categorization framework of ENMs called the decision-making framework for 

the grouping and testing of nanomaterials (DF4nanoGrouping) was proposed based on the 

intrinsic material properties, system-dependent properties, and in vitro and in vivo effects of 

ENMs (Arts et al.,  2015). This framework assigns ENMs into four main groups (MG) and 

determines to what extent the ENMs needs to be further evaluated. Specially, ENMs in MG 

1 (soluble ENMs) are suggested to be handled by the read-across of the properties of 

dissolved materials from the bulk counterparts; ENMs in MG 4 (active ENMs) are advised 
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to be carefully evaluated and merit in-depth investigations in light of the risk assessment. 

ENMs in MG4 are for instance CeO2 ENM-211, CeO2 ENM-212, TiO2 ENM-105, SiO2 

ENMacrylate, and SiO2 ENMphosphate (Arts et al.,  2016). Thus, based on this grouping 

strategy, the requirement on structural information of ENMs can be waived for the 

materials of MG 1. This kind of data is on the other hand of crucial importance for the 

“active” ENMs (Main Group 4), for the purpose of calculating nano-specific descriptors in 

case of generating in silico models for ENMs and for the purpose of grouping ENMs based 

on different properties in case of developing SSDs to diminish variabilities and levels of 

uncertainties. 

 

Figure 6.4. An explanation of considering the fuzzy set theory in handling the heterogeneity 

of ENM size for the computation of nano-specific descriptors. 

 

6.4 Outlook 

As previously addressed, one of the most fundamental issues in developing in silico models 

for ENMs is the availability and quality of laboratory derived data. For further experimental 

studies on nanotoxicity, providing comprehensive information according to standardized 

test protocols is of vital importance, together with widely accepted evaluation criteria for 

data quality. Meanwhile, maximizing the use of existing information seems realistic, practical, 

and favorable for this new frontier. One suggestion for this purpose is to transfer toxicity 

data between different endpoints with suitable assessment factors, which has been proven 

as a feasible way to obtain needed data given very limited available information. For 

example, in the study of Wang et al. (2016a,b), an assessment factor of 10 was used to 

transfer LC/EC25-50 to no observed effect concentrations; a factor of 2 for the LC/EC10-

20; and a factor of 1 for other endpoints such as LOEC, LED, MIC, HONEC, and NOEC. 

Size of engineered nanomaterials (s)

Membership function , 

based on the information 

of ENM size distribution 
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Likewise, this solution was also employed in different studies to overcome the problem of 

data scarcity (Coll et al., 2016; Gottschalk et al., 2013; Mahapatra et al., 2015). Even though 

uncertainty in doing so still remains debatable, this may be one of the most pragmatic ways 

of facing the current challenges of lack of toxicity data. 

The structural complexity of ENMs has brought difficulty to computationally characterize 

the structure of ENMs in a comprehensive way. The incorporation of size information of 

ENMs into computational parameters also faces obstacles. An attempt to overcome this 

challenge is the study of Tämm et al. (2016) in which a set of novel, theoretical size-

dependent nano-descriptors for ENMs was developed. However, the key problem is that 

the size of ENMs in reality is never a fixed value but rather a distribution of sizes. Preparing 

100% homogeneous ENMs also does not seem possible in the near future. One proposed 

idea here is to adapt the calculation of nano-descriptors by combining them with fuzzy set 

theory. The fuzzy set theory permits the gradual assessment of the membership of elements 

in a set, instead of assigning an element into either one set or another (Zimmermann, 2010). 

Similarly, an ENM normally has a size distribution ranging, for example, 10-30 nm rather 

than a homogeneous size of 20 nm. Thus, if a descriptor (Dn) for a cluster of an ENM of 

size (s) can be expressed as: 

𝐷𝑛 = 𝑓(𝑠) 

then the calculation of descriptors combined with fuzzy set theory (𝐷𝑛
′ ) can be described as: 

𝐷𝑛
′ =∑𝑓𝑚(𝑠)𝑓(𝑠) 

when s is a discrete variable in 𝑓(𝑠), or 

𝐷𝑛
′ = ∫ 𝑓𝑚(𝑠)𝑓(𝑠)

𝑏

𝑎

𝑑𝑠 , 𝑎 ≤ 𝑠 ≤ 𝑏 

when s is a continuous variable in 𝑓(𝑠); 𝑓𝑚 is the membership function extracted from the 

information on the ENM size distribution (see Figure 6.4). 

Another issue worth mentioning relates to the linking of structural characteristics of ENMs 

with their biological activities. As observed from Table 6.1, even though some of the studies 

constructed models solely on the basis of theoretical descriptors, the experimental 

descriptors such as zeta potential, concentration of ENMs, aggregation parameter, size in 

media etc. were also incorporated in other models. This agrees with the well-known fact 
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that the dynamic transformation of ENMs in media is able to alter the biological profiles of 

the materials. Thus in some cases toxicity information of ENMs can be poorly modeled 

without considering this transformation. However, dilemma situations arise as the safe-by-

design approach of ENMs tends to favor the information of ENM safety purely based on 

their structures. For the next step, modeling and prediction of ENM behavior and 

transformation in different media (e.g. aggregation) could be considered based on ENM 

structural characteristics; and also the link of transformed characteristics of ENMs in the 

media to relevant biological activity. Different dose metrics in expressing the effective dose 

should be also taken into account for the modeling (Hua et al., 2016). Mass should not be 

the sole option in this context as nanotoxicity is influenced by many different 

physicochemical properties of ENMs (Oberdörster et al., 2007). 

 

Figure 6.5. A roadmap indicating the future milestones of using computational toxicology in 

assisting the hazard assessment and safe-by-design of ENMs (drawn by G. Chen). 

 

In the near future, the first milestone to be achieved regarding the use of computational 

toxicology in hazard assessment of ENMs should be a standardized form for reporting 

nanotoxicity (see Figure 6.5). Maximizing the use of existing data of nanotoxicity should 
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Modeling the environmental 
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Better understanding of the 

behaviors and biological 

activities of ENMs 

Further development of 
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Designing safe and 
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also be considered. Setting up widely accepted criteria is crucial for evaluating the quality of 

laboratory derived data for both existing and newly reported data. Development of novel 

nano-specific descriptors and incorporation of proper dose metrics are needed when 

performing modeling. The newly constructed nano-(Q)SARs and read-across models based 

on data with improved quality and availability are expected to have improved predictive 

power with broader applicability (suited for more types of ENMs and wider spectrum of 

species). The SSDs for deriving the maximum acceptable concentrations of ENMs are also 

expected to have diminished variabilities and levels of uncertainties. Meanwhile, linking the 

structural characteristics of ENMs to their environmental behavior and transformation is of 

great interest. Such work will provide further insight into the mechanisms underlying the 

biological profiles and environmental behavior of ENMs. In time, based on standardized 

criteria for reporting and evaluating nanotoxicity data, relevant databases with 

comprehensive information of all aspects will be developed. Upon these advances, 

construction of the framework ranking ENM hazard and associated risk aided by 

computational toxicology will highly contribute to the safe handling of ENMs and 

regulatory activities. Designing safe and environmentally benign ENMs supported by 

computational toxicology will also greatly benefit the minimization of risks brought by 

newly developed ENMs and the fast development of nanotechnology. 
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Summary 

Nanotechnology is seen as a revolutionary technology which greatly benefits the 

world economy. However, as usual there is a tension between the need to 

manufacture new nanomaterials with desired properties, and the need to protect 

the environment and human beings from the potential risks associated. The lag 

between the time needed to evaluate the safety of engineered nanomaterials 

(ENMs) and the rapid development of nanotechnology has already caused 

concerns about the safe use of ENMs. Assessing the risks of ENMs solely on the 

basis of experimental assays is time-consuming, resource intensive, and 

constrained by ethical considerations (such as the principles of the 3Rs of animal 

testing, i.e. replacement, reduction, and refinement). The adoption of 

computational toxicology in this field is a high priority. Computational toxicology 

is able to contribute to the prediction of the extent of toxic effects of untested 

ENMs, to the hazard categorization and labeling of ENMs, and to the 

establishment of hazard threshold values that are sufficiently protecting the 

ecosystem with respect to the ENMs of concern. These three steps are listed by 

the European Chemicals Agency (ECHA) as the three elements in evaluating the 

hazards of ENMs. A comprehensive hazard assessment for ENMs is essential for 

both the risk characterization and the safe-by-design of nanomaterials. 

To facilitate the use of computational toxicology in assisting the hazard 

assessment of ENMs, the research of this thesis started from the integration and 

evaluation of existing available and accessible data regarding the toxicity of metal-

based ENMs to selected organisms (Chapter 2). A database of 886 records was 

developed, containing information on bacteria, algae, yeast, protozoa, nematode, 

crustacean, and fish; and on ENMs composed of metals, metal oxides, 

nanocomposites, and quantum dots. The analysis indicated that Ag ENMs are the 

most widely studied ENMs, together with TiO2 and ZnO ENMs. Daphnia magna, 

Escherichia coli, and Pseudokirchneriella subcapitata are the most frequently tested 

species in the database. Biological effects investigated for each group of organism 

were analyzed, and the types of ENMs and species in the database were described 

in as much detail as possible. ENMs were classified into different hazard 

categories adhering to the EU Directive 93/67/EEC. 

Following up the data integration and evaluation, the state-of-the-art of the 

development of (quantitative) structure–activity relationships for ENMs (nano-

(Q)SARs) was reviewed in Chapter 3. Issues concerning the sources of data for 

modeling, existing nano-(Q)SARs, and mechanistic interpretation were discussed 
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and an outlook on the further development of this field was presented. The 

analysis showed that cellular uptake of ENMs by different cells and the toxicity to 

Escherichia coli are the main focus of nano-(Q)SAR modeling. Models were 

developed for both quantitative and categorical predictions of the biological 

activities of ENMs based on different data mining approaches. As could be 

concluded from the identified descriptors, lipophilicity and hydrogen bonding 

capacity of surface modifiers were found to be of most significant importance for 

the cellular uptake of ENMs. The released ions and generation of oxidative stress 

are seen as driving factors in causing nanotoxicity in some cases; nano-specific 

properties such as surface chemistry, size are also believed to play a role. Similar 

to chapter 2, also here we saw the problem of data scarcity and data quality. The 

characterization of ENM structures and the consideration of dynamic 

transformations of ENMs in the exposure medium in modeling should also be 

carefully handled. 

Based on the identified research gaps on nano-(Q)SARs, in Chapter 4 the nano-

SARs for the categorization of ENM hazards were built on the basis of the 

retrieval of existing toxicity data. The global nano-SARs across species in case 

study I (LC50 data, 320 ENMs in training set and 80 ENMs in test set) and III 

(MIC data, 133 ENMs in training set and 33 ENMs in test set) yielded reasonable 

accuracies (above 70%). Species-specific nano-SARs were also constructed for 

Danio rerio, Daphnia magna, Pseudokirchneriella subcapitata, and Staphylococcus aureus 

with high predictability. The molecular polarizability, accessible surface area, and 

solubility of ENMs were identified in the models that were built as predominantly 

influencing the toxicity of metallic ENMs. The study contributes to the 

classification and labeling of metallic ENMs for regulatory purposes. 

Once an ENM is classified in one of the hazard classes or categories listed by 

ECHA, a risk characterization for the ENM is required. This necessities the 

derivation of threshold levels for ENMs in order to compare with relevant 

exposure levels and to quantify associated risks. In case of generic risk assessment, 

the 5th percentile (HC5) of the species sensitivity distributions (SSDs) is 

commonly used for this comparison. Chapter 5 therefore focused on the 

development of SSDs for metallic ENMs with the explicit consideration of the 

characteristics of ENMs, experimental conditions, and different types of 

endpoints. Based upon a sufficient number of data entries, separate SSDs could 

only be built for Ag ENMs based on the characteristics surface coating, size, 

shape, and exposure duration. Separate SSDs were also developed to determine 

whether and to what extent the shape of the SSD curve alters and the resulting 



 

 
193 

HC5s varies based on different toxicity endpoints. As could be concluded from 

the developed SSDs, the PVP- and sodium citrate coatings were found to enhance 

the toxicity of Ag ENMs; for Ag ENMs with different size ranges, differences in 

behavior and/or effects were only observed at high exposure concentrations; the 

SSDs of Ag ENMs separated by either shape or exposure duration were all nearly 

identical. Meanwhile, crustaceans were found to be the most vulnerable group to 

metallic ENMs. 

In conclusion, our study has expanded the use of computational toxicology in 

hazard assessment with regard to the safe handling of ENMs. The results 

obtained contribute to the integration and evaluation of toxicity data, the 

identification of research gaps on ENM-related modeling, and the development of 

nano-SARs and SSDs for metallic ENMs. Despite the uncertainties that are 

associated with our results, as mainly due to limited data quality and availability, 

we managed to take this field one step forwards and contribute to better-informed 

regulatory decisions of ENMs. To enable the next step to be made, it is essential 

that research in the relevant fields more strictly adhere to the guidance that has 

been issued regarding proper reporting of scientific data on the fate and effects of 

ENMs. This will allow for efficient data curation and proper comparison of 

experimental data. 
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Samenvatting 

Nanotechnologie wordt gezien als een revolutionaire technologie waarvan de 

wereldeconomie zal profiteren. Echter, zoals gebruikelijk bij de introductie van 

nieuwe technologieën, is er een spanningsveld tussen de noodzaak om nieuwe 

nanomaterialen te produceren met gewenste eigenschappen en de noodzaak om 

het milieu en de mens te beschermen gelet op de potentiële risico's die met de 

technologie samenhangen. Er is een grote tijds-uitdaging tussen de snelle 

ontwikkeling van de nanotechnologie en de langere tijd die nodig is om de 

veiligheid van ontwikkelde nanomaterialen (ENMs) te evalueren. Het beoordelen 

van de risico's van ENMs uitsluitend op basis van experimentele testen is 

tijdrovend, duur, en beperkt door ethische overwegingen (zoals het principe van 

de 3Rs van dierproeven, d.w.z. vervanging, reductie en verfijning). Het 

implementeren van de computationele toxicologie voor ENMs heeft dan ook 

hoge prioriteit. Computationele toxicologie kan bijdragen aan de voorspelling van 

de mate van toxische effecten van niet-geteste ENMs, de categorisatie van risico’s 

van ENMs en de vaststelling van drempelwaarden die het ecosysteem voldoende 

beschermen tegen ENMs. Deze drie stappen worden vermeld door het European 

Chemicals Agency (ECHA) als de drie elementen bij het evalueren van de risico’s 

van ENMs. Een uitgebreide risicobeoordeling voor ENMs is essentieel voor 

zowel de risico-karakterisering alsook voor het safe-by-design ontwerpen van 

producten waarin ENMs worden gebruikt. 

Om de computationele toxicologie te gebruiken bij het ondersteunen van de 

risicobeoordeling van ENMs, is het onderzoek beschreven in dit proefschrift 

gestart met de integratie en evaluatie van de beschikbare en toegankelijke gegevens 

over de toxiciteit van metaalhoudende ENMs (hoofdstuk 2). Een database van 

886 records is ontwikkeld met informatie over de toxiciteit van ENMs voor 

bacteriën, algen, gisten, protozoa, nematodes, schaaldieren en vis; alsmede van alle 

metaalhoudende ENMs die bestaan uit metalen, metaaloxiden, nano-komposieten 

en kwantumdots. Uit de analyse blijkt dat Ag-gebaseerde ENMs de meest 

bestudeerde ENMs zijn, samen met ENMs die bestaan uit TiO2 en ZnO. Daphnia 

magna, Escherichia coli en Pseudokirchneriella subcapitata zijn de meest geteste soorten 

in de database. De ENMs in de database werden ingedeeld in verschillende risico-

categorieën volgens de EU-richtlijn 93/67/EEC. 

Na de data-integratie en -evaluatie is de state-of-the-art van de ontwikkeling van 

(kwantitatieve) structuur-activiteitrelaties voor ENMs (nano-(Q)SARs) 

onderzocht in hoofdstuk 3. Problemen over de data en gegevensbronnen, 
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bestaande nano-(Q)SARs en mechanistische interpretatie werden besproken en 

een vooruitblik op de verdere ontwikkeling van dit veld werd gepresenteerd. De 

analyse toonde aan dat cellulaire opname van ENMs in verschillende celculturen 

en de toxiciteit voor Escherichia coli de belangrijkste focus zijn binnen de nano-

(Q)SAR-modellering. Modellen werden ontwikkeld voor zowel kwantitatieve als 

categorische voorspellingen van de biologische activiteiten van ENMs 

gebruikmakend van verschillende data ‘mining’ benaderingen. Zoals uit de 

geïdentificeerde model beschrijvingen kon worden geconcludeerd, bleken lipofiele 

eigenschappen en waterstofbindingscapaciteit van functionele groepen aan het 

oppervlak van de ENMs van het grootste belang voor de cellulaire opname van 

ENMs. De vrijgekomen ionen en de generatie van oxidatieve stress worden in 

sommige gevallen als belangrijkste factoren beschouwd bij het veroorzaken van 

nanotoxiciteit. Verder wordt aangetoond dat nano-specifieke eigenschappen zoals 

oppervlaktechemie en de grootte van de deeltjes een belangrijke rol spelen bij de 

toxiciteit van ENMs. Evenals bij hoofdstuk 2, zagen we hier eveneens het 

probleem van de data schaarste en datakwaliteit. Tenslotte wordt geconcludeerd 

dat de gedetailleerde karakterisering van ENM-structuren en het karakteriseren 

van transformaties van ENMs in het blootstellingsmedium ook nauwgezet dienen 

te worden meegenomen in de modellering. 

Gegeven de eerder geconstateerde beperkingen met betrekking tot de 

ontwikkeling van nano-(Q)SARs, zijn in hoofdstuk 4 nano-SARs ontwikkeld voor 

de categorisering van ENM-risico’s op basis van bestaande toxiciteitsgegevens. De 

robuuste nano-SARs in case study I (LC50 data, 320 ENMs in de trainings-set en 

80 ENMs in de test-set) en in case study III (MIC data voor de invloed van 133 

ENMs op de remming van de activiteit van bacteriën in de trainings-set en 33 

ENMs in de test-set) leverden voorspellingen op met nauwkeurigheden tot 70%. 

Daarnaast zijn soort-specifieke nano-SAR’s ontwikkeld voor Danio rerio, Daphnia 

magna, Pseudokirchneriella subcapitata en Staphylococcus aureus met hoge accuratesse. De 

moleculaire polarisatie, oppervlakte grootte en oplosbaarheid van ENMs werden 

geïdentificeerd als zijnde de parameters die de toxiciteit van metaalhoudende 

ENMs het sterkste beïnvloeden. Deze studie draagt bij aan de classificatie en 

etikettering van metaalhoudende ENMs voor regelgevende doeleinden. 

Zodra een ENM is ingedeeld in één van de door ECHA vermelde risico-klassen 

of categorieën, is een verdere risico-karakterisering vereist. Dit vereist de afleiding 

van drempelwaarden voor ENMs die dan kunnen worden vergeleken met 

relevante blootstellingsniveaus, om uiteindelijk de bijbehorende risico's te 

kwantificeren. Bij een generieke risicobeoordeling wordt het 5e percentiel (HC5) 
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van de soortgevoeligheidsverdeling (SSDs) vaak gebruikt. Hoofdstuk 5 

concentreerde zich derhalve op de ontwikkeling van SSDs voor metaalhoudende 

ENMs, met expliciete overweging van de kenmerken van ENMs, experimentele 

omstandigheden, en verschillende soorten met hun toxiciteits-eindpunten. Alleen 

voor Ag-houdende ENMs konden SSDs worden ontwikkeld op basis van de 

eigenschappen van de coating, de grootte en de vorm van de deeltjes, en de 

blootstellingsduur. Er werden ook afzonderlijke SSDs ontwikkeld om te bepalen 

of en in welke mate de vorm van de SSD-curve verandert en de resulterende HC5’s 

variëren op basis van verschillende toxiciteits-eindpunten. Zoals uit de 

ontwikkelde SSDs kon worden geconcludeerd, bleken de PVP- en natriumcitraat-

coatings de toxiciteit van Ag-houdende ENMs te verhogen; voor Ag-houdende 

ENMs met verschillende afmetingen, werden verschillen in gedrag in het 

blootstelingsmedium en/of effecten alleen waargenomen bij hoge 

blootstellingsconcentraties; de vorm van de Ag-houdende ENMs en de 

blootstellingsduur van de testen deed de SSD niet veranderen. Kreeftachtigen 

bleken de meest gevoelige groep van organismen te zijn voor de metaalhoudende 

ENMs. 

Concluderend kan gesteld worden dat het onderzoek dat in dit proefschrift wordt 

beschreven, bijdraagt aan de uitbreiding van de toepassing van de computationele 

toxicologie in risicobeoordeling, en wel specifiek voor het inschatten van de 

milieurisico’s van ENMs. De verkregen resultaten dragen bij aan de integratie en 

evaluatie van toxiciteitsgegevens, de identificatie van onderzoeksprioriteiten bij 

ENM-gerelateerde modellering, en aan de ontwikkeling van nano-(Q)SARs en 

SSDs voor metaalhoudende ENMs. Ondanks de onzekerheden die samenhangen 

met onze resultaten, veroorzaakt door de beperkte data kwaliteit en 

beschikbaarheid, slaagden we erin om dit onderzoeksveld een stap voorwaarts te 

brengen en dragen we bij aan de verbetering van regelgevende beslissingen voor 

ENMs. Om een significante vervolgstap te kunnen maken, is het essentieel dat de 

onderzoekers in het veld van de nanotoxicologie zich strikt houden aan de 

richtlijnen die zijn opgesteld voor de accurate rapportage en onderbouwing van 

wetenschappelijke gegevens over het gedrag en effecten van ENMs. Dit zorgt 

voor efficiënte data-curatie en voor de mogelijkheid om experimentele data 

onderling te kunnen vergelijken. 
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论文概要 

纳米科技是近年来新兴的学科领域，被视为推动全球经济发展的新引擎。

但是在不断研发与制造特定性能纳米材料的同时，使用这些材料所带来

的潜在风险同样不可忽视。迄今为止，相较于纳米科技的迅猛发展，对

纳米材料安全性的评估研究却仍然滞后，仍然需要引起警惕。对已有及

新纳米材料安全性进行全面、综合的评估需要充足的数据信息，如果只

依靠传统的方式，通过试验来获取信息很耗时耗力，也受限于动物试验

的伦理问题（如以减少、替代以及优化为核心的 3R 动物实验原则）。因

此近年来，很多研究者将注意力转移到应用计算毒理学技术辅助、支持

纳米材料的安全性评估研究上。计算毒理学可应用于评估纳米材料的毒

性作用，归类、标记纳米材料的危险性，以及估算纳米材料的生态风险

阈值。此三部分内容被欧洲化学品管理局列为评价纳米材料危险性的三

要素。对已有纳米材料的危险性进行综合的、全方位的评估既有助于进

行相关的环境和人体健康风险评定，又有助于研发更安全的新型纳米材

料。 

为应用计算毒理学方法评估、分析纳米材料的安全性，本论文着手于收

集、整理金属纳米材料的生态毒理数据（第二章）。此部分研究从现有

文献中收集整理了 886条纳米材料的生态毒理试验数据。数据集中所涉及

的受试生物包括细菌、藻类、酵母、原生动物、线虫类、甲壳类以及鱼

类，所涉及的纳米材料包括金属类和金属氧化物类纳米材料、纳米复合

材料以及量子点。对数据集的分析表明，相较于其它纳米材料，有关银

纳米材料的生态毒理数据最多，纳米氧化钛和氧化锌次之。在所涉及的

受试生物中，有关大型溞、大肠杆菌和羊角月牙藻的研究最为广泛。此

章研究分析整理了试验中纳米材料对各种生物的毒性效应。所整理的数

据集涵盖了可收集到的有关纳米材料和受试生物的各种信息。参照欧盟

委员会划分的污染物对水生生物的风险等级标准(EU Directive 93/67/EEC)，

研究还对数据集中纳米材料的危险性进行了分类。 

在数据收集整理之后，本论文分析了构建纳米（定量）结构—活性关系

的研究现状（第三章）。所分析的内容包括已有研究所用的数据，已构

建的预测模型，金属纳米材料的毒性机理解释以及对此研究领域发展的

展望。结果显示现阶段纳米（定量）结构—活性关系的研究主要集中于
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对不同细胞系和大肠杆菌的毒性效应的预测（定性以及定量预测）。对

模型中描述符的分析显示，金属纳米材料表面修饰分子的亲油性和氢键

能力显著影响细胞对纳米材料的摄取。某些情况下，金属纳米材料释放

的离子以及产生的活性氧物种是纳米材料引发毒性效应的主因。纳米材

料的表面化学特性和尺寸也可以影响其生物效应。对已有研究所用数据

的分析显示，有关纳米（定量）结构—活性关系的研究很大程度上仍受

限于现有数据的数量和质量。纳米材料的结构表征以及其在溶剂中的结

构转化是此类研究中需要注意的问题。 

基于上一章对研究现状的分析，第四章的研究基于所收集数据构建了纳

米结构—活性关系模型。所建模型可对金属纳米材料的危险性进行归类。

研究中案例一（半数致死浓度数据，训练集 320 种纳米材料，预测集 80

种纳米材料）和案例三（最小抑菌浓度数据，训练集 133 种纳米材料，预

测集 33 种纳米材料）构建了涵盖不同生物类别的综合分类模型。模型的

分类预测准确率均在 70%以上。此部分研究同时构建了金属纳米材料对

单一生物（斑马鱼，水蚤，羊角月牙藻以及金黄色葡萄球菌）危险性的

分类预测模型。所建模型均具有较高的预测准确性。模型所用描述符显

示，金属纳米材料的分子极化率、可接近表面积和溶解度对其毒性有显

著影响。本章研究有助于纳米材料的危险性分类工作以及相关的环境风

险评价。 

根据欧洲化学品管理局的要求，如某一纳米材料被归类为其所列出的危

险类别之一，需对该纳米材料进行环境风险评价。其中之一是需要估算

纳米材料的生态风险阈值和相关的暴露水平。环境暴露水平与生态风险

阀值的比值可以表征纳米材料的环境风险。生态风险阈值可以通过计算

物种敏感性分布曲线 5%处的数值（通常称为 5%危害浓度，HC5）得到。

因此，第五章着重于研究金属纳米材料的物种敏感性分布，并把不同的

纳米材料结构特征，试验条件以及毒性测试终点考虑在内。基于已有数

据，研究得到以不同条件区分的（纳米材料表面包覆、尺寸、形态和毒

性暴露时间）纳米银的物种敏感性分布。研究也得到了基于不同毒性测

试终点的物种敏感性分布。研究结果显示，聚乙烯吡咯烷酮和柠檬酸钠

包覆金属纳米银表面可增强其毒性。不同尺寸纳米银的生物效应只在浓

度高时有所差异。不同形态纳米银的物种敏感性分布，以及暴露于纳米
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银悬浮液不同时间下的物种敏感性分布之间并无明显差异。结果还表明

甲壳类动物对金属纳米材料的敏感性最高。 

综上所述，本论文探讨了应用计算毒理学方法评估研究纳米材料安全性

的问题，以辅助纳米材料的安全管理。本论文的研究分别着重于对已有

金属纳米材料毒性信息的收集和整理，对纳米（定量）结构—活性关系

研究现状的分析，以及纳米结构—活性关系和金属纳米材料物种敏感性

分布的构建。不可否认，因所用数据数量和质量的问题，本论文所阐述

的研究结果仍具有一定的不确定性。这些研究旨在协助纳米材料安全性

的评估工作，使决策者获得必要或更充足的信息。为促进该领域的进一

步发展，相关后续试验应严格遵照有关准则测试和报道纳米材料的行为

归趋和生物效应。可靠以及充足的试验数据对相关研究至关重要。 
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