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CHAPTER 1

GENERAL INTRODUCTION




General introduction

1.1 Nanotechnology and nanomaterials
1.1.1 Background

Nanotechnology has become a trending topic in the 21st century. It basically deals with
controlling the structure of matter at the nanoscale (1-100 nm) with respect to one or motre
external dimensions in order to produce new materials, i.e. nanomaterials (Maynard et al.,
2006; European Commission, 2011). The prefix ‘nano’ originates from the Greek word for
“dwarf” (Boholm, 2016). As a prefixing unit of time, length, mass etc., nano signifies “a
billionth” (e.g. of a meter or a gram). Therefore one nanometer (nm) is equal to one-
billionth of a meter, i.e. 10 m. To put this scale into perspective, a human hair is about
80,000 nm wide; a DNA molecule is around 2.5 nm wide; and a red blood cell is estimated

to be approximately 7,000 nm wide (Sahoo et al., 2007; Thakkar et al., 2010).

Nanomaterials are tailored to the needs of inimitable characteristics (e.g. electromagnetic,
catalytic, optical, and thermal properties) which are often not observed in their bulk
counterparts (Kleandrova et al., 2014; Puzyn et al., 2009). As such, nanomaterials have been
designed and engineered for a broad spectrum of applications. An online database called the
“Nanotechnology Consumer Products Inventory” has listed eight general categories
(including 37 sub-categories) of nano-enabled products, namely appliances, automotive,
cross cutting, electronics and computers, food and beverage, goods for children, health and
fitness, and home and garden (Project on Emerging Nanotechnologies, 2013; Vance et al.,
2015). By 5 December, 2016, this inventory contained in total 1827 consumer products on
the market from 715 companies in 33 countries, which were manufacturer-identified as
incorporating engineered nanomaterials (ENMs). Meanwhile by the same date, another data
and analysis repository named the “Nanotechnology Products Database” provided a total
number of 6396 nanotechnology products introduced by 910 companies in 49 countries
(Nanotechnology Products Database, 2016). The controllable production and widespread
commercial applications of ENMs have shown the immense promise of nanomaterials to
benefit the world economy and quality of life. As reported, the direct employment in the
EU involving nanotechnology is estimated to be up to 400,000 jobs according to the
European Commission (Lynch, 2016).

1.1.2 Rapid development of nanotechnology

Reportedly, every week about 3 to 4 new ENM-incorporated products are likely to enter the
market (Kar et al., 2014). The worldwide production capacity of ENMs is estimated to
increase from only 2000 tons per year in 2004 to 50,000 tons per year by 2020 (Heggelund
et al., 2014). As predicted, the global production rates for ENMs involved in structural



applications (e.g. catalysts, films & coatings, composites) will see an increase from an order
of 103 tons per year in 2010 to an order of 10%-10° tons per year by 2020 (Dowling et al.,
2004; Borm et al., 20006). During the same period, the global production of ENMs applied
in information and communication technologies is expected to increase from 102 to >103
tons per year; global production volume of ENMs used for environmental applications
(such as nanofiltration, membranes) is expected to rise from 102 to 103-10* tons per year;
worldwide production of ENMs for skincare products (e.g. TiO2, ZnO ENMs) is estimated
to see a steady growth of 103 tons per year (Dowling et al., 2004). By 2020, the global
market of nanotechnology is likely to continue to grow at double-digit rates (around 17%
annually) for the coming decade and reach a global value of $75 billion in 2020 (Mulvaney
and Weiss, 2010).

1.2 Safety concerns of nanomaterials
1.2.1 Release of ENMs into the environment

The rapid development of nanotechnology and extensive use of ENMs for industrial and
commercial applications have caused safety concerns (Nel et al., 2006; Valsami-Jones and
Lynch, 2015). The ongoing production of ENMs of all types certainly increases the
likelihood of the release of ENMs into the environment. A proposed life-cycle of ENMs
showed that the release of ENMs into the environment can be traced back to the stages of
ENM production, incorporation of ENMs into products, and consumption, recycling, and
disposal of the ENM-containing products (Gottschalk et al., 2010). As estimated, every year
about 189,200 tons of ENMs are released into landfills; 69,200 tons of ENMs into water
bodies; 51,600 tons of ENMs into soil; and 8,100 tons of ENMs into the air (Keller and
Lazareva, 2014). In Europe, the concentration of Ag ENMs in the air was estimated to be
around 0.008 ng/m? in 2008 (volume of air in EU was estimated to be 4.33%x10'5 m?); in
surface water (estimated volume in EU 3.89X10' liter) the predicted concentrations are
0.764 ng/L for Ag ENMs, 0.010 pg/L for ZnO ENMs, and 0.015 pg/L for TiO2 ENMs
(Gottschalk et al,, 2009; Sun et al., 2014). Since 2008, the annual increases of ENM
concentrations in soil (0.05 m depth as for natural soil, 0.2 m depth as for agricultural soil,
estimated total volume in EU 7.59%X10'# kg) are predicted to be 0.0227, 0.093, and 1.28
pg/kg for Ag, ZnO, and TiO» ENMs, respectively (Gottschalk et al., 2009; Sun et al., 2014).

1.2.2 Exposure to ENMs

Undoubtedly, the ongoing release of ENMs into the environment inevitably results in a
higher exposure of humans and ecosystems to ENMs. As illustrated in Figure 1.1, the

exposure of humans to ENMs may occur via a number of exposure routes:



General introduction

(i) Dermal contact, for instance by applying personal care products incorporating ENMs
such as TiOz and ZnO ENMs (Keller et al., 2014);

(i) Inhalation. In an environment where ENMs are released into the air, the manufactured
nanomaterials can be inhaled directly and thus get to deposit in the lung (Methner et al.,
2010);

(iii) Ingestion. This is due to the ENMs added to food items, or unwarranted ENMs that
leach off of package materials into food (Magnuson et al., 2011; McCracken et al., 2016), or
the ENM-polluted water (Wang et al., 2008).
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Figure 1.1. Possible exposure routes of humans and the environment to ENMs (adapted
from Dowling et al., 2004; Gottschalk et al., 2010).

Meanwhile, therapeutic and medical applications of ENMs can also result in direct uptake
of those materials into the human body, even though this option is still seen as

underdeveloped (Dowling et al., 2004). Theoretically, the proposed exposure routes of



ENMs also apply for environmental organisms just as for humans. However, given the
diversity of organisms that live in the outside world, exposure of ENMs to environmental
species seems to be much more complicated, and additional exposure and uptake routes do
certainly exist. For instance, the gill is concluded as being the principal site of the uptake of
Cu and Ag ENMs for fishes and other gill-keeping species (Kwok et al., 2012; Griffitt et al.,
2007). Plants could interact with ENMs adsorbed on soil and sediments via roots
(Oberdorster et al., 2005). ENMs deposited and aggregated on the leaves or other aerial
parts of plants are able to penetrate through stomatal pathways (Eichert et al., 2008;
Miralles et al., 2012). ENMs have shown to be taken up through bacterial cell membranes
(Klaine et al., 2008; Kumar et al., 2011).

1.2.3 Potential toxicity of ENMs and possible mechanisms

The uptake of nanomaterials may lead to adverse effects. Previously, consensus was drawn
across a majority of studies regarding the occurrence of damage triggered by ENMs at the
cellular level (Bondarenko et al, 2013). A comprehensive study of Shaw et al. (2008)
evidenced the effects of ENMs on the cellular viability and physiology of different mammal
cell lines. Gajewicz et al. (2015) also reported the impacts of metal oxide ENMs on cell
viability (human keratinocyte cells) which confirmed the observations of other independent
reports (Zhang et al, 2012; Liu et al., 2011; Zhou et al., 2008). Experimental assays of
nanotoxicity have also been generally performed on vatrious trophic levels of organisms
(Juganson et al., 2015; Donaldson et al., 2001; Oberdorster, 2000), such as algae (e.g.
Pseudokirchneriella subcapitata), bacteria (e.g. Escherichia coli), crustaceans (e.g. Daphnia magna,
Daphnia pulex), fish (e.g. Danio rerio, Oryzias latipes), nematodes (e.g. Caenorhabditis elegans),
plants (e.g. Lemna minor), protozoa (e.g. Tetrabymena thermophila), yeast (e.g. Saccharomyces

cerevisiae), and mammals (e.g. Rattus).

The introduction of ENMs to different species may lead to the occurrence of (not limited
to) mortality, immobilization, malformation, inflammatory response, and the inhibition of
cell viability, growth, luminescence, reproduction, feeding, and fertilization, etc. which varies
from case to case (Juganson et al., 2015). For instance, exposure of algae (e.g. Chlamydomonas
reinbardtii, Psendokirchneriella subcapitata, and Scenedesmus oblignus) to ENMs may result in the
inhibition of growth and the loss of cell viability (Navarro et al., 2008; Angel et al., 2013;
Dalai et al., 2013). Bacteria that were exposed to ENMs appeared to exhibit mortality (e.g.
Escherichia coli), luminescence inhibition (e.g. Escherichia coli, Vibrio fischeri, Psendomonas putida),
and growth inhibition (e.g. Escherichia coli) (Samberg et al., 2011; Ivask et al., 2010; Hu et al.,
2009; Dams et al., 2011; Heinlaan et al., 2008). Exposure of crustaceans, such as Daphnia
magna, Ceriodaphnia dubia, and Daphnia pulex to ENMs was found to cause mortality,

immobilization, and inhibition of growth, feeding, and reproduction (Gao et al., 2009; Li et
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al,, 2011; Jo et al,, 2012; Lopes et al., 2014; Griffitt et al., 2008). ENMs tested on fish are
likely to induce mortality, growth inhibition, delay of hatching, and developmental
malformation (Wang et al., 2012; Massarsky et al., 2013; Zhu et al., 2012; Hall et al., 2009).
The introduction of ENMs to nematodes, protozoa, and yeast may cause mortality, growth
inhibition, inhibition of cell viability, reproduction inhibition, and immobilization (Tyne et
al,, 2013; Yang et al., 2012; Ma et al., 2009; Kvitek et al., 2009; Shi et al., 2012; Mortimer et
al., 2010; Galindo et al., 2013; Kasemets et al., 2013). For rats, i vivo experiments have also
evidenced the harmful effects of ENMs such as hepatotoxicity and nephrotoxicity after oral
gavage (Lei et al., 2008).
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Figure 1.2. Schematic illustration of possible mechanisms of ENM toxicity. 1) The direct
contact of ENMs with subcellular structures which could promote the leaching of ions and
reactive oxygen species (ROS); 2) ENMs releasing ions; 3) ENMs contact-mediated ROS
generation; 4) The phenomenon of Trojan-horse mechanism; 5) Released ions enhancing
the formation of ROS; 6) Ton-dependent interactions which may result in cellular damage or

trigger ROS formation (Drawn by G. Chen).

As hypothesized, ENMs may pose effects via a single or via combinations of a few possible
pathways (see Figure 1.2). ENMs can for instance induce the generation of reactive oxygen
species (ROS), or induce direct steric hindrance or interferences with important reaction
sites (Puzyn et al., 2011). ENMs are also considered to be able to act as vectors for
transporting other toxic chemicals into cells, a phenomenon which is described as the
Trojan-horse mechanism (Park et al., 2010). Nanotoxicity could as well occur due to the
shedding of ions from ENM crystals. This process is generally believed to be one of the
important pathways of toxicity for soluble metallic nanoparticles (Xiao et al., 2015). The
released ions are able to interact with subcellular structures initiating cellular damages, or

stimulate ROS formation, which in turn has been reported to induce oxidative stress



resulting in the disturbance of cellular physiological redox-regulated functions (Nel et al.,
2009; Fu et al.,, 2014). The released ions can also promote the production of ROS (von
Moos and Slaveykova, 2014).

1.3 Handling nanosafety
1.3.1 Environment risk assessment and safe-by-design of ENMs

To ensure the nanosafety and optimal benefit from nanotechnology, two strategies stand
out in this regard: the first is designing and producing ENMs that are safe and
environmentally benign while with desired properties. This strategy aims at minimizing the
potential risks of ENMs from the very beginning of the development of an ENM
application. It is referred to as the safe-by-design of ENMs and relates to ex ante safety
assessment. The second strategy is to assess the risks of existing and also newly introduced
ENMs, which manages to control relevant risks during the stages of manufacturing, use,
and disposal of ENMs with prospective risk assessment. In order to answer the question
whether an ENM is environmentally safe or not, a series of key steps including hazard
assessment, exposure assessment, and risk charactetization are required, and measures will
be taken based on the established conclusion (Commission of the European Communities,
1996). As suggested by the European Chemicals Agency (ECHA), the process of risk
assessment of ENMs (as of any chemical to be regulated within the EU) begins with the
identification and assessment of ENM hazard if the ENMs subjected to registration under
the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH)
regulation reaches an annual production or import of at least 10 tons (ECHA, 2011).
Exposure assessment and risk characterization are also required when an ENM fulfils the
criteria for any of the listed physical, health, or environmental hazard categories in the
released guideline of ECHA (ECHA, 2011). The hazard assessment of ENMs meanwhile
also provides important feedbacks to safe-by-design approaches for ENMs with regard to
key characteristics of ENMs governing relevant toxicity pathways, upon which

modifications towards designing safer materials could be determined (Sealy, 2011).

As described in Figure 1.3, the hazard assessment for human health and the environment as
recommended by ECHA comprises of evaluation of information, classification and labelling,
and identification of predicted no effect concentrations (PNECs) or derived no effect levels
(DNELs). The gathering and evaluation of relevant physicochemical, (eco)toxicological
information of ENMs is certainly fundamental to support the assessment of ENM hazard

as the very first step. This is outlined by REACH as part of the registration of chemicals. It
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involves the retrieval and sharing of existing data, consideration of needed information,
identification of information gaps, and the generation of new data or preparation of a
proposal for a tailored testing strategy (ECHA, 2011). Based on the first step, ENMs will be
determined as whether or not meeting the criteria for any of the hazard classes or categories
proposed by ECHA, i.e. the step of classification and labeling. Once an ENM is categorized
in at least one of the listed classes, detivation of the hazard threshold levels of ENM for
human health and the environment, e.g. PNECs and DNELs, is required in light of a
qualitative risk characterization for relevant ENMs.

Is this engineered nanomaterial
: (ENM) environmentally safe?

Safe-by-design
ENMs

A
1
|
1
|
1
1
L

4 4

Hazard assessments | Exposure assessment |

* Evaluation of information;

* Classification and labelling; ¥

* Identification of PNECs and DNELs —>| Risk characterization |

Risk management
* Elimination/substitution
* Engineering control

¢ Administrative control

* Personal protective equipment

Figure 1.3. Schematic explanation of the safe handling of engineered nanomaterials. PNECs
- predicted no effect concentrations; DNELSs - derived no effect levels. Figure adapted from
the ECHA guidance (ECHA, 2011).

Therefore, as for the safe handling of nanomaterials including the approaches of safe-by-
design and risk assessment of ENMs, gathering and evaluation of hazard information of
ENDMs is essential. In a survey provided by the NanoSafety Cluster Database working group,
a total number of 38 online ENM databases developed under various projects were listed.
These were provided with the names of databases and website addresses (Mustad et al.,

2014). Another online inventory named StatNano was established in 2010 for the access of



up-to-date information and statistics in nano-based science, technology and industry
(StatNano, 2010). This website also provides a so-called Nanotechnology Products
Database (established in January 2016) for the analysis and characterization of
nanotechnology-based consumer products (Nanotechnology Products Database, 2016).
Another effort to gather relevant data and to address the safety of ENMs is the EU
NanoSafety Cluster which aims to maximize the synergies between various projects at the
European-level (EU NanoSafety Cluster, 2017). This cluster comprises of nine working
groups addressing different aspects involved in nanotechnology and nanosafety, namely the
working groups of materials, hazard, exposure, database, risk, modeling, dissemination,
systems biology, and safe-by-design and industrial innovation. Undoubtedly, those databases
and platforms are of significant importance as the first step in gathering, evaluation, and
processing of information regarding the hazard of ENMs. As a follow up, it is crucial to
develop comprehensive databases containing reliable and sufficient information on ENM
characterization, experimental conditions, and toxicity of ENMs for the need of ENM

hazard assessment.
1.3.2 Handling nanosafety with the aid of computational toxicology

By far, a large amount of ENMs have been carefully tested on various species and cell lines
(Bondarenko et al., 2013; Juganson et al., 2015). However, given the substantial number of
existing, non-tested ENMs and the enormous growth of nanotechnology, testing every
single type of ENM to support the comprehensive evaluation of ENM safety is expensive,
time-consuming, and thus virtually impossible. Testing of all hitherto non-tested ENMs and
of all newly developed ENMs also conflicts with the 3R's principle (refine, reduce, and
replace) of animal use in toxicity testing (Russell and Burch, 1959). Thus researchers have
been secking and developing alternatives of testing assays for assisting the risk management
of ENMs. One of the very helpful tools in this task as an alternative of testing is
computational toxicology. It is defined as a discipline that integrates information from
various sources in order to develop computer-based models for the better interpretation
and prediction of chemical effects (Reisfeld and Mayeno, 2012). A few typical tools in this
field are for example (quantitative) structure—activity relationship ((Q)SAR), structural alerts,
read-across extrapolations, dose—response and time—response models which aim to

contribute to the prediction and classification of chemical toxicity.

The (Q)SAR method enables the correlation of chemical characteristics with experimental
toxicity data and thus enables to encode existing knowledge into predictive models. To
build a (Q)SAR model, the measured or calculated descriptors characterizing key structures
of chemicals and the toxicity endpoints reflecting the chemical biological effects are

required. The role of (Q)SARs in predictive toxicology is:
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(i) To provide efficient and inexpensive screening tools for the evaluation of chemical

hazards;
(i) To assist the categorization and labeling of chemicals based their hazard effects;

(i) To help interpreting the undetlying toxicity mechanisms of substances (Peijnenburg,
2009).

1.3.3 Hazard prediction by (Q)SARs for ENMs

(Q)SARs have already been successfully used as very helpful tools for conventional
chemicals in relating structural characteristics to chemical properties and biological effects in
order to fill data gaps (Chen et al, 2014; Singh et al., 2014; Modarresi et al., 2007).
According to REACH, data derived from (Q)SARs may support the waiving of laboratory
testing or serve as a trigger for proposing further testing; when certain required conditions
are met, (Q)SAR results could be used instead of testing data for the registration under
REACH (ECHA, 2008a). Based on the OECD principles for (Q)SAR validation, a (Q)SAR
model suited for regulatory purposes is suggested to contain at least the following

information:

(@) A well-defined endpoint;

(i) An explicit algorithm;

(iif) A well-defined applicability domain;

(iv) Suitable measures of goodness-of-fit, robustness and predictivity;
(v) If possible an interpretation of relevant mechanisms (OECD, 2007).

The limited data availability on ENM hazards necessitates the need of extending
conventional (Q)SAR approaches to nanotoxicology, i.e. nano-(Q)SARs. For the hazard
assessment of ENMs, nano-(QQ)SARs could be potentially used to generate non-testing data
during the gathering of information in the first step, or to assist the second step of
classification and labeling of ENMs by directly categorizing ENMs into different hazard
classes. The descriptors in nano-(Q)SARs may also be helpful for understanding related
mechanisms and identifying key factors affecting ENM toxicity, which as well provides
guidance to the modification of ENM characteristics for the safe-by-design of ENMs. To

date, attempts have already been made to correlate the characteristics of ENMs to their



biological responses (Sizochenko and Leszczynski, 2016; Raies and Bajic, 2016; Tantra et al.,
2015). Those studies showed the tantalizing possibility that the (Q)SAR method may indeed
be feasible and useful in predicting the biological activity profiles of novel ENMs. However,
it meanwhile also revealed that nano-(Q)SAR is now still in its infancy and further
challenges in this field need to be overcome. One issue standing out on this background
relates to the comprehensive representation of ENM structures. As known, ENMs often
exist as populations of materials varying in structural characteristics, e.g. composites, sizes,
shapes, functional groups. The structural ambiguousness of ENMs makes it difficult for
experimentalists to provide precise information on ENM characterization which
consequently hinders the calculation of representative descriptors for ENMs. Another issue
of importance in this context concerns the dynamics of ENMs in media. ENMs often
strongly interact with constituents in the medium and undergo dramatic changes to their
surface properties, and dissolution and aggregation behavior (Winkler, 2016). These changes
consequently alter the mobility, bioavailability, and ultimately, toxicity of ENMs. Therefore
in some cases the toxicity information of ENMs can be pootly correlated to ENMs’
characteristics without considering the dynamics of ENMs in the media. Thus (Q)SARs
based on initial structural features of ENMs are now also extended incorporating the

experimental descriptors for this consideration (Liu et al., 2011; Zhang et al., 2012).
1.3.4 Hazard prediction models such as SSDs for ENMs

Meanwhile, to derive hazard threshold levels of (soluble) chemicals such as PNEC for
ecosystems and their communities, the species sensitivity distribution (SSD) method is
commonly used (Posthuma et al., 2002). SSDs are derived by ranking species according to
their sensitivity to certain chemicals based on retrieved ecotoxicity data (Posthuma et al,,
2002; Garner et al., 2015). An SSD can provide the potentially affected fraction of species
under a chemical concentration of interest given the sensitivity distributions. Among others,
the 5th percentile (HC5) of the SSD is commonly used to assist in getting protection levels
in the ecosystem. The PNEC of a chemical is the maximum acceptable concentration in the
environment below which unacceptable chemical effects are unlikely to occur (ECHA,
2008b). It is required for the risk characterization once a chemical is classified into the
hazard categories listed in Article 14(4) of REACH (ECHA, 2011). Alternatively, PNEC
values can be estimated by the assessment factor method (ECHA, 2011).

1.3.5 Risk characterization for ENMs
PNEC is based on ecotoxicity data and is often coupled with an assessment factor. The

obtained values of the hazard thresholds together with the predicted environmental

concentrations (PECs) of ENMs are commonly utilized for risk characterization. A ratio of

1
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PEC/PNEC greater than ot equal to 1 indicates that potential risks are likely to occut, and
further assessment is needed; a ratio of PEC/PNEC less than 1 means that risks are not
expected. Even though the risk characterization of PEC/PNEC is originally set up for
dissolved chemicals, it is now accepted and widely used for the risk characterization of
ENMs as well (Gottschalk et al., 2013; Coll et al., 2016).

1.4 Objectives and outlines of this thesis

As indicated above, assessing and managing the risks of ENMs is of significant importance
for the advancement of nanotechnology. Two approaches capable of contributing to this
crucial task are principle of safe-by-design of ENM and the risk assessment of ENMs, both
of which need to be supported by ENMs’ hazard assessment. Computational toxicology as
a promising tool has shown its great potential in assisting the evaluation of the hazard of
conventional chemicals, from the very beginning of assembling and evaluating data, to
classification and labeling, and to generation of hazard threshold values for risk
characterization. The use of computational toxicology in supporting the hazard assessment
of ENMs is still a field of research that needs further development. This PhD study aims to
explore the use of computational toxicology to contribute to the safe handling of metal-
based ENMs, by evaluating the availability of existing nanotoxicity data and identifying data
gaps, developing nano-(Q)SARs, and deriving hazard threshold values. The objectives of
this PhD thesis are:

(@) To evaluate the currently existing literature data on metal-based ENMs for the use of

computational toxicology in light of the safety assessment of ENMs;
(ii) To develop nano-(Q)SARs for the prediction and categorization of ENM hazard,;

(iii) To derive SSDs and maximum acceptable environmental concentrations of metal-based

ENMs as toxicity measures characterizing relevant risks.

1.5 Outline of the thesis

On the basis of the presented research objectives, this thesis contains six chapters.



Chapter 1 Background information is presented about the development of nanotechnology,
concerns of nanosafety, safe handling of ENMs, and the application of computational
toxicology in assisting the safe use of ENMs. The research objectives and the layout of this

thesis are described;

Chapter 2 An inventory of existing toxicity data of metal-based ENMs is established to
evaluate relevant data availability and to identify data gaps. The developed database contains
866 data entries on endpoints related to the toxicity of metallic ENMs to algae, yeast,

bacteria, protozoa, nematodes, crustacean, and fish;

Chapter 3 In this chapter the development of nano-(Q)SARs is reviewed. The used datasets,

constructed models, and underlying mechanisms of ENM uptake and toxicity are discussed;

Chapter 4 Nano-SARs are developed for the categorization of the environmental hazards
of metal-based ENMs. Both global nano-SARs across different species and species-specific
nano-SARs (for Danio rerio, Daphnia magna, Psendokirchneriella subcapitata, and Staphylococcus
anrens) are presented. Possible mechanisms of toxicity are interpreted based on the

descriptors used in the models;

Chapter 5 Species sensitivity distributions for metal-based ENMs and relevant HC5 values
are obtained. SSDs are developed and compared considering the characteristics of ENMs,
the experimental conditions, and different types of endpoints. The most sensitive species

and organism groups to certain ENMs are also discussed;

Chapter 6 Based on the presented studies in the thesis and other results in this field, the
current knowledge on the use of computational toxicology in assisting the hazard
assessment of metallic ENMs is discussed. The development of nano-(Q)SARs and read-
across for ENMs, and the development of relevant SSDs are reviewed. Hint messages from
the commonly used descriptors in the models are extracted; the toxicity of metal-based
ENMs is profiled based on these descriptors. Suggestions and outlook are presented to

facilitate the further development of this new frontier.

13
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Abstract

This review establishes an inventory of existing toxicity data on nanoparticles (NPs) with
the purpose of developing (Quantitative) Structure—Activity Relationships for NPs (nano-
(Q)SARs) and also of maximizing the use of scientific sources for NP risk assessment.
From a data search carried out on 27 February 2014, a total of 910 publications were
retrieved from the Web of Science™ Core Collection, and a database comprising 886
records of toxicity endpoints was built based on these publications. The test organisms
mainly comprised bacteria, algae, yeast, protozoa, nematode, crustacean, and fish. The NPs
consisted mainly of metals, metal oxides, nanocomposites, and quantum dots. The data
were analyzed further, in order to: i) categories each toxicity endpoint and the biological
effects triggered by the NPs; ii) survey the characterization of the NPs used; and iii) assess
whether the data were suitable for nano-(Q)SAR development. Despite the efforts of
numerous scientific programmes on nanomaterial safety and design, our study concluded
that lack of data consistency prevents the use of experimental data in developing and
validating nano-(QQ)SARs. Finally, an outlook on the future of nano-(Q)SAR development is
provided.

Key words: ecotoxicity, metal-based, models, nanoparticle, (quantitative) structure—activity

relationship



2.1 Introduction

Tremendous advances in the utility of synthetic nanoparticles (NPs) have raised global
concerns about potential nano-specific effects on ecosystems. The likelihood of NPs
triggering negative impacts on ecosystems, as well as on human health, has already been
addressed by various studies (Gajewicz et al., 2012; Ivask et al., 2014; Schrand et al., 2010).
This likelihood necessitates a comprehensive risk assessment of NPs, to determine whether
their benefits outweigh the risks, before initiating large-scale production. Such a task,
however, is prevented by insufficient scientific information, as evident from the observation
that the number of studies investigating the harmful effects of NPs severely lags behind the
rapid growth of nanotechnology (Bondarenko et al., 2013; Kahru and Ivask, 2013). In
addition, the exponential increase in the number and variety of NPs makes it impossible to
test every newly-synthesized NP, taking into account the high study-cost, the time-
consuming nature of toxicity testing and the Three Rs (replacement, reduction, and
refinement) concept governing animal use (Russell and Burch, 1959). If the use of
alternative non-animal approaches was maximized for testing, 1.9 million fewer animals
would be required (Gajewicz et al., 2012). Therefore, reliable protocols for 7n silico screening
of the effects of NPs are required for adequate NP risk assessment (Cumming et al., 2013;
OECD Quantitative Structure—Activity Relationships Project). Meanwhile, the mission of
safe-by-design for nanotechnology (Maynard et al., 2006), which was aimed at designing
biologically and environmentally benign NPs, has also driven the need for predicting the
toxicity of NPs from their pristine (i.e. unmodified) structures. Thus, recently, there have

been many attempts to predict the toxicity of NPs based on computational methods.

Following its successful application in formalizing relationships between structural
characteristics and biological effects (Altschuh et al., 1999; Arnot and Gobas, 2006; Pavan
and Worth, 2006; Pavan et al., 2006; Chen et al,, 2014), the (Quantitative) Structure—
Analysis Relationship ((Q)SAR) approach offers a rapid way of filling data gaps caused by
limited availability, or the absence, of experimental information. Attempts have also been
made to use experimentally-obtained data to link the physical-chemical characteristics of
NPs to their cellular uptake, cytotoxicity (Epa et al., 2012; Ehret et al., 2014; Fourches et al,,
2010; Gajewicz et al., 2015; Ghorbanzadeh et al., 2012; Kar et al., 2014a; Liu et al,, 2011;
2013; Luan et al., 2014; Singh and Gupta, 2014; Sizochenko et al., 2014; Toropov et al,,
2013), and ecotoxicity (Kar et al., 2014b; Kleandrova et al., 2014; Pathakoti et al., 2014;
Puzyn et al,, 2011; Singh and Gupta, 2014; Sizochenko et al., 2014; Toropov et al., 2012).
The nano-(Q)SARs reported and the data sets used are summarized in Table 2.1. As can be
seen from this table, despite the fact that intensive research is being carried out on NP-
related toxicity, the nano-(Q)SARs developed so far have mainly employed toxicity

information from a limited number of studies on a restricted number of classes of NPs, and
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used data generated under consistently similar conditions. To improve the development of
nano-(Q)SARs, with the ultimate goal of employing nano-(Q)SARs as alternative 7 silico
screening methods in toxicity testing, it is essential that all published nanotoxicity data is
summarized and organized into potentially useful data for modeling researchers. Meanwhile,
NP-related regulatory frameworks also require the gathering of nanotoxicity information to
enable the optimal use of the existing scientific sources. For instance, according to EU
Ditective 93/67/EEQC, it is preferable that the classification of chemical hazard to aquatic
organisms is based on toxicity data from at least three standard test organisms (i.e. algae,
crustacean, and fish), with hazard initially determined by the lowest median L(E)C50 value
(the chemical concentration found to cause 50% death or effect of interest) of the species
tested: if the L(E)C50 value is < 1 mg/L, the compound is considered very toxic to aquatic
organisms; if the L(E)C50 value is 1-10 mg/L, the compound is considered toxic to aquatic
organisms; if the L(E)C50 value is 10-100 mg/L, the compound is considered harmful to
aquatic organisms; if the L(E)C50 value is > 100 mg/L, the compound is not classified as
being toxic or harmful (Ivask et al, 2014; Commission of the European Communities,
1996). Blaise et al. (2008) and Sanderson et al. (2003) have subsequently extended this
classification scheme by adding one more category: L(E)C50 value < 0.1 mg/L corresponds
to compounds that are extremely toxic to aquatic organisms (Ivask et al., 2014; Kahru and
Dubourguier, 2010).

Two kinds of data are essential for developing predictive (Q)SAR models: data that
characterize the physico-chemical properties of groups of pristine NPs (NP descriptors),
and data that describe the relevant biological effects of NPs on test organisms (toxicity
endpoints), including a detailed description of the experimental conditions, or of the test
protocols used (Ivask et al., 2014). It is also generally acknowledged that NP dynamics in
the test medium (e.g. aggregation, agglomeration, dissolution) greatly impact their toxicity
(El Badawy et al, 2010; Tiede et al, 2009); the applicability of (Q)SARs would be
broadened, if such transformations could be incorporated into the data input when linking
NP characteristics to toxicity. Nevertheless, the few successful efforts that have been made
to develop nano-(QQ)SARs were restricted to correlating the characteristics of pristine NPs
with NP toxicity. Puzyn et al. (2011) modeled the toxicity of 17 metal oxide NPs in
Escherichia coli (E. coliy employing only one descriptor AHje+ (the enthalpy of formation of a
gaseous cation having the same oxidation state as that in the metal oxide structure). Based
on the same data set, Singh and Gupta (2014) recently built a nano-(Q)SAR model with
three descriptors: oxygen percentage, molar refractivity, and polar surface area. Other
models were also constructed by using the same data set (Table 2.1), solely on the basis of
the descriptors of pristine NPs (Kar et al., 2014b; Toropov et al., 2012; Sizochenko et al.,
2014). Metal electronegativity () and the charge of the metal cation corresponding to a
given oxide (y,,) were also employed to predict photo-induced toxicity of 17 oxide NPs to



E. coli (Pathakoti et al., 2014). Those studies indicated that it is indeed possible to predict
NP toxicity based on the characteristics of pristine NPs, which would benefit the
development of iz silico screening protocols as an alternative to experimental assays, as well

as complying with the ‘safe-by-design’ initiative for nanotechnology.

2.2 Methods

As a first step toward the development of nano-(QQ)SARs, and based on a Web of Science™
Core Collection bibliometric data search, we established an inventory of toxicity data of
metal-based NPs that are widely used in a variety of applications (Schrand et al., 2010).
Information on NP characterization, if it was associated with the reported toxicity data, was
also included. The focus of organisms were based on the studies of Ivask et al. (2014),
Bondarenko et al. (2013), and Kahru and Dubourguier (2010). These are mainly algae, yeast,
bacteria, protozoa, crustacean, nematodes, and fish. The findings were evaluated in the light
of nano-(Q)SAR development and were based on the characteristics of pristine NPs. The
toxicity endpoints reported in the literature, and hence included in the database, mainly
consisted of the lethal concentration (LC), the effect concentration (EC, or IC when the
effect refers to inhibition), the lowest observed effect concentration (LOEC), the no
observed effect concentration (NOEC), the minimum bactericidal concentration (MBC),
and the minimum inhibitory concentration (MIC; more commonly used in antimicrobial
assays). Information on these common toxicity endpoints was extracted from the retrieved
publications. The test species and metal-based NPs covered in this review provide an
overview of the database. For (Q)SAR modeling purposes, further analysis focused on the
numbers of different toxicity endpoints, the type of biological effects induced by the NPs,
data availability (i.e. the amount of accessible toxicity data), and also the characterization of
the NPs provided.

2.2.1 Bibliometric data search

To access the experimental information available, a bibliometric data search was performed
on 27 February 2014 by using the Advanced Search features in the Web of Science Core
Collection. To ensure that the data search, and subsequent analysis, covered a broad range
of test species, different hierarchies of organisms were selected based on the studies by
Ivask et al. (2014), Bondarenko et al. (2013), and Kahru and Dubourguier (2010). The test
organisms analyzed in this review mainly comprised: bacteria, algae, yeast, protozoa,
nematode, crustacean, and fish. The NPs selected for this review included a variety of

metal-based NPs, based on an empirical analysis of existing nanotoxicity-related
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publications. The test species and metal-based NPs were subsequently identified by using
(truncated) search terms (i.e. key words) as given in Tables S2.1 and S2.2 in the
Supplemental Information. NPs with no search records evident after a preliminary search in
the Web of Science Core Collection were excluded. To eliminate redundant records, the
data search was restricted by two conditions: a) the research area had to be toxicology, or
the topic contain “*toxicity” and “effect*” but not “function*”, “synthesis”, “label” or
“agent”, to exclude studies on related applications; and b) either title or abstract had to
contain “nano” or “quantum”. The language and type of document were restricted,
respectively, to “English” and “article”. Finally, 23 different kinds of metal-based NPs were
included in the study: silver (Ag), aluminium (Al), gold (Au), bismuth (Bi), cadmium (Cd),
cerium (Ce), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), indium (In), lanthanum
(La), manganese (Mn), molybdenum (Mo), nickel (Ni), platinum (Pt), antimony (Sb),

selenium (Se), silicon (Si), titanium (T4), vanadium (V), zinc (Zn), and zirconium (Zr).

2.3 Results and Discussion
2.3.1 Overall analysis of the NP-related studies

A total of 982 papers were retrieved, according to the data search refined by condition (a).
Most papers featured bacteria as the test organisms and with silver NPs as the metal-based
NPs (Table S2.3). After assigning condition (b), a total of 910 papers were obtained. A
detailed analysis showed that 406 papers described studies on bacteria, 245 on fish, 193 on
crustacean, 134 algae, 102 yeast, 43 nematodes, and 17 protozoa (Figure 2.1). With regard to
the metal-based NPs, 383 papers were related to the toxicity induced by silver NPs,
followed by 238 on titanium, 139 on copper and 137 on zinc NPs (Figure 2.2 and Table
S2.4). Of the 910 papers, 45 dealt specifically with quantum dots, with either the title or

abstract containing the key word “quantum dot”.
2.3.2 Analysis of toxicity endpoints

Of the 910 papers retrieved, a manual selection was subsequently carried out to screen data
related to the aforementioned toxicity endpoints (LC, EC, LOEC, NOEC, MBC, and MIC).
A database with 886 records of the toxicity endpoints was obtained and summarized in a
Microsoft Excel® spreadsheet (see Supplementary Information, available on the ATI.A
website www.atla.org.uk). The original data were presented according to the following

features:



Table 2.1. Summary of experimental data used for the reported nano-(Q)SARs

Reference of Nanomaterials Biologic Type of organisms Reported nano-
dataset (NMs) covered effects or cells (Q)SARs
Weissleder et al., 146 NMs with Cellular Pancreatic cancer Chau and Yap, 2012
2005 (Fe203)m(Fe3Ox4)n core uptake cells; macrophage cell
. . . . Kar et al,, 2014a
but different surface line; resting primary
modifiers human macrophages;  Epa et al., 2012
activated primary
human macrophages; Fourches et al., 2010
human umbilical vein  Ghorbanzadeh et al.
endothelial cells 2012 '
Singh and Gupta,
2014
Puzyn et al,, 17 metal oxide NMs Ecotoxicity Escherichia coli Kar et al., 2014b
2011 (data
partly from Hu Puzyn et al., 2011
et al., 2009) Singh and Gupta,
2014
Sizochenko et al.,
2014
Toropov et al., 2012
Shaw et al., 48 (Fe203)m(Fe3Ou4)n Cytotoxicity Endothelial cells; Epa etal, 2012
2008 core based NMs and vascular smooth
Singh and Gupta,
two quantum dots muscle cells; 014
hepatocytes; murine
RAW 264.7 leukemic Ehret et al,, 2014
monocyte/macropha  Fourches et al.,, 2010
ge cells
Gajewicz et al., 18 metal oxide NMs Cytotoxicity Human keratinocyte Gajewicz et al,, 2015
2015 cells
Sizochenko et al.,
2014
Pathakoti et al., 17 metal oxide NMs Ecotoxicity Escherichia coli Pathakoti et al., 2014
2014
Liu et al., 2011 9 metal oxide NMs Cytotoxicity Transformed Liu et al., 2011
bronchial epithelial
cells
Zhang et al., 24 metal oxide NMs Cytotoxicity Human bronchial Liu et al., 2013
2012 epithelial cells; rat

alveolar macrophage

cells

Multi data sources

Kleandrova et al.,
2014
Luan et al., 2014
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(i) References, including first author, publication year, journal and title of the publication;

(if) Organism details, i.e. the categorical group, the species, bacterial strain or life-stage used;
(i) Experimental conditions, including the duration of exposure, type of light exposure and
emittance of light (for phototoxicological studies), media composition, and pH (when the
experiments were based on standardized tests, e.g. OECD guidelines, the name of the test

was given instead);

(iv) Toxicity endpoints, as described by the biological effect addressed, type of endpoint,

experimental value of toxicity endpoint, and the unit used; and

(v) NP characterization, consisting of the type of NP, core, size, coating, purity, crystallinity,

surface area, surface charge, shape, and zeta potential.
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Figure 2.1. Number of retrieved papers on the organisms in the Web of Science™ Core
Collection. Data search was performed in the Web of Science™ Core Collection on 27
February, 2014; key words used characterizing tested organisms were listed in Table S2.1.
The organism-wise analysis based on 910 retrieved publications from the data search
indicates that bacteria is the most generally studied organism for testing nanotoxicity,

followed by fish, crustacean, algae, yeast, nematode, and protozoa.

The database covered 62 species (55 species that comprised the original seven test

organisms, plus additional data on seven species) and 29 kinds of metal-based NPs in total.



It included 20 species of bacteria, 12 species of algae, 5 species of yeast, 4 species of
protozoa, 2 species of nematodes, 7 species of crustacean, and 5 species of fish. These 55
species were found to be related to 866 toxicity endpoints presented in the database. The
main journals where these toxicity endpoints were published were: Nanotoxicology (128
records), Environmental Toxicology and Chemistry (94 records), Environmental Science and Technology
(91 records), Chemosphere (67 records), and Science of the Total Environment (61 records). To
highlight the main points of the database, test species with at least six records (in total 28
species with 802 records) are shown in Figure 2.3. Toxicity endpoints in other organisms
that were studied simultaneously in the retrieved publications were also collected and
included in the Supplementary Information. As Figure 2.3 shows, most of the NPs were
metals, metal oxides, nanocomposites, and quantum dots. With regard to toxicity endpoints,
E{)C was the most recorded (accounting for 444 records), followed by LC (with 187
records, two of which lethal dose), MIC (112 records), NOEC (50 records), LOEC (44
records), and MBC (49 records). The numbers of toxicity endpoints involving certain

species and specific metal-based NPs were also analyzed, as shown in Figure 2.3.
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Ag Ti Cu Zn Au Si Cd Fe Ce Al Co Se Ni others
Metal-based NPs

Figure 2.2. Number of retrieved papers on metal-based NPs in the Web of Science™ Core
Collection. A comparison on number of publications concerning the toxicity studies of
different metal-based NPs. NPs with less than ten papers are shown in the group “others”,
namely Pt, Cr, In, Zr, Bi, La, Mn, Mo, Sb, and V NPs. Data search was performed on 27
February, 2014 in the Web of Science™ Core Collection, key words used characterizing the
NPs were given in Table S2.2. It can be seen that Ag NPs attracted the most research

attention among the metal-based NPs.
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The analysis indicated that Ag NPs were the most widely studied NPs (with a total of 332
records of endpoints), with a particular focus on two bacteria, Staphylococcns anrens (S. anrens)
and E. coli, and a crustacean, Daphnia magna (D. magna). Meanwhile, more than average
attention was also paid to TiO» (126) and ZnO (109) NPs. As for the test organisms most
often used, D. magna, E. coli (a bacterium), and Pseudokirchneriella subcapitata (an alga) were the
dominant species in the database, with 173, 139, and 106 toxicity records, respectively. They
were followed by S. aurens (49 toxicity records), Vibrio fischeri (a bacterium; 47 records), and
Danio rerio (the zebrafish; 44 records). Given the numbers of available records, these data are
potentially useful for nano-(Q)SAR modeling, but care should be taken regarding data
consistency. If we take the endpoints in D. zagna as an example, the 173 records retrieved
on this water flea consisted of 51 values for LC50, 67 values for EC50, 19 values for NOEC,
13 values for LOEC, and 23 others (e.g. LC10, LC20, EC10, EC20, etc.). In addition, there
was further variation with regard to the various biological effects that were assessed and the

duration of the exposure of the organisms to the NPs.

The NP-induced biological effects and relevant toxicity endpoints are shown in Table 2.2.
The biological effects commonly investigated include: mortality, cell viability inhibition,
growth inhibition, immobilization, luminescence inhibition, malformation, and reproduction
inhibition. Mortality and growth inhibition are two significant indices that are generally
applied in ecotoxicity assays; the rest of the endpoints are used as appropriate on different
groups of organisms. Unsurprisingly, as the standard test organisms in OECD guidelines,
algae, bacteria, crustacean, and fish are paid relatively more research attention.
Immobilization, for instance, is an important factor that is often used to characterize the
effects of NPs on crustacean. Inhibition of reproduction is another commonly studied
endpoint. Meanwhile, luminescence inhibition is examined only with bacteria. With regard
to the issue of data availability of toxicity endpoints for nano-(Q)SAR modeling, the EC50
(growth inhibition) to algae accounts for 91 records. Concerning bacteria, 110 MIC data
records and 86 EC50 (luminescence inhibition) values were retrieved. For crustacean, 82
LC50 (mortality) and 59 EC50 (immobilization) values were found. For fish, 44 LC50

(mortality) values were obtained.

Besides the test species used and the biological effects and toxicity endpoints measured, the
diversity of metal-based NPs in a data set is also of major importance for the development
of nano-(Q)SARs. In this context, two issues stand out: first, regardless of the number of
records available in a data set with the same toxicity endpoint, the data set should cover
different NPs in order to be potentially modeled against NP properties; second, the NPs of
interest should share a degree of structural similarity in order to be grouped and described

in terms of descriptors suitable for modeling.
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Figure 2.3. Overview of the database regarding various metal-based NPs, tested species, and
numbers of records of the toxicity endpoints. This analysis is based on the database
provided in the Supplementary Information (Excel spreadsheet), which was retrieved on 27
February, 2014. To illustrate the main information in the database, test species with fewer
than six records are not shown (in total, 34 species with 84 records). Details of the
references, test organisms, experimental conditions, NP properties, and toxicity endpoints

are also listed in the Supplementary Information.

A diversity analysis of the metal-based NPs was performed on the toxicity data of the six
species mentioned above (Table S2.5): D. magna (173 records), E. coli (139 records), P.
subcapitata (106 records), S. aurens (49 records), V. fischeri (47 records), and D. rerio (44
records). LC50 values for D. magna, E. coli, and D. rerio are reported for eight NPs.
Meanwhile, growth inhibition to P. subcapitata (EC50) was reported for ten NPs. These
endpoints could possibly be considered for building nano-(Q)SAR models. Moreover,
median L(E)C50 values of the metal-based NPs to the organisms were analyzed for three



purposes, as shown in Figure 2.4 (see details in Table S2.6). The first purpose was to
identify potentially hazardous NPs, with the aim of focusing modeling for the most
hazardous NPs. Adhering to EU Directive 93/67/EEC (Commission of the European
Communities, 1996; Kahru et al., 2010), and studies of Blaise et al. (2008) and Sanderson et
al. (2003), the metal-based NPs were classified in five hazard categories, as shown in Figure
2.4. Based on this distinction, Ag and Cu NPs needed to be classified as ‘very toxic’ to
aquatic organisms. The ‘toxic’ category included Ce, Co, Ni, Se, Ti, and Zn NPs, while Al,
Au, and Fe NPs were considered to be ‘harmful’. Data on La, Sb, and Sn NPs were totally
absent, which might be due to less reseatch interest and/or missing information in the data

search.

We also compared toxicity data on specific NPs or organisms in order to identify the most
toxic NP for each organism, or the most sensitive organism to a certain NP. For instance,
among NPs, those that are Ag-based have the lowest median L(E)C50 values (most toxic)
to algae (0.1 mg metal/L), crustacean (0.01 mg metal/L), and nematodes (2.85 mg metal/L).
Crustaceans are more sensitive to Ag (0.01 mg metal/L) and Cu NPs (0.61 mg metal/L), as
compared to other test organisms. In order to develop nano-(Q)SARs, a range of values for
the toxicity data for a given species is also needed, to permit modeling against NP
properties. According to the study by Song et al. (2011), a feasible strategy might be to
model a large variation of toxicity values of certain NPs against the ecological traits of the
organisms. The analysis of the data retrieved shows that our toxicity data have a large
variation of toxicity values for both metal-based NPs and for the test organisms used, thus
potentially allowing the development of nano-(Q)SARs for a limited number of endpoints

or for a limited number of species.
2.3.3 Characterization of the metal-based NPs

In addition to data availability on toxicity endpoints, NP characterization in the form of
measured and/or calculated NP propetties, also plays an essential role in the development
of nano-(Q)SARs. TFigure 2.5a shows the frequency distribution of the measured NP
properties in the data retrieved. The NP properties analyzed included: zeta potential, surface
charge and surface area, size, shape, purity, crystallinity, and coating. Our results show that
the size (primary) of metal-based NPs was generally provided (847 records), followed by the
zeta potential (316 records), surface area (224 records), coating (117 records), and purity (87
records). Only a limited number of studies offered information about the shape (67 records),
crystallinity (57 records), and surface charge (three records). It is worth noting that some of
the data on these properties are hardly suited for the purpose of nano-(Q)SAR studies. For
instance, NP size is on occasions given as a range between 20—60 nm or < 100 nm (Gladisa

et al,, 2010; Jo et al., 2012), which is not precise enough for developing models. Thus, for
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the purpose of nano-(QQ)SAR development, data availability on measured NP properties is
even more limited than that reported. As shown in Figure 2.5b, after an analysis of the
number of measured properties for a certain NP in a publication, it is clear that relatively
few NP features are usually investigated. Most of the published toxicity endpoints contain
one or two NP properties, and only 5.3% of the assembled records contain more than three
NP properties. Thus, according to our analysis of the availability of NP properties, the
development of nano-(Q)SAR models simply on the basis of the reported experimentally

determined descriptors would, at this time, be a challenging task.
2.3.4 Comparing the results to other databases

Recently, Oksel et al. (2015) reviewed literature data that was suitable for developing nano-
QSARs. They summarized data sets from eight studies concerning both the toxicity
endpoints of interest and relevant NP characterization; the data are presented in the
supplementary information of the original publication. In addition to the experimental data
published in the scientific literature, some online databases are being developed under
various projects and can be used as sources for retrieving experimental data, as described in
the Summary of the Spring 2014 NSC Database Survey (2014). For example, the
Nanomaterial-Biological Interactions (NBI) Knowledgebase (http://nbi.oregonstate.edu/)
is an online database that also contains information on the toxicity of nanomaterials. It
includes data on NP toxicity to zebrafish embryos, based on an indicator that integrates
observed mortality, immobilization, and malformation. The distribution of the types of
metal-based NPs and NP characterization in the NBI was analyzed and compared to that in
our database (Figure S2.1 and S§2.2). The results show that both databases contain toxicity
data of metal and metal oxide NPs and nanocomposites, of which metal oxide NPs are the
dominant group, followed by metal NPs. With regard to NP characterization, except for NP
primary size, the two databases emphasize different properties (see Figure S2.2): the NBI
database provides more data concerning the functional group, shape, purity, and surface
charge; our database has relatively more records of zeta potential and surface area. This
comparison reveals differences in the NP properties measured for characterization, but it
also suggests a high similarity between the main types of NPs presented. We thus conclude
that our review of the literature on NP toxicity should be considered representative of the

actual situation with regard to data availability and data quality.
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Figure 2.4. Median L(E)C50 values of metal-based NPs to organisms. The classification of
hazard categoties for the NPs adhetes to the EU-Directive 93/67/EEC (Commission of
the European Communities, 1996), and the studies of Blaise et al. (2008) and Sanderson et

al. (2003). NPs ate grouped as not classified, harmful, toxic, very toxic, and extremely toxic

to aquatic organisms based on the lowest median L(E)C50 value for the organisms (algae,

crustacean, and fish): < 0.1 mg/L = extremely toxic to aquatic organisms; 0.1-1 mg/L =

vety toxic to aquatic organisms; 1-10 mg/L = toxic to aquatic organisms; 10-100 mg/L =

harmful to aquatic otganisms; > 100 mg/L = not classified. Data are summarized from the

database provided in the Supplemental Information.
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Figure 2.5. NP characterization in the publications retrieved. (a) Shows the number of
records with the measured properties in the data assembled; (b) shows the number of
properties studied in a given NP, per publication. The data were extracted from the
database accessed on 27 February 2014, as shown in the Supplementary Information.

2.4 Outlook

As the number and variety of NPs is expected to increase rapidly, the development of
reliable models that allow the prediction of potential toxicity is of vital importance to NP
risk assessment. The task of safe-by-design for nanotechnology, amongst others,
necessitates the prediction of nanotoxicity based on the pristine structure and basic
properties of NPs. The (Q)SAR approach is considered as a possible way forward in this

respect. However, several challenges lie ahead regarding a number of vital issues.

2.4.1 Data consistency

Even though 886 toxicity records were retrieved, based on 910 publications from the Web
of Science Core Collection, the availability of experimental data on specific toxicity

endpoints for nano-(Q)SAR model development remains limited because of poor data



consistency. The data collected is, to some degree, influenced by a range of protocols and
experimental conditions, such as the target organisms, type of endpoints, and biological
effects. Based on the analysis depicted in Figure 2.3, Table 2.2, and Table S2.5, only growth
inhibition (EC50 to P. subcapitata) and mortality (LC50 to D. magna, E. colz, and D. rerio)
could be potentially modeled with the data retrieved. This finding stems from the fact that
only toxicity data generated under consistent experimental conditions for a large variety of
NPs are appropriate for (Q)SAR development — e.g. toxicity data generated according to
widely accepted and applied guidelines, such as OECD guidelines, US Environmental
Protection Agency guidelines. Meanwhile, nano-(Q)SAR modelers could also consider

databases like the NBI database when assembling the information of interest.
2.4.2 Data evaluation

Poor quality or unreliable data may lead to models with limited statistical significance or
predictivity. Notwithstanding the limitation of data availability, it is to be noted that the use
of suitable protocols for evaluating the quality of the toxicity data tested/measured by
different methods, and in various laboratories, remains crucial. Previously, different
schemes have been described for assessing data quality, and are expected to be interpreted
in the light of the purpose for which the data are to be used (Tielemans et al., 2002; Hobbs
et al., 2005; Schneider et al., 2009; Klimisch et al., 1997; Przybylak et al., 2012). Specifically,
Lubinski et al. (2013) proposed a data quality evaluation framework, with a focus on data
applicability to (Q)SARs. These studies offer possible ways of filtering assembled data for
the development of nano-(Q)SARs. It is worth noting that a suitable protocol for this task
ought to reach a balance between data quality and data availability, ensuring that sufficient
data but of good quality could be put into use. In this review, we did not consider the

application of a data quality evaluation framework.
2.4.3 Characterization of NPs

NP characterization plays a vital role in the development of nano-(Q)SARs. The obvious
first step in nano-(Q)SAR modeling is to link characteristics of pristine NPs to toxicity
endpoints. Based on our analysis (Figure 2.5), only a few measured NP properties were
provided, and their importance with regard to proper characterisation of pristine NPs is
remarkably limited. If more properties of existing NPs could be derived, then there would
be a greater possibility that metal-based NPs could be adequately characterized for nano-
(Q)SAR modeling. However, challenges to the derivation of adequate descriptors for nano-
(Q)SARs still remain, mainly in two areas. First, rather than being characterized as a defined
entity, NPs can generally only be defined in a somewhat arbitrary way before being

described in terms of descriptors suitable for modeling. Often, NPs are complicated
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assemblies, probably coated or functionalized with diverse molecules, the composition of
which may vary over time. This makes it impossible to define them strictly as an entity that
is interacting with a biological species and causing toxicity. Secondly, the high complexity of
the 3-D structure of NPs hinders the calculation of descriptors based on current
computational approaches. Uncertainty surrounding the 3-D structure of an NP still exists,
even when NP compositions are apparently properly reported (Fourches et al., 2011). These
issues pose a big challenge in the feasibility and efficiency of descriptor derivation for nano-
(Q)SARs (Gajewicz et al., 2012). Accordingly, descriptors of pristine NPs that describe the
essential structural properties without missing crucial structural information and consuming

much time for calculation ought to be developed for modeling.
2.4.4 The dynamics of pristine NPs in exposure media

Even though the possibility of building nano-(Q)SAR models based on the characteristics
of both pristine and medium-related NPs has already been shown, the feasibility of applying
(Q)SARs in nanotoxicity prediction is still largely unknown. According to the (Q)SAR
paradigm, it is possible to predict the toxicological effects directly from the physical-
chemical properties of the entities of interest (Winkler et al., 2013), which leads to the
potential use of (Q)SARs as possible alternative 7 silico screening protocols for testing,
without obtaining experiment-related information. However, when in contact with artificial
and natural aqueous media, very often the metal-based NPs interact strongly with
constituents in the medium (Tiede et al, 2009) and undergo dramatic changes to their
surface properties (El Badawy et al., 2010), as well as to their dissolution and aggregation
behavior (Baalousha et al.,, 2008; Tso et al., 2010). These changes affect NP mobility,
bioavailability, and ultimately toxicity to organisms (El Badawy et al., 2011; Handy et al,,
2008; Hua et al, 2014; Suresh et al, 2013). It should be acknowledged that these
interactions are dynamic in nature, and often kinetically rather than thermodynamically
controlled, as is usually the case for non-particulate chemicals. Therefore, it is possible that,
in some cases, toxicity information can be pootly modeled if the information available is
solely based on the characteristics of pristine NPs. Relationships developed between toxicity
endpoints and characteristics of pristine NPs without considering the dynamic
transformations of NPs in the media, will most likely result in models of low statistical
significance, predictability and relevance. In such a context, better interpretation of the
dynamic processes influencing NPs in aqueous environments is highly required for

modeling and predicting the biological effects of NPs.



2.5 Conclusions

This study identified and collated nanotoxicity data on metal-based NPs, based on the
characteristics of pristine NPs. The resulting database, put together from information
available in peer-review journals and which will be available as supplementary information
on the ATLA website, provides a list of toxicity data of metal-based NPs and should assist

toxicologists who work with metal-based NPs.

Our results show that the existing data cannot currently be used to the extent that would be
needed to efficiently develop predictive toxicity models for metal-based NPs. Data
consistency is shown to play a vital role when performing in-depth quantitative analysis of
the experimental data, and numerous data gaps were identified when comparing species and
NPs tested. To this end, we recommend that further testing is performed on additional key
species and NPs, in order to accurately assess the impacts of metal-based NPs on
ecosystems and to develop widely applicable nano-(QQ)SARs. It should be emphasized that,
to obtain data that will be acceptable for use in further modeling applications, experiments
need to be based on consistent experimental conditions or on generally accepted and widely

applied guidelines (e.g. OECD or US Environmental Protection Agency guidelines).

We conclude from this review that (Q)SAR approaches have limited potential when used
for predicting NP toxicity based on the characteristics of pristine NPs. However, the review

nevertheless provides insight into a number of issues vital to the development of nano-

(Q)SARs.
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Chapter 2 Supplemental Information

Table S2.1. The key words used to select the test species for the data search

Tested species Key words

bacteria bacter* OR Escherichia* OR Staphylococcus* OR Bacillus*
yeast yeast* OR Candida* OR fungi* OR Saccharomyces*

algae *alga* OR Pseudokirchneriella* OR Chlamydomonas*
protozoa protozoa* OR Paramecium* OR Tetrahymena*

crustacean crustacea* OR daphni* OR Thamnocephalus*

nematode nematode* OR Caenorhabditis*

fish *fish* OR Oryzias* OR Pimephales* OR Danio*

In the search query of each group of organism, a general key word characterizing the organism was
firstly considered (i.e. bacter*, yeast¥, *alga*, protozoa*, crustacea*, nematode*, and *fish*). A further
search with other key words referring to different species was subsequently carried out to enclose
some studies which addressed the nanotoxicity to these organisms but did not use the key words
bacter*, yeast*, *alga*, protozoa*, crustacea*, nematode* or *fish* in either the title, abstract or key

words of the publications. The extra key words were chosen empirically.
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Figure S2.1. Comparison of types of NPs in our database (left) and the NBI database (right).
(a) Distribution of NP types in our database; (b) Distribution of NP types in the NBI

database. Number of records are shown in the figures.



Table S2.2. Key words characterizing the metal-based nanoparticles (NPs) for data search

NPs Key words

Ag nano* AND Silver* OR “nano* AND Ag*”

Al nano* AND Aluminum* OR Al203 OR “nano* AND Al*”
Au nano* AND gold* OR “nano* AND Au*”

Bi nano* AND Bismuth*

Cd nano* AND Cadmium* OR CdO OR “nano* AND Cd*”

Ce nano* AND Cerium* OR CeO2

Co nano* AND Cobalt* OR Co304 OR “nano* AND Co*”

Cr nano* AND Chromium* OR CrO3 OR “nano* AND Cr*”
Cu nano* AND Copper* OR CuO OR “nano* AND Cu*”

Fe nano* AND Iron* OR Fe203 OR Fe304 OR “nano* AND Fe*”
In nano* AND Indium* OR In203

La nano* AND Lanthanum* OR L.a203

Mn nano* AND Manganese* OR MnO OR Mn304 OR “nano AND Mn*”
Mo nano* AND Molybdenum* OR MoO3 OR “nano AND Mo*”
Ni nano* AND Nickel* OR NiO OR “nano* AND Ni*”

Pt nano* AND Platinum* OR PtO2 OR “nano* AND Pt*”

Sb nano* AND Antimony* OR Sb203 OR “nano* AND Sb*”
Se nano* AND Selenium* OR SeO2 OR “nano* AND Se*”

Si nano* AND Silic* OR SiO2

Ti nano* AND Titanium* OR TiO2 “nano* AND Ti*”

A% nano* AND Vanadium* OR V205

7Zn nano* AND Zinc* OR ZnO “nano* AND Zn*”

Zr nano* AND Zirconium* OR ZrO2 OR “nano* AND Zr*”

Percentage of records in the
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1.0

o
)

o
o

<
»

S
o

0.0

Figure S2.2. Comparison of characterization of NPs in respective database.
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Table S2.3. The numbers of papers retrieved from the Web of Science Core Collection by

condition (a). The search was carried out on 27 February 2014

Bacteria Yeast Algae Protozoa Crustacean Nematode  Fish Total

1 Ag 219 29 40 7 63 27 112 394
2 Al 16 6 9 2 10 5 9 39
3 Au 41 21 10 1 14 3 37 110
4 Bi 0 0 0 0 0 0 2 2
5 Cd 18 11 9 2 18 5 25 74
6 Ce 26 0 6 1 1 3 1 41
7 Co 9 3 3 0 1 0 5 18
8 Cr 6 2 0 0 1 0 1 10
9 Cu 62 14 35 4 42 5 45 148
10 Fe 41 13 9 4 9 1 13 76
1 In 2 0 1 0 2 0 1 3
12 Ta 3 0 0 0 0 1 0 3
13 Mn 6 1 1 0 2 0 1 8
14 Mo 2 0 0 0 0 0 0
15 Ni 12 2 4 0 2 0 5 20
16 Pt 3 3 0 0 0 0 1 7
17 Sb 3 1 0 0 0 0 0
18 Se 6 3 1 0 4 0 7 16
19 Si 41 14 1 1 14 2 21 90
20 Ti 82 13 42 6 99 10 88 249
21 \% 1 0 0 0 1 0 1 2
22 Zn 67 13 39 3 42 9 25 143
23 Zt 3 0 0 0 0 0 1 4

Total 445 114 141 19 200 46 259 982

Table S2.4. The numbers of papers focusing on different metal-based NPs and retrieved

with condition (b)

NPs Ag Al Au Bi Cd Ce Co Cr Cu Fe In La
Number of papers 383 35 107 2 72 40 18 5 139 70 3 2
NPs Mn Mo Ni Pt Sb Se Si Ti A% Zn Zr
Number of papers 2 2 14 6 1 16 79 238 1 137 3
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Table S2.6. Median L(E)C50 values of metal-based NPs to tested species. The number of
toxicity records is indicated in parentheses

Algae Bacteria Crustacean Fish Nematode Protozoa  Yeast
Ag  0.10 (25) 19.25 (20)  0.01 (57) 1.36 (33) 2.85(19) 38.00 (5)
Al 20.86 (3) 172.83 (1)  45.79 (7) 43.25 (1)
Au  38.00 (5) 0.32 (6) 38.0 (1)
Ce 7.07(18) 2896 (12)  29.89 (7)
Co 33.08 (2) 1.67 (1)
Cu 2804 17.36 (20)  0.61 (22) 0.83 (4) 127.00 3)  4.38 (13)
Fe 309.81 (2)  36.00 (3) 37.35 (3) 0.57 (1)
La 388.37 (1)
Ni  25.50 (3) 11143 (2) 228 (2
Sb 344.57 (2)
Se 1.00 (1)
Si 112.80 (1) 208.02 (1)
Sn 826.02 (1)

111.00

T 1896CT) g 3.90 (31) 93.00 (13)  47.94 (1)
Zn 194 (2) 2480 (27) 120 (15) 1543 (4) 63500 (5)  5.00 (3) 100.80 (2)
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RECENT ADVANCES TOWARDS THE DEVELOPMENT
OF (QUANTITATIVE) STRUCTURE-ACTIVITY
RELATIONSHIPS FOR METALLIC NANOMATERIALS: A
CRITICAL REVIEW

Chen G, Vijver MG, Xiao Y, Peijnenburg WJGM
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Abstract

The exponential increase of nanotechnology has raised concerns on the risks posed by
engineered nanomaterials (ENMs). Recent studies on the ecotoxicity of ENMs addressed
that these materials could potentially cause adverse effects to human health and to biota. A
comprehensive assessment of ENMs’ risks is thus urgently needed, which is, however,
severely hindered by time, financial burden, and ethical considerations. Gathering the
required information in a fast and inexpensive way seems essential. In such a context, the
extension of the conventional (quantitative) structure-activity relationships ((Q)SARs)
approach to nanotoxicology, i.e. nano-(QQ)SARs, is a possible solution. Recently, various
attempts have been made to correlate ENMs’ characteristics to the biological effects elicited
by ENMs. This highlighted the potential applicability of (Q)SAR in the nanotoxicity field to
aid in prioritizing information on nanotoxicity and in rationalizing the risk assessment of
ENMs. This review summarizes and discusses the current knowledge on nano-(Q)SARs for
metallic ENMs with regard to the aspects (i) sources of data; (i) existing nano-(Q)SARs; (iif)
mechanistic interpretation; and (iv) an outlook on the further development of this frontier.
The review aims to present key advances in relevant nano-modeling studies and to stimulate

future research efforts in this quickly developing field of research.

Key words: cellular uptake, metallic, nanomaterials, (Q)SARs, toxicity



3.1 Introduction

Manipulating matter at the nanoscale (1-100 nm) has provided a way forward to designing
materials that exhibit inimitable magnetic, electrical, optical, and thermal properties
compared to the bulk counterparts (Puzyn et al., 2009). The products of engineered
nanomaterials (ENMs) are consequently finding routine use in a wide range of commercial
applications (Linkov et al., 2009). It was expected that the exponentially growing nano-
market would reach a turnover of $65 billion by 2019 (Winkler, 2016). The release of ENMs
into landfills, air, surface waters, and other environmental compartments therefore seems
inevitable. In such a context, it is very likely for humans and for biota to encounter these
nano-products and to be at risk given the potential adverse effects induced by ENMs.
Studies on the cytotoxicity (Asare et al., 2012; Nirmala et al., 2011; Wiesner et al., 2006),
neurotoxicity (Long et al., 2006; Win-Shwe and Fujimaki, 2011; Wu et al, 2011),
genotoxicity (Asare et al.,, 2012; Kumari et al., 2011; Sharma et al., 2011), and ecotoxicity
(Ellegaard-Jensen et al., 2012; Thill et al., 2006; Tran et al., 2010) of ENMs have shown that,
miniaturization of materials to the nanoscale may result in the appearance of evident ENM
toxicity on organisms and human cell lines, which does not always occur at the bulk scales.

This highlighted the potential risks associated with the fast developing field of

nanotechnology. Hence, secking ways for the risk assessment of ENMs becomes imperative.

According to the commonly accepted procedures of chemical risk assessment, both
exposure and hazard assessment are key to evaluate the risks of ENMs (Gajewicz et al,,
2012; Worth, 2010). Hazard characterization, which aims at defining the dose-responses for
targets or target-species is supposed to be mainly derived according to standardized test
guidelines (e.g., Organization for Economic Co-operation and Development (OECD)
guidelines). However, despite the existence of these powerful testing protocols, the
possibility of covering all the existing and also newly synthesized ENMs in the “nano pool”
is reduced taking into account the need of cost-effectiveness testing whilst minimizing the
use of test animals. Considering the exponential increase of nanotechnology, the scarcity of
data on ENM toxicity poses a major barrier to perform comprehensive hazard assessment
of ENMs. As a result, development of fast and inexpensive alternative approaches filling the
data gaps and assisting in rationalizing ENMs’ risk assessment is of significant importance.
Moreover, the principle of the 3R (replacement, reduction, and refinement) rule also calls
for a reduction in the animal use and developing alternative non-animal testing approaches
(Puzyn et al., 2011; Russell and Burch, 1959).

One of the most promising approaches that has long been particularly helpful for predicting
biological effects of chemicals is the (quantitative) structure-activity relationship ((Q)SAR)
method (Fernandez et al., 2012; Kar and Roy, 2010; 2012). The (Q)SAR approach enables
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the encoding of existing knowledge into predictive models which directly correlate the
molecular structure with toxicity of a chemical. The role of (Q)SARs in predictive

toxicology is (Peijnenburg, 2009; Raymond et al., 2001):

(i) To provide fast and inexpensive high-throughput screening methods estimating the

toxicity of chemical entity;
(i) To assist the classification of chemicals according to their toxicity;
(iii) To help understand the underlying toxic mechanisms.

Two issues especially figure in the extraction of meaningful relationships between structures
and biological effects to yield (Q)SAR models: the so-called molecular descriptor (measured
or calculated) characterizing vital structural information of chemicals, and the so-called
endpoint describing the biological effects of interest (Ivask et al., 2014). According to the
OECD Principles for (Q)SAR Validation (OECD, 2007), it is essential for a (Q)SAR model
considered suited for regulatory purposes to include information on: (i) a defined endpoint;
(i) an unambiguous algorithm; (iii) a defined domain of applicability; (iv) appropriate
measures of goodness-of-fit, robustness, and predictivity; and (v) a mechanistic

interpretation, if possible.

Facing the strong need of extending the conventional (Q)SAR approach to nanotoxicology,
some attempts have been made to link ENMs’ biological effects with the characteristics of
ENMs. A summary of recent advances towards this field is thus presented in Table 3.1 to
offer an overview of the research achievements obtained so far. The underlying literature
search was performed by means of an Advanced Search in the Web of Science™ Core
Collection on the 22t of February, 2017. The search was manually supplemented with
relevant publications not included in the search records. The query is (((TS=(nano* AND
metal)) AND (TS=(toxic*))) AND (TS=(quantitative *structure activity relationship) OR
TS=(*QSAR) OR TS=(QNAR) OR TS=(predict¥) OR TS=(computation*) OR
TS=(model*)))), where the field tag TS refers to the topic of a publication. As can be seen,
various nano-(QQ)SARs were constructed based on a variety of modeling techniques such as
linear and nonlinear regression, support vector machine (SVM), artificial neural networks
(ANN), and £ nearest neighbor (ZNN). Distinct biological responses induced by ENMs
such as cellular uptake and cytotoxicity in different cell lines, and the ecotoxicity of ENMs
were addressed. The studies provided in Table 3.1 highlight the potential of (Q)SAR
methods to be adopted as a tool in predicting nanotoxicity. Thus, to provide an overview of
recent key advances in this field, the state-of-the-art of reported nano-(Q)SARs is discussed
on the following aspects: (i) sources of data for modeling; (ii) existing nano-(Q)SARs; (iii)



mechanistic interpretation; and (iv) an outlook on the further development of nano-

(Q)SARs identifying major research gaps in the field.

Table 3.1. Overview of the peer-reviewed literatures on nano-(Q)SARs, as generated by
means of an advanced literature search in the Web of Science™ Core Collection on 22t of
February, 2017, and supplemented with a manual collection of relevant publications not
included in the search record. Apart from the references obtained, a general description is

given for the models reported

Reference Description

Burello and A model was proposed to show that the oxidative stress potential of metal oxide ENMs could

Worth, 2011 be possibly predicted by looking at the their band gap energy

Chau and Yap, Developed a final consensus model based on top 5 candidate models constructed by naive

2012 Bayes, logistic regression, A-nearest neighbor (£NN), and support vector machine (SVM),
predicting the cellular uptake of 105 ENM:s (single metal core) by PaCa2 pancreatic cancer cells

Chen et al,, Global classification models were developed to predict the ecotoxicity of metallic ENMs to

2016 different species; classification models were also built for Danio rerio, Daphnia magna,

Psendokirchneriella subcapitata, and Staphylococcus anreus

Epaetal,2012  Modeled (i) cytotoxicity of 31 ENMs to vascular smooth muscle cells based on multiple linear
regression and Bayesian regularized artificial neural network; (i) cellar uptake of 108 ENMs in
human umbilical vein endothelial cells (HUVEC) and PaCa2 cells using multiple linear
regression with expectation maximization method

Fourches et al., Generated models predicting (i) cytotoxicity of 44 ENMs with diverse metal cores using SVM
2010 method; (ii) cellular uptake of 109 ENMs in PaCa2 cells using ANN method

Gajewicz et al., Applied the multiple linear regression method combined with a genetic algorithm to describe
2015 the toxicity of 18 metal oxide ENMs to the human keratinocyte cell line (HaCaT)

Ghorbanzadeh Cellular uptake of 109 magnetofluorescent ENMs in PaCa2 cells was modeled using multiple
etal, 2012 linear regression and multilayered perceptron neural network, descriptor selection was
performed by combining the self-organizing map and stepwise multiple linear regression

Karetal, 20142 Developed a model establishing the cellular uptakes of 109 magnetofluorescent ENMs in
PaCa2 cells

Kar etal., 2014b  Using the toxicity dataset of 17 metal oxide ENMs to Escherichia coli (IE. coli), models were built
with the multiple linear regression and partial least squates methods

Kleandrova et Perturbation model was introduced for the prediction of ecotoxicity and cytotoxicity of ENMs;
al., 2014 molar volume, electronegativity, polarizability, size of the particles, hydrophobicity, and polar
surface area were involved in the model

Liu et al., 2011 Classification-models (logistic regression) were developed to predict the cytotoxicity of nine
ENMs to the transformed bronchial epithelial cells (BEAS-2B)
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Liu et al., 20132

A nano-SAR was developed classifying 44 iton-based ENMs into bioactive or inactive, using a
naive Bayesian classifier based on 4 descriptors: primary size, spin-lattice and spin-spin
relaxivities, and zeta potentials

Liu et al., 2013b

SVM nano-SAR model was constructed on basis of the cytotoxicity data of 24 metal oxide
ENMs to BEAS-2B cells and murine myeloid (RAW 264.7) cells

Luan et al., 2014

Perturbation model was presented predicting the cytotoxicity of ENMs against several
mammalian cell lines; influence of molar volume, polarizability, and size of the particles were
indicated

Mu et al., 2016

A quantitative model was developed based on the toxicity data of 16 metal oxide ENMs to E.
coli using enthalpy of formation of a gaseous cation (AHwe+) and polarization force (Z/1). The
toxicity of 35 other metal oxide ENMs was predicted and depicted in the periodic table

Pan et al., 2016

Models were constructed to predict (i) the toxicity of 17 metal oxide ENMs to E. co/; (ii)
cytotoxicity in HaCaT cells of 18 different metal oxide ENMs. The factors of molecular
weight, cationic charge, mass percentage of metal elements, individual and aggregation sizes
were discussed

Papa et al., 2015

Cytotoxicity of TiO2 and ZnO ENMs were modeled by LMR and C4.5 algorithm

Pathakoti et al.,
2014

Toxicity and photo-induced toxicity of 17 metal oxide ENMs to E. co/i was assessed using a
self-written least-squares fitting program

Puzyn et al,,
2011

Predicted cytotoxicity of 17 metal oxide ENMs to E. e/ with only one descriptor: enthalpy of
formation of a gaseous cation having the same oxidation state as that in the metal oxide
structure

Singh and
Gupta, 2014

Predictive models were built based on (i) cytotoxicity of different ENMs (with diverse metal
cores) in four cell lines (endothelial and smooth muscle cells, monocytes, and hepatocytes); (ii)
cellular uptake of 109 ENMs in PaCa2 cells; (iii) cytotoxicity of 17 different metal oxide ENMs
to E. coli

Sizochenko et
al., 2014

Based on random forest regression, developed predictive classification models for (i) toxicity
of 17 metal oxide ENMs to E. w/; (ii) cytotoxicity of 18 metal oxide ENMs to HaCaT cells

Sizochenko et
al., 2015

Structure-activity relationship models (random forest) were introduced for toxicity of 24 metal
oxide ENMs towards BEAS-2B and RAW 264.7 cell lines

Toropov et al.,
2012

Estimated toxicity of 17 metal oxide ENMs to E. w/i by employing the SMILES-based optimal
descriptors

Toropov et al.,
2013

Cellular uptake of 109 ENMs with the same core but different surface modifiers in the PaCa2
cells was modeled based on SMILES-based optimal descriptors

Zhang et al,,
2012

A classification model was built for 24 metal oxide ENMs based on the dissolution of metals
and energy of conduction band (E.)
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3.2 Sources of data for modeling

As a data-driven approach, the field of nano-(Q)SARs highly relies on generating or
assembling qualified experimental data. To integrate the existing information obtained from
the various datasets that were successfully used in nano-QSARs, and therefore to aid further
studies of nano-modeling, the underlying experimental data in the nano-(Q)SARs
mentioned in Table 3.1 were analyzed. As can be seen in Table 3.2, research attention was
found to be mainly on the cellular uptake of ENMs by different cell lines, on cytotoxicity,
and on the toxicity of ENMs to Escherichia coli (E. coli). Despite the numerous nano-related
tests that are being carried out, it is to be concluded that only a few datasets (with data
variety and consistency) were generally used as the data source for nano-(Q)SARs
developed so far. The most widely applied data in QSAR-like studies (Table 3.2) are from
Weissleder et al. (2005), Puzyn et al. (2011), and Shaw et al. (2008). These experimental
datasets are presented and arranged in the order of cellular uptake, cytotoxicity in cell lines,
and toxicity to E. cw/i concerning the following aspects: (when available) types and numbers
of ENMs, targets or target-species, toxicity endpoints, characteristics of the ENMs

provided, and accessibility of relevant information.
3.2.1 Cellular uptake assays

Weissleder et al. (2005) modified the surface of monocrystalline magnetic ENMs (3-nm
core of (Fe203)n(Fe3O4)m) with 146 various small molecules (modifiers) and created a library
of 146 water-soluble, magnetic and fluorescent ENMs. ENMs were made magneto-
fluorescent by adding the fluorescein isothiocyanate to the ENM surfaces. Uptake of these
ENMs by five cell lines was screened afterwards. The cell lines used include pancreatic
cancer cells (PaCa2), a macrophage cell line (U937), resting primary human macrophages,
activated primary human macrophages, and human umbilical vein endothelial cells
(HUVEC). A diversity of cellular uptake of various functionalized ENMs and a high
dependence of ENM uptake on the composition of their surface were observed especially in
the PaCa2 cells (Chau and Yap, 2012; Fourches et al., 2011). Data on PaCa2 cellular uptake
of ENMs can be retrieved from Fourches’ studies (Fourches et al., 2010; 2011) and also the
studies of Chau and Yap (2012), Kar et al. (2014a), and Ghorbanzadeh et al. (2012). In the
absence of data on calculated descriptors for the whole dataset, methods of characterizing
ENM:s in previous studies are presented in Table 3.3. An analysis of the methods reported
in literature shows that emphasis in ENM characterization was so far largely put on the
characteristics of ENM surface modifiers, given the conclusion of Weissleder et al. (2005)
that the PaCa2 cellular uptake of ENMs highly depends on the surface modification of the
ENMs. Descriptor calculation of the modifiers was performed within different softwares
(e.g., PaDEL-Descriptor, DRAGON, ADRIANA) providing various molecular descriptors.
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Table 3.2. Summary of the experimental data of ENMs used in nano-(Q)SAR studies

Number
of ENMs

nano-(Q)SAR Dataset used

Core of ENMs

Tested organism

Kar et al., 2014b
Mu et al., 2016
Pan et al., 2016
Puzyn et al,, 2011 Puzyn et al,, 2011 17
Singh and Gupta, 2014

Sizochenko et al., 2014

Toropov et al., 2012

Metal oxide

E. coli

Chau and Yap, 2012
Epa etal, 2012

Fourches et al., 2010

Weissleder et al.,

Ghotbanzadeh et al., 2012 2005

146
Kar et al., 2014a
Singh and Gupta, 2014

Toropov et al., 2013

Metal oxide

PaCa2 pancreatic cancer
cells

Epa etal, 2012
Fourches et al., 2010

Shaw et al., 2008 50
Liu et al., 20132

Singh and Gupta, 2014

Metal oxide and
quantum dots

Endothelial cells, vascular
smooth muscle cells,
human HepG2 cells, RAW
264.7 cells

Gajewicz et al.,, 2015
Pan et al., 2016 Gajewicz et al,, 2015 18

Sizochenko et al., 2014

Metal oxide

HaCaT cells

Liu et al., 2013b
Sizochenko et al., 2015 Zhang et al., 2012 24

Zhang et al., 2012

Metal oxide

BEAS-2B cells; RAW 264.7
cells

Liu et al., 2011 Liu et al., 2011 9 Metal oxide BEAS-2B cells

Sayes and Tvanov, 24 TiOo, TiOs, ZnO Rat L2 lung epithelial cells;
Papa et al., 2015 y 18 ZnO rat lung alveolar

2010 ENMs

ENMs macrophages
Pathakoti et al., 2014 Pathakoti et al., 2014 17 Metal oxide E. coli
Burello and Worth, 2011
Chen et al.,, 2016
Others

Kleandrova et al., 2014

Luan et al., 2014




Table 3.3. Overview of reported information of the data published by Weissleder et al.

(2005)
Reference Method of ENM characterization Data accessibility ENM .Other .
number information
Weissleder et 146 gg;f:i: d
al., 2005 structures
679 one-dimensional (1D), two- Vaﬁule s of lt)ak(laZ Sl;HLl];:ﬁS d
Chau and Yap,  dimensional (2D) chemical descriptors ce Lll flup 4 .é were 109 s n;p le .
2012 of modifiers were calculated using aval i © (lf]m;\ ]rino ecn aYr fnput
PaDELDescriptor (v2.8) number of ENMs e entry
per cell) system)
691 molecular descriptors of modifiers
Epaetal, from DRAGON (v5.5), ADRIANA 108 List of
2012 (v2.2) and an in-house modeling modifiers
software package
MOE descriptors for modifiers were
used, including physical properties, Values of PaCa2
surface areas, atom and bond counts, Ihalar uptak "
Fourches et Kier & Hall connectivity indices, kappa ce l; 11 uptake were 109 SMILES
al., 2010 shape indices, adjacency and distance alval a ?\I\ Jeell
matrix descriptors, pharmacophore (f\gm[E M/ce
feature descriptors, and molecular pM)
charges
Hyperchgm program (v7) for Values of PaCa2
constructing molecular structure of cellular uptake were List of
Ghorbanzadeh  modifiers; geometry was optimized ilabl P 109 difi d
etal, 2012 with the Austin Model 1 (AM1) "‘12"“ @ E\]\ Jeell glﬁI‘LIEC;S an
semiempirical method; DRAGON for ( N?)O[E M
descriptor calculation p
A pool of 307 descriptors of modifiers Vaﬁule s of Palf a2
Kar et al., was calculated using Cerius 2 (v4.10), ce Lll 2]13‘:1 uptake were 1 List of
2014a DRAGON 6 and PaDEL-Descriptor avatab’e 0 modifiers
(v2.11) (logio[ENM]/ cell
pM)
174 molecular descriptors for the List of
Singh and modiﬁerAs (topological,' eleFtronic, modiﬁers,
Gupta, 2014 geometrical, and constitutional) were 109 chemical
? calculated using Chemistry structures and
Development Kit (CDK v1.0.3) SMILES
SMILES,
. . correlation
”Zf&rgpov etal., \S;\e/[rIcLiidbased optimal descriptors 109 weights (CWs)
of SMILES

attributes (SA)

3.2.2 Toxicity to various cell lines

One of the most widely used cell line-based toxicity data for ENMs is from the work of

Shaw et al. (2008). In their study, four cell-based assays were performed based on four cell

types at four different doses. The four types of cells namely endothelial cells (human aorta),
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vascular smooth muscle cells (human coronary artery), hepatocytes (human HepG2 cells),
and mutine RAW 264.7 leukemic monocyte/macrophage cells wete employed to assess the
cytotoxicity of 50 ENMs (iron-based ENMs, pseudocaged ENMs, and quantum dots). The
four cell-based assays were mitochondrial membrane potential, adenosine triphosphate
(ATP) content, apoptosis and reducing equivalents assays. Concentrations of 0.01, 0.03, 0.1,
and 0.3 mg/mL Fe for iron-based ENMs, and 3, 10, 30, or 100 nM for quantum dots wete
used. The ENMs were characterized by their coating, surface modification, size, the spin-
lattice (R1) and spin-spin (R2) relaxivities, and the zeta potential. Experimental values were
expressed in units of standard deviations of the distribution assessed when cells were only
treated with PBS (Z score). Fourches et al. (2010) afterwards transformed the 64 features (4
assays X 4 cell lines X 4 doses) of 48 iron-based ENMs into 1 by calculating their arithmetic
mean (Zmen) which enabled binary classification studies based on this dataset (data atre

accessible in the original paper).

Gajewicz et al. (2015) tested the cytotoxicity of 18 metal oxide ENMs to the human
keratinocyte cell line (HaCaT). ENMs covered in the dataset include aluminum oxide
(ALO3), bismuth oxide (Bi2O3), cobalt oxide (CoO), chromic oxide (Cr203), ferric oxide
(Fe203), indium oxide (In2O3), lanthanum oxide (LaxO3), manganese oxide (Mn2O3), nickel
oxide (NiO), antimony oxide (Sb203), silicon dioxide (SiO2), tin oxide (SnOy), titanium
oxide (TiOy), vanadium oxide (V203), tungsten oxide (WOs3), yttrium oxide (Y20s3), zinc
oxide (ZnO), and zirconium oxide (ZrO) ENMs. The cytotoxicity of these ENMs was
characterized by cell viability of HaCaT and was expressed in terms of LC50 (concentration
of the ENMs that leads to 50% fatality). Experimental data are accessible in the original
publication. Moreover, 18 quantum-mechanical and 11 image descriptors were calculated
for modeling purposes (Table 3.4). Information on the (aggregation) size for this dataset
was provided by Sizochenko et al. (2014) as shown in Table 3.5. Size (50 nm) and
aggregation size (180 nm) of WOs3 are not included in the table due to its absence in other
datasets depicted in Table 3.5.

By measuring the plasma-membrane leakage via Propidium Iodide (PI) uptake in
transformed bronchial epithelial cells (BEAS-2B), Liu et al. (2011) studied the cytotoxicity
of a variety of ENMs: Al,O3, cerium oxide (CeO3), Co304, TiO2, ZnO, copper oxide (CuO),
SiOz, Fe304, and WO3; ENMs. The cytotoxicity was expressed in terms of percentage of
membrane-damaged cells (data available in the supplemental information of the original
publication). Descriptors calculated were number of metal and oxygen atoms (Nuew and
Noxygen), atomic mass of the ENM metal (#a1), molecular weight of the metal oxide (#ar0),
group and period of the ENM metal (Gye and Pye), atomization energy of the metal oxide
(Emeo), ENM primary size (d), zeta potential, and isoelectric point (IEP).



Table 3.4. Overview of quantum-mechanical and image descriptors of 18 metal oxide

ENMs, as retrieved from the study of Gajewicz et al. (2015)

Quantum - mechanical descriptors Image descriptors

*  Standard enthalpy of formation of metal oxide nanocluster (AHf) *  Volume (V)

e Total energy (TE) *  Surface diameter (k)

*  Electronic energy (EE) *  Equivalent volume diameter
*  Cote—core repulsion energy (Core) (dv)

*  Solvent accessible surface (SAS) *  Equivalent volume/surface
*  Energy of the highest occupier molecular orbital (HOMO) (daueer)

*  Energy of the lowest unoccupied molecular orbital (LUMO) *  Area(A)

*  Chemical hardness (1) *  Porosity (Py)

*  Total softness (S) *  Porosity (Py)

* HOMO-LUMO energy gap (Ey) *  Sphericity (V)

*  Electronic chemical potential (i) *  Circularity (feirc)

*  Valance band (Ey) *  Anisotropy ratio (ARx)

*  Conduction band (Ec) *  Anisotropy ratio (ARy)

*  Mulliken’s electronegativity (x°)

e Parr and Pople’s absolute hardness (Hard)

*  Schuurmann MO shift alpha (Shift)

*  Polarizability derived from the heat of formation (Ahof)
*  Polarizability derived from the dipole moment (Ad)

Another dataset that was provided by Zhang et al. (2012) contains information on the
toxicity of 24 oxide ENMs: ALOj;, CuO, CeOz, Co0304, CoO, Cr203, FexOs, Fe;Ou,
gadolinium oxide (Gd20s3), hafnium oxide (HfO»), In2Os, LaxOs;, MnyOs, NiO, NixOs,
Sb203, Si02, SnO;, R-TiO;, WO3, Y203, ytterbium oxide (Yb203), ZnO, and ZrO; ENMs
(data available in the original paper). The toxicity was expressed in terms of logECso, in
which ECsp means the effective concentration that causes 50% response. The lactate
dehydrogenase  (LDH),  3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium (MTS), and ATP assays were implemented to assess the
nanotoxicity to BEAS-2B and rat alveolarmacrophage cells (RAW264.7) cells in the study.
Information on the crystalline structure of the ENMs (crystal system, space group, and unit
cell parameters), primary and hydrodynamic sizes of metal oxide ENMs, and parameters for
calculating ENM band energies (conduction and valence band, band gap energy, absolute
electronegativities, and point of zero zeta-potential) were also provided by these authors.
Liu et al. (2013b) built a nano-SAR model based on these data along with a summary of the
calculated physicochemical properties of the ENMs. Information on 13 descriptors was
provided including the ENM primary size (d), energy of conduction band (Ec), energy of
valence band (Ev), metal oxide atomization energy (Eam,), metal oxide electronegativity
(xne0), metal oxide sublimation enthalpy (AHw), metal oxide ionization energy (AHig),
metal oxide standard molar enthalpy of formation (AHis), metal oxide lattice enthalpy

(AH\.), first molar ionization energy of metal (AHig,1+), ionic index of metal cation (Z2/7),
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IEP, and zeta potential in water at PH of 7.4 (ZP). Data of these descriptors can be

accessed in the relevant articles.
3.2.3 Toxicity to E. coli

Puzyn et al. (2011) tested the toxicity of 10 metal oxide ENMs to an E. cw/ (Migula)
Castellani & Chalmers (ATCC#25254) strain. Metal oxide ENMs covered in the test are
Bi,O3, CoO, Cr03, InxO3, NiO, SbyOs, SiOs, V203, Y203, and ZrO2 ENMs. Meanwhile,
results of another 7 metal oxide ENMs tested with the same protocol, namely Al,O3, CuO,
Fe;Os, LaxOs, SnO», TiO,, and ZnO ENMs, were taken from a previous study (Hu et al,,
2009) and a dataset consisting of 17 metal oxide ENMs was built. Toxicity to E. co/i was

expressed in terms of the logarithmic values of molar 1 /ECsp. Data are shown in Table 3.5.

Meanwhile, information on the characterization of these ENMs in the reported nano-
QSARs was presented in light of integrating existing resources and offering reference. As
shown in Table 3.5, Kar et al. (2014b) calculated 7 molecular descriptors in their study:
metal electronegativity (y), sum of metal electronegativity for individual metal oxide (3 y),
sum of metal electronegativity for individual metal oxide divided by the number of oxygen
atoms present in a particular metal oxide (3 x/n0O), Natetal, Nosyoen, the chatrge of the metal
cation corresponding to a given oxide ()ox), and molecular weight (MW). Two studies (Singh
and Gupta, 2014; Toropov et al.,, 2012) provided 2-dimensional structural information of
the ENMs in the form of SMILES (Simplified Molecular Input Line Entry System).
Information on ENM size and aggregation size can also be found in Sizochenko’s study
(Sizochenko et al.,, 2014). In addition, 12 electronic descriptors were provided (structural
parameters of the ENMs were given by Puzyn et al. (2011)), including the standard heat of
formation of the oxide cluster (HoF), total energy of the oxide cluster (TE), electronic
energy of the oxide cluster (EE), core-core repulsion energy of the oxide cluster (Core), area
of the oxide cluster calculated based on COSMO (CA), volume of the oxide cluster
calculated based on COSMO (CV), energy of the highest occupier molecular orbital
(HOMO) of the oxide cluster, energy of the lowest unoccupied molecular orbital (LUMO)
of the oxide cluster, energy difference between HOMO and LUMO energies (GAP),
enthalpy of detachment of metal cations Me™" from the cluster surface (AHcus), enthalpy of
formation of a gaseous cation (AH\+), and lattice energy of the oxide (AHp). Mu et al.
(2016) also presented data of 26 computational descriptors for this dataset, detailed

information can be found in the supplemental information of the original publication.

Using the same types of 17 ENMs as in Puzyn’s study (Puzyn et al., 2011), Pathakoti et al.
(2014) examined the nanotoxicity to the E. ¢/ (Migula) Castellani & Chalmers
(ATCC#25254) strain under dark conditions and sunlight exposure for 30 minutes. Toxicity



of ENMs was expressed by the logarithmic values of LC50. Information was provided
regarding the ENM size (by suppliers), TEM (transmission electron microscopy) particle
size, hydrodynamic size, zeta potential in water and in KCI solution, and surface area.
Moreover, 6 electronic descriptors for metal oxides and 3 for metal atoms were calculated:
the larger (less negative) of the HOMO energies of the alpha spin and beta spin orbitals
(HHOMO), the alpha and beta LUMO energies (LUMOA and LUMOB, respectively), the
absolute electronegativity of the metal oxide calculated from HHOMO and LUMOA
(LZELEHHO), the average of LUMOA and LUMOB (ALZLUMO), molar heat capacity
of the metal oxide at 298.15 K (Cp), the alpha HOMO and LUMO energies of metal atoms
(MHOMOA and MLUMOA, respectively), and the absolute electronegativity of the metal
atom calculated from MHOMOA and MLUMOA (QMELECT).

3.3 Existing nano-(Q)SARs

Suitable modeling tools are capable of extracting meaningful relationships between the
nano-structures and nanotoxicity, thus yielding predictive models. The widely employed
methods concluded from the state-of-the-art of nano-(Q)SARs are linear and logistic
regressions, together with the approaches of support vector machines (SVM), artificial
neural networks (ANN), and £-nearest neighbors (£NN) etc. Details on the workflows for
model development and the resulting equations (if applicable) are subsequently summarized,
including the number of ENMs, predictive performances, descriptors calculation and
selection. The datasets used for these nano-(Q)SARs are previously described in Table 3.2.
Descriptors used in the developed models or identified factors by relevant studies atre

summarized in Table 3.6 for further discussion.
3.3.1 Linear regression models
Cellular nptake

In Epa’ study (Epa et al., 2012), linear models have been reparameterized for the cell uptake
of 108 ENMs (87 in training set, 21 in test set) in PaCa2 and HUVEC cells (Weissleder et al.,
2005). A method called multiple linear regression with expectation maximization (MLREM)
sparse feature reduction was employed to optimize the descriptor set from a pool of 691
descriptors. DRAGON (v5.5), ADRIANA (v2.2), and an in-house modeling software
package were used for descriptor calculation. The best performing models used 19
descriptors for PaCa2 cells (R?usining = 0.76, R2%ese = 0.79, SEE = 0.19, SEP = 0.24) and 11
for HUVEC cells (R%aining = 0.74, R2%esc = 0.63, SEE = 0.34, SEP = 0.36).
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A partial least squares (PLS) model predicting the cellular uptake (logio[ENM]/cell pM) of
109 magnetofluorescent ENMs in PaCa2 cells (Weissleder et al., 2005) was constructed by
Kar et al. (2014a). In this study, a set of 307 descriptors was calculated using the Cerius 2
(v4.10), DRAGON (v6), and PaDEL-Descriptor (v2.11) which was afterwards filtered by
the genetic function approximation (GFA). Finally, six molecular desctiptors appeared in

the developed model:

log19[NP]/cell = 3.335+ (0.774 X< 1 — Atype — N — 66 >) — (0.222 x Atype — N — 67)
+(7.360 x< 0.600 - Z g’ >) —(0.101 x Jurs — RPCS)

—(0.00002 x Wap) — (0.462 X nRNO2)

Itraining = 89, LV=15, R2 = 0.806, 2100 = 0.758, @ Leave-10%-out = 0.634, 2 Leave25%-our = 0.648,
SEE = 0.20, 7% ,00)scated = 0-665, AR moo)scaied = 0.113, est = 20, Ba = Reprea = 0.879,
SEP=10.12,

@2 = 0.868, 2 testyscatea = 0.793, AP mgespscaled = 0.115,

rzm(nverall)scaled =0.679, Alzm(averall)Scaled =0.116

In the model, the descriptors A#pe - N - 66 and Asype - N - 67 are the hydrophobicity of the
N atom in respectively a primary and a secondary aliphatic amine (Al-NH, and Al-NH,
respectively), D} B’ characterizes the measure of electronic features of the molecule relative
to molecular size, Jurs—RPCS stands for the relative positive charge surface area, Wap
represents for the all-path Wiener index, and #RINO2 is the number of aliphatic nitro groups.
The leverage and distance to model in X-space (DModX) approaches (Gramatica, 2007;
Wold et al., 2001) was applied to check model’s domain of applicability.

Using the same data from Weissleder et al. (2005), Ghorbanzadeh et al. (2012) proposed a
predictive model of cellular uptake (logio)[ENM]/cell pM) on the basis of a multilayered
perceptron neural network technique. A self-organizing map (SOM) strategy was employed
combined with stepwise MLR to promote the feature reduction. This procedure provided
six most informative descriptors, namely number of donor atoms (N and O) for H-bonds
(nHDon), Geary autocorrelation of lag 1 weighted by van der Waals volume (GATS1v),
3D-MoRSE-signal 29/unweighted (Mot29u), D total accessibility index/weighted by
Sanderson electronegativity (De), 3D-MoRSE-signal 14/unweighted (Mor14u), as well as

the mean electrotopological state (Ms). The linear model has the form:

log,o[NP]/cell = 2.970 — 0.130 x nHDon + 0.412 X GATS1v — 0.398 x Mor29u + 1.243
X De — 0.163 X Mor14u + 0.045 x Ms
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The model gave a correlation coefficient (K) of 0.782 for the training set (RMSE = 0.369)
and 0.755 for the prediction (RMSE = 0.357). Williams plot was subsequently put into use

for visualizing the domain of model’s applicability.
Cytotoxicity

Based on the apoptosis assay of smooth muscle cells from Shaw et al. (2008), Epa et al.
(2012) developed a model consisting of three descriptors for the core material (Irc304),
surface coating (ldesran), and surface charge (Lurfehy) of ENMs. The descriptors are
considered to have a value of 1 when the condition is present, and 0 when the condition is
absent. For instance, Ire304 is set to be 1 for the ENM with Fe,O3 core, and 0 when the
ENM core is Fe3O4; lgextran is equal to 1 in case of a dextran coating and O for others;
surface functionality is encoded as 1 (basic), —1 (acidic), or 0 (neutral). Smooth muscle

apoptosis was used as the endpoint in the constructed model:

SMA = 2.26(+£0.72) — 10.73(1.05) X Ige,0, — 5.57(+0.98) X Igextran — 3.53(+0.54)
X Isurf.chg

where 7 = 31, R2%uining = 0.81, R2wese = 0.86, SEE = 3.6, SEP = 3.3.

Papa et al. (2015) reported three MLR models predicting the potential of ZnO and TiO»
ENMs inducing the release of LDH in rat lung cells. Data was retrieved from the study of
Sayes and Ivanov (2010) which provided values of five descriptors including engineered size
(X0), size in water (X1), size in phosphate buffered saline (X2), concentration (X4), and zeta
potential (X5). The first linear model combined information on both TiO2 and ZnO ENMs
(all together 31 ENMs):

LDH i0, +2n0) = 0.66 + 0.003X4 + 0.005X0 — 4.46E — 5X2

R? =0.82, Q%00 = 0.76, QPimosovs = 0.74, 2ys = 0.10, s = 0.11, F= 40. The Williams plot for
applicability domain of the model was depicted in the original publication. Besides, linear

models were also built separately for TiO2 (22 ENMs) and ZnO ENMs (15 ENMs):

LDH rio,, = 0.599 + 0.003X4 + 0.004X0

R? = 0.84, Q%00 = 0.79, Qimosors = 0.78, s = 0.10, s = 0.12, F = 48

LDHzn0) = 1.041 + 0.001X1 — 0.001X2 + 0.001X4



R? =091, Q%00 = 0.80, Q2imozow = 0.76, *ys = 0.22, s = 0.08, FF = 35.

Another approach explicitly and completely based on MLR is reported by Gajewicz et al.
(2015). In this case, the cytotoxicity of 18 metal oxide ENMs to the HaCaT cell line was
modeled. A set of 27 descriptors were calculated including 16 quantum-mechanical
descriptors and 11 image descriptors derived from Transmission Electron Microscopy
(TEM) images. For calculating the quantum-mechanical descriptors, the molecular geometry
was optimized at the level of the semi-empirical PM6 method (Stewart, 2007) encoded in
MOPAC 2009 (Stewart, 2009). Information on the size, size distribution, shape, porosity,
and surface area of ENMs was extracted based on TEM images to generate the 11 image
descriptors. Two descriptors were afterwards selected by the genetic algorithm (GA), i.e.,

AHg and y¢. The model can be expressed as:

10g(LCsp)™" = 2.47(£0.05) + 0.24(+0.05) X AH;€ + 0.39(£0.05) X x°

F=446,p= k104 n= 18, R2 = 0.93, RMSE, = 0.12, 0%, = 0.86, RMSE,, = 0.16, 0.
=0.83, RMSE, = 0.13

where AH[ is the enthalpy of formation of metal oxide nanocluster representing a fragment
of the surface and y’ represents the Mulliken’s electronegativity of the cluster. The domain

of applicability of the model was described by means of a Williams plot.
Using the dataset reported by Gajewicz et al. (2015), Pan et al. (2016) developed two
predictive models incorporating the so-called Improved SMILES-Based Optimal

Descriptors. The models predicting the cytotoxicity of metal oxide ENMs to HaCaT cells

have the forms:

1
log (F) = —0.2909(+0.0664) + 0.1038(+0.0027) x DCW(1,3)
50

7n =13, R2 = 0.9606, Q%n0 = 0.9393, 5 = 0.008, = 268, p < 0.0001; and

1
log (LC ) = 0.0012(£0.0048) + 0.0778(+0.0001) x DCW(1,3)
50

n =12, R? = 0.9997, Q%m0 = 0.9996, s = 0.007, F = 1273, p < 0.0001. The number 1 in
DCW(1,3) is the coefficient for classification of features into two classes (noise and active);

the number 3 in DCW(1,3) is the number of epochs of the Monte Carlo optimization. The
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characteristics of ENMs involved in the models are namely molecular weight, cationic

charge, mass percentage of metal elements, individual size, and aggregation size of ENMs.

Besides, in the study of Liu et al. (2013b) a linear regression model was developed for 24
metal oxide ENMs based on a recently reported dataset (Zhang et al, 2012). Three
descriptors were involved in the model, namely E., AHg, and ymeo. The model was

reported to give an accuracy of 89% for the samples.
Toxcicity to E. coli

Puzyn et al. (2011) originally built a dataset for the toxicity of 17 metal oxide ENMs to E.
coli. Based on the data, a simple and statistically significant nano-QSAR model was obtained

which used a single descriptor AHwe+:

log(1/ECso) = 2.59 — 0.50 X AHyer

R2 = 0.85, RMSE, = 0.20, (%, = 0.77, RUSE, = 0.24, 02, = 0.83, RMSE, = 0.19

Calculation of a pool of 12 variables (Table 3.5) was executed using the PM6 method as
implemented in MOPAC 2009. GA was applied for selecting the most informative
descriptors. PLS Toolbox and the Statistics Toolbox for MATLAB were utilized for model
development. The leverage approach and Williams plot were employed to visualize model

applicability domain.

Working on the same dataset from Puzyn et al. (2011), Kar et al. (2014b) built a stepwise
MLR model as well as a PLS model. Seven descriptor were used for model construction
namely y, Xy, Zx/ 70, Natetl, Noxygens Yo 20d MW (Table 3.5). For the MLR model feature
reduction was accomplished by the ‘stepping criteria’ (F), and only the descriptor y,. was

seen in the model:

log(1/ECso) = 4.781 — (1.380 X x,x)

n=17, Rz =0.84, R2.qj= 0.83, (%100 = 0.81, (% 1-10percent-outr = 0.82,
@L—ZOpercent-OUT = 083, @L—ZSpercent-OUT = 080, cR2p=0.82

Meanwhile the developed PLS model contained two descriptors y,, and y, and has the form:

log(1/ECsy) = 4401 — (1.324 X xox) + (0.176 X X)



n=17,LV=1, R2 =0.82, @?r00= 0.75, @ 10percent-our = 0.76,
2 -20percent-ouT = 0.74, @RL-25percent-outr = 0.76, CR2p=0.79

Characterization of the applicability domain of the model was performed by the leverage

approach (Gramatica, 2007).

Mu et al. (2016) also reported MLR models building on the data from Puzyn et al. (2011).
Calculation of descriptor was performed using PM6 methods within MOPAC 2012
software package. Approaches of Pearson and pair-wise correlations, and clustering and
principal component analysis were incorporated to obtain optimal structure descriptors for
modeling. Among the developed models, a simple but statistically significant nano-QSAR

has the form:

1
log <EC50) = (4412 £ 0.165) + (=0.121 + 0.068)Z/7 + (—0.001 + 2.57 X 10™*)AHye

where Z is the ionic charge, ris the Pauling ionic radius. Statistical indicators of the model
are: R? = 0.8793, RMSE = 0442, FF = 55.654, p = 4.23 X 1077. Leverage approach and
Williams plots were used for the characterization of model applicability domain. Based on
the developed model, toxic potencies of other 35 metal oxide ENMs were predicted and
visualized in a periodic table. Other models using different descriptors were also described

in the study.

Pan et al. (20106) also built 7z siico models using data from Puzyn et al. (2011). The reported
models on the basis of the Improved SMILES-Based Optimal Descriptors can be expresses

as:

1
log (Lc ) = 0.0321(£0.1443) + 0.2658(+0.0141) x DCW(6,11)
50

n =10, R? = 0.8891, Q%0 = 0.8378, s = 0.179, F = 164, p < 0.0001; and

1
log (F) = —0.0076(+0.0306) + 0.1420(+0.0020) X DCW(6,17)
50

n =29, R?=0.9824, Q%o = 0.9745, s = 0.007, F = 391, p < 0.0001. The characteristics of
ENMs involved in the models are namely molecular weight, cationic charge, mass

percentage of metal elements, individual size, and aggregation size of ENMs.

71




Review of nano-(Q)SARs for metallic ENMs

72

3.3.2 Logistic regression models

Liu et al. (2011) constructed logistic regression models to classify the effect of nine metal
oxide ENMs to BEAS-2B cells into toxic (T) or nontoxic (N). The model with the best

classification performance is:

<P(N PET)
In

———— | =3600.6 + 103.5xd +9.5%x 0 97.6 X Pyje — 58.5 X E;
P(N Pe N)) + + b + Me MeO

whete P(N P € T) and P(N P € N) ate the probabilities of an ENM being classified as
toxic ot nontoxic, respectively. dis the size of ENM; ), is the volume concentration detived
from the mass concentration of ENMs; Py, is the period of the ENM metal in the periodic
table; Eyep is the atomization energy of the metal oxide. Model applicability domain was

depicted by the principal component analysis.

Liu et al. (2013b) developed two nano-SAR models based on the logistic regression and
quadratic logistic regression methods, respectively. The dataset of Zhang et al. (2012) was
chosen. This dataset covered data on the toxicity of 24 metal oxide ENMs to BEAS-2B and
RAW264.7 cell lines as described above. The quadratic logistic regression model was shown
to achieve an accuracy of 89.97 % with only two desctiptors Ec and Z2/r. Meanwhile a
marginally better predictability of 90.09% for the logistic regression model was obtained.
The molecular descriptors that were included in the logistic regression model were Ec, Eamy,

and 4.

Logistic regression models were also built by Liu et al. (2013a) based on an integration of
multiparametric bioactivity assays of 44 iron oxide ENMs (Shaw et al, 2008). The
conception of ‘hit’ (significant bioactivity, Signal-to-Noise Ratio > 1.645) was utilized in the
study, and the number of hits served as the bioactivity class definition (identifying an ENM
as bioactive or inactive) enabling nano-SAR development. Clustering analysis via SOM was
also considered besides the number of hits as an alternative to define a class. ENM
descriptors included the primary size, zeta potential, R1 and R2. Results showed that the
logistic regression model based on class definition of H5 (five hits) possesses the best
predictability of 79.3 %, using ENM size and R2 as descriptors. The class definition H6 also
enabled the construction of a simple logistic regression model (R1 as the sole descriptor)

with 78.2% accuracy.

3.3.3 Support vector machine models



A SVM classification model has been developed by Fourches et al. (2010) using the
experimental data of 44 ENMs from Shaw et al. (2008). ENM size, R1, R2, and zeta
potential were used as input descriptors, and an arbitrary threshold at Zmen = -0.40 was
applied to enable a binary classification. Three clusters of ENMs were identified after
assigning a hierarchical clustering procedure. It was found that all monocrystalline iron
oxide ENMs were in cluster II and all the quantum dots appeared in the cluster I. Results of
classification confirmed the good predictability of the clustering-based nano-SARs (5-fold

external cross-validation) in the cluster II:

Cluster It # = 13, sensitivity = 0.5, specificity = 0.8;
Cluster II: # = 18, sensitivity = 0.78, specificity = 0.78;
Cluster IIT: # = 13, sensitivity = 0.7, specificity = 0.4

whete sensitivity = (number of true positives)/(total number of true positives), and
specificity = (number of true negatives)/(total number of true negatives) for the binary

classification problems.

Another SVM nano-SAR classifying 23 metal oxide ENMs as toxic or nontoxic was built by
Liu et al. (2013b), based on measured toxicological responses in BEAS-2B cells and murine
myeloid RAW 264.7 cells following an established protocol (Zhang et al., 2012). A SOM
based consensus clustering was employed and afterwards identified three ENM clusters.
The clusters 11 and III contained ENMs being reported as toxic, and thus were grouped
into a single cluster of ENMs classified as having a positive response. ENMs in cluster I
were labeled as nontoxic. A pool of 30 descriptors were initially considered including
information on the fundamental metal oxide, energies or enthalpies of metal oxide, ENMs
size, zeta potential and isoelectric point, and ENM energy. Descriptor selection was
accomplished by the evaluation of models derived from all possible descriptor combinations.
The SVM algorithm successfully correlated the cytotoxicity of ENMs with ENM
conduction band energy (Ec) and ionic index of metal cation (Z2/7). The penalty factor and
the kernel width of the SVM model were determined to be 128 and 2, respectively. The

discriminant function of the SVM model was given by

6
f(x) = Z aie—Z[(xiyl—x1)2+(xi,2—xz)2] +b

i=1

where x refer to the ENM identified by the normalized descriptors vector [ZZ/ r, Ec] (i.e., x1,

x2), x;1 and x;2 stand for the normalized first and second descriptors identified as support
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vectors. The values of «; ( = 1-6) were represented by ZnO (82.342), Ni»O3 (128), Mn2Os3
(83.696), NiO (-70.471), CeO2 (-95.5606), and Fe O3 (128) with & being -10.888. The model
was reported to give a predictive accuracy (obtained via 0.632 estimator) of 93.74%. Model
applicability domain was characterized by a probabilistic approach (Netzeva et al., 2005).

3.3.4 Artificial neural network models

Based on the experimental results of Shaw et al. (2008), a Bayesian regularized ANN model
was constructed predicting the smooth muscle cells’ apoptosis triggered by 31 ENMs (Epa
et al., 2012). Model statistics were as follows: # = 31, R%raining = 0.80, R%ese = 0.90, SEE =
2.8, SEP = 2.9. Meanwhile an ANN nano-SAR was also built in the study, modeling the
cellular uptake in HUVEC and PaCa2 cells (Weissleder et al., 2005):

cellular uptake in HUVEC cells: R%ining = 0.70, SEE = 0.30, R? = 0.66, SEP = 0.33,

descriptor number = 11;

cellular uptake in PaCa2 cells: R%uining = 0.77, SEE = 0.15, R% = 0.54, SEP = 0.28,

descriptor number = 19.

Besides the above-mentioned MLR model developed by Ghorbanzadeh et al. (2012),
another nano-SAR on the basis of a multilayered perceptron neural network technique was
also introduced in their study. The SOM strategy combined with stepwise MLR selected six
most informative descriptors namely nHDon, GATS1v, Mor29u, De, Mor14u, and Ms. The
derived model gave a performance in terms of values of R? of 0.934 for the training set,
0.945 for the internal test set, and 0.943 for the external test set. The calculated RMSE
values are 0.146, 0.121, and 0.214 for respective training, internal, and external test sets,
while the corresponding values of I are 531, 142, and 65, respectively. The applicability
domain of the model was firstly evaluated by the approach based on ranges of individual
descriptors. A Williams plot was subsequently put into use for visualizing the domain of

applicability.
3.3.5 k-nearest neighbor models

A classification model employing the ANN approach was developed in the study of
Fourches et al. (2010). The model was proposed to predict the cellular uptakes of 109
ENMs in PaCa2 cells (Weissleder et al., 2005). Coefficients of correlation R,ps2 were shown
to range from 0.65 to 0.80 for the external sets, and from 0.67 to 0.90 taking into account
the applicability domain which was defined by the Euclidean distance approach. In the
study, the descriptors were identified that most frequently occurred in the models (1-5 fold



cross-validations) with the highest prediction accuracy. The top 10 descriptors ranked by
averaged frequency were reported to be SlogP_VSAI1, SlogP_VSA2, SlogP_VSAS5,
b_double, SlogP_VSAO, PEOE_VSA+1, wvsa_don, vsa_other, vsa_base, and
PEOE_VSA_FPOS. The SlogP_VSAO and SlogP_VSA1, along with other descriptors with
relatively low frequency such as GCUT_SLOGP_0 and BCUT_SLOGP_0, ate considered
to be generally related to the lipophilicity. For instance, the PaCa2 uptake of ENMs was
observed to be positively correlated with the enrichment of lipophilic compounds on ENM
surfaces (value of GCUT_SLOP_0). Other discriminated factors affecting the PaCa2 uptake
of ENMs were found to be about the molecular refractivity, the specific van der Waals
surface area, and the electrostatic properties. The applicability domain of the model was

characterized by the Euclidean distance.

An attempt of predicting the cytotoxicity of 44 iron oxide ENMs based on £ZNN was also
reported by Liu et al. (2013a). As described above, different numbers of hits were discussed
in the study for introducing class definitions besides the clustering analysis via SOM. The
results showed that a NN model using SOM-based consensus clustering gave the best
predictive performance of 74.9 % accuracy. Three descriptors, ENM size, R1, and R2 were
obtained in this model. Meanwhile, H4 class definition was also deemed to be a suitable
choice which enabled the development of a ANN model correctly predicting 74.3% of the

samples.
3.3.6 Other models

Chau and Yap (2012) attempted to correlate the cellular uptake in PaCa2 with the calculated
parameters from PaDEL-Descriptor (v2.8). By lowering the threshold value of being
significant uptake into PaCa2, 56 ENMs with cellular uptake of more than 5000 ENMs per
cell (Weissleder et al., 2005) were considered as a positive class, and the other 49 were
defined as the negative class. Based on the four modeling techniques of naive Bayesian
classifier (NBC), logistic regression, ANN, and SVM, 2100 candidate models were
developed while only 102 of them were qualified according to the selection criteria. To build
a final consensus nano-SAR model, the top 5 candidate models were chosen consisting of 3
£NN, 1 SVM, and 1 NB models. The consensus model gave a good predictive performance
with sensitivity of 98.2% and specificity of 76.6% for the dataset. Descriptors that
commonly appeared in the candidate models were number of CH: groups, primary,
secondary and tertiary nitrogens, halogens (fluorine, bromine, iodine), sulphur atoms, fused
rings and hydrogen bonding. Most of the descriptors that contributed to the model were
interpreted as related to the lipophilicity (e.g., number of lipophilic groups). Other factors

such as the hydrogen bonding between nitrogen and hydrogen, and the sulphur and various
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halogen atoms were also found to affect the cellular uptake of ENMs. This is in agreement
with the study of Fourches et al. (2010).

Chen et al. (2016) reported several nano-SARs for the categorization of ENM hazards to
different biota. The toxicity data was retrieved from the database of Chen et al. (2015) and
the online chemical modeling environment platform (Sushko et al., 2011). Approaches of
functional tree, C4.5 decision tree, random tree, and Simple CART were employed for
model development. Global nano-SARs across species using LLC50 data were shown to
correctly predict more than 70% of the samples in training (320 ENMs) and test sets (80
ENMs) based on functional tree, C4.5 decision tree, random tree methods. The species-
specific nano-SARs were also derived for Danio rerio, Daphnia magna, Psendokirchneriella
subcapitata, and Staphylococcns anrens with good predictivity. Summarized from the developed
models, the molecular polarizability, accessible surface area, and solubility were identified as

key factors affecting the biological activities of metallic ENMs.

Moreover, Zhang et al. (2012) reported a regression tree model using the metal dissolution
of metal oxide ENMs and energy of conduction band to predict the toxicity potential of 24
metal oxide ENMs. With the data from Zhang et al. (2012), Sizochenko et al. (2015)
developed causal inference nano-SARs for BEAS-2B and RAW 264.7 cell lines (24 metal
oxide ENMs for each cell line) with high predictivity. Luan et al. (2014) and Kleandrova et
al. (2014) developed the novel QSTR-perturbation (quantitative structure—toxicity
relationship) models assessing the cytotoxicity and ecotoxicity of various types of ENMs.
The factors of molar volume, polarizability, size of ENMs, electronegativity, and the
hydrophobicity and polar surface area of surface coatings were indicated by the reported
models. Singh and Gupta (2014) previously performed three cases of nano-(Q)SAR study
for metallic ENMs on the basis of the datasets generated by Puzyn et al. (2011), Shaw et al.
(2008), and Weissleder et al. (2005). In the study, classification and regression models were
constructed predicting various biological effects of the ENMs by an ensemble learning
based strategy called stochastic gradient boosting and bagging algorithms. Results showed
that the developed models are of robustness and no over-fitting of data was present in all
case studies. Besides, attempts to link the information of ENM structures to corresponding
biological effects were also made using other modeling techniques, such as Monte-Catlo
method (Toropov et al.,, 2012; 2013), NBC and linear discriminate analysis (Liu et al,
2013a,b), random forest regression (Sizochenko et al., 2014; 2015), and self-written least-
squares fitting program (Pathakoti et al., 2014).
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3.4 Interpret mechanisms of ENM biological activities with developed models

To enable the fast and inexpensive high-throughput prediction of diverse biological effects
caused by ENMs, reliable nano-(Q)SARs should be based on mechanistic knowledge
(OECD, 2007). Only when information on the underlying mechanisms is incorporated in
modeling, proper and reliable extrapolation towards untested ENMs or organisms can be
performed. Based on existing experimental data related to the cellular uptake of ENMs as
well as the toxicity of ENMs to different cell lines and to E. o/, various nano-(Q)SARs
were developed (Table 3.1). The significant descriptors introduced in the aforementioned
nano-(Q)SAR studies are shown to be able to provide vital structural information on the
factors affecting ENMs’ cellular uptake and toxicity. Therefore, information on these
descriptors as summarized in Table 3.6 is linked to the current understanding of the

mechanisms of nanotoxicity.
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Figure 3.1. Overview of hypotheses associated with the responses of cellular membrane to
the introduction of ENMs. It is assumed that endocytosis, penetration, adhesion of ENMs
upon the cellular membrane, and cellular membrane rupture could possibly occur. Cellular
membrane rupture is also considered to lead to the internalization of ENMs via the damage
sites. Scenario of relevant ion release from ENMs, generation of reactive oxygen species
(ROS), and ENMs-contacted interactions are also depicted.
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3.4.1 Cellular uptake of ENMs

Once entering into the medium, ENMs may undergo various extra-and intracellular
physical-chemical reactions such as dissolution, ion release, reactive oxygen species (ROS)
generation, interaction with subcellular structures (e.g., cellular membrane, mitochondrion),
and internalization into the cells (Figure 3.1). Cellular uptake of ENMs is always seen as an
important process of ENMs’ internalization and subsequently initiating the ENM contact-
mediated or dissolved ion-associated intracellular reactions. As hypothesized, ENMs are
conventionally transported into cells through endocytosis, a form of active transport in
which cells take in ENMs by engulfing them (Zhao et al, 2011). Possible endocytotic
processes proposed include phagocytosis, macropinocytosis, caveolae-dependent and
clathrin-mediated endocytosis, and non-clathrin-, non-caveolae-mediated endocytosis
(Unfried et al., 2007; Zhao et al., 2011). Besides, other responses of cellular membranes to
adsorption of ENMs were also shown to exist. On the basis of a dissipative particle
dynamics simulation study, Yue and Zhang (2011) concluded that surface adhesion,
membrane penetration, and even ENM-induced membrane rupture could occur upon the
ENM attachment to cellular membranes. Lin et al. (2010) and Xia et al. (2008) also
demonstrated that ENMs could access to the cellular interior through direct membrane

penetration.

In these internalization processes, surface properties of ENMs are essential for the ENM-
biomolecule interactions and are deemed to be able to alter the cellular uptake pathways. In
the experiment of Weissleder et al. (2005), a diversity of cellular uptake processes was
observed especially for the PaCa2 cells. These authors consequently concluded that the
translocation process is highly dependent on the surface modification of the ENMs. The
studies showed that the lipophilicity of the surface molecules is an important discriminating
factor that determines the chemical ability to interact with the lipid core of membranes (van
de Waterbeemd et al., 2011). Fourches et al. (2010) reported that four descriptors (out of
the top ten with the highest averaged frequency) SlogP_VSAO, SlogP_VSA1, SlogP_VSA2,
and SlogP_VSA5 are intimately correlated with molecular lipophilicity of surface
compounds. The ENMs with a higher PaCa2 cellular uptake are generally highly enriched
for lipophilic surface modification (higher descriptor value). This is consistent with the
results of Epa et al. (2012) in which C-005 (associated with hydrophobicity) was observed as
a factor affecting ENMs’ cellular uptake. Further confirmation was obtained by the
appearance of Aspe — N — 66 and Aspe — N — 67 (Kar et al., 2014a) in a PLS model, and
number of lipophilic groups (CH», fused rings) in the consensus model of Chau and Yap
(2012). Also, the hydrogen bonding capacity of surface modifiers was explained to be one of
the driving factors of ENMs’ membrane penetrability (Chau and Yap, 2012). An ANN
model predicting cellular uptake of ENMs by HUVEC was reported to include the



descriptors nRCONHR and nArOCON which characterize molecular hydrogen bonding
capacity (Epa et al,, 2012). In the same study, nN, nArOH, H-053, and O-058 were also
found in the MLR model and were likewise interpreted as affecting the capability of H-
bonding. In other nano-(Q)SARs, descriptors considered to correlate with this factor
include nHDon (Ghorbanzadeh et al., 2012), WPSA-2, nHBDon, and nHBAcc (Singh and
Gupta, 2014). Hence, these informative descriptors found in the developed nano-(Q)SARs
confirmed again the previous experimental observations, that the lipophilicity of surface

compounds is of significant importance for the cellular uptake of ENMs.

Additionally, shape, size, and flexibility of the surface compounds also play an important
role in determining ENMs’ passive transport across biological membranes. For instance,
descriptors (not exclusively) characterizing molecular branching were constantly observed in
the studies such as nR10, nCIR, nCs (Epa et al., 2012), Wap (Kar et al., 2014a), GATS1v,
Mot29u, Morl14u (Ghotrbanzadeh et al., 2012), SP-5, VP-4, and VPC-6 (Singh and Gupta,
2014). The Mot29u, Mot14u, SP-5, VP-4, and VPC-6 meanwhile also contain information
of the molecular three-dimensional structures (e.g., mass, size, flexibility, and overall shape).
Other relevant descriptors are namely ASP, DISPm, QZZm, QYYp, SPAM (Epa et al,
2012), >'B' (Kar et al.,, 2014a), De (Ghotbanzadeh et al., 2012), MOMI-XZ, nRotB (Singh
and Gupta, 2014). Moreover, impacts on ENMs’ cellular uptake were also reported to
derive from the molecular reactive surface and electronegativity. Molecular reactive surface-
related descriptors in the nano-(Q)SARs are vsa_don, vsa_other, vsa_base,
PEOE_VSA_FPOS, PEOE_VSA+1 (Fourches et al., 2010), Jurs—RPCS (Kar et al., 2014a),
WNSA-3 (Singh and Gupta, 2014). Descriptors associated with molecular electronegativity
were observed to be nRNO2 (Kar et al, 2014a), primary, secondary, and tertiary N,
halogens (Chau and Yap, 2012). It is not surprising that these factors of ENM surface
modifiers may influence the ENM-biosurface interactions and pose effects on the cellular
uptake of ENMs, independently or cooperatively. Either shape or size, or flexibility of
surface modifiers of ENMs would affect the interactions between these molecules and the
molecular sites of biosurfaces, change the conformation of binding complexes, and
ultimately mediate the subsequent ENM-biosurface reactions in which the nature of the

reactive surface and electronegativity also play a role.

As seen in Figure 3.1, internalization of ENMs into cells is generally considered as a crucial
biological process triggering nanotoxicity. However, the adsorption of ENMs on cellular
membranes may also affect cellular membrane integrity and lead to the formation of detects
through the membranes (Lin et al., 2010; Thevenot et al., 2008; Xia et al., 2008; Yue and
Zhang, 2011). This could probably result in the direct internalization of ENMs through the
damage sites of membranes and the release of intracellular components that causes cell

death. Notably, extracellular release of ions and formation of ROS are also considered to be
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factors affecting the toxicity of ENMs in some cases. von Moos and Slaveykova (2014)
reported that intracellular ROS generation can be stimulated by the presence of extracellular
ROS as a response. The released ions and derived ROS may as well interact with cellular
membranes, and dependently and/or independently influence ENMs” cellular uptake. This
gives a possible explanation on the presence of the descriptor ionization potential (IP) in
the nano-SAR of Singh and Gupta (2014), and may also be able to explain why the
electronegativity-related descriptors nRNO2 (Kar et al., 2014a), primary, secondary, and
tertiary N, and the halogens (Chau and Yap, 2012) generally appeared in relevant nano-
(Q)SAR studies.

3.4.2 ENMs-induced biological effects

It is well-known that ENMs are capable of eliciting adverse biological effects by directly or
indirectly triggering a series of physical-chemical reactions and ultimately causing cell
damage. Reportedly, toxicity of ENMs could occur via a single mechanism or via
combinations of the following mechanisms: (i) direct interactions with subcellular structures
or biomolecules (e.g., membranes, mitochondria, proteins, DNA) which could lead to, for
instance, mitochondrial damage, denaturation of proteins, formation of corona; (ii) release
of chemical constituents from ENMs such as metal ions; (iii) surface property-based
chemical reactivity of ENMs, e.g., photochemical, catalytic and redox properties; (iv)
Trojan-horse type mechanisms, so called intruders in which ENMs act as vectors for

transporting toxic chemicals (Figure 3.2).

®

Trojan-horse

N
ENMs — ®_ : Subcellular

- structures <=~~~ ROS

Generation — — — — - Interaction

Figure 3.2. Schematic illustration of possible mechanisms of ENMs triggering nanotoxicity.
1) ENMs directly in contact with subcellular structures, which could promote the release of
ions and ROS generation; 2) ENMs releasing ions; 3) ENMs contact-mediated ROS
generation; 4) Trojan-horse mechanism triggered by ENMs; 5) Released ions increasing the
formation of ROS; 6) Ion-dependent interactions which may lead to cellular damage or

trigger ROS formation.



Generally, there is no doubt that metal-ions leaching from ENMs could act as a key factor
causing biological effects of ENMs. Once the ENMs release dissolved ions surrounding the
cells, it is often difficult to experimentally distinguish the effects caused by conventional
metal ion release from the nano-specific effects. In such a context, the toxicity induced by
ENMs is always considered to be intimately correlated with ENM dissolution. Comparable
results on the toxicity of ZnO ENMs and Zn salts have been observed for the examples of
Psendokirchneriella subcapitata (Franklin et al., 2007), Thamnocephalus platyurus and Daphnia magna
(Heinlaan et al., 2008; Wiench et al., 2009), and E. co/ (Li et al., 2011). Result of studies on
the toxicity of CuO ENMs to multiple species was also in agreement with this conclusion
(Bondarenko et al., 2012; Heinlaan et al., 2008). It is commonly believed that ion release
could occur after the cellular internalization of ENMs which consequently results in
different mechanistic pathways of nanotoxicity. For instance, Stohs and Bagchi (1995)
proposed a Haber-Weiss-Fenon cycle describing the stimulation of ion-leaching to ROS

generation, taking Cu?" as an example:
05 + Cu?* - 0, + Cu*

Cu* + H,0, - Cu?* + OH™ + OH"

where the ROS such as superoxide anion radicals (037) could be derived from the one-

electron reduction of molecular oxygen Og:
0,+e - 05

In the Haber-Weiss-Fenton cycle, Cu?* acts as catalysts of the formation of hydroxyl
radicals which enhances the generation of ROS. Meanwhile, it was suggested that the release
of ions could be accompanied by ROS formation as well such as in the Fenton reaction
(Gajewicz et al., 2015):

Fe + 0, + 2H* - Fe?* + H,0,

Fe?* + H,0, - Fe3* + OH" + OH™

Evidences from nano-(Q)SAR studies also demonstrated the contribution of ion release to
nanotoxicity. Influence of metal solubility on nanotoxicity was indicted by the developed
models (Zhang et al., 2012; Chen et al., 2016). Puzyn et al. (2011) developed a linear model
based on the sole descriptor AHwme+ predicting toxicity of metal oxide ENMs to E. cof. It
was explained that AHye+ is an efficient descriptor characterizing the stability of metal

oxides, which is associated with both the lattice energy of oxides and the sum of the
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ionization potentials of a given metal. The release of cations with smaller charge is seen as
more energetically favorable than that with larger charge (Mu et al., 2016). This explains the
observations of previous studies giving an order of oxides toxicity as : Me?* > Me3* > Me**
(Puzyn et al, 2011). According to Kar et al. (2014b), the charge of the metal cation
corresponding to a given oxide (y,) was also used for the parameterization of nanotoxicity
data. In the study of Liu et al. (2013b), the desctiptor ionic index of metal cation Z2?/r was
involved in building classification nano-SARs. Z is the ionic charge and r represents the
Pauling ionic radius of the released ions (Pan et al, 2016). Z2/r is a measure of the
involvement of a metal ion into electrostatic interactions, and is able to provide information
on the affinity of a metal ion for water molecules. Likewise, such form of index was also
used in random forest models (Sizochenko et al., 2014; 2015), coupled with a parameter (1)
describing the van der Waals interactions between surface molecules or cations. Other
descriptors related to ionic charge and/or radius are polatization force (Mu et al., 2016),
covalent index, tri-atomic descriptor of atomic charges, tetra-atomic descriptor of atomic
charges (Sizochenko et al., 2015).

Accordingly, Gajewicz et al. (2015) employed two descriptors, i.e., enthalpy of formation of
metal oxide nanocluster (AH/) and the Mulliken’s electronegativity of the cluster (x), to
linearly explain the cytotoxicity of metal oxide ENMs to HaCaT. The AH is associated with
the energy of a single metal-oxygen bond in oxides (Eay’) which can be expressed as
(Portier et al., 2004):

ZAH;’ - 2.612 x 1019

NAne

EAHD =

where Ny is the Avogadro number and 7 is the number of electrons involved in the
formation reaction. A high AH¢ value indicates a strongly bound cation of large formal
charge in the oxides, and thus affects the detachment of metal cation from the surface of
the ENMs. As for y‘, Burello and Worth (2011) introduced that the electronegativity value
of metal oxide (y,.,) can be calculated from that of the corresponding cation (y,,,,,) using
the equation (Portier et al., 2001):

Xoxide = 045X cqtion +3.36

Therefore, a higher value of y,,,,, indicates a stronger ability of a cation to attract electrons
in the Haber-Weiss-Fenton cycle which in turn results in higher reactivity of the metal oxide
ENMs (Gajewicz et al., 2015). The two descriptors AH/ and " meanwhile also refer to
ENMs’ surface redox activity. Burello and Worth (2011) reported that energy of a band gap
(E,) can be obtained based on the AH}?:



)
E, = Ae®3*H]

and thus the conduction and valence band energies of oxides become:
Ec = —Xoxide + O-SEg + Eshift

E, = —Xoxide — O-SEg + Eshift

where E,, represent the value changes of band edges in respect to the solution’s pH. As
hypothesized, the redox potentials of relevant biological reactions could be unbalanced if
they lie closer to the E. or E,, thereby causing cellular oxidative stress (Zhang et al., 2012).
This was confirmed by Liu et al. (2013b) who identified E. and ¥, for the development of
nano-(Q)SAR models, and Kar et al. (2014b), Kleandrova et al. (2014), Luan et al. (2014),
and Sizochenko et al. (2015) who used metal electronegativity as one of the modeling
parameters. Pathakoti et al. (2014) as well obtained two descriptors (absolute
electronegativity of the metal and metal oxide) for describing the toxicity of metal oxide
ENMs to E. co/i under darkness. Other descriptors considered to be associated with the
surface redox properties of ENMs and causing oxidative stress are namely AHg, Eam, (Liu
et al., 2011; 2013b), CI, 53 (Sizochenko et al., 2014), Cp, ALZLUMO (Pathakoti et al., 2014),
and polarizability (Chen et al., 2016; Kleandrova et al., 2014; Luan et al., 2014) in relevant
nano-(Q)SAR studies.

On the other hand, other than the general consensus taking ion release and ROS generation
as driving factors in nanotoxicity, it is evident that other mechanisms of toxicity also play a
vital role in certain cases. Xiao et al. (2015) reported that for both Cu and ZnO ENMs, the
particles per se, rather than the dissolved ions, provided the major contribution to the
toxicity to Daphnia magna (26% and 31%, respectively). Similarly, Hua et al. (2014) also
revealed a dominant contribution of ZnO ENMs over the Zn ion tested for zebrafish
embryos, for which the dissolution-driven mechanism of ENMs toxicity apparently does
not apply. More precisely, it was shown that the shape of ENMs significantly affect ENMs’
toxicity, as needle-shaped ZnO ENMs were proven to be the most toxic to Phaeodactylum
tricornutum as compared to morphologically different ENMs with equal solubility and ion
release (Peng et al., 2011). Observations of nanotoxicity affected by the shape of ENMs
were also reported for ZnO nanospheres, nanosticks, and cuboidal submicron particles
(Hua et al.,, 2014). Computational studies proved the involvement of surface property-
related descriptors in nano-(Q)SAR modeling, such as the surface area and coating (Chen et
al,, 2016; Epa et al., 2012; Singh and Gupta, 2014; Sizochenko et al., 2015), hydrophobicity
and polar surface area of surface molecules (Kleandrova et al., 2014; Luan et al.,, 2014),

surface-area-to-volume ratio (Sizochenko et al., 2015), zeta potential (Papa et al., 2015), and
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the Wigner-Seitz radius of oxide’s molecule which describes the available fraction of
molecules on the surface of ENMs (Sizochenko et al., 2014; 2015). The Wigner-Seitz radius
also relates to molecular weight and density, and therefore as well the molecular volume
which all have been indicated in the models (Kleandrova et al., 2014; Luan et al., 2014; Pan
et al,, 2016; Sizochenko et al., 2015). Descriptors relating to ENMs size (Kleandrova et al.,
2014; Liu et al., 2011; 2013a,b; Luan et al., 2014; Pan et al., 2016; Papa et al., 2015; Singh
and Gupta, 2014), material composition (Epa et al., 2012; Liu et al., 2011; Pan et al., 2016;
Singh and Gupta, 2014; Sizochenko et al., 2014), and aggregation behaviors (Pan et al., 2016;
Papa et al.,, 2015; Sizochenko et al., 2014; 2015) were also concluded to affect nanotoxicity

(Suresh et al., 2013) from the aspects of relevant computational studies.

As mentioned above, ENMs may induce toxicity by direct steric hindrance or by binding
with important reaction sites, or by indirect behaviors such as ion release, ENM surface-
contacted interactions, or by acting as carriers for toxic chemicals (as in Figure 3.2). Take
the case of TiOz as a typical example of ENM surface-mediated photochemical reaction, in

which detachment of an electron could be activated by solar radiation (Kar et al., 2014b):
TiO, = TiOf + &
e+ 0, - 05
05" +2H* + & - H,0,

O;_ + HzOz - OH" +OH™ + 02

H* +H,0= OH" + H*

The binding of ENMs with organelles could also cause a release of ions from intetior
storage due to the loss of membrane integrity. Unfried et al. (2007) reported that ENMs
interacting with mitochondria are able to promote the release of interior-stored Ca?*. The
released ions are capable of triggering ROS production by direct catalysis, e.g., the Haber-
Weiss-Fenton cycle, or indirect interference of biological functions such as interrupting the
mitochondrial electron transduction (von Moos and Slaveykova, 2014). Besides, the ions per
se could unbalance intracellular biological functions, eliciting inflaimmation, lysosomal
damage, and inhibiting cellular respirations (He et al., 2014). The interactions of ENMs with
subcellular structures (e.g., membrane-bound enzymes) were also shown to be capable of
enhancing ROS production. Interestingly, presence of extracellular ROS was reported to be
able to elevate intracellular ROS generation as depicted in Figure 3.2 (von Moos and
Slaveykova, 2014).



In summary, the characteristics of ENMs may pose effects on the toxicity of ENMs as
related to a single mechanism or to combinations of possible mechanisms. Analysis of the
descriptors discussed in existing nano-(Q)SAR studies assists in offering statistical overview
extracted from the complicated mechanistic pathways, and enables a mechanistic
interpretation on the basis of the main driving factors. As discussed above, ENMs’ surface
properties are vital for their uptake by cells concerning the lipophilicity, hydrogen bonding
capacity, electronegativity, shape, size, and flexibility of the surface modifiers. As for ENM-
triggered toxicity, properties correlating with the ability of ion release and ROS generation
could be important indicators, along with the information about the size, surface redox

properties, and composition of ENMs.

3.5 Conclusions and Outlook

Enabling the development of reliable nano-(Q)SARs is capable of reducing the time and
cost needed for conventional experimental evaluations, and thus benefits the risk evaluation
and assessment of ENMs for regulatory purposes. Even though the promising potential of
extending (Q)SARs into nanotoxicity has been addressed, the nano-(Q)SAR approach is still
in its infancy. As far as it is understood, scarcity of (propetrly documented) experimental
data is regarded as one of the major drawbacks in building nano-(Q)SAR models. The
information provided in Table 3.2 indicated a very limited availability of existing data as
only a few datasets constantly appeared in the overview of nano-(Q)SAR studies, in spite of
the numerous scientific programs on ENMs’ safety and design. This suggests that (i) most
of the studies reported do not meet the modeling criteria which, amongst others include
lack of relevant pristine or characterization data, lack of a description of the method used,
or lack of reporting of a consistent endpoint; or (ii) the integration of existing experimental
data based on various studies is currently lacking, which hinders the inclusion of this
valuable information into the nano-modeling field (Chen et al., 2017). Therefore, in light of
advancing computational nanotoxicology, a summary and also organization of potentially
useful nanotoxicity is essential. Besides the data quantity, the quality of experiment data
collected should also be taken care of for the data-driven nano-(Q)SAR approach, which
was found absent in the relevant studies owing to the single-source strategy of retrieving
data for a model. It is suggested that the quality of experimental information assembled
from various sources ought to be evaluated by suitable tools before model construction.

This is seen as helpful for improving the statistical significance and predictability of a model.

Meanwhile, the grouping and characterization of ENMs as well remain crucial for

developing nano-(Q)SARs. In general, the strategies of grouping ENMs are considered to
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be ENM composition-based, toxic mode of action-based, or further clustering-based
(Fourches et al.,, 2010; Liu et al., 2013a). Characterization of ENMs will subsequently be
carried out for the ENM groups in terms of molecular structural descriptors. However,
concerns have always been expressed with regard to the question whether it is possible to
build nano-(Q)SARs without considering ENMs’ dynamic transformations in the exposure
medium. On the one hand it is well-known that once entering into a medium, ENMs are
more likely to strongly react with the components of the test medium and undergo dramatic
changes of surface properties. These surface transformations would in return affect ENMs’
reactivity and subsequent biological behaviors (e.g., cellular uptake, interaction with
subcellular structures). In such a context, modeling based solely on the information of
ENMs’ pristine structures could be biased and could result in poor predictability and
reliability of the models generated. Meanwhile, on the other hand, a few efforts did provide
evidences regarding the feasibility of building nano-models using the characteristics of
pristine ENMs (Kar et al., 2014a; Pathakoti et al., 2014; Puzyn et al., 2011; Singh and Gupta,
2014; Sizochenko et al.,, 2014). Actually the possibility exists that the characteristics of
pristine ENMs influence the biological effects of ENMs by affecting ENMs’ dynamic
transformations in media, and it can be hypothesized that even though changes of ENM
property could occur in the exposure media, the characteristics of the pristine ENMs still
are linked to adverse biological effects of ENMs. In this circumstance, constructing nano-
(Q)SARs with only characteristics of pristine ENMs could enable the development of high-
throughput protocols for non-testing nanotoxicity evaluation. This is expected to allow to
reduce the high cost and time needed by conventional evaluation methods. However, all the
proposed hypotheses should be further confirmed by more nano-(Q)SAR studies in pace

with the advance of computational nanotoxicology.
In conclusion, the added value of this review can be summarized as:

(i) a general overview was provided of the datasets being widely used in nano-(Q)SAR
studies coupled with the provided characterization of ENMs. Experimental data were
shown to be mainly available concerning the cellular uptake by different cell lines (e.g.,
PaCa2, HUVEC), cytotoxicity to cells (e.g., HaCaT, BEAS-2B), and the toxicity to E. co/i. A

limited usage of existing data in relevant investigations was observed,;

(i) an overview was presented on nano-(Q)SARs developed so far, based on a variety of
modeling techniques such as linear and non-linear regressions (MLR, PLS, logistic
regression), SVM, ANN, and £NN;

(iii) an interpretation of the underlying mechanisms of ENMs’ toxicity and cellular uptake

was provided on the basis of the descriptors discussed in nano-(Q)SAR studies. Surface



properties of ENMs were deemed vital for the uptake of ENMs by different cell lines, such
as lipophilicity, hydrogen bonding capacity, electronegativity, shape, and size. The capability
of releasing ions and generating ROS, surface redox properties of ENMs were concluded to

be important indicators for evaluating the toxicity of ENMs;

(iv) an outlook was presented regarding the experimental data needed for future modeling
and the need of proper characterization of ENMs. Owing to the limited data availability,
optimizing the usage of existing information of nanotoxicity should be deliberately
considered, and thus integrating relevant available data becomes vital for the development
of nano-(Q)SARs. Meanwhile, whether or not the dynamic transformations of ENMs in

media play a vital role in the computer-aided nanotoxicity also ought to be further discussed.
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Abstract

Categorization of the environmental hazards associated with engineered nanomaterials
(ENMs) is important for evaluating the potential risks brought by commercialized ENMs.
Such a task is so far severely hindered because of insufficient amount of available toxicity
data. As biological assays are costly and time-consuming and also face the ethical issue of
animal use, computational modeling such as (quantitative) nanostructure-activity
relationships (nano-(Q)SARs) is valued as a potential tool to fill in the data gaps. With this
in mind, nano-SARs classifying the ecotoxicity of ENMs were developed in this study with
the aims: (i) to examine the availability of nanoecotoxicity data in developing nano-SARs;
and (i) to build nano-SARs that assist the hazard categorization of ENMs for the regulatory
purposes. Multi-source ecotoxicity data were retrieved, on basis of which descriptors
quantifying the ENM structures were calculated. By employing four extensively used tree
algorithms, global nano-SARs across species and species-specific models were derived with
significant predictive power. For the LC50 global models, the functional tree, C4.5 decision
tree, and random tree models all correctly classified more than 70.0% of the samples on
training (320 ENMs) and test sets (80 ENMs). The functional tree predicting the toxicity of
metallic ENMs to Danio rerio showed accuracies of 93.4% and 100% on respectively training
(76 ENMs) and test sets (18 ENMs). Descriptors present in the species-specific models
were analyzed to discuss the key factors affecting nanotoxicity. With easily obtained
descriptors and transparent predictive rules, we believe the developed nano-SARs could
assist the expedited review of ENMs’ hazards and facilitate better-informed regulatory
decisions of ENMs.

Key words: classification, mechanisms, metallic nanomaterials, nano-(Q)SAR, toxicity



4.1 Introduction

Assessing the potential environmental risks posed by engineered nanomaterials (ENMs) is
essential to ensure that the marketed ENMs are used as safely as possible. It is believed that,
a preliminary categorization of ENMs will benefit the early stages of qualitative risk analysis
either by manufacturers or by regulators, to target the ENMs of high risk concerns and so
as to prioritize more detailed testing of ENMs (Godwin et al, 2015). The European
Chemicals Agency, for instance, has released reports and documents alike to address the
usefulness of ENM grouping serving to the streamline testing for the regulatory purposes
(Godwin et al., 2015). The U.S.-Canada Regulatory Cooperation Council also reported
development of the classification scheme for ENMs in order to identify the ‘ENMs of
concern’ that are likely to behave differently compared to their bulk scale counterparts
(RCC-NI, 2013). Generally, one of the commonly used strategies of ENM categorization is
to group ENMs based on different measures of biological activities. An example of this can
be found in the CLP-Regulation (EC) No 1272/2008, which suggests that chemicals can be
classified as acutely toxic or as chronically toxic at multiple levels according to the outcomes
of standardized toxicity tests (Juganson et al., 2015; CEC, 1996). Another example is the EU
Ditective 93/67/EEC that recommends to rank the chemical hazard to aquatic species into
four hierarchies, i.e. very toxic, toxic, harmful, and not classified, on the basis of at least
three standard test species algae, crustacean, and fish (CEC, 1996). Unsurprisingly, however,
those risk potential-based material categorizations require an enormous amount of hazard
information of ENMs intended for adequately evaluating the safety of the materials. Given
the substantial number of existing, non-tested ENMs and the rapid growth of ENMs
innovation, it is, consequently, expected that alternatives of testing assays such as
(quantitative) nanostructure-activity relationships (termed as nano-(Q)SARs) could be
effectively used to fill in data gaps while with the minimum of financial cost and time
consumption. The application of (Q)SARs in ENM categorization is seen to be quite
advanced as it is capable of promoting the safe use of ENMs (Tantra et al., 2015).
Meanwhile, employing (Q)SARs in ENMs’ risk assessment also meets the 3R’s principle

(refine, reduce, and replace) of animal use in toxicity testing (Russell and Burch, 1959).

Previously, a few nano-(Q)SAR models have been established by linking ENMs’ biological
responses to the experimental and/or computational characterization of ENMs (Chen et al.,
2015). One of the issues so far in developing nano-(QQ)SARs is that a relatively small
number of datasets were repeatedly used by different studies (Winkler, 2016). This may be
because of one of the obstacles of using multi-source data in developing nano-(Q)SARs
being the lack of data consistency between diverse researches. This lack of data leads to the
difficulty of comprehensively characterizing the structures of ENMs in an entire dataset

especially for fully quantifying the information on surface coatings and functional groups of
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ENMs. However, given the constantly increasing amount of scientific resources from
numerous scientific programs on nanomaterial safety, and given the urgent need of further
development in computational nanotoxicology to assist the risk assessment of
nanomaterials, nano-(Q)SARs based on the integration and maximization of the use of
existing nanotoxicity data also seems to be of particular importance. We hence aimed to
derive classification nano-SARs by using the currently available and accessible nanotoxicity
data on environmental species shared in various publications and scientific resources.
Feasible strategy of computationally characterizing the structures of ENMs was chosen. The
purposes of this study are summarized as, firstly, to examine the availability of existing
nanoecotoxicity data in developing nano-SARs; and secondly, to build classification models
for ENMs assisting the nanomaterial hazard categorization for estimating the risks of metal-

based nanomaterials.

To begin with, three datasets were obtained from various publications and scientific
resources, and considered for the use of modeling. The structural descriptors were
calculated using a web-based platform Online Chemical Modeling Environment (OCHEM)
which characterize the information of the core of metal-based ENMs (Sushko et al.,, 2011).
To acquire transparent and easily applicable classification models, four extensively employed
tree algorithms embedded in the Weka (version 3.6) were considered for modeling, namely
functional tree, C4.5 decision tree, random tree, and simple CART (Hall et al., 2009). Based
on the descriptors and algorithms, global nano-SARs across species as well as species-
specific models were developed with significant predictability. The global models are
favorable for ranking the general biological effects of ENMs regardless of targeted species,
while species-specific models are able to offer in depth knowledge of nanotoxicity and may
also be more applicable when the estimation of nanotoxicity is based on certain species (e.g.
categotize ENMs based on EU Directive 93/67/EEC). Desctiptors appeating in the
species-specific nano-SARs were analyzed in light of a mechanistic interpretation of the
toxicity triggered by metallic ENMs. The present study examined the availability of
published nanoecotoxicity data in deriving nano-(Q)SARs and demonstrated the possibility

of building nano-SARs using multi-sources datasets.

4.2 Methods
4.2.1 Datasets

We previously established a database summarizing and describing the toxicity of metal-
based ENMs to selected organisms in light of the development of nano-(QQ)SARs (Chen et



al., 2015). Records of the commonly used toxicity endpoints in this database, including
EC50 (the effective concentration that causes 50% response), EC20, LC50 (the
concentration which leads to 50% mortality), LC20, MIC (minimum inhibitory
concentration), and NOEC (no observed effect concentration) were manually uploaded to
the web-based platform on 18" August, 2015 (Sushko et al.,, 2011). Using the OCHEM
platform, an analysis of the available ecotoxicity data of metal-based ENMs was performed
on 28%h August, 2015, which provided us with three datasets containing the toxicity of
various metal-based ENMs to different hierarchies of species: (I) 400 ENMs from 90
publications or reports provided with experimental data on LC50; (II) 450 ENM records
from 79 publications or reports with quantitative information on EC50 values; and (III) 166
ENMs obtained from 13 publications with experimental values of the MIC. MIC
characterizes the antimicrobial properties of ENMs and is therefore a common
experimental endpoint in antimicrobial assays. Even though the use of MIC does not
currently fit into the scheme of evaluating ENMs’ risks based on different species, we still
included this case study so as to further examine the feasibility of building nano-SARs for
different hierarchies of species. Units of the toxicity values were unified into mg/L in the
datasets. For building global nano-SARs across species, the three datasets 1, II, and III were
used as three case studies. As for constructing models for single species, from each of the
dataset two species with the most toxicity endpoint records were chosen. As a result, the
selected species were Danio rerio (94 records including embryo, LC50), Daphnia magna (102,
LC50), Pseundokirchneriella subcapitata (66, EC50), Daphnia magna (105, EC50), Escherichia coli
(41, MIC), and Staphylococcus anrens (39, MIC).

As it is acknowledged, thresholds that discretize the numeric values are of significant
importance for building classification models, which thus should be carefully discussed and
selected on the basis of different strategies and application requirements (Liu et al., 2013).
In this study, we initially examined the tendency of model predictability with the shift of
threshold values. And afterwards thresholds that lead to the most balanced predictive
performances were conditionally considered. Referring to the regulations and directives
nowadays in force, consideration of the thresholds for global models was restricted to the
values of 0.1, 1.0, 10.0, and 100.0 mg/L, which are, for instance, used by both the
aforementioned CLP-Regulation (EC) No 1272/2008 and the EU Ditective 93/67/EEC.
For the species specific nano-SARs, thresholds of 1.0, 10, 100 mg/L were taken (for
Escherichia coli and Staphylococcus anrens only 10 and 100 mg/L because of narrower vatiation
of toxicity values). Within each dataset the records were ranked based on the values of the
toxicity endpoints. ENMs with toxicity values less than pre-specified threshold value were
assigned to the ‘active’ class, and the rest of ENMs were labeled as ‘inactive’. When building

models, 20% of the dataset was exclusively utilized for external validation.
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4.2.2 Descriptor calculation

Obtaining the structural descriptors of ENMs is essential to characterize the structures of
ENMs besides the experimental measures. Using the ‘Calculate descriptors’ function
implemented in OCHEM, three types of descriptors were calculated and acquired, the E-
state, ALogPS, and Chemaxon descriptors. For the E-state, both atom and bond types were
considered for the indices and counts descriptors during calculation. The selected
subgroups of Chemaxon descriptors are elemental analysis, charge, geometry, partitioning,
protonation, and isomers that are generated at the specified pH value 7.4. For deriving
global nano-SARs, all the three types of descriptors were considered. And as for species
specific models the selection of descriptors was narrowed down to the ALogPS and
Chemaxon descriptors in order to allow for easier and better understanding of the

underlying toxicity mechanisms with the assistance of the descriptors.

P

active >

P

inactive

P active <P inactive P active >P inactive

[ Inactive } [ Active }

= exp(factive) P = exp(finactive)
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Figure 4.1. Decision test in a leaf node of a functional tree. Picive and Pinacive are the
categorical possibilities, £, and f,... are the regressions of input descriptors. Samples will

i/

be assigned to the group with the higher categorical possibility
4.2.3 Modeling algorithms

In order to build transparent rule-based nano-SARs that are easy to interpret and are
capable of revealing information insight into the roles of structural descriptors, tree
algorithms in Weka (version 3.6) were considered in the study. To avoid coincidence and
also compare model performance, four extensively employed tree methods were used
including functional tree, C4.5 decision tree, random tree, and simple CART (Hall et al,,
2009).

In a functional tree model, both decision nodes and leaf nodes could contain tests based on
either original input descriptors or the logistic regressions of descriptors (Gama, 2004). For

binary classifications, prediction in the leaf nodes using logistic regressions of descriptors



could be explained as in Figure 4.1, where Picive and Pinacive are categorical possibilities

and f

inactive

needed to be compared; £,

active

are the regressions of descriptors generated by the

algorithm; inactive and active are the class labels to be returned for an observation.

The C4.5 decision tree is an extension of the eatlier ID3 algorithm (Quinlan, 1986). It
generates decision-based tree models in which each inner node contains a test only on the
original input descriptors (Quinlan, 1993). For each test, a splitting cut-off value is provided
and used for value comparison. The classification of ENM toxicity is accomplished by
traversing a tree model from the root node to leaf nodes. Upon reaching the leaf nodes,

labels (active or inactive) stored in the nodes will be returned as predictions.

The random tree algorithm constructs a tree randomly from a set of possible trees in which
each tree has an equal chance of being sampled (Zhao and Zhang, 2008). A random tree is
grown (without pruning) from data that has £ randomly selected attributes at each node
(Kukreja et al., 2012). The decision nodes contain queries only employing input descriptors
and splitting thresholds, and leaf nodes comprise the category labels that an observation will
be classified as. In the study, the A-value was set at 0 by default and the number of
randomly chosen attributes was determined as logz(number of attributes) + 1. No depth

restriction was set as the ‘maxDepth’ was 0 by default.

As a decision tree learner for classification, the simple CART (classification and regression
tree) employs the minimal cost-complexity pruning of the CART algorithm when
constructing predictive trees (Witten et al.,, 2011). It finds cost-complexity, a measure of
average error reduced per leaf, and calculates the number of errors for each node when the
subtrees are replaced by leaves (Rajput and Arora, 2013). The simple CART generates
binary decision tree models for categorization issues. It handles the missing data by ignoring
that record (Kalmegh, 2015).

4.2.4 Model performance evaluation

To estimate the predictive power of generated models, each dataset was randomly split into
a training set (80%) and a test set (20%) before model construction. The learning process on
the training set was executed in 10-fold cross validation to ensure the model stability.
Predictive accuracy was characterized by four statistical parameters, defined as sensitivity
(SE=TP/AP), specificity (SP=TN/AN), accuracy (Q=(TP+TN)/(AP+AN)), and cotrect
classification rate (CCR=0.5(stability+ specificity)). Thereinto, TP represents the predicted
number of true positives (or active class), TN stands for the predicted number of true
negatives (or inactive class). AP and AN are numbers of actual positives and negatives

observed, respectively. Reportedly, classification accuracy higher than 70% is considered as
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high predictive performance (Kleandrova et al.,, 2014). And classification models with CCR
of both training and test sets higher than 60.0% would be considered acceptable (Fourches
et al., 2010). Model complexity was characterized by the size of the tree (number of nodes).
Additionally, the significance of test sets was also verified by randomly permuting class
labels of the test sets for global nano-SARs. The predictive results on these disjoint datasets
should be approximately 50% (close to the no-information rate) for binary classifications
with balanced datasets (Furlanello et al., 2003).

4.3 Results and discussion
4.3.1 Global nano-SARs across species

The influence of cut-off thresholds on model performances was primarily studied using the
datasets I, II, and III. As can be seen in Figure S4.1, both high (0.1 mg/L) and low (100.0
mg/L) threshold values were evidenced to result in biased predictions. The thresholds
selected for dataset I (LC50), II (EC50), and III (MIC) are respective 1.0, 10.0, and 10.0
mg/L to discretize numetic values for the case studies. After data discretization, dataset I
was found to contain 175 ENMs of the active class and 225 of the inactive class; dataset 11
consisted of 246 ENMs labeled as active and 204 labeled as inactive; and dataset 111 has 87
ENMs from the active group and 79 from the inactive group. Using the OCHEM platform,
107, 95 and 122 computational descriptors were obtained for the datasets I, II, and III,
respectively. Different nano-SARs were derived based on the descriptors which were linked
to the nanotoxicity by the functional tree, C4.5 decision tree, random tree, and simple
CART algorithms. An overview of the generated classification models is given in Table 4.1,
in terms of modeling method, size of tree, sub-dataset, sensitivity, specificity, accuracy, and
CCR. More details of the developed nano-SARs can be found in the Supplemental

Information.

For case study I, the learning process was executed on the basis of 320 ENMs in the
training set, while models were validated on the test set comprising 80 ENMs. A cut-off
value of 1.0 mg/L was applied to enable the detivation of nano-SARs. By compatison,
functional tree, C4.5 decision tree, and simple CART generated tree models with relatively
low complexity (size of tree are respective 1, 5, and 11). As shown in Table 4.1, the random
tree model was observed to be larger with a tree size of 55. These nano-SARs applied to the
training set yielded accuracies of 70.9% (functional tree), 71.6% (C4.5 decision tree), 70.6%
(random tree), and 69.1% (simple CART). Except for the simple CART model which
correctly predicted 68.8% of the observations from the test set, accuracies of the LC50-



related nano-SARs on the test set were all found to exceed 70.0%. The CCR values
calculated on sensitivity and specificity are higher than 60.0% for all the four models.
Specifically, the C4.5 decision tree model merely contains two structural descriptors
maximalprojectionsize and molecularpolarizability which belong to the Chemaxon
descriptors. The descriptor maximalprojectionsize relates to the size of the molecule
perpendicular to the minimal projection area surface (based on the van der Waals radius).

And molecularpolarizability associates with the polarizability of the molecule. This means

that the influence of both size and polarizability of the core element of ENMs was indicated.

The simple CART model consists of five descriptors correlated with the geometrical size
(minimalprojectionsize, —maximalprojectionarea, minimalprojectionradius), molecular
polarizability (averagemolecularpolarizability), and accessible surface areas of all atoms with
negative partial charge (asa_ASA-). Owing the higher model complexity, however, the
simple CART model was found to yield no higher predictive performance compared to the
C4.5 decision tree. The functional tree has a relatively simpler tree structure with only one

node but used more input descriptors in the logistic regressions.

With respect to the case study 11, the 450 ENMs were randomly distributed to a training set
of 360 ENMs and a test set of 90 ENMs. Numeric values of EC50 were discretized by a
threshold of 10 mg/L. ENMs with EC50 values less than 10 mg/L were labeled as active,
and the rest of ENMs were considered inactive. From the results show in Table 4.1,
accuracies of all the models are between 60.0% and 65.0% for both training sets and test
sets. This resulted from the low specificity of the nano-SARs while the models’ sensitivities
were considered reasonable. Thus the constructed EC50 models possess relatively low
predictability for the inactive class. The unbalanced performances on both classes also
resulted in the low CCRs between 60.0% and 65.0%.

Moreover, SAR-like models were also developed to predict the MICs of ENMs to various
bacteria. In case study 111, 133 ENMs were used to train the models and 33 ENMs were left
out for the external validation. A threshold of 10.0 mg/L categorizes the ENMs into the
active class (MIC < 10.0 mg/L) or the inactive class (MIC = 10.0 mg/L). The results
depicted in Table 4.1 show that the C4.5 decision tree and the simple CART models
exhibited the best predictability on the training set (both 75.9%), followed by the functional
tree (75.2%) and the random tree models (70.7%). Predictive performance of the four nano-
SARs on the test set gave the same results of 69.7% accuracy. CCRs of the training set are
higher than 70.0% and those of the four test sets are all 69.7%. Except the most complex
random tree model, the functional tree, C4.5 decision tree, and simple CART models have
the same tree size of 3. Meanwhile, for both the C4.5 decision tree and the simple CART
only the structural descriptor ALogPS_logS appeared in the built nano-SARs which is
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associated with water solubility. The functional tree constructed the models using eight

descriptors in its logistic regressions as can be seen in the Supplemental Information.

Table 4.1. Classification performances of the derived nano-SARs in case study I, 11, and I11.
FT - functional tree; C4.5 - C4.5 decision tree; RT - random tree; #raing - number of ENMs
in the training set; s - number of ENMs in the test set. Details of the selection of the

threshold values was described in the Supplemental Infromation

Method Size of tree Dataset Sensitivity  Specificity =~ Accuracy CCR

Case study I — LC50 (uaing = 320, #tiese = 80), threshold value 1.0 mg/L

T ’ Training set 0.750 0.678 0.709 0.714
Test set 0.686 0.733 0.713 0.710
Training set 0.671 0.750 0.716 0.711
C4.5 5
Test set 0.686 0.733 0.713 0.710
Training set 0.679 0.728 0.706 0.704
RT 55
Test set 0.629 0.778 0.713 0.704
Training set 0.707 0.678 0.691 0.693
Simple CART 11
Test set 0.686 0.689 0.688 0.688

Case study IT — EC50 (#uwaing = 360, #es = 90), threshold value 10.0 mg/L

T ’ Training set 0.741 0.503 0.633 0.622
Test set 0.796 0.415 0.622 0.606
Training set 0.695 0.546 0.628 0.621
C4.5 9
Test set 0.816 0.415 0.633 0.616
Training set 0.741 0.479 0.622 0.610
RT 39
Test set 0.816 0.439 0.644 0.628
Training set 0.650 0.504 0.611 0.607
Simple CART 17
Test set 0.796 0.439 0.633 0.618

Case study ITI — MIC (7aing = 133, e = 33), threshold value 10.0 mg/L

T 5 Training set 0.743 0.762 0.752 0.753
Test set 0.706 0.688 0.697 0.697
Training set 0.743 0.778 0.759 0.761
C4.5 3
Test set 0.706 0.688 0.697 0.697
Training set 0.814 0.587 0.707 0.701
RT 13
Test set 0.706 0.688 0.697 0.697
. Training set 0.743 0.778 0.759 0.761
Simple CART 3
Test set 0.706 0.688 0.697 0.697
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Figure 4.2. Developed C4.5 decision tree for the LC50 of metal-based ENMs. If LC50 < 1
mg/L the ENM is judged as active, and if LC50 = 1mg/L the ENM is inactive.
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Figure 4.3. Model classification performances on randomized test sets. To verify the
significance of the test sets of the three case studies, class labels in each test set were
permuted for five times which yielded the randomized test sets Random I, II, III, IV, and V.
For binary classifications, accuracy of the models on these disjoint test sets should be

approximately 50% (the no-information rate).
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Figure 4.4. Developed functional tree (left) and C4.5 decision tree (right) models for Danio
rerio (fish), Daphnia magna (crustacean), and Pseuadokirchneriella subcapitata (algac). For the

functional  tree  nano-SARs,  Piiive and  Piacive can  be  calculated  as

Pactive= eXP(factive) Pinactive=" exp(finactive)
ve= Vo= :
exp(factive) +€XP(finactive)’ exp(factive)+€XP(finactive)

The LC50 related functional tree, C4.5 decision tree, and random tree models showed
reasonable predictability with accuracy (on training and test sets) higher than 70.0% and
CCR higher than 60.0%, and with balanced performances on both categories. Based on a
training set of 320 ENMs and test set of 80 ENMs, the C4.5 decision tree model is seen as
relatively more concise as it only contains 5 nodes in the tree and uses two structural

descriptors (maximalprojectionsize and molecularpolarizability), as shown in Figure 4.2.



Models presented in case study III were also considered acceptable based on the sensitivity,
specificity, accuracy, CCR, and also tree complexity. As the developed nano-SARs exhibited
similar predictive results on test sets, the significance of the test sets used in external
validation was subsequently examined. We permuted the class labels in each test set for five
times and validated the models with these randomized datasets afterwards. The results are
depicted in Figure 4.3. As to case study I, the predictive accuracies on permuted test sets are
between 46.3% and 58.8%. For case study II and III, it is 42.2% - 55.6 and 39.4% - 57.6%,
respectively. Thus for all three cases, performances of the developed nano-SARs on the
disjoint datasets are approximately 50% which is close to the no-information rate for binary
classifications (Futlanello et al., 2003). It is therefore concluded that the original test sets are

significant for model validation in the case studies I, II, and III.

Table 4.2. Performance of species-specific nano-SARs with the statistically significant
predictability. FT - functional tree; C4.5 - C4.5 decision tree; #sing - number of ENMs in the

training set; #esc - number of ENMs in the test set

Threshold Dataset Sensitivity Specificity Accuracy CCR
(mg/L)
Danio rerio, miaining = 70, iess = 18, LC50
Training set 0.943 0.913 0.934 0.928
o Test set 1.000 1.000 1.000 1.000
100 Training set 0.906 0.913 0.908 0.910
o Test set 1.000 1.000 1.000 1.000

Daphnia magna, nisining = 82, neese = 20, LC50

Training set 0.843 0.968 0.890 0.906

o Test set 0.750 1.000 0.850 0.875
! Training set 0.843 0.968 0.890 0.906

o Test set 0.750 1.000 0.850 0.875

Psendokirchneriella subcapitata, nuining = 53, mese = 13, EC50

Training set 0.944 0.914 0.925 0.929

o Test set 0.750 1.000 0.923 0.875
! Training set 0.944 0.914 0.925 0.929

o Test set 0.750 1.000 0.923 0.875

Staphylococcus anrens, tiining = 32, et = 7, MIC

Training set 0.833 0.875 0.844 0.854
C4.5 100
Test set 0.800 1.000 0.857 0.900
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4.3.2 Species-specific nano-SARs

Besides global models, species-specific nano-SARs were also built using the retrieved
experimental data. This is in accordance with the recommendation of EU Directive
93/67/EEC ranking the hazards of ENMs to aquatic species. To begin with, from each
dataset two species with the most data records were chosen for model development, which
are Danio rerio (94 records) and Daphnia magna (102 records) from dataset 1, Daphnia magna
(105 records) and Pseudokirchneriella subcapitata (66 records) from dataset II, and Escherichia coli
(41 records) and Szaphylococcus anrens (39 records) from dataset I11. For building models, two
typical tree algorithms among the four selected methods, the functional tree and C4.5
decision tree algorithms were employed along with the ALogPS and Chemaxon descriptors.
Cut-off thresholds investigated are respective 1, 10, and 100 mg/L. Performances of the
derived nano-SARs are summarized in Table S4.1, Table S4.2, and Table S4.3 in the
Supplemental Information. Models that exhibited significant predictive power are
summarized and described in Table 4.2 and Figure 4.4. Nano-SARs were obtained for
different hierarchies of species, i.e. Danio rerio (fish), Daphnia magna (crustacean),
Pseudokirchneriella subcapitata (algae), and Staphylococcus anreus (bacteria). Details of these nano-
SARs are presented in Table 4.3, including the number of ENMs in the training and test
sets, size of the developed tree model, number of descriptors, and the names of descriptors

involved.

The nano-SARs categorizing nanotoxicity to Danio rerio gave accuracies of 93.4% (functional
tree) and 90.8% (C4.5 decision tree) on corresponding training sets (76 ENMs), and 100%
accuracy on the two test sets (18 ENMs). Sensitivity and specificity of the two models are all
above 90.0% on the training and test set (Table 4.2). This demonstrates the high
predictability of the developed models. Model stability was ensured by executing 10-fold
cross validation. Size of the corresponding functional tree model is 3 which means the
nano-SAR only consists of one inner node and two decision nodes. As to Daphnia magna,
the training set has 82 ENMs as samples for the learning process and the test set is
comprised by 20 ENMs for validation. Accuracies of both the functional tree and the C4.5
decision tree models were shown to be 89.0% (training set) and 85.0% (test set) that are
statistically significant. The CCRs of the model exceeded 85.0%. As shown in Table 4.3, the
sizes of the functional tree and the C4.5 decision tree are respectively 1 and 3. With regards
to Pseundokirchneriella subcapitata, functional tree and C4.5 decision tree models were built on
the basis of 53 ENMs and validated by 13 ENMs. Predictive accuracies are as high as 92.5%
on training set and 92.3% on test set with regard to both the functional tree and C4.5
decision tree with high CCR values. Moreover, built on a training set of 32 ENMs, the C4.5
decision tree model predicting the MIC to Staphylococcus anrens also exhibited significant
predictability of 84.4% and 85.7% for the training and test set, respectively.



Table 4.3. Descriptor details of the species-specific nano-SARs. FT - functional tree; C4.5 -

C4.5 decision tree

Nano-SAR Method ENMs Tree Descriptor List of descriptors
number size  number

averagemolecularpolatizability,
Danio rerio 1.C50 FT 94 3 7 molgcularpolaryizability, mass, volume,
plattindex, apKb1, ALogPS_logS

values
C4.5 94 5 2 exactmass, asa_ASA
molecularpolarizability,
P 04 1 3 tholepolarizability_a_xx,
Daphnia magna tholepolarizability_a_zz, exactmass, volume,
LC50 values logp, asa_ASA+, asa_ASA_P
C4.5 94 3 1 asa_ASA-
molecularpolarizability,
) ) tholepolarizability_a_yy, mass,
P If”dofélrflfﬂé’”fllﬂ FT 66 1 8 minimalprojectionarea, volume,
subeapitata EC50 dreidingenergy, hyperwienerindex,
values ATogPS_logS
C4.5 66 3 1 minimalprojectionarea
Staphylococcus
anrens MIC C4.5 39 3 1 ALogPS_logS
values

Notably, even though mechanisms of the toxicity induced by metal-based ENMs to various
hierarchies of species may vary, some descriptors in the models characterizing similar
factors of ENMs were commonly observed and identified. As shown in Table 4.3 and
Figure 4.4, descriptors representing molecular polarizability frequently appeared in the
functional tree models. Those descriptors include the averagemolecularpolarizability,
molecularpolarizability, molecularpolarizability, tholepolarizability_a_xx,
tholepolarizability_a_zz, molecularpolarizability, and tholepolarizability_a_yy, which
characterize different aspects of the electronic polarizability’s contribution to nanotoxicity.
Molecular polarizability measures the ability of the outer shell electrons in a molecule to
move easily toward an external perturbation (Katritzky et al., 2007). Higher polarizability of
the electrons in a molecule results in easier movement of electrons induced by an external
electric field, which may trigger a series of biological reactions and lead to the toxicity of the
materials (Singh and Gupta, 2014). For instance, detachment of an electron activated by
solar radiation could stimulate the generation of hydroxyl radical OH® as described in the
study of Kar et al. (2014):
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hv
Ti0, = Ti0} + &
e+ 02 - O;_
O;_ + 2H+ +ée- Hzoz

03~ + H,0, > OH' + OH™ + 0,
H* + H,0= OH" + H*

Another discriminating factor is the accessible surface area of ENM cores that is quantified
by asa_ASA (solvent accessible sutface area), asa_ASA+ (solvent accessible surface area of
all atoms with positive partial charge), asa_ASA_P (solvent accessible surface area of all
polar atoms), and asa_ASA- (solvent accessible surface area of all atoms with negative
partial charge) in the nano-SARs. The accessible surface area is defined as the accessible
surface of molecules to a solvent (Zhang et al., 2008). For uncoated ENMs, the exposed
surface area to the surroundings reflects the amount of atoms to be displayed on the surface
and the potential of molecules to interact with the subcellular structures of species. As
acknowledged, one of the outstanding properties of ENMs is the higher sutface/volume
ratio compared to that of their bulk counterparts which provides them increased surface
reactivity and therefore possibly high toxicity (Li et al., 2008). As surface coatings are able to
influence the toxicity of ENMs to species, surface area of ENM core still seems to play a
role in nanotoxicity for the ENMs with modified surface. Moreover, descriptors quantifying
the solubility were also observed such as apKb1 (dissociation constant) and ALogPS_logS
(solubility in water) generated by OCHEM. Previous studies have shown that ENMs with
less hardness and high solubility tend to exhibit stronger hazard effects (Gajewicz et al.,
2015). This may be because the metal-ion leaching from ENM surface could act as one of
the key factors inducing nanotoxicity (Hua et al., 2014; Xiao et al., 2015). Take Cu ENMs as
an example, the release of Cu?* from Cu-based nanoparticles could cause the generation of

OH" as follows (Stohs and Bagchi, 1995):
05 + Cu?* - 0, + Cu*

Cu* + H,0, - Cu?* + OH~ + OH"

The toxicity of ENMs may occur when the derived reactive oxygen species and the ions per
se jointly or independently interact with the subcellular structures of species. Meanwhile, the
geometrical descriptors minimalprojectionarea and minimalprojectionarea were also utilized

in the model which indicate the spatial arrangement of the atoms forming a molecule. These



descriptors are associated with the molecular surface information obtained from atomic van
der Waals areas and their overlap (Singh and Gupta, 2014). The descriptors relate to mass
(mass, exactmass) and complexity (plattindex) were used in the nano-SARs as well. The
Platt index is the sum of the degrees of all edges in the molecular graph, and is a
considerably better measure of molecular complexity than merely the number of edges
(Balaban et al., 1983; Saitta and Zucker, 2013).

4.3.3 Implications to the risk assessment of ENMs

On the basis of the computational descriptors offered by OCHEM and the assembled
ecotoxicity data of metal-based nanomaterials, the developed LC50- and MIC-related global
models and the species-specific nano-SARs showed reasonable predictive power. This
demonstrates that it is indeed feasible to build nano-SARs using multi-sources datasets if
the structures of ENMs are appropriately characterized. It also again confirms that the
nano-(Q)SARs ought to be viewed as a potentially helpful tool in assisting the expedited
review of ENM hazard categorization for the risk assessment of nanomaterials. With the
experimental data retrieved from different scientific resources inconsistently characterizing
the structures of ENMs, we managed to build nano-SARs classifying the nanoecotoxicity
using descriptors solely representing the ENM cores. Such modeling tasks employing large
datasets critically rely on the availability and quality of the datasets, and also on the
comprehensive representation of ENM structures based on provided information. To
accelerate the development of (Q)SAR-like models for nanomaterials much needs to be
improved. Agreement on better data quality and availability are essential for nano-(Q)SARs
with respect to both the toxicological and the componential aspects of the studied ENMs
(Winkler, 2016). That is, the problem so far of the successful application of computational
nanotoxicology is rather experimental, together with inadequate computational
quantifications of ENM structures, than mathematical or statistical (Winkler, 2016). Unlike
individual chemicals that are structurally unambiguous and possibly less complex,
nanomaterials often exist as populations of materials varying in sizes, shapes, composites,
and functional groups, etc. which can all significantly influence their biological interactions
with environmental species (Chen et al., 2015). The structural uncertainty of the materials
brings difficulty to experimentalists to offer complete and precise characterization of ENM
structures, which subsequently hinders the calculation of representative descriptors for
ENMs even when the compositions may have been properly provided (Fourches et al.,
2011). The lack of data consistency especially in characterizing the structure of ENMs
prevents the use of experimental data in developing nano-(Q)SARs, and may be one of the
driving reasons why only a few datasets have been repeatedly used by the state-of-art of
nano-(Q)SARs.
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4.4 Conclusions

In this study, global nano-SARs across species and species-specific models classifying the
ecotoxicity of metal-based ENMs were proposed. The models are intended to assist the
nanomaterial hazard categorization and facilitate the ENM-related risk assessment and
regulatory decision-making. To test the availability of existing nanotoxicity data in
developing nano-(Q)SARs, datasets containing ecotoxicity information of ENMs from
various publications or scientific resources were used including the LC50 (400 ENMs),
EC50 (450 ENMs), and MIC (166 ENMs) related datasets. Due to the limited information
characterizing the coating and functional groups of ENMs, descriptors were generated by
the OCHEM to represent the core of the metal-based ENMs. Using the tree algorithms
selected, easily interpretable and applicable classification nano-SARs were derived with
significant predictability. The LC50 and MIC related global nano-SARs exhibited up to
more than 70% accuracy of classification. The species-specific models were also developed
to categorize the toxicity of metal-based ENMs to Danio rerio, Daphnia magna,
Pseudokirchneriella subcapitata, and Staphylococcus anrens. Descriptor analysis indicated the role of
molecular polarizability, accessible surface area, and metal-ion leaching in affecting the

ecotoxicity of ENMs.
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Chapter 4 Supplemental Information
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Figure S4.1. Effect of classification threshold values on model performances. Case study I:
LC50 values of 400 ENMs, the optimal threshold value is 1 mg/L for discretizing the
numerical values; Case study II: EC50 values of 450 ENMs, the optimal threshold value is
10 mg/L; Case study III: MIC values of 166 ENMs, the optimal threshold value is 10 mg/L.



Influence of Discretization Thresholds on Model Performances

Before building models, the influences of discretization thresholds on model performances
were taken into consideration. For global models, a series of thresholds were chosen to
examine the tendency of model predictability with the shift of thresholds. Values of the
thresholds were set to be 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 30, 50, 70, and 100.0
mg/L for the case studies of LC50 and EC50, and 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 50.0, and
100.0 mg/L for MIC due to a natrower vatiation of toxicity values. Within each dataset the
records were ranked based on the values of toxicity endpoints. ENMs with toxicity values
less than the threshold values were assigned to the ‘active’ class, and the rest of ENMs were
labeled as ‘inactive’. On the basis of different classification performances, the thresholds
that lead to the most balanced predictive performances for both active and inactive groups
were considered for the three case studies. Referring to the regulations and directives
nowadays in force, choice of the thresholds for global models was restricted to the values of
0.1, 1.0, 10.0, and 100.0 mg/L, which are, for instance, used by the CLP-Regulation (EC)
No 1272/2008 and the EU Directive 93/67/EEC to rank the hazard effects of chemicals.
As results, selected cut-off values for case studies I, II, and IIT are respective 1, 10, and 10

mg/L, as described in Figure S1.

Developed Classification Models
Case study I LC50:

Functional tree

P

active >

P

inactive

Pactive < Pinactive Pactive > Pinactive

{ Inactive } { Active J

exp(factive) exp(finactive)

active  exp(factive) +eXP(finactive) 9™ exp(factive) +eXP(finactive)

Sactive = 2.28 - 0.07X[tholepolarizability_a_zz] - 0.01X[volume] - 0.03X[polarsurfacearea] -
0.1X[SddTi] + 0.14X[SsAg] - 15.18X[SdAg] - 0.63X[SelAl1Al1] - 0.34X[SsCo] - 5.56X[SdCa]
- 0.26X[SsSn] + 0.37X[SsNi] - 0.21X[SsSe| + 1.48X[ALogPS_logP] = -faactive
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minimalprojectionarea < 10.3

exactmass < 82.45
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| | ALogPS_logS < 0.1 : Inactive (3/1)
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| ALogPS_logS < 0.02: Active (4/1)

| ALogPS_logS >= 0.02 : Active (7/0)
ALogPS_logS >= 0.1

ALogPS_logS < 0.13 : Inactive (1/0)
ALogPS_logS >=0.13

| ALogPS_logS < 0.31 : Active (1/0)

| ALogPS_logS >= 0.31

| | ALogPS_logS < 0.86

| | | ALogPS_logS < 0.64 : Inactive (17/8)
| | | ALogPS_logS >= 0.64: Active (31/15)
| | ALogPS_logS >= 0.86 : Inactive (1/0)
ALogPS_logP >= -1.31 : Active (15/0)

wienerindex >= 0.5 : Active (18/8)
maximalprojectionradius >= 3.01
| logd < -0.87 : Active (1/0)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | logd>=-0.87: Active (57/16)

minimalprojectionarea >= 10.3 : Inactive (8/0)

asa_ASA- < 89.7

\
|
\
|
\
|
\
|
\
|
\
\
al
\
|
\
|
\
|
\
|
\
\
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asa_ASA_P >=78
\
\
\
\
\
\
\
\
\
\
\
\
\
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\
\
\
\
\
\
\
\
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tholepolarizability_a_xx < 5.05

tholepolarizability_a_xx < 3.26 : Inactive (2/0)

tholepolarizability_a_xx >= 3.26

| exactmass < 101.45

| maximalprojectionradius < 2.45

| | minimalprojectionradius < 1.68 : Active (4/2)

| | minimalprojectionradius >= 1.68 : Inactive (40/12)

| maximalprojectionradius >= 2.45

| | minimalprojectionradius < 1.67 : Inactive (4/0)

| | minimalprojectionradius >= 1.67 : Inactive (22/9)
| exactmass >= 101.45 : Active (2/0)

tholepolarizability_a_xx >= 5.05: Active (1/0)

sa_ASA->=89.7

molecularpolarizability < 6.67
| chainbondcount < 1.5 : Inactive (3/0)

| chainbondcount >= 1.5

| | minimalprojectionradius < 2.49

| | | dreidingenergy < 61.85 : Inactive (2/0)

| | | dreidingenergy >= 61.85

| | | | chainatomcount <4 : Inactive (43/06)

| | | | chainatomcount>= 4 : Inactive (8/1)

| | minimalprojectionradius >= 2.49 : Inactive (8/2)
molecularpolarizability >= 6.67 : Inactive (11/0)



CA4.5 decision tree
[ maximalprojectionsize J
<3.44 >3.44
[ molecularpolarizability } [ Inactive }
<435 >4.35
Inactive Active
Simple CART

asa_ASA-

>87.6 <87.6

[ minimalprojectionsize } [ maximalprojectionarea }

~4.93 >19.35 <19.35

<4.93 [ Inactive } [ Active ]
Inactive

[ minimalprojectionradius J

>1.73 <1.73
[ Inactive } [ averagemolecularpolarizability }
>2.94 <2.94

Active Inactive
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Case study IT EC50:

Functional tree
Pactive > Pinactive
Pactive< Pinactive Pact[ve> Pinactive
[ Inactive } L Active 1
o exp(factive) _ exp(finactive)
active exp(f active) +exp(finactive)

inactive  exp(f qctive) +€xXp(finactive)

Jactive = 0.46 - 0.22X[rotatablebondcount] - 0.11X[SsAg] - 0.35%[Se2Ni1O1] +

0.49x[SelAulAul] - 0.44X[SdsDy] + 0.61x[SelEr202ds] - 0.6X[SsFe] + 0.23X[SsAl] +
018><[SdSSb] = —_]i[nactive

C4.5 decision tree

atomgroupcount

>1 <l
[ ALogPS logS J [ Active J
>0.53 <0.53
[ Inactive J [ atomcount ]
>2 <2

[ minimalprojectionarea J[Active}

>16.4

<164

Active Inactive
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Random tree

balabanindex < 1.32

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
!
b
\
\
\
\
\
Ll
\

\

molecularpolarizability < 4.33
| maximalprojectionarea < 13.35

logp < -0.65

| minimalprojectionarea < 7.07 : Inactive (1/0)

| minimalprojectionarea >= 7.07 : Active (66/31)
logp >=-0.65

| minimalprojectionsize < 4.73 : Active (59/29)

| minimalprojectionsize >= 4.73 : Active (2/0)

\

\

\

\

\

\

| maximalprojectionarea >= 13.35 : Inactive (5/0)
molecularpolarizability >= 4.33

| minimalprojectionsize < 6.45

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

maximalprojectionsize < 0.9

ALogPS_logS < -0.03 : Active (16/6)

ALogPS_logS >= -0.03

ALogPS_logS < 0.7

| ALogPS_logP < -1.11

| | ALogPS_logS < 0.31: Active (3/0)

| | ALogPS_logS >= 0.31

| | | ALogPS_logS < 0.54: Active (34/4)
| | | ALogPS_logS >= 0.54: Active (1/0)
| ALogPS_logP >= -1.11: Active (8/2)

ALogPS_logS >= 0.7

| ALogPS_logS < 0.95 : Active (24/8)

| ALogPS_logS >= 0.95 : Active (3/0)

aximalprojectionsize >= 0.9
maximalprojectionradius < 3.19 : Active (12/0)
maximalprojectionradius >= 3.19 : Active (18/4)

|
|
|
|
|
|
|
|
|
\
|
|
m:
|
\

| minimalprojectionsize >= 6.45 : Inactive (1/0)
alabanindex >= 1.32

logd < -0.43
atomcount < 4

molecularsurfacearea < 88.1

| minimalprojectionradius < 2.25 : Inactive (68/22)
| minimalprojectionradius >= 2.25 : Inactive (3/0)
molecularsurfacearea >= 88.1 : Inactive (26/11)

atomcount >= 4 : Active (2/0)
logd >= -0.43 : Inactive (8/0)

Simple CART

asa_ASA_H < 61.0

\
\
\
\
\
\
|
I
|
L1
L1
L1
|
I
al

minimalprojectionsize < 4.93
| minimalprojectionarea < 7.029999999999999: Active(2.0/0.0)
| minimalprojectionarea >= 7.029999999999999

| | averagemolecularpolarizability < 2.94: Active(35.0/31.0)

| | averagemolecularpolarizability >= 2.94: Active(30.0/29.0)
minimalprojectionsize >= 4.93

averagemolecularpolarizability < 7.52

| tholepolarizability_a_xx < 3.4349999999999996

| minimalprojectionarea < 12.55

| | tholepolarizability_a_yy < 4.4: Inactive(15.0/11.0)

| | tholepolarizability_a_yy >= 4.4: Inactive(46.0/22.0)
| minimalprojectionarea >= 12.55: Inactive(3.0/0.0)

| tholepolarizability_a_xx >= 3.4349999999999996: Inactive(14.0/0.0)
averagemolecularpolarizability >= 7.52: Active(2.0/0.0)
sa_ASA_H >= 61.0: Active(95.0/25.0)
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Case study III MIC:

Functional tree

P, pene >0.328222 P e <=0.328222

Inactive

PZ,aCtive s PZ,inactive

P 2,active >P 2,inactive

_ exp(fl,active)
P 1,active
’ eXp(fl,uctive)+exP(f1,inactive)
_ exp(fz active) P _ exp(f2 inactive)
exp(fz,active)+exp(f2,inactive) ** Linactive exp(fz,active)+exp(f2,inactive)

P2,active < PZ,inactive

Inactive

P 2,active

Nactive = 5.1 + 0.14X[minimalprojectionarea] + 0.01X[asa_ASA_H] - 1.07X[balabanindex] -
0.14X[hararyindex] - 0.01X[asa_ASA+] - 0.61X[SsCu] + 5.91X[ALogPS_logP] +
0.91X[ALogPS_logS] = -A inactive

Jractive = 59.21 - 0.29 %X [averagemolecularpolarizability] + 0.14X[minimalprojectionarea] +

0.01x[asa_ASA_H] -1.07X[balabanindex] -0.14X[hararyindex] - 0.01X[asa_ASA+] -
0.61X[SsCu] + 46.68X[ALogPS_logP] + 0.39X[ALo0gPS_logS] = -/ active

C4.5 decision tree Simple CART

ALogPS logS ALogPS _logS

>0.8 <0.8 >0.945 <0.945

[ Active } [ Inactive } [ Active } { Inactive }
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Random tree

tholepolarizability_a_yy < 2.05

| ALogPS_logP < -1.31

| | ALogPS_logS < 0.11 : Inactive (5/0)

| | ALogPS_logS >=0.11

| | | ALogPS_logS < 0.31: Inactive (27/13)
| | | ALogPS_logS >= 0.31: Inactive (13/4)
| ALogPS_logP >= -1.31: Active (66/14)
tholepolarizability_a_yy >= 2.05

| maximalprojectionarea < 21 : Inactive (18/0)
| maximalprojectionarea >= 21

| | chainatomcount < 3.5 : Inactive (3/1)

| | chainatomcount >= 3.5 : Inactive (1/0)

Table S4.1. Performances of the LC50 related nano-SARs for Danio rerio and Daphnia magna.
The best performance of the models were bolded in the table

Threshold (mg/L)  Data set Sensitivity ~ Specificity = Accuracy CCR

Danio rerio, tiuaining = 70, ftrest = 18

| Training set 0.389 0.828 0.724 0.609
Test set 0.750 0.714 0.722 0.732
. Training set 0.868 0.632 0.750 0.750
Functional tree 10
Test set 0.667 0.556 0.611 0.612
100 Training set 0.943 0.913 0.934 0.928
Test set 1 1 1 1
| Training set 0.056 0.948 0.737 0.502
Test set 0 1 0.778 0.500
- Training set 0.947 0.632 0.789 0.790
C4.5 decision tree 10
Test set 1 0.556 0.778 0.778
100 Training set 0.906 0.913 0.908 0.910
Test set 1 1 1 1
Daphnia magna, tiining = 82, ese = 20
| Training set 0.843 0.968 0.890 0.906
Test set 0.750 1 0.850 0.875
. Training set 0.971 0.250 0.866 0.611
Functional tree 10
Test set 0.941 0.333 0.850 0.637
100 Training set 1 0 0.927 0.500
Test set 0.947 0 0.900 0.474
| Training set 0.843 0.968 0.890 0.906
Test set 0.750 1 0.850 0.875
. Training set 0.957 0.250 0.854 0.604
C4.5 decision tree 10
Test set 0.941 0.333 0.850 0.637
100 Training set 1 0 0.927 0.500
Test set 1 0 0.950 0.500
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Table S4.2. Performances of the EC50 related nano-SARs for Daphnia magna and
Psendokirchneriella subcapitata. The best performance of the models were bolded in the table

Threshold Data set Sensitivity Specificity Accuracy CCR
(mg/L)

Daphnia magna, niving = 84, ese = 21

Training set 0,552 0.909 0.738 0.731
1
Test set 0.500 1 0.762 0.750
Functional 0 Training set 0926 0.313 0.810 0.620
tree Test set 1 0.500 0.905 0.750
Training set 1 0 0.929 0.500
100
Test set 1 0 0.905 0.500
Training et 0.550 0.909 0.738 0.730
1
Test set 0.500 1 0.762 0.750
C4.5 decision " Training set ~ 0.912 0.375 0.810 0.644
tree Test set 0.824 0.750 0.810 0.787
Training set 1 0 0.929 0.500
100
Test set 1 0 0.905 0.500

Psendokirchneriella subcapitata, msining = 53, tese = 13

Training set ~ 0.944 0.914 0.925 0.929
1
Test set 0.750 1 0.923 0.875
Functional " Training set ~ 0.813 0.667 0.755 0.740
free Test set 0.750 0.800 0.769 0.775
Training set 1 0 0.906 0.500
100
Test set 1 0 0.846 0.500
Training set ~ 0.944 0.914 0.925 0.929
1
Test set 0.750 1 0.923 0.875
C4.5 decision " Training set  0.781 0.667 0.736 0.724
free Test set 0.750 0.800 0.769 0.775
Training set 1 0 0.906 0.500
100
Test set 1 0 0.846 0.500
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Table S4.3. Performances of the MIC related nano-SARs for Escherichia coli and Staphylococcus
anrens. The best performance of the models were bolded in the table

Threshold Data set Sensitivity Specificity Accuracy CCR
(mg/L)

Escherichia coli, tiaining = 33, trest = 8

Training set 0 1 0.636 0.500
10
Functional Test set 0 1 0.625 0.500
tree Training set 1 0 0.515 0.500
100
Test sct 0.882 0.563 0.727 0.723
Training st 0.250 0.905 0.667 0.578
10
€45 decision Test st 0 1 0.625 0.500
tree Training set 0 1 0.5 0.500
100
Test set 0.750 1 0.875 0.875

Staphylococcus anrens, mwiving = 32, test =7

Training set 1 0 0.563 0.500
10
. Test sct 0.750 0.667 0.714 0.709
Functional
tree Training set 1 0 0.750 0.500
100
Test set 0.800 1 0.857 0.900
Training set ~ 0.667 0.357 0.531 0.512
10
C4.5 decision Test set 0.750 0.667 0.714 0.709
free Training st~ 0.833 0.875 0.844 0.854
100
Test set 0.800 1 0.857 0.900
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CHAPTER 5

DEVELOPING SPECIES SENSITIVITY DISTRIBUTIONS
FOR METALLIC NANOMATERIALS CONSIDERING THE
CHARACTERISTICS OF NANOMATERIALS,
EXPERIMENTAL CONDITIONS, AND DIFFERENT
TYPES OF ENDPOINTS

Chen G, Peijnenburg WJGM, Xiao Y, Vijver MG
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Abstract

A species sensitivity distribution (SSD) for engineered nanomaterials (ENMs) ranks the
tested species according to their sensitivity to a certain ENM. An SSD may be used to
estimate the maximum acceptable concentrations of ENMs for the purpose of
environmental risk assessment. To construct SSDs for metal-based ENMs, motre than 1800
laboratory derived toxicity records of metallic ENMs from >300 publications or open
access scientific reports were retrieved. SSDs were developed for the metallic ENMs
grouped by surface coating, size, shape, exposure duration, light exposure, and different
toxicity endpoints. It was found that PVP- and sodium citrate- coatings enhance the toxicity
of Ag ENMs as concluded from the relevant SSDs. For the Ag ENMs with different size
ranges, differences in behavior and/or effect were only observed at high exposure
concentrations. The SSDs of Ag ENMs separated by both shape and exposure duration
were all nearly identical. Crustaceans were found to be the most vulnerable group to
metallic ENMs. In spite of the uncertainties of the results caused by limited data quality and
availability, the present study provided novel information about building SSDs for
distinguished ENMs and contributes to the further development of SSDs for metal-based
ENMs.

Key words: eccotoxicity; engineered nanomaterial; modeling; risk assessment; species

sensitivity distributions



5.1 Introduction

Over the last decade, products that incorporate nano-structured materials have been rapidly
introduced to the market. In 2014, the value of the global market regarding nanotechnology
products was estimated to be $26 billion, and is expected to reach about $65 billion by 2019
(Winkler, 2016). While the benefits of nanotechnology are beyond debate, the concern is
increasing about the safe use and subsequent environmental impacts of engineered
nanomaterials (ENMs). Evaluating the environmental risks of ENMs is essential to manage
relevant risks and ensure the safety of these manufactured materials (Piperigkou et al., 2016;
Toropova and Toropov, 2013). One of the well-established approaches assisting risk
assessment of ENMs is the development of species sensitivity distributions (SSDs)
(Gottschalk and Nowack, 2013). SSDs rank the species based on their sensitivity to a certain
ENM, and reflect the potentially affected fraction of species under an exposure
concentration of interest (Garner et al, 2015). From the SSD, among others the 5th
percentile of the fitted distribution (HC5) can be derived. The HC5 is commonly used as
the basis for environmental risk assessment of chemicals and is assumed to be the
concentration that is sufficiently protecting ecosystems following addition of an extra safety
factor that ranges in between 1 and 5 (European Chemicals Agency, 2008). Risk
quantification is usually performed by dividing the predicted environmental concentration
by either the predicted no observed effect concentration in case of specific species or by the
HCS5 in case of generic risk assessment. When the risk quotient is greater than or equals 1, a
potential risk of the nanomaterials exists and further assessment is required, including the
option of additional toxicity testing; when the risk quotient is less than 1, environmental

risks are not expected.

Previously, a few examples of SSDs have been presented for different ENMs based on a
limited set of laboratory derived toxicity data. To quantify the environmental risks of nano-
Ag, nano-TiOz, nano-ZnO, carbon nanotubes, and fullerenes in four environmental
compartments (surface water, sewage treatment plant effluents, soils, and sludge-treated
soils), SSDs were generated for the five ENMs (Gottschalk et al, 2013). The SSDs
reflecting the no observed effect concentrations were then compared with the distributions
of predicted environmental concentrations in the four environmental compartments. The
results indicated marginal risks of Ag and TiO, ENMs to surface water species and a low
level of risk caused by Ag, TiO», and ZnO ENM:s in sewage treatment plant effluents. SSDs
for the same five metallic ENMs were also generated by Coll et al. (2016) for different taxa.
The risk quotients that are closest to 1 for both ZnO and TiO» ENMs among others
indicated the highest priority of these materials to be studied in more depth. In another
study, SSDs for seven types of metallic ENMs were built including Ag, Al2O3, CeOz, Cu,
CuO, TiOy, and ZnO ENMs (Garner et al, 2015). The HC5 values with 95% confidence
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interval (CI) of each ENM were calculated and compared with those of the corresponding
ionic and bulk counterparts. The SSDs of PVP-coated and uncoated Ag ENMs were
separately modeled, allowing to conclude about the influence of surface coatings on SSDs.
As first attempts of developing SSDs for ENMs, those developed SSDs have provided
significant information of the potential environmental impacts of ENMs, and contributed
to the derivation of HC5 values as policy measures of the ENMs of concern. The further
interest of the development of SSDs for ENMs would be, ideally, to cover more types of
ENMs to comprehensively evaluate the risks of all the widely applied ENMs; and to include
the large variety of environmental species in order to build robust and reliable SSDs.
Meanwhile better estimates could be obtained when specific attention is paid in SSD
development to specific ENM properties such as surface coating, size, and shape, and also
to the dynamic behaviors of ENMs in the exposure media (Garner et al. 2015; Gottschalk et
al., 2013). The consideration of ENM characteristics in developing SSDs may also provide
hint messages for the safe-by-design of ENMs, if the SSDs of ENMs separated by certain
characteristics were found to shift significantly compared with that separated by other
properties. The implementation of the research needs mentioned here, is however strongly
limited by the quality of published raw data from the ecotoxicity assays and to a lower
extent by the limited availability of suited exposure and effect data.

In response to the above-mentioned challenges, the present study aims to investigate the
availability of currently published ecotoxicity data of ENMs for their suitability in
developing SSDs for metal-based ENMs; and secondly to build SSDs for ENMs
considering the structural characteristics (e.g. surface coating, size, shape), experimental
conditions, and also different types of toxicity endpoints. All together more than 1800
ecotoxicity records of metallic ENMs from >300 publications or open access scientific
reports were retrieved from the databases of Chen et al. (2015), Juganson et al. (2015), and
the online chemical modeling environment (OCHEM) (Sushko et al,, 2011). The toxicity
endpoints in the collected dataset include the lethal concentration (LC), the effect
concentration at a specific effect level (ECx), the lowest observed effect concentration
(LOEC), and the no observed effect concentration (NOEC). The studied species originated
from seven widely investigated organism groups namely algae, bacteria, crustacean, fish,
nematodes, protozoa, and yeast. Based on the analysis, the development of SSDs focuses on
Ag, CeOs, CuO, TiOz, and ZnO ENMs due to relatively sufficient information availability.
Different SSDs were generated for the Ag ENMs grouped by surface coating, size, shape,
and exposure duration. The SSD for UV exposed TiO2 ENMs was also derived. To
determine whether and to what extent the shape of the SSD curve might alter and the HC5s
may vary based on different toxicity endpoints, these topics were also considered in the

development of SSDs in the present study. To discuss the vulnerability of different



organism groups and species to the metallic ENMs, the most sensitive species in each

developed SSD was analyzed as well.

5.2 Methods
5.2.1 Datasets

Experimental data of ENM ecotoxicity were assembled from three databases. The first
database is that developed by Chen et al. (2015) consisting of 886 records of toxicity
endpoints of various metal-based ENMs. The second database is the NanoE-tox database
listing in total 1518 EC50 (the concentration at which 50 % of the test species is affected),
LC50 (median lethal concentration), and NOEC values regarding eight ENMs including
catbon nanotubes and fullerenes, Ag, CeO», CuO, TiO,, ZnO, and FeO, nanomaterials
(Juganson et al.,, 2015). The third data source is the OCHEM platform which explicitly
provided 244 1.C50 values and 170 EC50 values of different metallic ENMs (Sushko et al.,
2011). After removing duplicate information, the newly developed dataset counts all
together more than 1800 values of metallic ENMs from >300 publications or open access
scientific reports. This information was afterwards filtered by the following conditions: a)
toxicity of metal-based ENMs solely; b) tested organisms are algae, bacteria, crustacean, fish,
nematodes, protozoa, and yeast only; ¢) toxicity endpoints are LC, EC, LOEC, and NOEC.
In the dataset, units of all toxicity values wete unified into mg/L, and the endpoints larger
than 10000 mg/L were excluded as these are considered to be irrelevant from a

toxicological point of view.

As for certain ENMs, the toxicity data was separated by the characteristics of the ENMs (i.c.
surface coating, size, shape), experimental condition (duration of exposure, light exposure),
and type of different endpoints (LC, EC, LOEC, NOEC), respectively. The number of
species in each sub-dataset is required to be at least six in order to construct a reliable SSD
(Cedergreen et al., 2004). SSDs for the uncoated and differently coated ENMs were
modeled. With regard to grouping ENMs by size, it was suggested by Garner et al. (2015) to
divide the data in size ranges in between 1-10, 10-50, and 50-100 nm. Here, we adapted the
division of sizes as 1-20, 20-50, and 50-100 nm, as it was stated that nanoparticles with size
<20 nm may have significantly increased surface reactivity and behave differently than
larger particles (Auffan et al., 2009; 2010), whereas nanomaterials of 20-50 nm appear to be
taken up more rapidly than particles of other sizes (Iversen, et al., 2011; Jin et al., 2009).
When generating SSDs based on data separated by the size and shape, ENMs with reported

surface coatings were excluded. The exposure duration was determined as =1 d, 1-2 d,
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and >2 d, to investigate if over time the shape of SSD-curve might shift as result of both
the dynamic changes of ENMs in the media and the increased length of the life cycle of an
organism. The experimental condition of light exposure was also considered in the study as
nanomaterials like TiO» ENMs were reportedly able to catalyze reactions under UV
radiation and cause phototoxicity (Yin et al., 2012; Sanders et al., 2012).

5.2.2 Modeling algorithm

Data was grouped regarding .C50 value and ranked from lowest to highest by the following
equation (US EPA, 1998):

Rank — 0.5
Number of species

Proportion =

For the toxicity data relating sub-lethal effects of ENMs (i.e. EC50, LOEC, NOEC), the
median toxicity values based on a certain biological effect to a species were initially
calculated per reported effect. The obtained medians of different effects to that species were
afterwards compared and the lowest median value was used in ranking the species
sensitivities. The ranked median values of different species were then plotted against the
cumulative probability which reflects the proportion of species affected at a certain

concentration.

In the study, lognormal distributions of species sensitivity were fitted using the ‘fitdistt’
function of the MASS package in the R statistical software (version 3.3.1). This function
generates a maximum-likelihood fitting of univariate distributions, allowing parameters to
be held fixed if desired (Venables and Ripley, 2002). The 95% CI of the fitted regressions
was also estimated by employing the strategy of parametric bootstrap. The HC5 values of
the SSDs were extracted by the ‘quantile’ function in the R software (Hyndman and Fan,
1996).

5.3 Results

We firstly analyzed the data availability for the preparation of building SSDs for the metal-
based ENMs (Table 5.1). Before constructing separate SSDs, the SSDs for Ag, CeO,, CuO,
TiOs, and ZnO ENMs were generated with all available data for the corresponding ENMs
(see Figure S5.1 as provided in the Supplemental Information). LOEC and NOEC data for
Ag and CuO ENMs are available for only five species. These data were nevertheless



included in the analysis to allow for a more comprehensive comparison. Separate SSDs were
afterwards obtained for Ag ENMs grouped by surface coating, size, shape, and exposure
duration (Figure 5.1); for CuO and ZnO ENMs grouped by size (Figure $5.2); and for TiO»
ENMs grouped by size and light exposure (Figure S5.2). SSDs based on different toxicity
endpoints were compared (Figure 5.3). The significance of difference between relevant
HC5s was discussed (Figure 5.2, Figure 5.4, and Figure S5.3). All the calculated HC5 values
with corresponding CI were listed in a Microsoft Excel spreadsheet (see Supplemental
Information). The lists of species that were used to build SSDs were also presented in the
Supplemental Information. Examples of building SSDs in the present study using L.C50,
EC50, LOEC, and NOEC datasets were presented in the Supplemental Information.

Table 5.1. Number of species tested for Ag, CeO,, Cu, CuO, Ni, TiO3, ZnO, and other
ENMs. The species are from seven groups of organisms, namely algae, bacteria, crustacean,
fish, nematodes, protozoa, and yeast. ENMs with species number less than four (for every

type of endpoint) are in the group ‘Others’

ENMs LC50 EC50 LOEC NOEC
Ag 17 20 5 5

CeO2 2 6 2 8

Cu 4 1 0 0

CuO 9 10 5 5

Ni 4 4 0 0

TiO2 10 16 2 17

ZnO 8 13 6 11
Others 10 14 4 10

5.3.1 Data availability for generating SSDs

The information in the newly collected dataset includes but is not limited to: characteristics
of ENMs (core, size, surface coating, shape, surface area etc.), experimental conditions
(exposure duration, light exposure etc.), tested species, detected biological effects, type of
toxicity endpoints, and values of nanotoxicity. The studied ENMs cover a wide range of
types of ENMs such as Ag, CeO,, CuO, FeO,, NiO, SiO,, TiOz, ZnO ENMs etc. The
toxicity endpoints that are potentially useful for building SSDs are LC50, EC50, LOEC, and
NOEC, as data availability of other endpoints is very limited. In order to develop SSDs, the
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number of species was analyzed for which data with regard to each type of ENMs and with
respect to each type of the endpoint was available. The results of this analysis are shown in
Table 5.1. ENMs for which data for each endpoint were available for no more than three

species were included in the group ‘Others’.

The analysis showed that Ag, CeO,, Cu, CuO, Ni, TiO, and ZnO ENMs have received the
most research attention among all the metallic ENMs. Ag ENMs have been shown to be
generally studied for their lethal toxicity to different taxa (17 species), as well as its sub-lethal
biological effects (20 species for which EC50 values were reported). CuO, TiO, and ZnO
ENMs were also widely tested on various species, which provided toxicity data for
respectively 9, 10, 8 species on LLC50, and 10, 16, 13 species on EC50. For CeO2 ENMs, 6
and 8 data points are available on EC50 and NOEC respectively. For Cu and Ni ENMs, the
retrieved data for constructing SSDs is very limited based on both LC50 and EC50. Based
on this analysis, we subsequently developed SSDs for the ungrouped Ag, CeO2, CuO, TiO»,
and ZnO ENMs (Figure S5.1) and the ENMs differentiated by surface coating, size, shape,

exposure duration, light exposure, and type of endpoint.
5.3.2 Separate SSDs by ENM characteristics and experimental conditions

Within the first constructed SSDs, uncoated, polyvinylpyrrolidone (PVP)- and sodium
citrate- coated Ag ENMs were separated (Figure 5.1a). The SSD of ungrouped Ag ENMs is
also enclosed for comparison. As can be observed from this figure, the SSD of the PVP-
coated Ag ENMs shifted to the left compatred with that of the uncoated Ag ENMs, which
means that a PVP coating may considerably enhance the toxicity of Ag ENMs to most
species. This agrees with the results obtained by Garner et al. (2015). Similatly, the sodium
citrate-coated Ag ENMs also showed increased toxicity at high concentrations compared
with the uncoated ones. As reported, both PVP and citrate are able to significantly reduce
the aggregation and deposition to surfaces, and thus increase the bioavailability and toxicity
(Gutierrez et al., 2015). The SSD of ungrouped Ag ENMs showed little statistical difference
from that of the uncoated Ag ENMs. This could possibly be due to the counteraction of
the influences of all kinds of surface coatings on the toxicity of Ag ENMs. The estimated
HCS5 value of uncoated Ag ENMs is 0.0063 mg/L, with the 95% CI ranging from 0.00098
to 0.068 mg/L. The HC5 of ungrouped Ag ENMs is 0.0036 mg/L (0.00064-0.029 mg/L).
The HC5 of PVP-coated Ag ENMs is 0.0011 mg/L (0.00012-0.031 mg/L), and that of the
sodium citrated-coated Ag ENM:s is 0.0030 mg/L (0.00040-0.050 mg/L).
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Grouped according to different size clusters of 1-20, 20-50, and 50-100 nm, the data were
also ranked to create SSDs for Ag ENMs of different sizes (no surface coating reported), as
shown in Figure 5.1b. Only minor differences were seen between the three SSDs especially
at low concentrations, even though ENMs with smaller sizes are expected to act differently
(Auffan et al., 2009; 2010). The SSD of ungrouped Ag ENMs unsurprisingly lies between
those of Ag ENMs of 1-20 and 50-100 nm, which is nearly identical to the SSD of Ag
ENMs with sizes ranging from 20 to 50 nm. The difference in behavior and/or effect is
seen according to the separate SSDs when the exposure concentration increases; the group
of smallest Ag ENM:s tends to be relatively more toxic compared with the other two groups.
One possible explanation for this observation is that the biological effects triggered by Ag
ENMs are most likely to result from the release of Ag* ions (Juling et al., 2016). Therefore
regardless of sizes, the mode of action of Ag ENMs of different sizes at low concentrations
may be similar. As concentration rises, the proportion of the particle form significantly
increases and ENM characteristics like size may start to play a role in affecting the toxicity.
The study of Xiao et al. (2015) showed that the relative contribution of the particle forms of
Cu ENMs to the accumulation in Daphnia magna increased from 48% to 72% when the
concentrations of ENM suspensions increased from 0.05 to 0.1 mg/1.. The same applies for
the ZnO ENMs, as the relative contribution of their particle forms increased with the rise
of concentrations of ZnO ENM suspensions (from 47% to 64% as concentration rised
from 0.5 to 1 mg/L). The HC5 value of Ag ENMs ranging from 1 to 20 nm is 0.0096 mg/L
(0.0017-0.11 mg/L). For Ag ENMs of 20-50 and 50-100 nm, the established HC5s ate
0.0028 mg/L (0.00024-0.098 mg/L) and 0.0033 mg/L (0.00015-0.23 mg/L), respectively.
SSDs of ENMs with different ranges of sizes were also derived for CuO, TiO», and ZnO
ENMs as shown in Figure S5.2. The SSDs of CuO and TiO2 ENMs distinguished by size
highly overlap with those of the corresponding ungrouped ENMs within 95% CI. The SSD
developed for ZnO ENMs of 50-100 nm also overlaps with that of the ungrouped ZnO

ENMs especially at low concentrations.

Grouped within different shapes of ENMs, the data was also ranked to create SSDs. On the
basis of the available data, only for sphetical-shaped Ag ENMs (no reported coatings) a
sufficient number of data points is available for the modeling. We therefore grouped the Ag
ENM:s as spherical and non-spherical Ag ENMs to determine if there are major differences
between the distributions, as shown in Figure 5.1c. A comparison shows that the SSDs for
spherical- and non-spherical- shaped Ag ENMs are nearly identical and the differences are
minimal within corresponding 95% CI. Also the 95% CI of the ungrouped Ag ENMs
heavily overlaps with those of the ENMs grouped by shape. This similarity could be
possibly caused by the physical-chemical transformations of the particles in the medium, of
which aggregation, agglomeration, and dissolution are the most important processes that

alter the behaviors of ENMs and thereby the interactions of ENMs with biota (Chen et al,,



2015; Hua et al.,, 2016). In this context, the shape of Ag ENMs seems to play a less
important role in influencing the toxicity of the materials. The calculated HC5 of non-
spherical Ag ENMs is 0.0023 mg/L with the 95% CI ranging from 0.00018 to 0.062 mg/L.
The HC5 value of the SSD of spherical Ag ENM:s is equal to 0.013 mg/L (0.0015-0.27
mg/L).

The exposure duration used in the toxicity testing (Figure 5.1d) and light exposure (Figure
S5.2) were also considered when constructing SSDs for metallic ENMs. No major statistical
differences were seen between the ungrouped SSDs and the SSDs with distinct groups of
species ranked as being exposed for <1 d and 1-2 d. Even so, at high concentrations
(patticulatly above 10 mg/L) the three distributions highly ovetlap. HC5s detived from the
SSDs of exposutre duration <1 d and in between 1-2 d are 0.0046 mg/L (0.00047-0.11
mg/L) and 0.0012 mg/L (0.00010-0.028 mg/L), respectively. The HC5 generated from SSD
of = 2 d is 0.029 mg/L (0.0062-0.22 mg/L). For the toxicity of ENMs under different light
exposures, most experiments followed standardized protocols such as OECD 202 (OECD,
2004) and US EPA (US EPA, 2002) which recommend a 16/8 h-light/dark-cycle for the
toxicity testing. However, different lighting regimes were found to be applied for the
toxicity test of TiO2 ENMs due to their photoactivated toxicity. Sufficient data points based
on EC50 (six species) were obtained only for UV exposed TiO, ENMs, and these were
used in building the relevant SSD together with the SSD of ungrouped TiO> ENMs based
on EC50 (Figure S5.2). As can be observed from the figure, the 95% CI of the SSD for UV
exposed TiO2 ENMs is much wider given the much smaller number of data points, which
almost fully covers the 95% CI of the SSD for ungrouped TiO2 ENMs (16 species). The
HCS5 value with respect to the ungrouped TiO2 ENMs based on EC50 is 0.57 mg/L (0.16-
2.8 mg/L), the HC5 estimated for the UV exposed TiO2 ENMs is 1.5 mg/L with a 95% CI
of 0.24-21 mg/L.

For the purpose of environmental risk assessment of ENMs, the variation of the obtained
HC5s with 95% Cl is of interest, as depicted in Figure 5.2 for Ag ENMs. As observed, most
of the values of HC5s fall within the range of 103 to 102 mg/L with established 95% CI
mainly ranging from 10* to 10" mg/L. Almost all the calculated 95% CIs of the HC5s
highly overlap. This indicates that there are actually no statistically significant differences
between the estimated HC5s from the SSDs of grouped or ungrouped Ag ENMs. The
obtained HC5s of CuO, TiO», and ZnO ENMs were also depicted in Figure S5.3. Also no
statistically significant differences were observed between the HC5s of relevant grouped and

ungrouped ENMs.
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Figure 5.2. Comparison of HC5 values derived from SSDs of Ag ENMs differentiated by
surface coating, size, shape, and exposure duration. Error bars show the 95% confidence
interval of HC5s.

5.3.3 SSDs based on different toxicity endpoints

To compare the SSDs of certain ENMs based on different endpoints, the fitted
distributions in Figure S5.1 were reorganized according to the type of ENM (Figure 5.3).
Unexpectedly, only the SSDs of TiO2 ENMs exhibited a reasonable order of NOEC <
EC50 < LC50 at low concentrations. For Ag ENMs the difference is minimal between the
NOEC- and LOEC-based SSDs, and also between the LC50- and EC50- based SSDs when
the concentration is low. As concentration rises an order of NOEC < LOEC < LC50 <
EC50 is seen. In the case of ZnO ENMs, major differences only appeared between the
NOEC-SSDs and the SSDs based on other endpoints. The SSDs of ZnO ENMs based on
EC50, LOEC, and NOEC showed no significant difference. This also applied for the
NOEC- and LC50- SSDs, and the LOEC- and EC50- SSDs of CuO ENMs. The HC5s
derived from these SSDs were calculated and compared in Figure 5.4. Based on LC50 (also
see Figure $5.1), HC5s of the ENMs in an ascending order is Ag (0.0036 mg/L) < ZnO
(0.022 mg/L) < CuO (0.049 mg/L) < TiO; (3.1 mg/L); For the HC5s based on EC50, it is
Ag (0.0057 mg/L) < ZnO (0.058 mg/L) < CeO: (0.16 mg/L) < TiO; (0.57 mg/L) < CuO
(1.3 mg/L); the order of LOEC-HC5s is Ag (0.00018 mg/L) < ZnO (0.086 mg/L) < CuO
(3.2 mg/L); and in the case of NOEC the otder is Ag (0.00036 mg/L) < ZnO (0.0051
mg/L) < CeO; (0.057 mg/L) < CuO (0.087 mg/L) < TiO (0.19 mg/L).
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Interestingly, in all cases the HC5s of Ag and ZnO ENMs were shown to be lower than
those of the other ENMs considered, whereas the ranking of the toxicity of CuO and TiO»
ENMs differs when considering different toxicity endpoints. The predicted HC5s of Ag
ENMs are always the lowest, and the toxicity of TiO2 ENMs is commonly the lowest as can
be concluded from the HC5 values (Garner et al., 2015; Coll et al., 2016; Gottschalk et al.,
2013). As can be seen from Figure 5.4, the 95% CI of Ag ENMs is clearly significantly
different from that of TiO2 ENMs with no overlap of 95% CI with respect to any endpoint
considered. This situation changes for the 95% CI of Ag and CuO ENMs which appear to
be significantly different on the basis of EC50 and LOEC, but overlap when LC50 and
NOEC are used. The conclusions of comparing HC5s (with 95% CI) of different ENMs
vary when different endpoints are employed for modeling SSDs. For each ENM, no
significant difference was found when comparing the NOEC-based HC5s with the HC5
values based on LC50, EC50, and LOEC, even though the NOEC-HC5s tend to be the
lowest as concluded from the cases of CeO2, TiO», and ZnO ENMs. Additionally, the ratios
of LC50-HC5/NOEC-HC5, EC50-HC5/NOEC-HCS5, and LOEC-HC5/NOEC-HC5
wete calculated as listed in the Table S5.1. The ratio of LC50-HC5/NOEC-HC5 ranges
from 0.6 (CuO ENMs) to 16.3 (TiO2 ENMs). The ratio of EC50-HC5/NOEC-HC5 was
found to range from 2.8 (CeO2 ENMs) to 15.8 (Ag ENMs). With respect to LOEC-
HC5/NOEC-HCS, the values vary from 0.5 (Ag ENMs) to 36.8 (CuO ENMs).

—a—
—a—
Ag % o |
CeOz{ | v 4
—t—
b
CuO —o——
—

) —a—

TIO2 A
EC50 P
7nO o LOEC ' - |
v NOEC v —

106 10° 104 103 102 10" 10° 10! 102

Concentration (mg/L)

Figure 5.4. Variation of HC5 values of Ag, CeO,, CuO, TiO, and ZnO ENMs based on
respectively LC50, EC50, LOEC, and NOEC data. The 95% confidence interval is also

given as well as the HC5 values.



5.4 Discussion
5.4.1 Data availability

Even though a large dataset (more than 1800 records) has been retrieved from >300
publications or scientific reportts, it seems like so far only a limited number of ENMs were
thoroughly investigated with regard to their toxicity to only a limited number of test species
(Chen et al., 2015). When developing SSDs for the grouped ENMs, the data availability
becomes even scarcer because of the lack of the data on, for example, ENM surface
coatings, sizes, shapes, experimental conditions, etc. which are crucial for distinguishing the
ENMs. The absence of these data could be due to the lack of data in original articles, or the
missing of data when extracting information from publications to databases. In the present
study, SSDs could only be developed for Ag, CeOs, CuO, TiO,, and ZnO ENMs based on
all possible endpoints. According to the study of Bondarenko et al. (2013), Ag, CeO», CuO,
TiO,, and ZnO ENMs are indeed among the ENMs that are produced at the highest
amounts, together with AlOy, FeOy, and SiO; ENMs. It would benefit the risk assessment
of ENMs if all these metallic nanomaterials that are produced in high amounts were
comprehensively evaluated for their safety, as they are all considered to inevitably enter into
the environment and potentially pose impacts on human beings and environmental species
(Echegoyen and Nerin, 2013). Developing SSDs for those ENMs of concern is one of the
keys to manage the risks brought by the marketed nanomaterials. This nevertheless requires
more types of ENMs to be tested, and also more relevant reliable models to be developed
to reduce the time consumption and accelerate the process of risk evaluation. For the
previously studied ENMs, toxicity data covering a wider range of taxa and trophic levels
other than only standard species are also of significant importance to minimize the

variabilities and levels of uncertainties.

In part, the data availability in developing SSDs also depends on firstly if the experimental
results derived from a wide variety of protocols should be combined for building one SSD;
and secondly, on the required minimum number of data points (number of species) to
generate an SSD. Ideally, a distribution of species sensitivity ought to be generated from
experiments that employed consistent protocols, for example, by using toxicity data
reflecting the inhibition of growth or reproduction, or mortality, etc (Garner et al,, 2015). In
this context, only experimental results reflecting exactly the same biological effects should
be grouped and used for the development of SSDs. This unquestionably largely reduces the
available data for the modeling. According to the standardized toxicity testing protocols,
different effects are recommended to be assessed for different standard test species, e.g.,
growth inhibition for Pseudokirchneriella subcapitata (OECD 201), immobility (OECD 202)
and reproduction inhibition (OECD 211) for Daphnia magna, lethality for Oryzias latipes
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(OECD 203) and Darnio rerio embryo (OECD 230), etc. (OECD, 1992, 2004, 2011, 2012,
2013). Given the scarcity of data, it is as yet technically infeasible to include most of the
species tested so far in one single SSD on the basis of one consistently measured effect level
other than lethality. Therefore, data manipulation was adapted in previous studies so as to
combine data representing different biological effects and to perform regression analysis
(Coll et al., 2016; Garner et al., 2015; Gottschalk et al., 2013). Additionally, the minimum
number of data points to build an SSD also determines whether a dataset with a very limited
number of species can be used for modeling. Although it was proposed by Garner et al.
(2015) that a minimum of four species is needed to construct SSDs, Cedergreen et al. (2004)
stated that at least six to eight species must be represented. Therefore, assuming that only
four data points are required for the SSD derivation, the SSDs for Cu and Ni ENMs could
also be built based on LLC50 data (Table 5.1). This will however induce a quite broad CI.

5.4.2 Comparison of SSDs and relevant HC5s

Given the relatively high amount of data, SSDs could be built for Ag ENMs distinguished
by coating, range of size, shape, and exposure duration. Although a few of the distributions
(e.g., SSDs in Figure 5.1b) at high concentrations showed some variations, the HC5s that
were derived from the developed SSDs do not differ significantly. This means that, on the
basis of the currently available data, all kinds of Ag ENMs entering into the environment
are supposed to share similar maximum acceptable concentrations, regardless of surface
coatings, shapes, sizes, exposure durations, or even other structural characteristics. This
similarity could possibly result from either or both of the two major reasons. The first is the
physical-chemical transformation of Ag ENMs in the aquatic media which can completely
change the structural properties of ENMs (Chen et al., 2015). Despite the fact that the
structural parameters of ENMs have been formerly linked to the toxicity of ENMs (Chen et
al., 20106), it is still difficult to quantify the relationship between the characteristics of
pristine ENMs (e.g., size, surface coating, shape, etc.) and the behaviors of ENMs in a
medium. This behavior may alter the mobility, bioavailability, and ultimately the toxicity of
the nanomaterials, and thus is of vital significance to understand the mechanisms governing
nanotoxicity. The second reason is the general mechanism of toxicity of nano-, micro-, and
bulk- Ag releasing metal ions. As known, one of the major mechanisms of Ag-induced
toxicity is the leaching of Ag* ions. Therefore especially at low concentrations, Ag ENMs
with varied structural properties tend to exhibit analogous biological activities. But as
concentrations increase, the proportion of the nanoparticulate Ag will as well rise and
differences would probably emerge between the SSDs of Ag ENMs with different structural
properties. As for the influence of light exposure, the SSD could only be developed for the
UV exposed TiO; ENMs which is incomparable. The different is not significant either



between the SSDs of UV exposed and ungrouped TiO> ENMs based on EC50 (Figure
S5.2).

Assessment factors are commonly used when deriving the predicted no observed effect
concentrations from the HC5s. For instance, a factor of 10 was used by Gottschalk et al.
(2013) to calculate the predicted no observed effect concentrations from LLC50 and EC50,
while a factor of 2 was applied to generate this value from LOEC. In the study of Coll et al.
(2016), a factor of 10 was used for LC50 and EC50, and a value of 1 was employed for
LOEC and NOEC. Based on our results, the ratio of HC5s of L(E)C50/NOEC ranges
from 0.6 to the highest 16.3 with a median value of 10 (Table S5.1). For the combination of
LOEC/NOEC the three values are 0.5 (Ag ENMs), 16.9 (ZnO ENMs), and 36.8 (CuO
ENMs). Although the limited number of data points of Ag and CuO ENMs (only five data
points for both LOEC and NOEC data, see Table 5.1) will cause larger uncertainties, the
value of 16.9 (LOEC-HC5/NOEC-HC5) for ZnO ENMs with a relatively sufficient
number of data (respectively 6 and 11 for LOEC and NOEC data) does not seem to be
close to a factor of 2. With respect to the SSDs built on different toxicity endpoints, the
NOEC-SSDs were not as expected significantly lower than that based on LC50, EC50, and
LOEC except for the case of ZnO ENMs. Neither did the LOEC-SSDs always appear in
between the NOEC-SSDs and the EC50-SSDs, as expected on forehand. Given the
situation that NOEC should always represent the most sensitive case, the ratio of L(E)C50-
HC5/NOEC-HC5 and LOEC-HC5/NOEC-HC5 was actually also not considered to be
lower than 1. This was however obsetved for the LOEC-HC5/NOEC-HC5 of Ag ENMs
(0.5) and for the LC50-HC5/NOEC-HC5 of CuO ENMs (0.6). Together with the
discussed discrepancies of SSDs in Figure 5.3, we understand that this might be attributed
to the fact that the data used were retrieved from a variety of sources with varying data
quality. The limited sample sizes of Ag and CuO ENMs based on respectively LOEC and
NOEC also resulted in the wide CI and low statistical power. These uncertainties could only

be diminished by future increase of data quality and availability.
5.4.3 Most sensitive species and organism groups

Based on the developed SSDs, we listed the most sensitive species of every SSD in Table
S5.2. Despite that no single species was found to be always the most susceptible, a few
species were constantly observed to be the most vulnerable to metallic ENMs. These
species include Ceriodaphnia affinis, Ceriodaphnia dubia, Daphnia magna, Daphnia pulex, Escherichia
coli, and Psendokirchneriella subcapitata. Most of these species are crustaceans which account
for 26 out of 32 of the most sensitive species in the SSDs developed. This indicates that
crustaceans are more likely to be the organism group that is affected by the metal-based

ENMs at the lowest concentrations of ENMs. This observation is in line with the study of
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Garner et al. (2015), in which the most sensitive species to metallic ENMs were all
crustaceans, namely Ceriodaphnia dubia (in SSDs of uncoated and PVP-coated Ag, A,O3, Cu,
and TiO» ENMs), Daphnia pulex (CuO ENMs), Daphnia similis (CeO2 ENMs), and
Thammnocephalus platyurus (ZnO ENMs). Since the HC5 represents a concentration where only
5% of the species could be affected, it seems that the crustaceans would be those that are
within the 5% of the species. Therefore in the case of a generic risk assessment, it may be
important to include at least a few representative species from the crustacean group in the
SSDs such as Ceriodaphnia dubia, Daphnia magna, and Daphnia pulex.

5.4.4 Conclusions

To conclude, reliable information on the characteristics of ENMs that govern toxicity and
the experimental conditions are needed for the development of separate SSDs. More data
on the highly produced ENMs such as AlOy, CeO;, CuO, FeOy, SiOs, TiOz, and ZnO
ENMs are favorable for a comprehensive evaluation of the environmental risks of ENMs.
Sufficient data on Ag ENMs enabled a comparison between the SSDs constructed for the
grouped Ag ENMs. For the Ag ENMs grouped by shape and exposure duration, the
separate SSDs of Ag ENMs showed no statistically significant difference. For the Ag ENMs
of different size ranges, differences in behavior and/or effect were only seen at high
exposure concentrations. The PVP- and sodium citrate- coatings on the surface of Ag
ENMs enhance the nanotoxicity as the SSDs shifted to the left compared to the SSD of the
uncoated Ag ENMs. The derived HC5s for all the grouped Ag ENMs do not differ
significantly, which implies that only the intrinsic chemical toxicity of Ag ENMs greatly
affected the corresponding SSDs. HC5s generated from the SSDs of ungrouped Ag, CeOo,
CuO, TiOg, and ZnO ENMs based on respectively LC50, EC50, LOEC, and NOEC were
also compared. Median values of 10 for the ratio of L(E)C50-HC5/NOEC-HC5, and of
16.9 for the ratio of LOEC-HC5/NOEC-HC5 wete obtained. An analysis of the most
sensitive species in every SSD showed that no single species was consistently the most
sensitive, however crustaceans as an organism group tend to be extra vulnerable to metal-
based ENMs. Due to the limitations caused by data quality and availability, it should be
noticed that uncertainties still exist associated with our results. For the developed SSDs,
such uncertainties could be reduced if reliable toxicity information of sufficient species
became available which could represent a comprehensive ecosystem. Despite these
considerations, we believe the present study is helpful in gauging the SSDs of ENMs
grouped by individual ENM properties and other important factors, and in enabling the
further development of SSDs for metallic ENMs.
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Figure §5.3. Comparison of HC5 values derived from SSDs of CuO, TiO», and ZnO ENMs

separated by size (using LC50 data), and of TiO» ENMs separated by UV exposure (using
EC50 data). Error bats show the 95% confidence interval of HC5s.

Table S5.1. HC5 values of LC50-, EC50-, and LOEC- based SSDs divided by the HC5 of
NOEC-SSDs

Ag CeO, CuO TiO» ZnO
LC50/NOEC 10.0 0.6 16.3 43
EC50/NOEC 15.8 2.8 14.9 3.0 11.4
LOEC/NOEC 0.5 36.8 16.9
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Examples of developing SSDs for metallic ENMs
Example I: building SSDs for Ag ENMs separated by shape using LC50 data

Based on the retrieved LC50 data of Ag ENMs, the toxicity records of spherical Ag and
non-spherical Ag ENMs were initially separated. Within each of the sub-dataset, the median
toxicity value of Ag ENMs to each species was calculated, and ranked from the lowest to
highest by the equation given in 5.2.2 Modeling algorithm of Chapter 5. The obtained

values are as follows:

Ag Spherical

Species LC50 Unit Shape Rank Proportion
Daphnia magna 0.0175 mg/L Spherical 1 0.0714286
Fathead minnow 0.0894 mg/L Spherical 2 0.2142857
Pimephales promelas 0.09 mg/L Spherical 3 0.3571429
Rainbow tront 0.71 mg/L Spherical 4 0.5
Ceriodaphnia dubia 3.32 mg/L Spherical 5 0.6428571
Moina macrocopa 5.77 mg/L Spherical 6 0.7857143
Danio rerio 13.62483 mg/L Spherical 7 0.9285714

Ag Non-spherical

Species LC50 Unit Shape Rank Proportion
Ceriodaphnia dubia 7.71E-04 mg/L Non-spherical 1 0.0454545
Daphnia magna 0.00525 mg/L Non-spherical 2 0.1363636
Daphnia pulex 0.04 mg/L Non-spherical 3 0.2272727
Psendokirchneriella subcapitata 0.19 mg/L Non-spherical 4 0.3181818
Hypophthalmichthys molitrix 0.5155 mg/L Non-spherical 5 0.4090909
Danio rerio 0.775 mg/L Non-spherical 6 0.5
Oryzias latipes 1.03 mg/L Non-spherical 7 0.5909091
Pimephales promelas 5.38 mg/L Non-spherical 8 0.6818182
Oreochromis mossambicus 12.6 mg/L Non-spherical 9 0.7727273
Rainbow trout 23.18 mg/L Non-spherical 10 0.8636364
Paramecium candatum 39 mg/L Non-spherical 11 0.9545455




With these values, the lognormal distributions of species sensitivity were fitted using the
‘fitdistr’ function of the MASS package in the R statistical software (version 3.3.1), and HC5
values were also extracted by the ‘quantile’ function. The obtained SSDs are shown in
Figure S5.4 (also in Figure 5.1c in Chapter 5). In the figure, data points reflecting the
median values are shown together with the names of corresponding species. The shaded
region of each curve depicts the 95% confidence interval (CI). The calculated HC5 of
spherical Ag ENMs is 0.013 with CI ranging from 0.0015 to 0.27 mg/L, the HC5 of non-
spherical Ag ENMs is 0.0023 (0.00018-0.062) mg/L.

1.0 -
é‘- A Non-spherical Ag | ut
E .8 B Spherical Ag Moina m ochromis mossambicus
< imephales promelas
< erlrrgggphn?a AR
2 .6
(=9
o i
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-‘—; udokirchneriella subcapitata
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@)
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10 10+ 103 102 10" 10° 10" 102 103 10%

Concentration (mg/L)

Figure S5.4. Developed SSDs for Ag ENMs separated by shape using LC50 data

Example II: building SSDs for ZnO ENMs using EC50 data

Different from LC50 data that is only based on mortality, the EC50 (and also LOEC and
NOEC) dataset includes toxicity records on the basis of multiple biological effects. For
example, in the EC50 data of ZnO ENMs, Cuaenorhabditis elegans was tested for both
reproduction inhibition and immobilization; Daphnia magna was tested for feeding inhibition,
reproduction inhibition, and immobilization. Thus to obtain only one toxicity value from
the data of one species for plotting the distribution of species sensitivity, the median toxicity
value based on a certain biological effect to a species was initially calculated per reported
effect. In the case of Caenorbabditis elegans it is 790.67 mg/L (immobilization) and 57.3 mg/L
(teproduction inhibition), for Dapbnia magna it is 1.6685, 3.1, and 0.156 mg/L based on
respectively feeding inhibition, immobilization, and reproduction inhibition. Afterwards, the
obtained medians of different effects to that species were compared and the lowest median

value was used in ranking the species sensitivities (e.g. 57.3 mg/L fotr Caenorhabditis elegans
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based on reproduction inhibition; 0.156 mg/L for Daphnia magna based on treproduction
inhibition). The ranked median values of different species were then plotted against the
cumulative probability which reflects the proportion of species affected at a certain
concentration. With the “fitdistr’ function of the MASS package in the R statistical software
(version 3.3.1), the SSD for ZnO ENMs using EC50 data is obtained, as shown in Figure
S5.5 (also in Figure 5.3d in Chapter 5, Fig. S5.1b). Data points with corresponding species

names are also given in the figure.

1.0 | Saccharomyces cerevisi
2> Streptococcus a,ufeu
= .8 Pseudomonas puti
< Caenorhabditis ele
2 B Escherichia coli
g 07 . m Bacillus subtilis
© Tetrahymena thermophila
= 4 Dunaliella tertiole'étq :
= . . i
S Danio reri i
g / W Vibrio fischeri
5 .21 Daphnia magna i
) Pseudokirchneriella subcapitatam i
00 daphnia affinis

10° 104 103 102 10! 10° 10! 10> 10° 10*

Concentration (mg/L)

Figure S5.5. Developed SSD for ZnO ENMs using EC50 data

Example ITI & IV: developing SSDs for CuO (LOEC data) and TiO2 (NOEC data) ENMs

Same as the data processing for building SSDs using EC50 data, when using LOEC and
NOEC datasets, the median toxicity value based on a certain biological effect to a species
was firstly obtained per reported effect, and then the lowest median value for a species was
used in ranking the species sensitivities. The datasets used for building SSDs for CuO
(LOEC data) and TiO2 (NOEC data) ENMs were listed in the Supplemental Information
(Microsoft Excel spreadsheet). The developed SSDs including information on species are
shown in Figure S5.6 and Figure S5.7 as examples. These SSDs were also depicted in Figure
5.3 in Chapter 5 and in Figure S5.1 with simplified information for the purpose of

conciseness.
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Figure §5.6. Developed SSD for CuO ENMs using LOEC data
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Figure S5.7. Developed SSD for TiO2, ENMs using NOEC data
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CHAPTER 6

GENERAL DISCUSSION
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Nanotechnology has been identified as a key-enabling technology by the European
Commission (European Commission, 2017). It is seen as one of the sectors bringing
economic benefit and jobs. The extensive use of engineered nanomaterials (ENMs),
however, has raised concerns about their possible effects on human health and their
environmental burden (Nel et al, 2006). Laboratory observations on some potentially
harmful effects of ENMs have in some cases overshadowed the immense promise of these
materials and their nanotechnology applications (Bondarenko et al., 2013; Juganson et al.,
2015). As concluded by the EU NanoSafety Cluster, the real concern rather than
fragmentary observations on some hazards of exposure to ENMs, is the lack of systematic
studies on adverse effects or exposure to ENMs (Savolainen et al, 2013). Since
experimental testing is significantly constrained by time, financial burden, and ethical
considerations (such as the principles of the 3Rs of animal testing, i.e. replacement,
reduction, and refinement), the use of computational tools as alternative or compensation is
expected to provide an efficient and inexpensive way of meeting the data requirements for
the purpose of managing ENM risks (Raies and Bajic, 2016). Computational toxicology is
seen as a potential tool to reduce the tension caused by the lag of evaluating nanosafety in
respect to the rapid development of nanotechnology and nano-related innovation.
Computational toxicology is emerging as a tool with active development and great potential
(Reisfeld and Mayeno, 2012), and is able to create predictive power in the field of toxicology
with the aid of modern computing and information technology (Kavlock et al., 2008; U.S.
EPA, 2003).

Computational tools combined with powerful data-mining technologies, have been
proposed to model chemical properties of soluble chemicals (Chen et al., 2014; Pavan et al,,
20006; Tunkel et al., 2000), biological activities (Raies and Bajic, 2016), and species sensitivity
distributions (SSDs) (Posthuma et al., 2002). The successful application of computational
toxicology for soluble chemicals has promoted the expansion of these 7 silico approaches
into the field of hazard identification of ENMs. Reliable computational tools can contribute
to the supplementation of data for the gathering and evaluation of information as the first
step of ENM hazard assessment recommended by the European Chemicals Agency
(ECHA); or assist in the second step of hazard assessment (categorization and labeling of
ENMs), by directly classifying ENMs into groups of different hazard (ECHA, 2011). For
ENMs that meet the criteria of any of the hazard categories listed by ECHA, the use of the
SSD method is helpful for deriving hazard threshold levels, e.g. predicted no effect
concentration for the ecosystem as the last step of the ENM hazard assessment (ECHA,
2011). The information obtained on the basis of these steps is crucial for the qualitative risk
characterization of ENMs. Thereupon, the structural characteristics that are identified by
computational tools as governing toxicity may provide guidance for the safe-by-design of

ENMs. However with these exciting promises in mind, challenges undoubtedly lie ahead as



this new research area is still in its infancy. This PhD research took the challenge and also

the opportunity, aiming:

(i) To evaluate the currently existing literature data on metal-based ENMs for the use of

computational toxicology in light of the safety assessment of ENMs;
(i) To develop nano-(QQ)SARs for the prediction and categorization of ENM hazard;

(iii) To derive SSDs and maximum acceptable environmental concentrations of metal-based

ENM:s as toxicity measures characterizing relevant risks.

To meet these research objectives, we have initially established an inventory of existing
toxicity data of metal-based ENMs to selected organisms and identified data gaps as a
preparation for ENM-related modeling (Chapter 2). The state-of-art of the (quantitative)
structure—activity relationships for ENMs (nano-(Q)SARs) was reviewed regarding the
availability of databases, the models developed up till now, the relevant descriptors
commonly used, and on the basis of these advances, the options for interpretation of
mechanisms of toxicity (Chapter 3). Later on, nano-SARs were developed for the
categorization of ENM hazards to assist risk assessment and regulatory decision-making
(Chapter 4). And finally, different SSDs were derived in Chapter 5 using currently available
toxicity data for the generation of hazard threshold levels of ENMs.

With these approaches having been made, details related to each research objective of the
thesis have been thoroughly discussed in the relevant chapters. To compare the developed
models in this thesis with existing studies and also to provide implications for further
advancing this new research frontier, some issues still need to be addressed based on the
state-of-the-art of the application of computational toxicity in serving the hazard assessment
of ENMs. The first issue standing out on this background is derived from the doubt of how
well computational toxicology can heretofore assist ENM hazard assessment, from the
prediction of ENM toxicity to the classification of ENM hazatrds, and to the derivation of
hazard threshold levels as policy measures for the ENMs of concern. This issue
subsequently leads to the further discussion of the situation of the constant struggle of data
availability in ENM-related modeling, and to the key factors affecting nanotoxicity as
indicated by the developed models for ENMs. Last but not least the challenges and outlook
in this field are highlighted.
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6.1 State-of-the-art of in silico models serving hazard assessment of ENMs

Given the limited availability and quality of existing data on nanotoxicity, doubt firstly arises
about how well computational toxicology can contribute to the assessment of ENM hazards
to date, including the discussion on the number and types of ENMs involved in the models;
the potential applicability of these models in the assessment of ENM hazards; the
descriptors used in the models; the information extracted for the safe-by-design of ENMs;
the levels of the maximum acceptable concentrations of different ENMs; and the identified
environmental risks of ENMs (if relevant information was presented in the underlying data
sources). To answer these questions, a literature search of recent advances in the use of
computational toxicology in developing iz silico models for ENMs was performed. This was
done by means of an Advanced Search in the Web of Science™ Core Collection on the 22t
of February, 2017. The search was manually supplemented with relevant publications not
included in the search records. The class of ENMs considered was restricted to metal and
metal oxide ENMs. All relevant articles on the development of models for evaluating ENM
hazards were selected and the reported models are reviewed and summarized in Tables 6.1
and 6.2.

6.1.1 Development of (Q)SARs and read-across models for metallic ENMs

As seen in Table 6.1, both regression and classification models predicting the biological
activity profiles of metal-based ENMs have been developed. Ideally, a regression model is
able to provide quantitative estimates for the hazardous effects of untested ENMs (or to
untested species) and to fill in data gaps, which is fundamental for the evaluation of ENM
toxicity. Classification models directly contribute to the categorization and labeling of
ENMs. According to Table 6.1, 14 out of 22 of the studies originating from the literature
review focused on the numerical prediction of ENM toxicity, and the rest of the studies
presented classification models for the grouping of ENM hazards. Among these studies, a
fair part of them aimed to predict the toxicity of metallic ENMs to Escherichia coli or to
different cell lines; only three studies constructed models for other types of species (Chen et
al,, 2016; Kleandrova et al., 2014; Liu et al., 2013a). Categorical prediction of ENM toxicity
could potentially serve the risk assessment of ENMs targeting a relatively broader spectrum
of species given the current advances. For most of the 7 silico models, the datasets used are
relatively small which probably poses major limitation on their potential applicability. Only
two studies employed datasets of more than 100 ENMs (Chen et al., 2016; Kleandrova et al.,
2014).

The frequently appearing descriptors in the models may encode important messages on

ENM characteristics dominating relevant biological activities. This kind of messages



benefits both the hazard assessment and the safe-by-design of ENMs. Thus, the presented
descriptors in existing models are summarized (see Table 6.1) and analyzed to discuss the
role of different factors in influencing nanotoxicity. As for studies introducing multiple
models or incorporating a big variety of descriptors, only main factors as highlighted by the
authors are considered to avoid the impact of possible accidental correlations. The analysis
show that some of the statistical models comprise merely theoretical descriptors; meanwhile
the experimental parameters such as zeta potential, concentration of ENMs, aggregation
parameter, size of the particles in media etc. are also found to be incorporated into other
models. Subsequently, these descriptors are roughly labeled as belonging to one of three
general types for further analysis: the intrinsic properties of the metal or metal oxide, the
nano-specific characteristics of ENMs, and the dynamic changes of ENMs in media. The

factors affecting ENM toxicity are further discussed here.
(i) Descriptors regarding the intrinsic properties of metal (oxide):

a. Surface catalytic properties and redox modifications related factors include: Wigner-Seitz
radius, mass density, band gap energy, overlap of conduction band energy levels with the
cellular redox potential, conduction band energy, average of the alpha and beta LUMO
(lowest unoccupied molecular orbital) energies of the metal oxide, accessible surface area,
absolute electronegativity of the metal and the metal oxide, aligned electronegativity,
electronegativity, Mulliken's electronegativity of the cluster, S2 (SiRMS-derived number of
oxygen's atoms in a molecule, which was described by their electronegativity), S5 (tri-atomic
fragments[Me]-[O]-[Me] which were encoded by SiRMS-derived descriptors, encoding

electronegativity), and metal electronegativity;

b. Characteristics related to the capability of ion and electron detachment and the activity of
ions include: covalent index, cation polarizing power, atomization energy, metal oxide
ionization energy, ionic index of metal cation, enthalpy of formation of metal oxide
nanocluster representing a fragment of the surface, cationic charge, enthalpy of formation
of a gaseous cation, charge of the metal cation corresponding to a given oxide, solubility,

polarizability, molar refractivity, and polarization force;

(if) The nano-specific descriptors employed in the developed models include:

a. The size of ENMs; and

b. Parameters characterizing the surface chemistry of ENMs, e.g., hydrophobicity of surface

coating chemicals, surface-area-to-volume ratio, surface coating and charge, surface area,

polar surface area;
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(iif) The parameters indicating the dynamic changes of ENMs in media include:
a. Zeta potential;
b. Concentration of ENMs; and

c. Descriptors representing the dispersion and aggregation of ENMs in media, e.g.,
aggregation parameter, size in DMEM (Dulbecco’s Modified Eagle’s Medium), relaxivity
(representing ENM magnetic properties), size in phosphate buffered saline, size in water,

aggregation size.

Extraction of the general dependency of nanotoxicity on different factors may be of
potential help for designing safe and environmentally benign ENMs. This kind of messages
could be derived from the quantitative models for ENMs. Descriptors reported without
explicit equations of predictive models cannot serve this purpose. As a result, despite the
fact that various types of descriptors have been used in different 7 siico models, only a
limited number of these parameters exhibited an explicit and unambiguous role in ENM-
induced toxicity. The identified descriptors were roughly concluded here as concerning four
aspects of the materials: the characteristics of ENMs per se, surface redox activity of metal
oxides, ease of ion and electron detachment, and activity of the ion detached (see Figure
6.1). Some of the computational parameters may refer to multiply processes involved in the

adverse effects triggered by metallic ENMs.

As can be seen from Figure 6.1, the hydrophobicity of ENM surface coatings and solubility
of ENMs were shown to positively correlate with observed nanotoxicity. Other factors
playing the same role in affecting nanotoxicity include the Wigner-Seitz radius and the
electronegativity of metal oxides (Yoxide) Which reflect the surface redox activity of the metal
or metal oxide; and the period in the periodic table of the ENM core metal, polarizability,
and enthalpy of formation of metal oxide nanoclusters representing a fragment of the
surface (AH{), which indicates the ease of detachment of ions and electrons from ENMs.
The Wigner-Seitz radius describes the available fraction of molecules on the surface of a
nanocluster (Sizochenko et al., 2014). The yoxide characterizes the ability of atoms of metal
oxides to attract electrons that contributes to the surface redox activities, and also relates to
the leaching of ions from the surface of metal oxides (Gajewicz et al., 2015a). The period of
the ENM metal represents information of atomic radii of the metal which is also associated
with polarizability (Mahan and Subbaswamy, 1990).
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Figure 6.1. Generalization of the role of different factors in affecting the toxicity of metallic
ENMs based on the state-of-the-art of nano-(Q)SARs and read-across models for ENMs.
Me™ represents the released ions from ENMs; AHY is the enthalpy of formation of metal
oxide nanocluster representing a fragment of the surface; AHwme+ is the enthalpy of
formation of a gaseous cation having the same oxidation state as that in the metal oxide

structure; and Ycaton represents the electronegativity of the metal oxide.

On the other hand, the toxicity of ENMs tends to decrease with increased conduction band
energy, atomization energy, ionization energy, AHye+ (enthalpy of formation of a gaseous
cation having the same oxidation state as the metal in the metal oxide structure), cationic
charge, and ionic index. Zhang et al. (2012) have evidenced the strong correlation between
the toxicity of Co3O4, Cr203, Ni2Os, Mn2Os, and CoO ENMs and the ovetlap of ENMs’
conduction band energy with the cellular redox potential (-4.12 to -4.84 ¢V). The studied
ENMs with conduction band energy out of the range failed to exhibit pro-oxidative and
oxidative stress effects, with two exceptions ZnO and CuO ENMs. The exceptions could
be explained by their relatively high solubility (Zhang et al., 2012). Decreasing atomization

energy attributes to the decrease of the stability of metal oxides and corresponding increase



of reactivity (Liu et al., 2011). Ionization energy reflects the required amount of energy to
remove the most loosely bound electron, a lower ionization energy thus indicates the easier
detachment of electrons from the metal oxides (Bendary et al., 2013). AHj+ describes the
dissolution of ENMs without oxidation or reduction of ions, and the redox properties of
metal oxides (Puzyn et al., 2011). Cationic charge was also found to be an important
parameter in nano-QSARs (Pan et al., 2016). Cations (Me"") with smaller charges are
considered more energetically favorable than cations of larger charges, which explains why
the toxicity of metal oxides decreases in the order of Me*" > Me3* > Me** (Puzyn et al,,
2011). The ionic index of cations is associated with the affinity of metal ions for water
molecules (measured by the hydration enthalpy); a lower hydration enthalpy means greater
transport of metal ions across cellular membranes (Liu et al., 2013b). Notably, even though
most of the employed descriptors characterize the intrinsic properties of the metal or metal
oxides, several factors related to the characteristics of ENMs per se were also identified as

affecting toxicity.

However, the role of some factors as concluded from developed models yielded conflicting
results compared with experimental observations. For instance, the smooth muscle
apoptosis (SMA) was modeled by means of the core material (Irc304), surface coating (Igestran)
and surface charge (Lusf.ehg) 0f ENMs (Epa et al,, 2012), and can be expressed as:

SMA = 2.26(+0.72) — 10.73(£1.05) X Ige,0, — 5.57(+0.98) X Igextran — 3-53(+0.54)

X Isurf.chg

Therefore, based on this model it is obvious that a lower surface charge will result in higher
apoptosis of smooth muscle cells. This, however, does not agree with some previous
findings (Asati et al., 2010; EI Badawy et al., 2011; Schaeublin et al., 2011). Reportedly, the
more negative citrate-Ag ENMs were the least toxic to gram-positive bacillus, whereas the
positively charged Ag ENMs showed the strongest toxicity (EI Badawy et al., 2011). For Au
ENMs, both the positively and negatively surface-charged Au ENMs were found to induce
significant cellular mitochondrial stress other than the Au ENMs with neutral surface
charge (Schaeublin et al., 2011). Another study of Asati et al. (2010) indicated that the
surface charge of cerium oxide ENMs distinctly affects the internalization of ENMs by
different cells, and the subsequent internal localization in cells which ultimately leads to the
different toxicity profiles reported for cerium oxide ENMs. Meanwhile, the roles of some
employed descriptors also conflict within or between independent studies. One example is
the size of ENMs. The studies of both Luan et al. (2014) and Kleandrova et al. (2014)
reported the diminution of ENM toxicity as a result of increasing ENM size. By contrast,
based on the model developed by Liu et al. (2011), a larger size of ENMs was shown to lead

to higher nanotoxicity. It was explained that indeed within the narrow domain of the dataset
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(8-19 nm), toxicity may increase with increased primary size of ENMs. A linear model
developed by Papa et al. (2015) also showed increased release of lactate dehydrogenase with
the increment of the size of TiOz and ZnO ENMs (ranging from 20 to 70 nm). In addition,
the particle size in phosphate buffered saline (PBS) and in water, indicating the aggregation
behavior of ENMs in media, contributes oppositely to nanotoxicity as summarized from the
models developed (Papa et al., 2015).

6.1.2 Development of SSDs for metal-based ENMs

The developed SSDs for metallic ENMs are summarized in Table 6.2. The state-of-the-art
of the development of SSDs for metallic ENMs shows that Ag, Al2O3, Au, CeOz, Cu, CuO,
FeOy, Silica, TiO2, and ZnO ENMs have been commonly assessed for their adverse effects
across different taxonomic groups. Compared to the diversity of ENMs involved in nano-
(Q)SARs, the number of ENMs covered in SSD-related studies seems very limited. This
may be because most of the derived SSDs grouped the materials solely based on their types
(core material) without considering other structural characteristics. Thus, data of different
ENMs with the same core was merged into the information of merely one type of ENMs.
The exception is that, in the study of Garner et al. (2015) separate SSDs were presented for
uncoated Ag and polyvinylpyrrolidone (PVP)-coated Ag ENMs. In Chapter 5 of this thesis,
separate SSDs for metallic ENMs were developed considering different ENM
characteristics, experimental conditions, and toxicity endpoints; separate SSDs were
obtained for Ag ENMs grouped by surface coating, size, shape, and exposure duration; for
CuO and ZnO ENMs grouped by size; for TiO2 ENMs grouped by size and light exposure;
and for Ag, CuO, TiO2, and ZnO ENMs based on different toxicity endpoints (Chen et al.,
2017). The limited variation in types of ENMs included in the SSDs is mostly due to the

insufficient number of data of other type ENMs originated from experimental assays.

Nevertheless, the kinds of ENMs studied in the development of SSDs atre indeed among
the types that are largely found in the applications and products on the matrket. According
to the study of Keller and Lazareva (2014), the 10 major ENMs (production of >100 t/year)
used within the global economy are: Ag, Al,O3, CeO», Cu, Fe, SiO», TiO», and ZnO ENMs,
carbon nanotubes, and nanoclays. An estimate of Bondarenko et al. (2013) on the annual
production of ENMs showed an order with regard of production volume, from high to low,
of SiO; (5500 t/year), TiO2 (3000 t/yeat), ZnO (550 t/year) ENMs, carbon nanotubes (300
t/year), FeOy (55 t/year), CeOx (55 t/year), AlOx (55 t/year), Ag ENMs (55 t/yeat),
quantum dots (0.6 t/yeat), and fullerenes (0.6 t/year). Therefore, it seems like it is possible
to perform safety evaluation of all the metallic ENMs that are produced in high amounts.
Among these ENMs, Ag ENMs have relatively gained most research attention. Table 5.1 in
the thesis showed that Ag ENMs have been tested on the highest number of species



considering the available data on LC50, EC50, LOEC, and NOEC. This enabled the
development of SSDs for Ag ENMs separated by the different key factors described above.
Further studies, ideally, should focus on other types of ENMs for the comprehensive
evaluation of nanosafety. Meanwhile, besides the aquatic hazards of metallic ENMs, the
potential risks brought by ENMs in other environmental compartments (e.g., air, soil)
should also be considered. The implementation of these research needs however strongly
depends on the quality of laboratory derived raw data. The increase of the quality of
experimental data combined with robust uncertainty quantification will contribute to the

improvement of the quality of SSDs.

The HC5s derived from the SSDs developed for different ENMs are compared as depicted
in Figure 6.2. The HC5 values from Chapter 5 were taken from the SSDs of ungrouped Ag,
CuO, TiO,, and ZnO ENMs based on LC50 data and in case of CeO, ENMs based on
EC50 data for comparison. As can be seen, Ag, TiO2, and ZnO ENMs have relatively more
estimates from the studies, which however also yielded much wider ranges of the reported
HC5 values. The range of the HC5s of Ag ENMs shifted more to the left compared with
that of the ZnO and TiO, ENMs, indicting the higher potential of toxic impacts of Ag
ENMs on the environment. The HC5 values of silica and FeOx ENMs are significantly
higher than those of Ag ENMs. The median HC5 values of Au ENMs also indicated their
mild toxicity compared with the toxicity of Ag ENMs. However, without the quantification

of uncertainty it is hard to conclude whether the difference is significant.

CeO,1* HCS5s from literatures
HCS5s from this thesis

Zn0O + A 4 PA A

TiO 1 AL A A
Silica Y]

FeO 1 FA|

CuO + A

Au A A A

Ag - A A A 4 A

10 107 10 107 10 10! 10° 10! 10?

Concentration (mg/L)

Figure 6.2. Estimated HC5s from SSDs (aquatic) for different types of ENMs. The relevant

confidence intervals are also given (if available in the original publications).
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Table 6.2. Summary of the state-of-the-art of the developed SSDs for metal and metal oxide

ENMs. N/A indicates that relevant information is not available

Reference Type of ENMs  Reported HC5s Number of species in  Environmental
SSDs compartment
Jacobs etal,  TiO» N/A 31 Water
2016
Wang et al., FeOx 0.218 (0.169-0.267) mg/L, 15- 12 Water
2016a 85% percentiles
Kwak et al., Ag 0.03173 mg/L (acute toxicity); 8 (acute toxicity); 5 Water
2016 0.000614 mg/L (chronic (chronic toxicity)
toxicity)
Coll et al., (i) Ag; (ii) (i) 0.000017 (0.000014— (i) 33 (water), 4(soil); Water, soil
2016 TiOy; (i) ZnO  0.000021) mg/L in freshwater, (i) 31 (water), 2
8.2 (4.3-12.5) mg/kg in soil; (soil);
(i) 0.0157 (0.0106-0.0207) mg/L. (i) 21 (water), 7
in fresh water, 91.1 (47.6-134.9) (soil)
mg/kg in soil;
(iif) 0.001 (0.0006—0.00138)
mg/L in freshwater, 1.1 (0.6-1.6)
mg/kg in soil, 95% confidence
intervals
Wang et al., Silica 1.023 (0.787-1.265) mg/L, 15- 8 Water
2016b 85% percentiles
Mahapatra Au N/A 8 (water) Water, soil
et al., 2015
Semenzinet  TiO» 0.02 mg/L 34 Water
al., 2015
Adam et al., (i) ZnO; (ii) () 0.07 (0.04-0.19) mg/L; (ii) (@) 12; (i) 13 Water
2015 CuO 0.19 (0.06-0.59) mg/L, 90%
confidence intervals
Garner et @) Ag; (i) Cu; N/A (i) Uncoated-Ag: 8, Water
al, 2015 (iif) CuO; (iv) PVP-Ag: 6; (i) 4; (iii)
Zn0; (v) 5, (iv) 7; (v) 9; (vi) 7;
ALOs; (vi) (vii) 8
CeO2; (vii)
TiO»
Nam et al., Au 0.29 mg/L 7 Water
2015
Botha et al., Au 42.78 mg/L 4 Water
2015
Haulik etal, () Ag (i) @ 0.00015; (if) 0.275; (iil) 3.246 () 14; (i) 11; (i) 10 Water
2015 TiOg; (i) ZnO  mg/L
Gottschalk (i) Ag; (i) @ 0.00001; (if) 0.06151; (i) @ 12; (i) 18; @) 17 Water
et al., 2013 TiOg; (i) ZnO  0.00985 mg/L
Chen et al., (@) Ag; (ii) HC5s were calculated for various  Different hierarchies Water
2017 CuO; (iii) SSDs (detailed information see of species were used
(Chapter 5) Zn0; (iv) Chapter 5) (detailed information

CeOg; (v) TiO2

see Chapter 5)

The literature search was performed by means of an Advanced Search in the Web of
Science™ Core Collection on the 22% of February, 2017. The query is (TS=(nano* AND
*SSDs) OR TS=(nano* AND species sensitivity distributions)), where the field tag TS

refers to the topic of a publication.
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Additionally, a few studies have also presented the risk qualifications for metal-based ENMs
along with the development of relevant SSDs, including Ag, Au, FeO, silica, TiO,, and
ZnO ENMs. For Ag ENMs, despite the estimated risks in surface water being shown by
Haulik et al. (2015) to be below 0.001 (predicted environmental concentration divided by
the HC5), the studies of both Gottschalk et al. (2013) and Coll et al. (2016) have reported
significantly higher risk probabilities of respectively 0.7 and 0.038, which necessitates these
materials to be studied in more depth with the highest priority. Risk coefficients of Ag
ENMs in soil are calculated to be always <0.01 (Coll et al., 2016; Gottschalk et al., 2013).
The risk coefficient of Ag ENMs in sewage treatment effluent is however as high as 39.7
(Gottschalk et al., 2013). Risk characterizations of TiO2 ENMs in surface water and soil
show that risks are relatively low in all studies except for the estimates reported by Coll et al.
(20106) as being 0.03 and 0.013, respectively; the risk coefficient of TiO2 ENMs in sewage
treatment effluent is also relatively high (18.7). A marginal risk of ZnO ENMs in surface
water (0.09) was indicted (Coll et al., 2016), whereas the risk coefficient of ZnO ENMs is
again substantially higher (1.1) with respect to sewage treatment effluents (Gottschalk et al.,
2013). For Au, FeOy, and silica ENMs the derived risk probabilities are very low (Mahapatra
et al., 2015; Wang et al., 2016a,b). In short, marginal risks are reported for Ag, TiO,, and
ZnO ENMs in surface water, and for TiO, ENMs in soil, while high environmental risks
were identified for Ag, TiO», and ZnO ENMs in sewage treatment effluent.

6.2 The struggle of data availability

As was concluded from the state-of-the-art of the development of iz silico models for
metallic ENMs, an issue of vital importance in this field is the availability of reliable toxicity
data. As described in Chapter 2 in the thesis, we have established a database assembling
available and accessible data on the toxicity of metallic ENMs to algae, yeast, bacteria,
protozoa, nematodes, crustacean, and fish. An analysis of the developed database (Figure
2.3) showed that most of the research attention was paid to merely a few species (e.g.
Pseudokirchneriella subcapitata, Staphylococcus aurens, Escherichia coli, Daphnia magna, Danio rerio)
and a few ENMs (e.g. Ag, CuO, TiO, ZnO ENMs). Despite the fact that in later Chapters
(4 and 5) more data could be combined into the datasets to build nano-SARs and SSDs for
ENMs, most of the information was still found available for only this limited number of
species and ENMs. As shown in Chapter 4, sufficient data could be collected to build
species-specific nano-SARs only for Danio rerio, Daphnia magna, Pseudokirchneriella subcapitata,
Escherichia coli, and Staphylococcus aurens. In Chapter 5, SSDs could only be developed for Ag
ENMs considering different factors and for CuO, TiOz, and ZnO ENMs in some cases.

As a matter of fact, a total of 866 records of toxicity endpoints were collected in Chapter 2;

in total 1061 toxicity records were made available within Chapter 4; and in Chapter 5 a total
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of >1800 toxicity records could be retrieved from more than 300 publications or open
access scientific reports. What has been noticed is that despite the continuing increase of
the amount of data becoming available, the ENM-related modeling is still significantly
constrained by the availability of experimental data (Gajewicz et al., 2017). Even with 1061
retrieved toxicity data in Chapter 3, nano-SARs could still only be developed by using
descriptors characterizing the core information of ENMs, due to insufficient information
on other ENM characteristics of importance (e.g. surface coating, shape, surface area,
crystallinity). In Chapter 5, SSDs could be built solely for Ag ENMs roughly separated by
the characteristics surface coating (uncoated, sodium citrate, PVP), size, and shape

(spherical and non-spherical), given the nature of the >1800 toxicity records obtained.

For other nano-modeling studies as summarized in Table 6.1, in spite of the constantly
increasing number of scientific resources from diverse nanosafety programs, only a
relatively small number of datasets, such as those published by Puzyn et al. (2011) and
Gajewicz et al. (2015a), were found to be repeatedly used in different modeling studies
(Gajewicz et al.,, 2015a,b; 2017; Kar et al., 2014; Pan et al.,, 2016; Puzyn et al., 2011; Singh
and Gupta, 2014; Sizochenko et al., 2014; Toropov et al., 2012). As shown in Table 6.2, the
data points used for developing SSDs were also very limited. This leads to doubts about the
suitability of existing nanotoxicity data in developing models for ENMs. As explained, data
scarcity may result from data incompleteness and from inconsistency in reporting the
characteristics of ENMs and relevant experimental information by independent studies.
This in turn leads to the difficulty of comprehensively characterizing ENM structures for
performing modeling and to the difficulty of separating ENMs according to different ENM
characteristics or experimental conditions (Chen et al., 2016; 2017). In this context,
availability of the vast majority of existing nanotoxicity data is greatly reduced and the use of

this information in developing computational models for ENMs is severely prevented.

With limited available data on nanotoxicity, the developed models mostly incorporate
descriptors representing only the ENM core, an approach that can also be used in the case
of their corresponding bulk materials. As for further development of 7z silico models for
ENMs, the ideal situation is to also involve comprehensive information on many of the
other characteristics of ENMs such as surface chemistry, shape, dimensional aspects,
crystallinity etc. for the better prediction and explanation of the biological activities of
metallic ENMs (Chen et al., 2016). The use of parameters only characterizing ENM cores in
models is by far not sufficient to address nano-specific toxicity in contrast with their bulk
counterparts and to distinguish the structural differences of distinct ENMs with the same
core. This requires a well-defined format for reporting the observed nanotoxicity, the
experimental conditions, and the used ENMs. Thoroughly curated datasets of nanotoxicity

are essential for modelers to carry out further researches. Therefore, here we propose that a



report of ENM toxicity for this specific purpose should propetly describe at least the

following information:
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Figure 6.3. Profiling the toxicity of metal-based ENMs on the basis of identified descriptors.

Dashed line indicates the simplified (mutual) correlation between the descriptors. The

descriptors were roughly grouped as relating to the surface characteristics of ENMs or

metal oxide, the activity of released ions, the bond breaking, ion and electron detachment,

and the medium-related parameters. Molref - molar refractivity; M - molecular weight; p -

density; Na - Avogadro's number; RI - refractive index; PZC - point of zeto charge; Ey -

valence band energy; Ec - conduction band energy; E, - band gap; Yoxide - electronegativity

of metal oxide; Yetion - €lectronegativity of cation; Eam, - atomization energy; AH. - lattice

energy; AH; - enthalpy of sublimation; AHye+ - enthalpy of formation of a gaseous cation

having the same oxidation state as that in the metal oxide structure; AHfO - enthalpy of

formation of metal oxide nanocluster representing a fragment of the surface; Eap° - energy

associated with a single metal-oxygen bond in the metal oxide; PBS - phosphate buffered

saline.
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(i) Details of the tested organisms, e.g. taxonomic categorization, name of species, exposure

route, life-stage or bacterial strain (for bacteria);

(i) Conditions of the performed experiments, e.g. test guideline used (if available) and
possible modifications of the test guideline, preparation of test medium, composition of the

exposure medium, media pH, light condition, and time-dependent medium stability;

(iif) Information on the specific toxicity endpoints, e.g. observed biological effects, type of
endpoint, experimental value of toxicity endpoint, and unit in which the endpoint is

expressed; and

(iv) Characteristics of the ENMs tested, e.g. type of ENMs, composition of core,
distribution of particle size, surface coating, purity, crystallinity, surface area, surface charge,

shape, agglomerate size and material zeta potential in media, stability in test medium.

6.3 Profiling nanotoxicity on the basis of in silico models

The development of 7 silico models enabled the identification of factors of importance
(represented by different descriptors) in affecting the toxicity of metallic ENMs. The
hydrophobicity of surface coatings and surface charge of ENMs were shown to play an
important role in determining nanotoxicity. These descriptors characterize the surface
chemistry of metallic ENMs and are seen as nano-specific descriptors. The experimental
conditions related parameters were also found in the reported models, including the
solubility of ENMs, aggregation of ENMs, and relevant aggregated ENM size in the media.
The rest of the commonly identified descriptors by nano-(Q)SARS or read-across models
were seen as representing the intrinsic properties of the metal oxides, and generally belong
to three groups that address different aspects of the material triggering adverse effects:
descriptors describing the surface redox and catalytic properties of metal oxides; descriptors
indicating the process of breaking of chemical bonds, detachment of ion and electron; and

descriptors revealing the activity of ions released from ENMs.

For the sake of conciseness, a simplified explanation of the correlations of these descriptors
is depicted in Figure 6.3. The conduction and valence band energies of metal oxide can be
derived from their electronegativity, energy gap, point of zero charge, and pH of the media;
the electronegativity of a metal oxide is derived from the electronegativity of the
corresponding cation, which can be determined by the cationic charge and ionic radius

based on the equations described in Figure 6.3 (Zhang et al., 2012). The cationic charge and



ionic radius likewise relate to the properties of metal oxides such as ionization energy
(Ahrens, 1952), ionic index and atomization energy (Liu et al., 2013b), lattice energy (Puzyn
et al., 2011), enthalpy of sublimation (Liu et al., 2013b; Puzyn et al., 2011), and the enthalpy
of formation of a gaseous cation having the same oxidation state as in the metal oxide
structure (Puzyn et al., 2011). Additionally, the cationic charge and ionic radius also relate to
the polarizability and molar volume of the metal oxide (Mahan and Subbaswamy, 1990), and
subsequently to other properties which are associated with these descriptors such as molar
refractivity (Lide, 1998) and Wigner-Seitz radius (Sizochenko et al., 2014). Burello (2015)
also classified the solubility of metal oxide ENMs in water and acidic media using the
cationic charge and ionic radius. Therefore, it seems like the metal oxide ENMs which are
able to release ions with smaller charge and larger ionic radius could induce higher toxicity
to biota. That is to say, in general, within the same group of the periodic table, the larger the
period that a metal belongs to (thus bigger atomic radius) the higher is the toxicity for the
metal oxide ENMs formed by that metal; and within the same period in the table, metals on
the left (thus smaller cationic charge) tend to form ENMs with higher toxicity compared
with metals on the right. Meanwhile, metal oxide ENMs with low-valent metals may induce
higher toxicity compared with ENMs composed of the same metal but of higher-valence.
This corresponds with the study reported by Mu et al. (2016) which predicted the toxicity of
51 metal oxide ENMs to Escherichia coli (presented in a periodic table).

As previously explained in Chapter 1, it is commonly indicated that the release of ions and
generation of reactive oxygen species (ROS) are two of the main mechanisms of metallic
ENMs triggering toxicity, besides the possible direct steric hindrance caused by the particles
per se and the ENMs acting as carriers of toxic chemicals (described as the Trojan-horse
mechanism). In fact, both the detachment of ions or electrons from an ENM surface could
lead to the formation of ROS. For instance, according to the Haber-Weiss-Fenon cycle
(Gajewicz et al., 2015a; Stohs and Bagchi, 1995), Cu?* could act as a catalyst for the
formation of hydroxyl radicals (OH"), which subsequently leads to the generaton of

superoxide anion radicals (037):
05 + Cu?* - 0, + Cu*
Cu* + H,0, - Cu?* + OH™ + OH’
0, +e—- 03

Meanwhile, the detachment of an electron from the surface of TiO2 ENMs (which could be
activated by solar radiation) is also able to initiate a seties of reactions leading to the

formation of OH" and 035~ (Kar et al., 2014):
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hv
Ti0, = TiO} + &
e+ 02 d 0;_
Oé_ + 2H+ +ée- H202

03~ + H,0, > OH" + OH™ + 0,
H* + H,0= OH® + H*

The generation of these ROS will disturb the cellular balance between the levels of oxidized
and reduced species, and consequently provoke oxidative stress in cells (Gajewicz et al.,
2015a). Thus, the intrinsic properties of a metal oxide (e.g., cationic charge and ionic radius)
which are of significant importance for the possibility of electron transfer, bond breaking,
and release of ions, seem to play a pivotal role in affecting the toxicity of ENMs. This is
why doubt has arisen about whether the toxicity of metallic ENMs is nano-specific or
comparable with that of corresponding dissolvable materials (Beer et al., 2012; Visnapuu et
al., 2013; Xiu et al., 2012). However, undoubtedly, the other above-identified factors such as
ENM surface chemistry, solubility of ENMs, and the experimental conditions are certainly
able to alter the biological activity of metallic ENMs, by directly modifying the toxicity of
the materials or by changing the bioavailability of ENMs for different species or cells
(Fourches et al., 2010). In the study of Zhang et al. (2012), the solubility of metal oxide
ENMs is one of the discriminating factors for classifying the observed toxicity. Solubility
successfully explained the high toxicity of CuO and ZnO ENMs as the conduction band
energy of the two ENMs has no overlap with the cellular redox potential (-4.12 to -4.84 eV).
Observations of the nanotoxicity affected by ENMs shape were thereupon reported for
ZnO nanospheres, nanosticks, and cuboidal submicron particles (Hua et al., 2014). The
needle-shaped ZnO NPs were proven to be more toxic to Phaeodactylum tricornutum than
other morphologically different NPs with equal solubility and ion release (Peng et al., 2011).
Therefore, it seems that whether the toxicity induced by metallic ENMs should be

considered as nano-specific is case-dependent.

Recently, a categorization framework of ENMs called the decision-making framework for
the grouping and testing of nanomaterials (DF4nanoGrouping) was proposed based on the
intrinsic material properties, system-dependent properties, and 7z vitro and in vivo effects of
ENMs (Arts et al., 2015). This framework assigns ENMs into four main groups (MG) and
determines to what extent the ENMs needs to be further evaluated. Specially, ENMs in MG
1 (soluble ENMs) are suggested to be handled by the read-across of the properties of
dissolved materials from the bulk counterparts; ENMs in MG 4 (active ENMs) are advised



to be carefully evaluated and merit in-depth investigations in light of the risk assessment.
ENMs in MG4 are for instance CeO2 ENM-211, CeO, ENM-212, TiO, ENM-105, SiO,
ENM-acrylate, and SiO2 ENM-*phosphate (Arts et al., 2016). Thus, based on this grouping
strategy, the requirement on structural information of ENMs can be waived for the
materials of MG 1. This kind of data is on the other hand of crucial importance for the
“active” ENMs (Main Group 4), for the purpose of calculating nano-specific descriptors in
case of generating i silico models for ENMs and for the purpose of grouping ENMs based
on different properties in case of developing SSDs to diminish variabilities and levels of

uncertainties.

Membership function f;,,

fn($)

based on the information
of ENM size distribution

Size of engineered nanomaterials (s)

Figure 6.4. An explanation of considering the fuzzy set theory in handling the heterogeneity

of ENM size for the computation of nano-specific descriptors.

6.4 Outlook

As previously addressed, one of the most fundamental issues in developing ## silico models
for ENMs is the availability and quality of laboratory derived data. For further experimental
studies on nanotoxicity, providing comprehensive information according to standardized
test protocols is of vital importance, together with widely accepted evaluation criteria for
data quality. Meanwhile, maximizing the use of existing information seems realistic, practical,
and favorable for this new frontier. One suggestion for this purpose is to transfer toxicity
data between different endpoints with suitable assessment factors, which has been proven
as a feasible way to obtain needed data given very limited available information. For
example, in the study of Wang et al. (2016a,b), an assessment factor of 10 was used to
transfer LC/EC25-50 to no observed effect concentrations; a factor of 2 for the LC/EC10-
20; and a factor of 1 for other endpoints such as LOEC, LED, MIC, HONEC, and NOEC.
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Likewise, this solution was also employed in different studies to overcome the problem of
data scarcity (Coll et al., 2016; Gottschalk et al., 2013; Mahapatra et al., 2015). Even though
uncertainty in doing so still remains debatable, this may be one of the most pragmatic ways

of facing the current challenges of lack of toxicity data.

The structural complexity of ENMs has brought difficulty to computationally characterize
the structure of ENMs in a comprehensive way. The incorporation of size information of
ENMs into computational parameters also faces obstacles. An attempt to overcome this
challenge is the study of Tdmm et al. (2016) in which a set of novel, theoretical size-
dependent nano-descriptors for ENMs was developed. However, the key problem is that
the size of ENMs in reality is never a fixed value but rather a distribution of sizes. Preparing
100% homogeneous ENMs also does not seem possible in the near future. One proposed
idea here is to adapt the calculation of nano-descriptors by combining them with fuzzy set
theory. The fuzzy set theory permits the gradual assessment of the membership of elements
in a set, instead of assigning an element into either one set or another (Zimmermann, 2010).
Similarly, an ENM normally has a size distribution ranging, for example, 10-30 nm rather
than a homogenecous size of 20 nm. Thus, if a descriptor (Dy) for a cluster of an ENM of

size (5) can be expressed as:
Dy =f(s)

then the calculation of descriptors combined with fuzzy set theory (Dy,) can be described as:
Dh= ) fu(If(s)

when s is a discrete variable in f(s), or
b
D), = f fn(f(s)ds,a<s<b
a

when s is a continuous variable in f(s); f; is the membership function extracted from the

information on the ENM size distribution (see Figure 6.4).

Another issue worth mentioning relates to the linking of structural characteristics of ENMs
with their biological activities. As observed from Table 6.1, even though some of the studies
constructed models solely on the basis of theoretical descriptors, the experimental
descriptors such as zeta potential, concentration of ENMs, aggregation parameter, size in

media etc. were also incorporated in other models. This agrees with the well-known fact



that the dynamic transformation of ENMs in media is able to alter the biological profiles of
the materials. Thus in some cases toxicity information of ENMs can be poorly modeled
without considering this transformation. However, dilemma situations arise as the safe-by-
design approach of ENMs tends to favor the information of ENM safety purely based on
their structures. For the next step, modeling and prediction of ENM behavior and
transformation in different media (e.g. aggregation) could be considered based on ENM
structural characteristics; and also the link of transformed characteristics of ENMs in the
media to relevant biological activity. Different dose metrics in expressing the effective dose
should be also taken into account for the modeling (Hua et al., 2016). Mass should not be
the sole option in this context as nanotoxicity is influenced by many different

physicochemical properties of ENMs (Oberdérster et al., 2007).

Designing safe and

Developing efficient framework
environmentally benign ENMs

for ranking the risk of ENMs
with the assistance of
computational toxicology

Further development of
comprehensive databases of
nanotoxicity

Better understanding of the
behaviors and biological
activities of ENMs

Modeling the environmental
behaviors of ENMs based on
structural characteristics

Development of SSDs with
diminished variabilities and

levels of uncertainties Development of models with good

predictive power, wide applicability
for different types of ENMs and
hierarchies of species

Development of nano-specific
descriptors and suitable dose
matric

Widely accepted evaluation
criteria for data quality

Improvement of the availability

of existing data for modeling Standardized form for the

reporting of nanotoxicity

Figure 6.5. A roadmap indicating the future milestones of using computational toxicology in

assisting the hazard assessment and safe-by-design of ENMs (drawn by G. Chen).

In the near future, the first milestone to be achieved regarding the use of computational
toxicology in hazard assessment of ENMs should be a standardized form for reporting

nanotoxicity (see Figure 6.5). Maximizing the use of existing data of nanotoxicity should
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also be considered. Setting up widely accepted criteria is crucial for evaluating the quality of
laboratory derived data for both existing and newly reported data. Development of novel
nano-specific descriptors and incorporation of proper dose metrics are needed when
performing modeling. The newly constructed nano-(Q)SARs and read-across models based
on data with improved quality and availability are expected to have improved predictive
power with broader applicability (suited for more types of ENMs and wider spectrum of
species). The SSDs for deriving the maximum acceptable concentrations of ENMs are also
expected to have diminished variabilities and levels of uncertainties. Meanwhile, linking the
structural characteristics of ENMs to their environmental behavior and transformation is of
great interest. Such work will provide further insight into the mechanisms underlying the
biological profiles and environmental behavior of ENMs. In time, based on standardized
criteria for reporting and evaluating nanotoxicity data, relevant databases with
comprehensive information of all aspects will be developed. Upon these advances,
construction of the framework ranking ENM hazard and associated risk aided by
computational toxicology will highly contribute to the safe handling of ENMs and
regulatory activities. Designing safe and environmentally benign ENMs supported by
computational toxicology will also greatly benefit the minimization of risks brought by

newly developed ENMs and the fast development of nanotechnology.
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Summary

Nanotechnology is seen as a revolutionary technology which greatly benefits the
world economy. However, as usual there is a tension between the need to
manufacture new nanomaterials with desired properties, and the need to protect
the environment and human beings from the potential risks associated. The lag
between the time needed to evaluate the safety of engineered nanomaterials
(ENMs) and the rapid development of nanotechnology has already caused
concerns about the safe use of ENMs. Assessing the risks of ENMs solely on the
basis of experimental assays is time-consuming, resource intensive, and
constrained by ethical considerations (such as the principles of the 3Rs of animal
testing, ie. replacement, reduction, and refinement). The adoption of
computational toxicology in this field is a high priority. Computational toxicology
is able to contribute to the prediction of the extent of toxic effects of untested
ENMs, to the hazard categorization and labeling of ENMs, and to the
establishment of hazard threshold values that are sufficiently protecting the
ecosystem with respect to the ENMs of concern. These three steps are listed by
the European Chemicals Agency (ECHA) as the three elements in evaluating the
hazards of ENMs. A comprehensive hazard assessment for ENMs is essential for

both the risk characterization and the safe-by-design of nanomaterials.

To facilitate the use of computational toxicology in assisting the hazard
assessment of ENMs, the research of this thesis started from the integration and
evaluation of existing available and accessible data regarding the toxicity of metal-
based ENMs to selected organisms (Chapter 2). A database of 886 records was
developed, containing information on bacteria, algae, yeast, protozoa, nematode,
crustacean, and fish; and on ENMs composed of metals, metal oxides,
nanocomposites, and quantum dots. The analysis indicated that Ag ENMs are the
most widely studied ENMs, together with TiO2 and ZnO ENMs. Daphnia magna,
Escherichia coli, and Pseudokirchneriella subcapitata are the most frequently tested
species in the database. Biological effects investigated for each group of organism
were analyzed, and the types of ENMs and species in the database were described
in as much detail as possible. ENMs were classified into different hazard
categories adhering to the EU Directive 93/67/EEC.

Following up the data integration and evaluation, the state-of-the-art of the
development of (quantitative) structure—activity relationships for ENMs (nano-
(Q)SARs) was reviewed in Chapter 3. Issues concerning the sources of data for

modeling, existing nano-(QQ)SARs, and mechanistic interpretation were discussed
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and an outlook on the further development of this field was presented. The
analysis showed that cellular uptake of ENMs by different cells and the toxicity to
Escherichia coli are the main focus of nano-(Q)SAR modeling. Models were
developed for both quantitative and categorical predictions of the biological
activiies of ENMs based on different data mining approaches. As could be
concluded from the identified descriptors, lipophilicity and hydrogen bonding
capacity of surface modifiers were found to be of most significant importance for
the cellular uptake of ENMs. The released ions and generation of oxidative stress
are seen as driving factors in causing nanotoxicity in some cases; nano-specific
properties such as surface chemistry, size are also believed to play a role. Similar
to chapter 2, also here we saw the problem of data scarcity and data quality. The
characterization of ENM structures and the consideration of dynamic

transformations of ENMs in the exposure medium in modeling should also be
carefully handled.

Based on the identified research gaps on nano-(Q)SARs, in Chapter 4 the nano-
SARs for the categorization of ENM hazards were built on the basis of the
retrieval of existing toxicity data. The global nano-SARs across species in case
study I (LC50 data, 320 ENMs in training set and 80 ENMs in test set) and 111
(MIC data, 133 ENMs in training set and 33 ENMs in test set) yielded reasonable
accuracies (above 70%). Species-specific nano-SARs were also constructed for
Danio rerio, Daphnia magna, Pseudokirchneriella subcapitata, and Staphylococcus aureus
with high predictability. The molecular polarizability, accessible surface area, and
solubility of ENMs were identified in the models that were built as predominantly
influencing the toxicity of metallic ENMs. The study contributes to the

classification and labeling of metallic ENMs for regulatory purposes.

Once an ENM is classified in one of the hazard classes or categories listed by
ECHA, a risk characterization for the ENM is required. This necessities the
derivation of threshold levels for ENMs in order to compare with relevant
exposure levels and to quantify associated risks. In case of generic risk assessment,
the 5th percentile (HC5) of the species sensitivity distributions (SSDs) is
commonly used for this comparison. Chapter 5 therefore focused on the
development of SSDs for metallic ENMs with the explicit consideration of the
characteristics of ENMs, experimental conditions, and different types of
endpoints. Based upon a sufficient number of data entries, separate SSDs could
only be built for Ag ENMs based on the characteristics surface coating, size,
shape, and exposure duration. Separate SSDs were also developed to determine

whether and to what extent the shape of the SSD curve alters and the resulting



HC5s varies based on different toxicity endpoints. As could be concluded from
the developed SSDs, the PVP- and sodium citrate coatings were found to enhance
the toxicity of Ag ENMs; for Ag ENMs with different size ranges, differences in
behavior and/or effects were only obsetved at high exposure concentrations; the
SSDs of Ag ENMs separated by either shape or exposure duration were all neatly
identical. Meanwhile, crustaceans were found to be the most vulnerable group to
metallic ENMs.

In conclusion, our study has expanded the use of computational toxicology in
hazard assessment with regard to the safe handling of ENMs. The results
obtained contribute to the integration and evaluation of toxicity data, the
identification of research gaps on ENM-related modeling, and the development of
nano-SARs and SSDs for metallic ENMs. Despite the uncertainties that are
associated with our results, as mainly due to limited data quality and availability,
we managed to take this field one step forwards and contribute to better-informed
regulatory decisions of ENMs. To enable the next step to be made, it is essential
that research in the relevant fields more strictly adhere to the guidance that has
been issued regarding proper reporting of scientific data on the fate and effects of
ENMs. This will allow for efficient data curation and proper comparison of

experimental data.
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Samenvatting

Nanotechnologie wordt gezien als een revolutionaire technologie waarvan de
wereldeconomie zal profiteren. Echter, zoals gebruikelijk bij de introductie van
nieuwe technologieén, is er een spanningsveld tussen de noodzaak om niecuwe
nanomaterialen te produceren met gewenste eigenschappen en de noodzaak om
het milieu en de mens te beschermen gelet op de potentiéle risico's die met de
technologie samenhangen. Er is een grote tijds-uitdaging tussen de snelle
ontwikkeling van de nanotechnologie en de langere tijd die nodig is om de
veiligheid van ontwikkelde nanomaterialen (ENMs) te evalueren. Het beoordelen
van de risico's van ENMs uitsluitend op basis van experimentele testen is
tijdrovend, duur, en beperkt door ethische overwegingen (zoals het principe van
de 3Rs van dierproeven, d.w.z. vervanging, reductic en verfijning). Het
implementeren van de computationele toxicologie voor ENMs heeft dan ook
hoge prioriteit. Computationele toxicologie kan bijdragen aan de voorspelling van
de mate van toxische effecten van niet-geteste ENMs, de categorisatie van risico’s
van ENMs en de vaststelling van drempelwaarden die het ecosysteem voldoende
beschermen tegen ENMs. Deze drie stappen worden vermeld door het European
Chemicals Agency (ECHA) als de drie elementen bij het evalueren van de risico’s
van ENMs. Een uitgebreide risicobeoordeling voor ENMs is essenticel voor
zowel de risico-karakterisering alsook voor het safe-by-design ontwerpen van

producten waarin ENMs worden gebruikt.

Om de computationele toxicologie te gebruiken bij het ondersteunen van de
risicobeoordeling van ENMs, is het onderzoek beschreven in dit proefschrift
gestart met de integratie en evaluatie van de beschikbare en toegankelijke gegevens
over de toxiciteit van metaalhoudende ENMs (hoofdstuk 2). Een database van
886 records is ontwikkeld met informatie over de toxiciteit van ENMs voor
bacterién, algen, gisten, protozoa, nematodes, schaaldieren en vis; alsmede van alle
metaalhoudende ENMs die bestaan uit metalen, metaaloxiden, nano-komposieten
en kwantumdots. Uit de analyse blijkt dat Ag-gebaseerde ENMs de meest
bestudeerde ENMs zijn, samen met ENMs die bestaan uit TiO2 en ZnO. Daphnia
magna, Escherichia coli en Pseudokirchneriella subcapitata zijn de meest geteste soorten
in de database. De ENMs in de database werden ingedeeld in verschillende risico-
categorieén volgens de EU-richtlijn 93/67/EEC.

Na de data-integratic en -evaluatie is de state-of-the-art van de ontwikkeling van
(kwantitatieve) ~ structuur-activiteitrelaties ~ voor ~ ENMs  (nano-(Q)SARs)

onderzocht in hoofdstuk 3. Problemen over de data en gegevensbronnen,



bestaande nano-(QQ)SARs en mechanistische interpretatie werden besproken en
een vooruitblik op de verdere ontwikkeling van dit veld werd gepresenteerd. De
analyse toonde aan dat cellulaire opname van ENMs in verschillende celculturen
en de toxiciteit voor Escherichia coli de belangrijkste focus zijn binnen de nano-
(Q)SAR-modellering. Modellen werden ontwikkeld voor zowel kwantitatieve als
categorische voorspellingen van de biologische activiteiten van ENMs
gebruikmakend van verschillende data ‘mining’ benaderingen. Zoals uit de
geidentificeerde model beschrijvingen kon worden geconcludeerd, bleken lipofiele
eigenschappen en waterstofbindingscapaciteit van functionele groepen aan het
oppervlak van de ENMs van het grootste belang voor de cellulaire opname van
ENMs. De vrijgekomen ionen en de generatie van oxidatieve stress worden in
sommige gevallen als belangrijkste factoren beschouwd bij het veroorzaken van
nanotoxiciteit. Verder wordt aangetoond dat nano-specificke eigenschappen zoals
oppervlaktechemie en de grootte van de deeltjes een belangrijke rol spelen bij de
toxiciteit van ENMs. Evenals bij hoofdstuk 2, zagen we hier eveneens het
probleem van de data schaarste en datakwaliteit. Tenslotte wordt geconcludeerd
dat de gedetailleerde karakterisering van ENM-structuren en het karakteriseren
van transformaties van ENMs in het blootstellingsmedium ook nauwgezet dienen

te worden meegenomen in de modellering.

Gegeven de eerder geconstateerde beperkingen met betrekking tot de
ontwikkeling van nano-(Q)SARs, zijn in hoofdstuk 4 nano-SARs ontwikkeld voor
de categorisering van ENM-risico’s op basis van bestaande toxiciteitsgegevens. De
robuuste nano-SARs in case study I (LC50 data, 320 ENMs in de trainings-set en
80 ENMs in de test-set) en in case study III (MIC data voor de invloed van 133
ENMs op de remming van de activiteit van bacterién in de trainings-set en 33
ENMs in de test-set) leverden voorspellingen op met nauwkeurigheden tot 70%.
Daarnaast zijn soort-specifiecke nano-SAR’s ontwikkeld voor Darnio rerio, Daphnia
magna, Psendokirchneriella subcapitata en Staphylococcus anrens met hoge accuratesse. De
moleculaire polarisatie, oppervlakte grootte en oplosbaarheid van ENMs werden
geidentificeerd als zijnde de parameters die de toxiciteit van metaalhoudende
ENMs het sterkste beinvloeden. Deze studie draagt bij aan de classificatie en

etikettering van metaalhoudende ENMs voor regelgevende doeleinden.

Zodra een ENM is ingedeeld in één van de door ECHA vermelde risico-klassen
of categorieén, is een verdere risico-karakterisering vereist. Dit vereist de afleiding
van drempelwaarden voor ENMs die dan kunnen worden vergeleken met
relevante blootstellingsniveaus, om uiteindelijk de bijbehorende risico's te

kwantificeren. Bij een genericke risicobeoordeling wordt het 5¢ percentiel (HC5)
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van de soortgevoeligheidsverdeling (SSDs) vaak gebruikt. Hoofdstuk 5
concentreerde zich derhalve op de ontwikkeling van SSDs voor metaalhoudende
ENMs, met expliciete overweging van de kenmerken van ENMs, experimentele
omstandigheden, en verschillende soorten met hun toxiciteits-eindpunten. Alleen
voor Ag-houdende ENMs konden SSDs worden ontwikkeld op basis van de
eigenschappen van de coating, de grootte en de vorm van de deeltjes, en de
blootstellingsduur. Er werden ook afzonderlijke SSDs ontwikkeld om te bepalen
of en in welke mate de vorm van de SSD-curve verandert en de resulterende HC5’s
variéren op basis van verschillende toxiciteits-eindpunten. Zoals uit de
ontwikkelde SSDs kon worden geconcludeerd, bleken de PVP- en natriumcitraat-
coatings de toxiciteit van Ag-houdende ENMs te verhogen; voor Ag-houdende
ENMs met verschillende afmetingen, werden verschillen in gedrag in het
blootstelingsmedium ~ en/of  effecten  alleen  waargenomen  bij  hoge
blootstellingsconcentraties; de vorm van de Ag-houdende ENMs en de
blootstellingsduur van de testen deed de SSD niet veranderen. Kreeftachtigen

bleken de meest gevoelige groep van organismen te zijn voor de metaalhoudende
ENMs.

Concluderend kan gesteld worden dat het onderzoek dat in dit proefschrift wordt
beschreven, bijdraagt aan de uitbreiding van de toepassing van de computationele
toxicologie in risicobeoordeling, en wel specifick voor het inschatten van de
milieurisico’s van ENMs. De verkregen resultaten dragen bij aan de integratie en
evaluatie van toxiciteitsgegevens, de identificatie van onderzoeksprioriteiten bij
ENM-gerelateerde modellering, en aan de ontwikkeling van nano-(Q)SARs en
SSDs voor metaalhoudende ENMs. Ondanks de onzekerheden die samenhangen
met onze resultaten, veroorzaakt door de beperkte data kwaliteit en
beschikbaarheid, slaagden we erin om dit onderzoeksveld een stap voorwaarts te
brengen en dragen we bij aan de verbetering van regelgevende beslissingen voor
ENMs. Om een significante vervolgstap te kunnen maken, is het essenticel dat de
onderzockers in het veld van de nanotoxicologie zich strikt houden aan de
richtlijnen die zijn opgesteld voor de accurate rapportage en onderbouwing van
wetenschappelijke gegevens over het gedrag en effecten van ENMs. Dit zorgt
voor efficiénte data-curatie en voor de mogelijkheid om experimentele data

onderling te kunnen vergelijken.



#® IE

oy R AR TSRS 09 F AR, NN L RBF KRB E,
18 R & B AF K 5 F) 48 2 M Ak A R AR A B B, 4 A S bR BT A R
HHERERHERTEM. ieh Rk, RTFHEAARGRERE, &
MAMA LB ITETRINARTE, HAREEIIRLEY, AR
AR MB AR EITEAE., ZHOTFEETZARNHEREL, wEA
REH R T X, BT RBRFERE LRI, LR THHRE
IR AL (de ARV . BRABRRA A S 3R S EIRRN) . B
WSk, REARFZKEENHAE S AT EFRLEFHKRMI. 18
MAMB R EWIFRTARL L, THEFLFT A TIREA KM S
HAER, FE. ARRARMAE RTeH, AR L AR AES K%
BAE, W =30 WAL s F BT A RN mAMA LS ey =
2F. FUAMARMANEGREITEZESN, 2H 0 ITF-0A Y T
T K 09 IR A AR I 3R 52, A BT 5F K £ 4% A 037 R wa A
#o

AR R EEFLE T RIS, SRS LN, KiELEF TI
. KWL BMARAMANAESEELE (B2F) . LASFARLKAALA
Lk PACEHIZT 886 KA MM AT FLRBHIE. REEFITTR
MR AEMOIEmA ., BE BE, RENDH, ARE FREUAAS
X, B RGHAMMOIELE Lk ANRDEMAMH., BAELS
MR ET B MHBEGSATEN, METELCHAMH, HXH
MAMMNAESFEZRZER S, ARAN KA RZ . BT AN
TRKEMF, AXKEEZ, KA RFAATROFLRAT Z. &
TR ELT KB FARMM T EA A DG FH AT, PTEROK
FREBET THER G X ARM I X ED G AV E & S RREA
£ R AR 90T FA3d KA A Y8 A5 B A7 A (EU Directive 93/67/EEC),
BRI A P A RM A LR34 T 55 £

ERBPUREERZE, AR THREAR (TE) BEM—FHX R
QIR (F=F) o FipATe N B QBT H LT A HIE, T
A FMARRL, BB 1 KA 69 2 b U IE AR AR VA BT L A ST AR R Y
BEE, ZRXIFANBEMK (Z2) SHFRXEZANTFLILZEFT

197



198

XN 4 A R Ao K AT 69 A b BOR B9 F CRM AR ) o
AP A ST R T, &5 MRS R @IS T 8 F A 24
fe ) I % emm et th KA I R WIT, @& MAM XL
A ET AR A ERE RN ZARMAIN R EREZLRG IR, KM
ey R B AL F A R T v L A B o 3 LA AT AT R H 3R
MW ET, ARMAR (RE) B FHXRANOFRLRRAZRL LML
TAARFEORERRE. hRMHGLEMRIEAR L LB F] P 692
MR IR FE R FIAL,

AF LSRRG AT, HOFGF AT AILEREMNET 9
RLEM__FE A RAEA, TR T A MA M LT £,
B P B — (FREUKEHIE, NEE 320 Araaks4, FME 80
A ARMA) A EH = (RADPHIREHIE, NEE 133 FMAMH,
ME 33 HAHRMA) METRETRR AW ARG ELS LA, KA
SR EAEH L T0%A L. LI RE I HE T 25 m At
¥—AY HhE, K&k, FAATEARE KX ERNEHARA) Ak
S RFMARAL, PTEARAN Y B B S 0 TN R A, AR R R A R
T, EEMAMEG S THRAE, THEELXGRFEBEMNLEFEA R
FRHvh. KT RA BT hRMAG A5 £ T/ ARAR K 69 FRBA
Ko S

RABH N F e AN RRK, ik — AR A LTI d 8
MEAAZ—, FEMAMBEFRERNG TN, AP —REZEHL
MmARM R EAE RIS BEA AR X B R T KT FRAZERFHESAE
TR 4B 64 PO AR T VA R AR A A M A IR BRI . A & K% BE T A8 i it H
AP BRI H R 5% AL GRFARN 5%EFKRE, HC5) 3,
R, BAFELEETHARLEENAMAGUAT AN S, TR
MAMA I, RBRFHARSFHEMNRAEEEEAN, ATCAK
¥, HARAFBNUATRAEHES (AAMBAEBROE. R, BEfE
MR FEETE]) ARBGIATEREES A ARLFE T AT AR ZHA
KA EQHABEE Y. FHRER I T, R OH &R f A7 4558 4
OEEBEMREEDTHERLEN, FRARTHRBGEDZ T R AR
BER A EF. FNRMESMRKBRGMA BRI, AREETHR



RABFIRAFII R T A EM S B HFAAEEF. ERTEN
T e KB it & B v KA AR B R S .

FEAE, AR TREATEEFEZF T HFEFLARM R &N
BRI, B A M AT R, AT R,ANE T FTHCH
B EBMAMAFNZ LN ERER AR (RE) BH—_FHXER
AR IR AT, VAR R A E M A B A e B th R MR A AP R
DR E, T LN, BAFAKERERRZGRA, K LATER
A RERV AR — RO, XL G AWM ARMA LM
B9 4E TAE, R RFRFLERT ARG &, AREZAABRGHE—
TR, ARG LRI S A& 1G P A K e WK AR E A R M A AT A
FAAE MR E. THEURRLLAGREHBEN XA LELTE,

199



200

Acknowledgements

It has been a long journey, one which would not have been possible without the
support and help of a great many people. I would firstly like to thank my
supervisors Willie and Martina for their patient guidance, encouragement,
inspiration, and wise advice. They made my PhD life a very enjoyable and cheerful
experience. Thanks also to Arnold and Peter for their time and expertise in
reviewing my PhD thesis. Thanks the China Scholarship Council for their
financial support of my PhD study in the Netherlands.

I would also like to express my gratitude to all my lovely fellow CML colleagues,
including those who already have ‘Dr.” in front of their last names and those who
are still challenging themselves to achieve the goal. Special thanks to Esther, Jory,
Joyce, Maarten, Paul, and Susanna for always being there for us and willing to

help us.

I have been lucky enough to have many people standing by my side. I knew Fuyu,
Yinlong, and Zhan before coming to the Netherlands; I met Dustin, Entique,
Yudan, Yun, and Zhenyu at Smaragdlaan; I joined Dutch class together with Jiali,
Xiaoyu, and Yifen which soon basically turned into a weekly meal out. Having
Emmy, Minghou, Pieter Jelle, Stefan, and Verion who have always been
supporting me unconditionally was outstanding; I also spent great times with my
Leiden squad Eline, Erik, Merijn, and Naomi. Thanks to all these people and also

my many other friends with whom I shared unforgettable memories.

Lastly, I would like to give a special thanks to Jiri and everyone from the big
Jonkers family. Thanks to my family in China as well, especially my parents. ##

EEIBY, KEARM.



Cutrriculum Vitae

Guangchao Chen was born in 1987 in Qigihar, a city in the northeastern China.
He attended Qiqihar Experimental Middle School in 2003. From 2006 to 2010, he
studied Environmental Sciences at Dalian University, China with a focus in
environmental chemistry. He continued to pursue a mastet's degree in
Environmental Sciences from 2010 to 2013 at Dalian University. The project
aimed to develop # silico models to predict the biodegradability of organic
chemicals, which brought him into the field of computational toxicology. In 2013,
he was awarded a scholarship by China Scholarship Council (CSC) to follow the
Ph.D. program in the Institute of Environmental Sciences (CML), Leiden
University. The Ph.D. project was to assist in the risk assessment of engineered
nanomaterials by applying computational toxicology into the hazard evaluation of
nanomaterials. During this period, he also supervised students in courses and gave

lectures to B.Sc. students about nanotechnology and nanotoxicology.

Publications during PhD period

Chen G, Peijnenburg WJ, Xiao Y, Vijver MG. Current Knowledge on the Use of
Computational Toxicology in Hazard Assessment of Metallic Engineered
Nanomaterials. International Jonrnal of Molecular Sciences, 2017, 18(7):1504.

Chen G, Pecijnenburg WJ, Xiao Y, Vijver MG. Developing species sensitivity
distributions for metallic nanomaterials considering the characteristics of
nanomaterials, experimental conditions, and different types of endpoints. Food and
Chemical Toxicology, 2017. doi: 10.1016/].£ct.2017.04.003.

Xiao Y, Peijnenburg W], Chen G, Vijver MG. Toxicity of copper nanoparticles to
Daphnia magna under different exposure conditions. Sczence of the Total Environment.
2016, 563-564:81-8.

Hua J, Vijver MG, Chen G, Richardson MK, Peijnenburg WJ. Dose metrics
assessment for differently shaped and sized metal-based nanoparticles.
Environmental Toxicology and Chemistry. 2016, 35(10):2466-2473.

Chen G, Peijnenburg WJ, Kovalishyn V, Vijver MG. Development of

nanostructure—activity ~ relationships  assisting the nanomaterial  hazard

201



202

categorization for risk assessment and regulatory decision-making. RSC Advances.
2016, 6:52227-52235.

Chen G, Vijver MG, Peijnenburg WJ. Summary and analysis of the currently
existing literature data on metal-based nanoparticles published for selected aquatic
organisms: Applicability for toxicity prediction by (Q)SARs. _Alternatives to
Laboratory Animals. 2015, 43(4):221-40.

Xiao Y, Vijver MG, Chen G, Peijnenburg WJ. Toxicity and accumulation of Cu
and ZnO nanoparticles in Daphnia magna. Environmental Science &> Technology. 2015,
49(7):4657-64.

Chen G, Li X, Chen J, Zhang YN, Peijnenburg WJ. Comparative study of
biodegradability prediction of chemicals using decision trees, functional trees, and

logistic regression. Environmental Toxicology and Chemistry. 2014, 33(12):2688-93.

Submitted work

Chen G, Vijver MG, Xiao Y, Peijnenburg WJ. Recent advances towards the
development of (quantitative) structure-activity relationships for metallic

nanomaterials: A critical review. Materials. Under revision.

Peijnenburg WJ, Chen G, Vijver MG. Nano-QSAR for environmntal hazard
assessment: turning challenges into opportunities. A. Gajewicz and T. Puzyn
(Eds.). Computational Nanotoxicology: Challenges, pitfalls and perspectives. Pan
Stanford Publishing. 2017. Submitted.

Xiao Y, Peijnenburg WJ, Chen G, Vijver MG. Impact of water chemistry on the
particle-specific toxicity of copper nanoparticles to Daphnia magna. Science of the

Total Environment. Under revision.



