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Abstract

With several therapeutic approaches in development for Huntington’s disease, there is 

a need for easily accessible biomarkers to monitor disease progression and therapy re-

sponse. We performed next generation sequencing-based transcriptome analysis, of  total 

RNA from peripheral blood of  91 mutation carriers (27 presymptomatic and, 64 symp-

tomatic) and 33 controls. Transcriptome analysis by DeepSAGE identified 167 genes 

significantly associated with clinical total motor score in Huntington’s disease patients. 

Relative to previous studies this yielded both novel genes, and confirmed previously iden-

tified genes, such as H2AFY, an overlap in results which has proven difficult in the past. 

Pathway analysis showed enrichment of  genes of  the immune system and of  target genes 

of  miRNAs which are downregulated in Huntington’s disease models. Using a highly 

parallelized microfluidics array chip (Fluidigm) we validated 12 of  the top 20 significant 

genes in our discovery cohort and 7 in a second independent cohort. The five genes 

(PROK2, ZNF238, AQP9, CYSTM1, and ANXA3) which were validated independently in 

both cohorts present a candidate biomarker panel for stage determination and therapeu-

tic readout in Huntington’s disease. Finally, we suggest a first, empiric formula predicting 

total motor score from the expression levels of  our biomarker panel. Our data support 

the view that peripheral blood is a useful source to identify biomarkers for Huntington’s 

disease and monitor disease progression in future clinical trials.
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Introduction

Huntington’s disease (HD) is a heritable neurodegenerative disorder that manifests itself  

through cognitive, psychiatric and motor symptoms. The pathology is caused by an ex-

panded CAG repeat in the HTT gene, resulting in a mutant huntingtin protein. Patients 

also develop peripheral pathology [1] and increasing evidence indicate that peripheral in-

flammation has a role as a disease progression modulator [2]. HD brain tissue is charac-

terized by mutant protein aggregate formation and neuronal cell loss with transcriptional 

deregulation as a prominent feature [3,4]. Several mechanisms have been implicated in 

this deregulation such as: histone modifications, transcription factor impairment and 

aberrant miRNA expression [5]. For HD clinical trials it is important to identify disease 

progression biomarkers. Longitudinal studies have shown that imaging biomarkers and 

clinical measures provide valuable information [6]. However clinical measures can be 

subject to inter-rater variability and imaging is expensive. A biomarker should be able to 

identify changes before clinical symptoms, should be easily obtained and respond well 

to disease-modifying interventions. As it is impossible to measure molecular biomarkers 

in brain, the use of  more accessible tissues has been proposed, such as blood. Leuko-

cytes involved in immune system regulation, make blood an ideal source for identifying 

HD events such as peripheral inflammation. In addition, as huntingtin is ubiquitously 

expressed, mutant huntingtin-specific changes could also be reflected by gene expres-

sion changes in blood. Several studies have identified HD blood mRNA changes using 

microarray technology but it has proven difficult to validate these across studies [7-9]. 

Advances in next generation sequencing offer new inroads to study the transcriptome. 

The digital nature of  next-generation sequencing allows for accurate quantification of  

unknown transcripts, low- and high-abundance transcripts. Sequence-based methods 

allow the measurement of  known as well as unknown transcripts, thus obviating the 

past limitation to the microarray content. In addition, sequence-based methods are more 

precise than microarrays and more robust across experiments because of  much greater 

depth and the absence of  the background signal and cross hybridization issues that were 

associated with microarrays [10]. One such method, the 3’ digital expression profiling 

(DGE/DeepSAGE) creates 21 base pair sequences (tags) near the 3’ ends of  polyade-
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nylated mRNAs [11] and uniquely identifies transcripts using these tags. Thus by count-

ing the matching transcripts one can estimate differences in gene expression between 

samples across a large dynamic range. In comparison with full-length RNA sequencing, 

DeepSAGE has the advantage of  comprehensive coverage of  all (transcribed) genes at 

great depth, at the cost of  not detecting different splice variants. In this study we in-

vestigated the suitability of  blood to identify HD transcriptomic biomarkers, validated 

the outcome in an independent cohort and derived a first empiric panel of  biomarkers 

capable of  predicting HD motor scores. Finally, we examined whether patient gene ex-

pression profiles could provide information about HD affected biological pathways. 

Material and Methods

Cohort assessment and characteristics

Peripheral blood from 33 controls, 27 presymptomatic mutation carriers and 64 symp-

tomatic mutation carriers were collected for the discovery cohort and independent val-

idation cohort from 12 symptomatic mutation carriers and 11 controls. Collection was 

done with IRB approval and after informed consent. All subjects were examined by an 

experienced neurologist using the motor section of  the Unified Huntington’s Disease 

Rating Scale (UHDRS) as described previously [12]. All the controls were free of  known 

medical conditions. Age considered for the analysis was the age at the time of  blood col-

lection. For a detailed summary of  the study cohort’s average age, gender composition, 

UHDRS TMS and HD progression total functional capacity scores (TFC) see Supple-

mentary Table S3. 

RNA isolation and DeepSAGE library production

RNA isolation and cDNA library production was performed as described previously 

[13].  In short total RNA was extracted from PAXgene blood tubes (Qiagen, Venlo, The 

Netherlands) and 1 μg of  total RNA was used to synthesize double-stranded cDNA con-

structs for next-generation sequencing.
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Sequence processing

Illumina GA Pipeline (version 1.5.1) was used for data sequence processing. The 

FASTQ files were analyzed using the open source GAPSS_B pipeline (http://www.lgtc.

nl/GAPSS) as described previously[13]. In addition, a custom Perl script was used to 

obtain gene annotations from BioMart and a custom python script was used to count the 

tags in each Ensembl gene using the SAM output files from “bowtie”. To avoid batch 

effects, the samples were randomized during RNA isolation and DeepSAGE sample 

preparation. To identify potential sample swaps and contaminations all samples were 

checked for the correct expression of  XIST and RPS4Y1 gender specific genes. Batch 

effects were assessed using multidimensional scaling (MDS) plots for gender, sequencing 

flow cell and disease stage and by using the edgeR bioconductor package for RNA-Seq. 

The sequencing gene expression data used for this study have been deposited in the Gene 

Expression Omnibus (GEO) database under accession number GSE51799.

Fluidigm RT-qPCR

cDNA synthesis was performed using 1 μg of  total RNA from each blood sample and 

using random hexamer primers with the Transcriptor First Strand cDNA synthesis kit 

(Roche). cDNA was diluted 4 times and 1.25 μl of  each sample was preamplified using 

2.5μl of  2x Taqman pre-amplification master mix (Applied Biosystems) and 1.25 μl of  

the primer pool (0.2pmol each primer/μl). The preamplifications were performed using 

a 10 minute 95 °C denaturation step and 14 cycles of  15 seconds at 95° C and 4 minutes 

at 60° C. The preamplified reactions were diluted 5x times in H
2
0. Five microliters from 

a sample mix containing preamplified cDNA and amplification Master mix (20mM 

MgCl
2
, 10mM dNTPs, FastStart Taq polymerase, DNA binding Dye loading reagent, 

50x ROX, 20x Evagreen) was loaded into each sample inlet of  the 48.48 dynamic array 

chip (Fluidigm Corporation, San Francisco) and 5 μL from an assay mix containing  DA 

assay loading reagent as well as  forward and reverse primers (10pmol/μl) were loaded 

into each detector inlet. The chip was then placed on the NanoFlexTM 4-IFC Controller 

for loading and mixing. After loading the chip was placed on the BioMarkTM Real-Time 

PCR System using a cycling program of  10 min at 95°C followed by 40 cycles of  95°C 

for 15 sec and 60°C for 30 sec and 72 °C for 30 sec. Data were analyzed using the Bio-
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Mark Gene Expression Data Analysis software to obtain Ct values and/or ∆Ct values. 

Fluidigm data were corrected for differences in input RNA using the geometric mean of  

3 reference genes ACTB, HPRT and RPL22.The array accommodated reactions for all 48 

validation samples and 23 genes in duplicate (duplicate values were averaged).

Statistical analysis

All DeepSAGE downstream analyses were performed at the gene level, and in case of  

multiple SAGE tags per gene, for example, as a consequence of  alternative polyadenyla-

tion, tags were summarized. All the tag counts for a certain gene across all 124 samples 

were summarized. Low abundance genes with <124 tags were removed as were the top 

3 overabundant genes (HBA1, HBA2 and HBB). Gene expression analysis was performed 

using the “limma” package and the “voom” function for RNA-seq data and by applying 

linear modeling and empirical Bayes statistics [14]. The model tested gene expression 

as a function of  the subject’s total motor score (TMS), while accounting for gender, 

age and relative cell content (measured by the ratio of  hemoglobin tags versus total 

aligned tags per sample) as confounders. Fluidigm expression analysis was performed 

using the linear modeling function in R and by testing the individual ∆ct expression val-

ues against the subject’s TMS, while accounting for gender and age. Global test pathway 

analysis was performed using the same model as was used for the DeepSAGE analysis. 

For GO pathway analysis the top P value pathways that consisted of  a minimum of  10 

genes were reported. For IPA analysis the top 250 DeepSAGE genes were used (P value 

<0.001) For TMS prediction a linear regression model with a “lasso” penalty was fitted 

using the R package “penalized”, optimizing the lasso tuning parameter using leave-one-

out cross-validation [15].The effects of  age and gender were not penalized. 
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Results

Gene expression analysis

Samples were sequenced at an average library size of  23.5 million tags. Alignment to 

the human genome resulted in an average library size of  20.4 million tags with at least 

one reported alignment (87.1%). A detailed description of  the sequenced samples RNA 

integrity numbers (RIN) and sequence alignment characteristics can be seen in Supple-

mentary Table S4. After removal of  very low abundance genes we could reliably detect 

a total of  16.657 genes. To find HD-specific stage or progression biomarkers the Deep-

SAGE gene expression data were modeled as a function of  the individual UHDRS total 

motor score (TMS); while accounting for gender, age and the percentage of  hemoglobin 

tags (a proxy for the reticulocyte content) as confounders. The TRACK HD study has 

shown that in presymptomatic HD gene carriers the motor score scale (0-124) is a strong 

predictor of  subsequent clinical conversion [6]. Our HD group consisted of  27 presymp-

tomatic (TMS=2.4±1.8) and 64 symptomatic (TMS=37.4±24.3).  After linear modeling, 

a total of  167 genes significantly associated with motor score at an adjusted P value of  

0.05 or less, suggesting that these constitute potential disease stage biomarkers. Of  these 

167 genes, 99 were positively associated with motor score and upregulated in HD sam-

Figure 1. Boxplots of  the DeepSAGE expression values for the top 3 upregulated genes dis-
covered from linear modeling with TMS and for all 124 samples. The plot confirmed our linear 
modelling analysis and demonstrated a gradual increase in gene expression across the different 
total motor score groups.
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ples compared with controls, while 68 were negatively associated and downregulated. 

The top 10 upregulated and top 10 downregulated genes are shown in Table 1. When 

we grouped the samples based on TMS we could confirm our linear modeling results. 

Boxplots for the top 3 upregulated genes showed a gradual increase in gene expression 

with increasing TMS (Figure 1). A full list of  all the genes significantly associated with 

TMS as well as with total functional capacity score (TFC) disease staging are provided 

in Supplementary Tables S5 and S6 respectively (available online). Reassuringly in the 

TFC based analysis, 60% of  the genes were the same as the TMS-based significant genes.  

Among the top TMS P value significant genes were genes involved in regulation of  cir-

cadian rhythm such as prokineticin 2 (PROK2), genes associated with motor learning 

such as protein tyrosine phosphatase non receptor 4 (PTPN4) and genes implicated in the 

development of  the brain cortex such as G protein coupled receptor 56 (GPR56) [16-18]. 

The genes with the biggest expression change but lacking statistical significance were 

the small nuclear RNA host gene 9 (SNGH9) and the major histocompatibility complex 

class II DQ alpha1 gene (HLA-DQA1). HLA-DQA1 has been previously reported as a 

candidate RNA biomarker in human lymphocyte microarray data from HD patients, 

ranking among the top most changed genes [9]. The highest expressed significant gene 

was S100 calcium binding protein A9 (S100A9) with a log2 expression value of  11.7 

while the lowest expressed significant gene was sperm acrosome associated 3 (SPACA3) 

with a value of  -2.8, indicative of  the high dynamic range of  the sequencing platform 

(211.7 - (-2.8) =23170 fold).

Using EBI Gene Expression Atlas (http://www.ebi.ac.uk/gxa/) and literature searches, 

we found that 40 of  the 167 genes had been previously reported as differentially ex-

pressed in at least one HD gene expression study with the same direction in expression 

change. These included mechanistic target of  rapamycin (MTOR), a potential target for 

therapy in HD, H2A histone family member Y (H2AFY), a gene whose transcript lev-

els have been recently reported to mark HD activity in human and mouse, CDC-like 

kinase 3 (CLK3) another gene from the top 99 genes from the previous study, and aqua-

porin 9 (AQP9), a gene that has been described as a potential biomarker in blood [8,9,19].
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Global test pathway analysis

To elucidate affected biological pathways in HD blood that were associated with TMS, 

we used the “Global test” bioconductor package [20]. We included KEGG pathways, 

GO terms and predicted / validated target genes of  miRNAs (Broad-GSEA). In the 

KEGG pathway analysis (see Supplementary Table S7) we found terms frequently re-

ported in HD and neurodegenerative disorder pathway analyses such as neuroactive 

ligand receptor interaction, amyotrophic lateral sclerosis and long term depression. We 

also found less common terms such as the pentose phosphate pathway (PPP), Jak-STAT 

signaling and type II diabetes mellitus. The genes that contributed most to PPP were 

glucose phosphate isomerase (GPI), aldolase A (ALDOA), phosphogluconolactonase 

(PGLS) and transketolase-like 1 (TKTL1) an enzyme linking PPP with the glycolytic 

pathway. Mitochondria-associated metabolic dysfunction and increased glycolytic rate 

have been previously associated with HD [21]. The Jak-STAT pathway, a common sig-

naling pathway used by many cytokines was characterized by the upregulation of  ser-

ine-threonine protein kinase (AKT1), suppressor of  cytokine signaling 3 (SOCS3), son of  

sevenless homolog 2 (SOS2) and interferon-alpha/beta receptor beta chain (IFNAR2). 

Finally, for diabetes for which an increased frequency in HD patients has been previous-

ly described, the most significant genes were MTOR and protein kinase C delta (PRKCD) 

[22]. In the GO analysis we identified terms such as NADP binding, positive regulation 

of  interleukin 6 production and response to cholesterol. The most significant genes for 

NADP binding were neuronal nitric oxide synthase 1 (NOS1), flavin containing mono-

oxygenase 4 (FMO4) and homocysteine methyltransferase reductase (MTRR). The de-

regulation of  genes linked to response to cholesterol could also be important since cho-

lesterol biosynthesis has been shown to be impaired in HD cells, while Leoni et al. have 

demonstrated that 24OHC, a brain cholesterol turnover marker, correlated with disease 

progression [23]. All the genes reported for response to cholesterol can be seen in a Glob-

al test covariate plot in Supplementary Figure S5A. This result was also in agreement 

with Chou et al. who showed that the mutant Htt protein suppresses the secretion of  

CCL5 [24]. The analysis for enrichment of  target genes of  miRNAs showed enrichment 

of  miR-138 and miR-218 targets. These miRNAs were found downregulated in YAC128 

and R6/2 HD mouse models [25]. For the miR-138 and miR-218 target genes, a separate 
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enrichment analysis, using DAVID (http://david.abcc.ncifcrf.gov), showed that terms 

enriched specifically for miR-138 target genes were histone modification and axon guid-

ance while terms enriched specifically for miR-218 target genes were ubiquitin like con-

jugation, proto-oncogene and mental retardation. Other potentially interesting miRNAs 

that were identified previously were miR-18a, miR-504, miR-337 and miR-492 [26],[27]. 

To further validate our “Global test” pathway analysis results and obtain a better visu-

al representation of  the interconnections of  the genes involved in the above biological 

processes we also analyzed our data through the use of  the Ingenuity Pathway Analysis 

(IPA) (Ingenuity® Systems, www.ingenuity.com). Top diseases and functions reported 

by IPA network analysis were nervous system development, skeletal and muscular disor-

ders but also immune cell trafficking and inflammatory response (Supplementary Table 

S8). The gene network plot for the genes and molecules involved in the IPA network 6 

and for skeletal and muscular disorders, connective tissue disorder and cancer are shown 

in Supplementary Figure S5B. Interestingly this gene plot interconnected terms such as 

histones, 26s proteasome, pro-inflammatory cytokines, Hsp70 and insulin; all of  which 

have previously been implicated in HD. Canonical pathway analysis using IPA further 

confirmed our initial “Global test” results since common pathways reported were those 

of  diabetes mellitus, Toll-like receptor and T cell receptor signaling. Finally, upstream 

regulators from our top genes were reported to be IL-2, IL-6 and IL-12 (complex) by IPA 

analysis, which was also in good correlation with the Global test analysis.

Validation

To validate the DeepSAGE gene expression results, we performed nanoliter RT-qPCR 

using the Fluidigm Biomark microfluidics chip [28], using 25 samples from the origi-

nal discovery cohort as technical validation, supplemented with 23 patient and control 

samples as a biological validation in an independent cohort. Twenty genes in total, all 

from our DeepSAGE list of  167 significantly differentially expressed genes, were exam-

ined; the top 12 based on P value, 6 further down the 167 gene list based on differen-

tial expression in previous HD studies (H2AFY, AQP9, ANXA3, RGS14, ZNF238, NOL3) 

and another 2 genes based on possible involvement in HD pathology (CEBPA, TAF15) 

[3,8,9,19,29-31]. Fluidigm data were analyzed using a linear model as a function of  

TMS, while accounting for gender and age. In the basic validation cohort, 12 out of  
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the 20 genes tested were significantly associated with TMS, while in the independent 

validation cohort, 7 out of  the 20 genes were significant (see Table 2). Most other genes, 

while not reaching significance, showed trends in the same direction as in the discovery 

cohort. Five of  the 20 genes (PROK2, ZNF238, AQP9, CYSTM1 and ANXA3) were the 

most robust and significantly associated with TMS in both the discovery and the inde-

pendent cohort. The intergroup relative expression levels of  these 5 genes across HD 

versus control samples, irrespective of  TMS, can also be seen in Figure 2. Finally, when 

the linear modeling analysis was performed on all Fluidigm samples (n=48), we were 

able to validate 12 of  the 20 genes tested (see rightmost column of  Table 2).

Biomarker motor score prediction

To evaluate which panel of  genes would optimally predict TMS, we fitted a linear re-

gression model with a “lasso” penalty using the Fluidigm expression data, age and gen-

der as predictors and TMS as the response. The gene expression values of  three genes 

Figure 2. Relative expression of  the most significant Fluidigm RT-qPCR genes across the two 
independent cohorts for controls and HD patients. Asterisks represent statistical significance 
from a student’s t-test (* P<0.05, ** P<0.01). Error bars represent SEM values.
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(AQP9, ANXA3 and ARL4C), together with age and gender, were the best predictors of  

TMS. The last gene (ARL4C) was non-significantly downregulated in HD blood and 

specifically served the purpose of  enlarging the “biomarker chip” set towards tolerance 

for smaller individual gene changes, providing additional informativeness. The results 

of  the cross-validated prediction analysis can be seen in Figure 3. The prediction model 

performed better for earlier disease stages (Stage I, II), while it was less accurate for later 

stages (Stage III-V) and especially for patients with a motor score of  50 points and over. 

Only one patient was assigned a predicted TMS greater than 50 points (patient no.29). 

This patient was the oldest HD carrier (>70 years).  We also observed that for one patient 

the blood-based signature indicated a higher predicted motor score compared to the clin-

ical motor score. This could be explained by the fact that this patient had a much lower 

TFC score (TFC=4) compared to other patients with similar motor score, indicative 

of  a more advanced disease stage. Finally, the control sample with the highest clinical 

motor score (control no.4) was our oldest control sample (69 years) and also received a 

higher predicted score. When we plotted the DeepSAGE gene expression levels of  these 

3 genes across the controls, the presymptomatic carriers and the different HD TFC-based 

disease stages we could confirm that for ANXA3 and AQP9 there was an increase in gene 

expression even in the presymptomatic stage. For ARL4C, contrary to ANXA3 and AQP9 

there was a decrease in gene expression, the expression changes were more prominent 

in the more advanced disease stages and hence provided complementary information 

to the other two genes (Figure 4). On the basis of  this analysis, we formulated a TMS 

predictive equation to measure the disease stage based on gene expression of  the 3 genes 

(see below Figure 4).
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Figure 3. Plot of  clinical TMS against cross-validated predicted TMS based on Fluidigm 
RT-qPCR gene expression data. The cross-validated motor score is predicted for each sub-
ject by a model trained on a data set in which the subject itself  was left out. Stage classifi-
cation was based on total functional capacity (TFC) scores (Stage I, II = TFC score 7-13/
Stage III-V=TFC score 0-7).
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Discussion

To date, thousands of  disease biomarkers have been published while <100 have been 

validated in independent cohorts [32]. This inability to validate disease biomarkers has 

been attributed to the lack of  large enough study cohorts as well as standardization in 

sample collection and storage [33]. For HD, validation has been even more challeng-

ing as the disease presents itself  through a variety of  symptoms and progression rates. 

For these reasons we performed gene expression profiling, taking advantage of  the sen-

sitivity of  next-generation sequencing and Fluidigm technologies, and our experience 

in standardized blood collection and sample analysis[34,35]. Using the UHDRS TMS 

as a clinical parameter we identified a set of  167 genes differentially expressed in HD 

blood. Furthermore, we validated our findings by a targeted approach, using an entirely 

different technology. Technical validation (in the same cohort) confirmed 12/20 of  the 

discovered genes and biological validation (in a different cohort) confirmed 7/20 of  the 

discovered genes in a different cohort. Our discovery and validation cohorts (n=124 and 

n=48) are to our knowledge among the largest to have been used in HD gene expression 

studies. In contrast to previous studies, we have selected a sizable group of  20 genes for 

validation in duplicate (~2300 reactions). Indeed, the very fact that so many of  the top 

20 discovered genes can be validated argues in favor of  the robustness of  the discovery 

approach. Genes with more variation or smaller changes in principle are more difficult 

to validate in a small cohort. Yet, we should stress that these biomarkers presently con-

stitute a candidate biomarker set that requires further validation in other HD cohorts 

before further used in a clinical setting.

The Fluidigm qPCR analysis yielded a panel of  5 genes (PROK2, ZNF238, AQP9, 

CYSTM1 and ANXA3) as a potential HD biomarker set and this was validated in both 

the original cohort and an independent validation cohort. PROK2 is expressed in the 

suprachiasmatic nucleus (SCN) and has been proposed to have a role in the regulation 

of  circadian rhythms [17]. Circadian rhythm alterations have been shown to correlate 

with cognitive impairment in HD [36] and in HD models pharmacological imposition 

of  sleep slows cognitive decline and reverses deregulation of  PROK2 [37]. As a blood 

marker of  HD progression PROK2 is very promising, since this could also be reflecting 
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brain changes. ZNF238 is a transcriptional repressor involved in brain development and 

myogenesis [38] and increasing evidence suggests that gene repression mechanisms are 

associated with HD [39,40]. This is in agreement with the reported involvement in HD 

of  H2AFY, which is also involved in transcriptional repression and further studies link 

HD with SP1, another zinc finger protein [41]. Aquaporins are water selective channels 

with possible roles in the nervous system and expression levels were upregulated after 

brain injury [42]. The presence of  AQP9 in blood could represent peripheral or central 

inflammatory events since a recent gene expression study showed that the mRNA levels 

of  AQP9 and four other genes can discriminate patients with chronic inflammation from 

controls [43]. CYSTM1 is a relatively unknown gene and bioinformatics analysis has 

demonstrated a  role in stress response and confer tolerance to heavy metals such as cad-

mium and copper [44]. Finally ANXA3 was upregulated in two neuronal injury models 

[45],[46]. It is important to note that the levels of  annexin ANXA1 have also been found 

upregulated in a previous gene expression study in HD blood [8].

Our pathway analysis showed a wide range of  processes changed in HD. The most 

prominent terms pointed towards the involvement of  the immune system. It has been 

suggested by previous studies that pro-inflammatory cytokines such as IL-6, IL-8, and 

TNF-α can be used as peripheral HD biomarkers [47,48]. Other terms such as diabe-

tes mellitus could also be interesting since mouse models of  HD can develop diabetes 

mellitus [49], and it was shown that type II diabetes exhibits common features with oth-

er neurodegenerative disorders [50]. Finally, we discovered enrichment of  target genes 

of  miRNAS (miR-138/218) previously reported to be downregulated in HD models. 

This warrants further investigation as miR-9 was found to be downregulated in human 

HD brain samples and target complexes, such as REST, that regulates neuronal gene 

expression in non-neuronal tissues [51]. A disadvantage of  whole blood may be con-

sidered its cellular heterogeneity. The more informative white blood cells comprise a 

small percentage of  the total cell population, while 95% of  blood consists of  red blood 

cells, with hemoglobin transcript percentages, ranging from 30-90%. This could well 

account for the fact that until now less sensitive techniques failed to replicate results 

between different HD blood microarray studies [52]. For the same reason, in the past, 

most expression studies used isolated peripheral blood mononuclear cells. However, it 
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is not always possible to process samples directly after collection and preparation delays 

have been shown to induce biases [53]. In the present study, taking advantage of  the 

digital nature of  sequencing, we identified differentially expressed genes across a wide 

dynamic range, with high sensitivity, directly from whole blood. This provides a clearer 

image of  the transcriptional alterations in HD; although biomarkers with higher expres-

sion will be more useful and easier to detect with less sensitive routine techniques. Our 

motor score prediction analysis showed that the gene expression predictive power was 

stronger for early-stage and weaker for later-stage patients. While this could be explained 

by the increasing impact of  generalized tissue degeneration in late disease stages, the 

increased reliability in earlier stages is in fact of  major benefit as, notably in this early 

phase, robust therapeutic readouts are challenging. Furthermore, previous gene expres-

sion studies have found small individual gene expression changes in HD blood. In the 

future and for a potential “biomarker chip” to survive further validation, a larger group 

of  genes may be required that will better allow for variation in individual gene expression 

changes. For this reason, we used the predictive capabilities of  the LASSO algorithm to 

see which genes would jointly perform most optimally in UHDRS TMS prediction. The 

formula we have derived links a small set of  easily definable gene expression levels to the 

UHRDS Total Motor Score, and is thus a promising candidate biomarker set to monitor 

disease state, progression and putative therapeutic effect of  interventions. Taking into ac-

count the great symptomatic variability in HD patients, different sets of  biomarkers can 

be further trained and optimized, depending on the disease stage that is most prominent 

in the group of  patients included in each study.

Considering the complexity of  HD most likely a collection of  biomarkers will best define 

disease progression and response to therapy. The biomarker changes found in this study 

monitor disease progression in blood and may be relatively independent of  the changes 

taking place in brain. Such biomarkers, if  validated clinically, may be useful  as surrogate 

markers to test the effectiveness of  therapeutic strategies even when they may not have a 

robust relationship with actual clinical endpoints [54].

Owing to the design of  our study, comparing various HD stages with unaffected con-

trols, we cannot exclude that the detected changes might also (partly) track progression 

of  other neurodegenerative diseases. Thus, prior to putative diagnostic application, this 
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needs to be further assessed. However, this does not reduce the potential differentiating 

significance of  this biomarker panel for prognostic application in a known (pre)symp-

tomatic HD carrier setting. 

In conclusion, we describe the development of  a panel of  candidate HD biomarkers 

which can be easily measured by transcript analysis of  whole blood and which may have 

application in disease staging and the monitoring of  therapeutic effectiveness.  Longitu-

dinal and cross sectional studies in additional cohorts will be needed to further validate 

this panel before its application in the clinic. Finally, the assessment of  the disease rele-

vance of  the  genes involved may well contribute  to finding new HD therapeutic targets. 
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Supplementary Table S4.  Sample RNA and sequencing quality characteristics for all 
124 samples used for DeepSAGE gene expression profiling.

Average RNA Quality

(Range 1-10)

8.4

(7 - 9.6)

Average Number of

Total Reads Sequenced

23.5 Million

(11 – 37)

Average Percentage of Total 
Reads Aligned a

87.1% (20.4 M)

(73 – 97 %)

Average Percentage of Total 
Reads Supressed b

9.37 % (2.2 M)

(2 – 17 %)

Average Percentage of Total 
Reads Failed To Align

3.54 % (0.8 M)

(0.6 - 15 %)

a At least one reported alignment.

b Bowtie –m option - suppress all alignments for a particular read or pair if  more than 2 
reportable alignments exist for it.
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