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• Connection between the dynamic fate
characterization of CuNPs and their tox-
icity was drawn.

• Toxicity of CuNP suspension varies in
dynamic and static exposure treat-
ments, when organic matter (OM) was
added.

• Toxicity of CuNP suspensions results
from the combined effect of the parti-
cles and their released ions.

• The particle-specific toxicity of CuNPs
decreased with increasing pH and con-
tents of divalent cations and OM.
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Toxicity ofmetallic nanoparticle suspensions (NP(total)) is generally assumed to result from the combined effect of
the particles present in suspensions (NP(particle)) and their released ions (NP(ion)). Evaluation and consideration of
howwater chemistry affects theparticle-specific toxicity ofNP(total) are critical for environmental risk assessment
of nanoparticles. In this study, it was found that the toxicity of Cu NP(particle) to Daphnia magna, in line with the
trends in toxicity for CuNP(ion), decreasedwith increasing pH andwith increasing concentrations of divalent cat-
ions and dissolved organic carbon (DOC). Without the addition of DOC, the toxicity of Cu NP(total) to D. magna at
the LC50was drivenmainly by Cu NP(ion) (accounting for ≥53% of the observed toxicity). However, toxicity of Cu
NP(total) in thepresence of DOC at a concentration ranging from5 to 50mgC/L largely resulted from theNP(particle)
(57%–85%),which could be attributable to the large reduction of the concentration of CuNP(ion) and the enhance-
ment of the stability of CuNP(particle) when DOCwas added. Our results indicate that water chemistry needs to be
explicitly taken into consideration when evaluating the role of NP(particle) and NP(ion) in the observed toxicity of
NP(total).

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The fast development of nanotechnology over the past decade has
boosted the manufacture and application of engineered nanomaterials
in industrial and consumer products. For example, Cu nanoparticles
(CuNPs) currently are widely utilized in antimicrobials,
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Table 1
Overview of the experimental setup for testing the fate and toxicity of CuNPs across a
range of water chemistry.

Trial no. Condition pH Cation conc. (mM) DOC conc. (mg/L)

1 Static 6 2.5 0
2 Static 7.8 2.5 0
3 Static 9 2.5 0
4 Static 7.8 0 0
5 Static 7.8 5 0
6 Static 7.8 2.5 5
7 Static 7.8 2.5 25
8 Static 7.8 2.5 50
9 Dynamic 6 2.5 0
10 Dynamic 7.8 2.5 0
11 Dynamic 9 2.5 0
12 Dynamic 7.8 0 0
13 Dynamic 7.8 5 0
14 Dynamic 7.8 2.5 5
15 Dynamic 7.8 2.5 25
16 Dynamic 7.8 2.5 50

Conc. = concentration.
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semiconductors, catalysis and skin products. The rapid increase in their
manufacture, use and disposal inevitably results in an increasing likeli-
hood for CuNPs to be released into aquatic environments (Vale et al.,
2016). Many studies have found that CuNPs are highly toxic to a wide
range of organisms, such as algae (Adam et al., 2015a; Zhao et al.,
2016), mussels (Hu et al., 2014), crustaceans (Song et al., 2015a; Xiao
et al., 2016), and fishes (Hua et al., 2014; Song et al., 2015b). Hence, con-
cerns regarding the environmental safety of CuNPs deserve to be
emphasized.

Although a growing number of studies involved in nanotoxicology
have been conducted over the past decade, issues regarding the mech-
anisms of toxicity of NPs are still under debate, especially the topic
whether particles themselves or their released ions are themain drivers
for the toxicity of suspensions of slowly dissolving metallic NPs. Some
recent studies found that the toxicity of metallic NPs was mainly due
to their released ions (referred to as NP(ion) hereafter) (Jo et al., 2012;
Adam et al., 2015b), while others revealed that the cause underlying
theNPs toxicitywas largely attributable to theNPs themselves (referred
to as NP(particle) hereafter) (Hua et al., 2014; Santo et al., 2014; Wang et
al., 2016). These inconsistent conclusions may result from ignoring the
effects of the physicochemical properties of test medium on the fate
and toxicity of NP(particle) and NP(ion). In fact, once emitted to aquatic en-
vironments, metallic NPs are commonly subject to undergo a series of
environmental processes, such as dissolution and aggregation followed
by sedimentation. As a consequence of these processes, a metallic NP
suspension is generally amixture of NP(particle) andNP(ion). Factors capa-
ble of influencing these environmental processes have the potential to
affect the fate and toxicity of NP(particle) and NP(ion) in water systems,
whichmay further result in the change of the contribution of NP(particle)
and NP(ion) to the toxicity of NP suspensions. Currently, it is widely
known that water chemistry parameters, such as pH (Mohd Omar et
al., 2014), electrolytes (especially divalent cations) and natural organic
matter (NOM) (Mukherjee and Weaver, 2010; Grillo et al., 2015), can
impact the environmental behavior and fate of NPs and the toxicity of
NP suspensions to biota. However, how the water chemistry affects
the particle-specific toxicity and the relative contribution of NP(particle)
and NP(ion) to the observed toxicity of NP suspensions remains an elu-
sive question (Minetto et al., 2016).

In this study, the behavior, fate and toxicity of CuNPs and copper ions
to Daphnia magna across a range of water chemistry parameters were
assessed. Furthermore, the relative contribution of NP(particle) and
NP(ion) to the toxicity of CuNP suspensions upon varying water chemis-
try was determined.

2. Materials and methods

2.1. Testing materials and organisms

CuNPs (nominal size, 25 nm; specific surface area, 30–50 m2/g; pu-
rity, 99.9%; shape, spherical) were obtained from IoLiTec (Heilbronn,
Germany). Aldrich humic acid (sodium salt) (HA) was used as a stan-
dardized natural dissolved organic carbon (DOC). A stock solution was
prepared by dissolving HA in 0.002 N NaOH in deionized water. The
HA solution was then stirred overnight and filtered through a 0.2 μm
cellulose acetatemembrane and subsequently stored at 4 °C prior to ex-
periments. The total organic carbon (TOC) content of the prepared stock
solutionwasmeasured by a TOC analyzer (TOC-VCPH, ShimadzuCorpo-
ration). Daphnia magnawas selected as themodel organism for toxicity
testing. The test organisms were fed with freshly cultured
Pseudokirchneriella subcapitata every three days and maintained inside
a controlled-temperature chamber under a 16:8 light-dark cycle (20
± 1 °C). At intervals of about 4 months, the sensitivity of the daphnid
culture was checked with the reference toxicant K2Cr2O7 to ensure the
sensitivity of the daphnid culture remained within the limits as set by
the OECD guideline (24 h 50% effective concentration = 0.6–2.1 mg/L
K2Cr2O7) (OECD, 2004).
2.2. Preparation of suspensions of CuNPs

ISO standard testing medium (STM), recommended by OECD, was
used to prepare CuNP suspensions. The STM (pH 7.8 ± 0.2) contained
2 mM of CaCl2·2H2O, 0.5 mM of MgSO4·7H2O, 0.77 mM of NaHCO3,
and 0.08 mM of KCl. Specifically, stock suspension of CuNPs
(250 mg/L) was prepared in MilliQ water after 30 min of bath-sonica-
tion to disperse the particles, prior to each experiment. The prepared
stock suspension of CuNPs was then immediately diluted to the STM.
In order to understand the influence of water chemistry on the fate
and toxicity of CuNPs, CuNP suspensions in which the water chemistry
was modified, were prepared immediately by a series of dilution of
the prepared stock suspension of CuNPs. The modification of water
chemistry of the exposuremediawas achieved by altering themost crit-
ical environmental factors assumed to affect NP toxicity, which is pH,
and divalent cation andDOC concentrations. The overview of the testing
schemewith the details of the different trials is presented in Table 1. For
the effects of pH, besides at pH 7.8, suspensions of CuNPs at pH 6 and 9
(adjusted by addition of 0.1 M NaOH or 0.1 M HCl) were also prepared;
for the divalent cation treatments, suspensions of CuNPs with 0, 2.5 and
5 mM of cations were prepared by adding CaCl2·2H2O and
MgSO4·7H2O in a fixed molar ratio of 4:1; for assessing the effects of
DOC on toxicity, CuNP suspensions with 0, 5, 25 and 50mg C/L (carbon
per liter) were prepared by diluting the stock HA solutions. The ranges
of the water chemistry parameters were selected to accommodate the
optimal conditions for growth of D. magna and they encompass the
range commonly observed in natural environments (Vijver et al.,
2008; Ottofuelling et al., 2011; Hammes et al., 2013). Moreover, most
previous studies regarding the fate and toxicity of NPs were performed
under static condition (i.e., stored without disturbance along the expo-
sure duration). However, by definition, the ‘real’ environment is dynam-
ic (Godinez and Darnault, 2011; Lv et al., 2016), and accordingly, fate
and toxicity of NPs under dynamic exposure condition deserve to be
studied. To compare the fate and toxicity of CuNPs to D. magna under
static and dynamic conditions, one set of the prepared CuNP suspen-
sions was maintained statically under a 16:8-h light-dark cycle (20 ±
1 °C) during 48 h of incubation and the other set of CuNP suspensions
was stored on a laboratory shaker with a vibration speed of 140 rpm
under identical conditions (i.e., 16:8-h light-dark cycle and 20 ± 1 °C).
It was verified (visual observation) that the vibration speed applied
(140 rpm) had no adverse effects on the well-being of D. magna
throughout the 48 h of exposure.



Table 2
Hydrodynamic diameter and zeta-potential of CuNPs during 48 h of incubation in systems
with various water chemistry.

Trial no. Hydrodynamic diameter (nm)a Zeta-potential (mV)a

1 h 24 h 48 h 1 h 24 h 48 h

1 754 ± 217 903 ± 194 1383 ± 360 −13 ± 2 −14 ± 2 −9 ± 1
2 637 ± 105 1008 ± 116 1650 ± 335 −17 ± 1 −12 ± 3 −10 ± 1
3 745 ± 93 1307 ± 172 2436 ± 490 −9 ± 2 −6 ± 3 −5 ± 4
4 465 ± 84 641 ± 173 518 ± 80 −34 ± 4 −27 ± 1 −26 ± 1
5 715 ± 134 1474 ± 144 1865 ± 132 −10 ± 2 −10 ± 2 −8 ± 1
6 369 ± 41 486 ± 21 512 ± 23 −18 ± 1 −16 ± 1 −16 ± 2
7 373 ± 60 457 ± 23 468 ± 16 −19 ± 1 −18 ± 1 −17 ± 1
8 359 ± 19 445 ± 27 495 ± 17 −19 ± 1 −16 ± 3 −15 ± 1
9 ND 1078 ± 219 1617 ± 293 ND −9 ± 3 −7 ± 3
10 ND 1029 ± 239 1761 ± 985 ND −8 ± 4 −6 ± 3
11 ND 2050 ± 319 1203 ± 562 ND −7 ± 1 −3 ± 2
12 ND 414 ± 82 891 ± 390 ND −23 ± 4 −19 ± 1
13 ND 879 ± 169 1237 ± 219 ND −5 ± 3 −4 ± 3
14 ND 282 ± 10 221 ± 23 ND −12 ± 2 −12 ± 1
15 ND 142 ± 25 118 ± 14 ND −12 ± 1 −11 ± 1
16 ND 127 ± 10 127 ± 9 ND −11 ± 1 −11 ± 2

ND means not determined.
a Hydrodynamic diameter and zeta-potential are expressed as the mean ± standard

deviation (n = 3).

1331Y. Xiao et al. / Science of the Total Environment 610–611 (2018) 1329–1335
2.3. Physicochemical characterization of CuNPs

The morphology and primary size of the CuNPs in the STM were
characterized using transmission electron microscopy (TEM, JEOL
1010, JEOL Ltd., Japan). The primary particle size of CuNPs was analyzed
using Nano Measurer 1.2 (Fudan University, China). The hydrodynamic
diameters of CuNPs upon various exposure scenarios prepared above
were measured in triplicate immediately after preparation (which was
around 1 h for the preparation of CuNP suspensions, to which we re-
ferred to as 1 h hereafter) and after 24 and 48 h of preparation by dy-
namic light scattering (DLS) on a Zetasizer Nano-ZS instrument
(Malvern, Instruments Ltd., UK), at a scattering angle of 90° and a tem-
perature of 20 °C. The zeta potential of each copper suspension at the
same time point was measured by ZetaPALS software based on the
Smoluchowski equation.

The changes of the total Cu concentration and dissolution profile in
the exposure suspensions uponmodification of pH, cation andDOC con-
centrationswithin 48 hweremonitored separately. This was done at an
actual CuNP concentration of about 800 μg/L, which is in the range (10–
920 μg/L) of the predicted CuNP concentration in aquatic environments
(Chio et al., 2012). The prepared CuNP suspensions across a range of
water chemistry, as presented in Table 1, were kept for increasing
time periods (1, 12, 24, 36 and 48 h). At each sampling time point, 2 in-
dependent CuNP suspensions with the same water chemistry as dupli-
cates were used to measure the concentration of each Cu fraction. For
each suspension, a 5 mL sample was collected carefully from the posi-
tion around 2 cm below the surface of each suspension and then
digested by 65% nitric acid at room temperature for at least 1 d before
being analyzed by inductively coupled plasma optical emission spec-
trometry (ICP-OES). In this way, the total Cu concentration in the
water column (i.e., the sum of the dissolved Cu and particulate Cu)
could be measured. After sampling for the total Cu concentration mea-
surement, a 10mL of each suspension was pipetted from thewater col-
umn and subsequently centrifuged at 30,392g for 30min at 4 °C (Sorvall
RC5B plus centrifuge, Fiberlite F21-8 × 50 y rotor). The supernatants
were then filtered through a syringe filter with 0.02 μm pore diameter
(Anotop 25, Whatman). The filtrates were digested by nitrate acid and
ICP-OES was used to determine the dissolved Cu concentration.

2.4. Acute toxicity testing

All acute toxicity tests in this study were carried out according to
OECD Guideline 202. Five neonates (b24 h) were exposed for 48 h to
each suspension of CuNPs (referred to as CuNP(total) hereafter) prepared
according to Table 1. During the 48 h acute toxicity test, daphnids were
not fed. In order to obtain the dose-response curves of CuNP(total) to
daphnids, a series of exposure concentrations for CuNP(total) with the
same water composition was employed to expose the daphnids. Each
concentration tested, consisted of 4 replicates. To calculate the toxic ef-
fects of the dissolved ions released from CuNPs (referred to as CuNP(ion)
hereafter), the dose-response curves of Cu(NO3)2 solutions to daphnia
neonates for 48 h across a range of water chemistry were also
determined.

2.5. Data analysis

The specificmodes of action of NP(ion) andNP(particle) remain unclear.
Nevertheless, some recently published papers found that the mode of
action of NP(particle) differed from that of NP(ion) (Poynton et al., 2011;
Poynton et al., 2012; Rainville et al., 2014). Hence, it was assumed that
the modes of action of CuNP(ion) and CuNP(particle) would be dissimilar.
In this circumstance, the toxic effects of CuNP(particle) can be deduced
by using the response addition model (Backhaus et al., 2000):

E totalð Þ ¼ 1− 1−E ionð Þ
� �

1−E particleð Þ
� �� � ð1Þ
where E(total), E(ion) and E(particle) represent the toxic effects caused by the
nanoparticle suspensions, and the ions and the NPs present in the sus-
pensions (scaled from 0 to 1), respectively. In the present study, E(total)
was measured experimentally. The time weighted average (TWA) ion
concentration at each exposure concentration of CuNPs, calculated
from Eq. (2), was used to analyze the toxicity caused by copper ions
(i.e., E(ion)) in the suspensions of CuNPs, according to the concentra-
tion-response curves of Cu(NO3)2 towards D. magna. This makes E(parti-
cle) as the only unknown, allowing for direct calculation of the effects
caused by a specific concentration of NP(particle).

CT ¼ C1T1 þ C2T2 þ C3T3 þ…CnTn

T1 þ T2 þ T3 þ…Tn
ð2Þ

where CT is the TWA concentration and Ci is the analyte concentration
observed for time Ti, and so on, until time Tn.

The median lethal concentration (LC50) and the related 95% confi-
dence intervals (CI) were calculated using the log (inhibitor) versus
normalized response-variable slope function in Graphpad Prism 5.

3. Results

3.1. Physicochemical characterization of CuNPs

The image captured by the transmission electron microscopy dem-
onstrated that the pristine shape of the CuNPs was spherical and
CuNPs aggregated rapidly after submersion into the exposure medium
(Fig. S1). Size analysis was not performed, as no individual well-defined
NPs could be determined by TEM. The hydrodynamic diameters and
zeta-potentials of CuNP suspensions across a range of water chemistry
were presented in Table 2. At a cation concentration of 2.5 mM, in
both the static and dynamic exposure treatments the NPs aggregated
to micro-size aggregates after 48 h of incubation in the testing media
with pH ranging from 6 to 9 and without the addition of DOC (trials
1–3 and 9–11). The hydrodynamic diameter of CuNPs remained around
518 nm after 48 h of incubation in the static treatment without the ad-
dition of cations (trial 4). However, the addition of divalent cations en-
hanced the extent of aggregation of the NPs (trials 2, 4 and 5). The zeta-
potential of the NP suspension without the addition of divalent cations
in the static treatment was around−30 mV within 48 h of incubation,
while it decreased to around −10 mV at 5 mM of cations. In the static
treatments, the aggregate size of CuNPs after 48 h of incubation was
around 500 nm with the addition of DOC at a concentration ranging
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from 5 to 50 mg C/L (trails 6–8). In the dynamic treatments, the aggre-
gate sizes of CuNPs were around 200 nm at 5 mg C/L and 100 nm at 25
and 50 mg C/L within 48 h of incubation (trials 14–16).

After 48 h of incubation, 91%, 76% and 60% of the total added CuNPs
still remained in the water column in the static exposure treatments at
pH 6, 7.8 and 9, respectively (Fig. 1A). In the static treatments, 78%, 64%
and 54% of the total added CuNPs were dissolved after 48 h of incuba-
tion at pH 6, 7.8 and 9, respectively (Fig. 1B). The profiles of the total
amount of Cu and CuNP(ion) remaining in the water column during
48 h of incubation in the static and dynamic exposure settings across
the range of pH from 6 to 9 were similar (Fig. 1A–B). At the cation con-
centrations of 0, 2.5 and 5 mM, the total amount of Cu remaining in the
water column after 48 h was 88%, 76% and 71% in the static treatments
and 94%, 83% and 52% in the dynamic treatments, respectively (Fig. 1C).
Around 65% of the total added Cuwas dissolved at the cation concentra-
tions ranging from 0 to 5 mM in both the static and the dynamic treat-
ments, except at the concentration of 5 mM in the dynamic treatment,
as 48% of the CuNPs was dissolved after 48 h of incubation (Fig. 1D).
Around 63%, 73% and 76% of the total added CuNPs remained in the
water column after 48 h of incubation in the static treatments at 5, 25
and 50 mg C/L, respectively (Fig. 1E). In the dynamic treatments, ap-
proximately 85% of the initially added CuNPs remained in thewater col-
umn after 48 h of incubation across the DOC concentration range from 0
to 50 mg/L. The addition of DOC significantly reduced the amount of
Fig. 1. Time profiles of the total amount of Cu anddissolved Cu in suspensions of CuNPswithin 4
concentrations of divalent cations (C–D) and of DOC (E–F). All data are presented as the mean
CuNP(ion) in the water column. In both the static and dynamic treat-
ments, the amount of CuNP(ion) decreased to around 20%after 48h of in-
cubation in all the caseswith the addition of DOC from5 to 50mg/L (Fig.
1F).
3.2. Acute toxicity of CuNPs to Daphnia magna

The LC50 of CuNP(total) across a range of water chemistry is provided
in Table 3. In the static treatments, the LC50 values of CuNP(total) were
0.024, 0.050 and 0.094 mg/L at pH 6, 7.8 and 9, respectively. The LC50
values of CuNP(total) in the dynamic treatments were similar to those
in the static treatments at the same pH, which were 0.030, 0.049 and
0.084 mg/L at pH 6, 7.8 and 9, respectively. In the static treatments,
the LC50 of CuNP(total) increased from 0.026 mg/L without the addition
of cations to 0.076mg/L at 5mMof cations. The LC50 of CuNP(total) upon
the dynamic exposure trialwas similar to that upon the static trial at the
same cation concentration, except at the cation concentration of 5 mM,
at which the LC50 of CuNP(total) was 0.152 mg/L in the dynamic treat-
ment, about a factor of 2 higher than the LC50 obtained in the static
treatment. The LC50 of CuNP(total) significantly increased upon the addi-
tion of DOC. In the static treatments, the LC50 of CuNP(total) increased
from 0.050 mg/L without addition of DOC to 0.515, 2.166 and
3.591 mg/L at 5, 25 and 50 mg C/L, respectively; in the dynamic
8 h of incubation in the static and dynamic exposure treatment as a function of pH (A–B), of
± standard deviation (n = 2).



Table 3
Themedian lethal concentration (LC50) of CuNP(total) and CuNP(particle) after 48 h of exposure to D. magna upon various exposure conditions and the relative contribution of CuNP(particle)
and CuNP(ion) to the toxicity of CuNP(total) at the LC50.

Trial no. Condition pH Cation conc.
(mM)

DOC conc.
(mg/L)

LC50 (95% CI, mg/L) Relative contribution at LC50
(%)

CuNP(total) CuNP(particle)a CuNP(ion) CuNP(particle)

1 Static 6 2.5 0 0.024 (0.022–0.026) 0.011 (0.011–0.012) 100 0
2 Static 7.8 2.5 0 0.050 (0.048–0.053) 0.040 (0.031–0.052) 53 47
3 Static 9 2.5 0 0.094 (0.084–0.106) 0.089 (0.061–0.130) 68 32
4 Static 7.8 0 0 0.026 (0.022–0.031) 0.021 (0.018–0.025) 72 28
5 Static 7.8 5 0 0.076 (0.069–0.082) 0.058 (0.044–0.076) 60 40
6 Static 7.8 2.5 5 0.515 (0.414–0.640) 1.913 (0.309–11.850) 43 57
7 Static 7.8 2.5 25 2.166 (2.009–2.335) 2.142 (1.916–2.393) 38 62
8 Static 7.8 2.5 50 3.591 (3.273–3.939) 3.939 (3.324–4.669) 33 67
9 Dynamic 6 2.5 0 0.030 (0.025–0.036) 0.018 (0.018–0.018) 100 0
10 Dynamic 7.8 2.5 0 0.049 (0.046–0.053) 0.038 (0.031–0.045) 70 30
11 Dynamic 9 2.5 0 0.084 (0.071–0.098) 0.081 (0.063–0.104) 64 36
12 Dynamic 7.8 0 0 0.022 (0.019–0.025) ~0.015b 62 38
13 Dynamic 7.8 5 0 0.152 (0.132–0.176) ~0.171b 100 0
14 Dynamic 7.8 2.5 5 0.318 (0.266–0.380) 0.311 (0.219–0.441) 33 67
15 Dynamic 7.8 2.5 25 1.634 (1.470–1.817) 1.568 (1.404–1.750) 28 72
16 Dynamic 7.8 2.5 50 2.153 (1.923–2.411) 1.930 (1.717–2.169) 15 85

CI: confidence intervals. Conc. = concentration.
a CuNP(particle) was estimated from Eq. (1).
b Means the data is not accurate. Statistics for comparison of LC50 of CuNP(total) and CuNP(particle) among dynamic and static treatment groups are given in Supplementary information

(Tables S2–S7).
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treatments, the LC50 values of CuNP(total) were 0.318, 1.634, and
2.153 mg/L at 5, 25, and 50 mg C/L, respectively.

In the absence of DOC, the 48-h LC50 of Cu(NO3)2 increased with in-
creasing pH, which was 0.016, 0.028 and 0.048 mg/L at pH 6, 7.8 and 9,
respectively (Table S1). At pH 7.8 and in the absence of DOC, the LC50
values of Cu(NO3)2 were 0.015, 0.028 and 0.043mg/L with the addition
of 0, 2.5 and 5 mM of the divalent cations, respectively. Toxicity of
Cu(NO3)2 to D. magna was greatly mitigated by the addition of DOC,
with the LC50 increasing from 0.028 mg/L without the addition of
DOC to 0.133, 0.577 and 0.970 mg/L with the addition of 5, 25 and
50 mg C/L, respectively (Table S1). The dose-response curves of
Cu(NO3)2 across the ranges of pH, divalent cation and DOC concentra-
tions used in this study for CuNPs are presented in the supplementary
information (Fig. S2).

In the static treatments, the LC50 of CuNP(particle) increased from
0.011 mg/L at pH 6 to 0.040 mg/L at pH 7.8 and 0.089 mg/L at pH 9;
the LC50 of CuNP(particle) increased from 0.021 mg/L without the addi-
tion of divalent cations to 0.058mg/L upon the addition of 5 mMof cat-
ions; the LC50 of CuNP(particle) increased from 0.040mg/L in the absence
of DOC to 3.939 mg/L upon the addition of 50 mg C/L (Table 3). Similar
to the LC50 in the static exposure treatments, the LC50 of CuNP(particle)
in the dynamic exposure treatments also showed increasing trends
with increasing pH and with increasing concentrations of cations and
DOC (Table 3), indicating that the toxicity of CuNP(particle) decreased
with increasing pH and with increasing concentrations of cations and
DOC in both the static and dynamic exposure treatments. The dose-re-
sponse curves with the endpoint mortality of D. magna calculating
based on the response addition model, are provided in the supplemen-
tary information (Figs. S3–S5).

3.3. Relative contribution of CuNP(particle) and CuNP(ion) to toxicity

The relative contribution of CuNP(particle) and CuNP(ion) to the toxic-
ity of CuNP(total) to D. magna at the LC50 levels is given in Table 3. Ac-
cording to the calculation results based on the response addition
model, the toxicity of CuNP(total) toD. magna at the LC50 level in the ab-
sence of DOCwasmainly caused by CuNP(ion). In both the static and dy-
namic treatments, N53% of the toxicity of CuNP(total) could be explained
by CuNP(ion) at pH ranging from 6 to 9. At pH 7.8 and in the static expo-
sure treatments, 72%, 53% and 60% of the observed toxicity could be at-
tributed to CuNP(ion) upon the addition of 0, 2.5 and 5 mM of cations,
respectively. Similarly, in the dynamic treatments toxicity of CuNP(total)
was predominantly contributed by CuNP(ion) (≥62%) at the divalent cat-
ion concentrations from 0 to 5mM. However, upon the addition of DOC
at concentrations from 5 to 50 mg/L, the relative contribution of
CuNP(particle) to the overall toxicity was higher than that of CuNP(ion).
In the static exposure treatments, the relative contribution of CuNP(ion)
to the overall toxicity decreased from 53% without the addition of DOC
to 43%, 38% and 33% upon the addition of 5, 25 and 50 mg C/L, respec-
tively; in the dynamic exposure treatments, the relative contribution
of CuNP(ion) to the overall toxicity shifted from70%without the addition
of DOC to 33%, 28% and 15% with the addition of 5, 25 and 50 mg C/L,
respectively.

4. Discussion

4.1. Behavior and fate of CuNPs upon modification of water chemistry

In this study, CuNPs aggregated to a higher extent in the exposure
matrices with a higher concentration of divalent cations (Table 2). The
enhanced aggregation was due to the compression of the double-layer
of NPs imposed by the cations, as the absolute value of the zeta-poten-
tial of CuNP suspension decreased with the addition of the cations
(Table 2). In natural waters, DOC is ubiquitous and has been identified
in many studies as a key factor in determining the fate of metallic NPs
in environments (Conway et al., 2015; Zou et al., 2015; Lawrence et
al., 2016; Joo and Zhao, 2017). Consistent with the findings of other
studies (Adeleye et al., 2014; Conway et al., 2015), we also found that
the addition of DOC inhibited the further aggregation of CuNPs. Further-
more, the inhibiting effect of DOC on the aggregation of the CuNPs was
stronger in the dynamic exposure treatments than in the static expo-
sure treatments, as reflected by the smaller average sizes of CuNPs in
the dynamic exposure treatments (Table 2). This is probably due to
the increased shear forces upon dynamic flow, which consequently re-
sults in the disaggregation of NPs (Metreveli et al., 2015; Lv et al.,
2016). In agreement with other studies (Adeleye et al., 2014; Odzak et
al., 2014), the percent dissolution of the CuNPs was enhanced with in-
creasing pH. The addition of DOC significantly reduced the concentra-
tion of CuNP(ion) in both the static and dynamic exposure treatments.
The reduction of the concentration of NP(ion) upon addition of DOC in
the water column was also reported by some other studies (Conway
et al., 2015; Zhou et al., 2016). The possible mechanisms underlying
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the reduction effects of DOC include complexation and surface adsorp-
tion to block the oxidation sites of NPs by DOC (Dubas and Pimpan,
2008; Liu and Hurt, 2010), steric exclusion of water from the surface
of the particles by DOC coating, and/or reduction of the availability of
H+ which may bind to DOC molecules (Yoon et al., 2005; Adeleye et
al., 2014).

4.2. Toxicity of CuNPs upon modification of water chemistry

In this study, the toxicity of CuNPs to D. magnawas strongly depen-
dent on the water chemistry of the exposure medium. Both CuNP(ion)
and CuNP(particle) were more toxic at lower pH. The higher toxicity of
CuNP(ion) at lower pH is due to the increasing percentage of free Cu2+

species (Odzak et al., 2014; Xiao et al., 2016), which is generally consid-
ered to be the most toxic species among all dissolved Cu species (de
Schamphelaere and Janssen, 2002). The increasing toxicity of
CuNP(particle) under reduced pHmay be explained by the reduced resis-
tance of D. magna to CuNP(particle), as it has been found that acid stress
could influence the membrane permeability of D. magna (Locke, 1991;
Glover andWood, 2005). The toxicity of CuNP(total) increased with a re-
duction in the divalent cation concentration. This finding is the net ef-
fect of the reduction in the toxicity of both CuNP(ion) and CuNP(particle)
upon the increasing concentrations of the cations. The reduced toxicity
of CuNP(particle) with the addition of cations may result from the en-
hanced aggregation imparted by the cations as mentioned above,
which could decrease the effective surface area of CuNP(particle) to D.
magna and consequently reduced the toxicity of CuNP(particle). Accord-
ing to the biotic ligandmodel (BLM) (Di Toro et al., 2001), the enhanced
competition between Ca2+ and Mg2+ and the CuNP(ion) for binding
sites on the biotic ligands of daphnids upon the increasing cation con-
centrations probably resulted in the mitigation of the toxicity of
CuNP(ion). In the presence of DOC, consistent with many other studies
(Blinova et al., 2010; Gunsolus et al., 2015), the toxicity of CuNP(total)
was highly mitigated. In the static exposure treatments, the toxicity of
CuNP(total) decreased around 10, 43, and 72 times with the addition of
5, 25 and 50 mg C/L, respectively, compared to the situation in which
no DOC was added. The mitigation effects of DOC on the observed tox-
icity were derived from the finding that both the toxicity of CuNP(ion)
and CuNP(particle) to D. magna was decreased with the addition of DOC.
The decrease in toxicity for CuNP(ion) and CuNP(particle) with the addition
of DOC may be due to the complexation of CuNP(ion) with DOC and the
passivation of the particle surface by DOC adsorption (Fabrega et al.,
2009). In the dynamic exposure treatments, the mitigating effects of
DOC on the toxicity of CuNP(total) were weakened, compared to those
observed in the static exposure treatments. The toxicity of CuNP(total)
in the dynamic exposure treatments was around 38%, 25% and 40%
higher than the toxicity of CuNP(total) in the static treatments upon the
addition of 5, 25 and 50 mg C/L, respectively. The dissolution profiles
upon the addition ofDOC in the static anddynamic exposure treatments
were similar within 48 h of incubation (Fig. 1F), whereas the aggrega-
tion extents of CuNPs were smaller within the 48 h of incubation in
the dynamic treatments than in the static treatments when DOC was
added (Table 2). Hence, the higher toxicity of CuNP(total) as found in
the dynamic exposure treatments, comparedwith the toxicity observed
in the static exposure treatments when DOC was added, probably re-
sulted from the reduction in the hydrodynamic diameters of particles.

4.3. Relative contribution of CuNP(particle) and CuNP(ion) to toxicity

Evaluation of the relative contribution of NP(particle) andNP(ion) to the
suspension toxicity upon varyingwater chemistry is critical for environ-
mental risk assessment. This would allow us to make process-based
predictions of fate and ecological responses. Our results clearly evi-
denced that even for the same type of CuNPs, the relative contribution
of CuNP(particle) and CuNP(ion) to the observed toxicity was greatly al-
tered by the physicochemical characteristics of the exposure medium.
In the absence of DOC, the toxicity of CuNP(total) to D. magna at the
LC50 level wasmainly caused by CuNP(ion) (≥53% of the observed toxic-
ity). Similarly, the toxicity of CuO NPs (with a nominal size b 50 nm) to
D. magna in exposuremedia without DOC and at pH 7.6 was found by Jo
et al. (2012) to be largely attributable to the NP(ion). Also, the NP(ion), re-
vealed by Heinlaan et al. (2008), was the main driver for the toxicity of
CuO NPs (with a nominal size around 30 nm) to D. magna in exposure
medium without addition of DOC and at pH within the range 7.3–7.8.
In the cases that ions are dominating the toxicity, BLMs can give large
insights in the NP suspensions-induced response assessment. On the
other hand, in the presence of DOC at concentrations ranging from 5
to 50 mg/L, the toxicity of CuNP(total) was largely explained by the con-
tribution of CuNP(particle) (Table 3). The alteration of the roles of
CuNP(particle) and CuNP(ion) in the toxicity of CuNP suspension by DOC
could result from the large reduction in dissolution of the particles on
top of the observed enhancement of the stability of CuNP(particle) in the
water column. The contribution of particles to the toxicity of CuNP sus-
pension could result from the particle-mediated toxicity. Determining
the precise mechanisms underlying the toxicity of NP(particle) was be-
yond the scope of this research, while previous studies have indicated
that the toxic effects of NP(particle) may be associated with the induction
of oxidative stress (Ivask et al., 2014), inflammation (Piret et al., 2012),
membrane deterioration and/or intracellular dissolution of CuNP(particle)
(Minocha andMumper, 2012). It is worth to note that the relative con-
tribution of CuNP(particle) to toxicity with the addition of DOC at concen-
trations from 5 to 50mg/L in the dynamic exposure treatmentswas 10–
18% higher than that in the static exposure treatments. This may be de-
rived from the additional stabilization effects of DOC on CuNPs in the
dynamic treatments. These observations imply that the particle dynam-
ics in aqueous environment are of importance as well. Our results high-
light the importance of water chemistry on the roles of NP(particle) and
NP(ion) in the observed toxicity.

5. Conclusions

This study demonstrates that the particle-specific toxicity of CuNPs
strongly depends on water chemistry of the exposure medium. In the
absence of DOC, the toxicity of CuNP(ion) and CuNP(particle) was de-
creased upon increasing pH and increasing concentrations of divalent
cations. Toxicity of CuNP(total) was mainly driven by CuNP(ion) when
no DOC was added. In addition, toxicity of CuNP suspensions with the
addition of DOC at concentrations from 5 to 50 mg C/L under the dy-
namic exposure modality was approximately 25–40% higher than that
under the static exposure modality. The toxicity of CuNP(ion) and
CuNP(particle) with the addition of DOCwas largely mitigated. As a result
of the large reduction in the concentration of CuNP(ion) and the en-
hancement of the stability of CuNP(particle) when DOC was added, the
toxicity of CuNP(total) was mainly attributable to the CuNP(particle) in
case of the addition of DOC, especially under the dynamic exposuremo-
dality. Our results highlight the need of dynamic fate characterization of
metallic NPs in aquatic environments along the exposure duration in
order to interpret their ecotoxicity.
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