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ABSTRACT: Drug discovery programs frequently target
members of the human kinome and try to identify small
molecule protein kinase inhibitors, primarily for cancer
treatment, additional indications being increasingly inves-
tigated. One of the challenges is controlling the inhibitors
degree of selectivity, assessed by in vitro profiling against
panels of protein kinases. We manually extracted, compiled,
and standardized such profiles published in the literature: we
collected 356 908 data points corresponding to 482 protein
kinases, 2106 inhibitors, and 661 patents. We then analyzed
this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and
inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand−
target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account
for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements,
Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases
properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the
models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way
for the rational design of compounds with a targeted selectivity profile.

■ INTRODUCTION

Protein kinases typically function in highly connected, dynamic,
and regulated networks and are central actors in the majority of
signal transduction cascades. The human kinome is composed
of more than 500 kinases1 and deregulated kinase signaling has
frequently been observed to be oncogenic.2 Human kinases are
therefore attractive targets for drug discovery and thus have
received considerable attention from the pharmaceutical
industry, which has invested in the identification of small
molecule protein kinase inhibitors (PKIs) targeting the protein
kinase catalytic domain.3,4 These efforts have so far led to the
approval of 36 PKIs for clinical use (28 by the US Food and
Drugs Administration5). In addition, at least 600 PKIs have
entered formal clinical trials.6 The vast majority of the approved
or under investigation PKIs aim at treating various neoplasms,
but PKIs are now also being designed to treat other indications
such as diabetes, neurological, inflammatory, and autoimmune
diseases like rheumatoid arthritis.7−11

A number of PKIs behave as allosteric regulators12−14 but the
majority (about 95%6) act as competitive inhibitors,15 usually
blocking ATP cofactor binding, with several different distinct
binding modes as demonstrated in X-ray crystallography

studies.16,17 There is also a relatively large set of irreversible
PKIs.18,19 The highly conserved nature of the ATP binding site
renders the development of highly selective PKIs challenging,20

while the selectivity profile of a PKI governs its total effect on
an organism. Indeed, the clinical efficacy of some PKIs against
kinase targets against which they were not originally developed
led to their approval for other indications. For example, while
originally approved to treat chronic myeloid leukemia,21 acting
via inhibition of cAbl, Imatinib (Gleevec) was later shown to
inhibit Kit and PDGFR. Consequently, it was approved for the
treatment of gastrointestinal stromal tumors and the hyper-
eosinophilic syndrome in which these particular kinases are
dysregulated.22,23 The dual beneficial and adverse off-target
pharmacology of PKIs is complex24−27 and relies on both target
exposure and activity spectra.
In vitro profiling is one of the standard tools at hand to

reduce attrition rates observed during drug discovery and
development.28 As a general rule, promiscuous compounds are
difficult to optimize and develop. Given both the known
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promiscuity of PKIs, and the large number of protein kinase
genes known and assayable, compounds developed as PKIs are
routinely profiled against substantial parts of the (human)
kinome.29−32 The objective here is to screen out the PKIs with
undesired kinase profiles as early as possible. Furthermore, it is
now common practice to screen compound libraries against the
kinome in order to identify either new pharmacological probes
for poorly characterized targets,33 or to identify hits for newly
validated kinases.
Since the initial work of Davies et al. in 2000,34 a growing

number of publications have reported the profiling against large
kinase panels of either libraries of compounds (some selected
as potential PKIs),35,36 or smaller and more focused sets of
PKIs (as part of their characterization).37,38 Databases such as
ChEMBL39,40 make publicly available a very large amount of
structure−activity relationships (SARs) manually extracted and
curated from the scientific literature. Due to the literature focus
of these efforts, full kinase profiles of compounds were not
routinely added, with notable exceptions, such as for the
Millipore Kinase Screening data set41 (CHEMBL2218924) and
the GSK Kinase Inhibitor data set42 (CHEMBL2303647). An
effort was therefore undertaken to manually capture in the
primary literature (including, but not limited to medicinal
chemistry journals) and standardize such kinase profile-related
SAR. Here, we report the collation of an unprecedentedly large
number of kinase inhibition data points, and the release to the
public domain, through a deposition in the ChEMBL database.
Due to the heterogeneous nature of the sources, the collected

SAR data set is not a complete one:43 while for some PKIs most
of the kinases were tested, others were tested only on a few
kinases. In addition, the sizes of the kinase panels vary across
the publications and assay technology and readout can
substantially vary. To overcome this and demonstrate the
potential of a kinase data set like the current in the public
domain, we leveraged on the collected SAR and the content of
the ChEMBL database to populate the kinase/PKI pairs that
were not initially measured, using a state-of-the-art and robust
activity modeling methodology. After integration with
ChEMBL data (release 19, see Materials and Methods for
details), proteochemometric bioactivity modeling (PCM) was
applied at large-scale to this set. The results demonstrate that
the application of this method to the compiled data set enables
a robust prediction of kinase activity across the subset of the
kinome covered by the data set; combined with a systematic
exploration of the compounds and kinases features that drive
potency, this paves the way for bespoke design of compounds
with selective promiscuity.

■ MATERIALS AND METHODS
Data Sources. All potential sources of PKI kinome profiling

bioactivities were identified through literature searches. A first
selection restricted the sources to articles or data sets
containing bioactivities from assays where (i) the target was
tractable; (ii) the technology generated results of the following
activity types: Pct_Ctrl, Pct_Inhib, Kd, Ki, IC50 (excluding for
example bioactivities generated from thermal stability shift
assays44); (iii) the ligand structures were disclosed; and (iv)
quantitative bioactivity measurements were available and not
expressed exclusively as ranges. In addition to measurements
published in peer-reviewed articles, data points made publicly
available by the NIH Libraries of Network-based Cellular
Signatures (LINCS) program45,46 and the International Centre
for Kinase Profiling within the MRC Protein Phosphorylation

Unit at the University of Dundee47 were included. For each
data source, the bibliographic reference, PubMed identifier,
digital object identifier (DOI), date of publication, title, authors
list and abstract of the publication, publishing journal name,
reference. The list of data sources is provided in the Supporting
Information (SI) Table S1.

PKIs. PKI structures were directly extracted, transformed
from SMILES representations, or manually drawn using Biovia
Draw48 and then standardized using Pipeline Pilot version
8.5:49 salts were removed, charges and stereochemistry were
standardized, and a canonical tautomer was generated. The
accuracy of stereochemistry and tautomeric state were manually
checked and adjusted if necessary, using PubMed for
bibliographic searches (http://www.ncbi.nlm.nih.gov/
pubmed) and the Protein Data Bank (PDB) for kinase−PKI
complex crystal structures (http://www.rcsb.org/pdb). A
unique name was attributed to each structure and synonyms
were stored. The list of PKI names, structures, and compound-
related data is provided in Supporting Information Table S2.

Kinases. For each name used to identify the kinase in the
original publications (SwissProt entry number, kinase name,
gene name), the corresponding Entrez preferred gene symbol
from the Human Genome Nomenclature Committee (HGNC)
(www.genenames.org) was identified. To further qualify the
kinases, several properties were added, describing whether the
assay was run against a single kinase, the targeted binding site
(for the kinases with multiple kinase domains), the length of
the domain, the source of the assayed kinase, the presence and
nature of mutations, the exact sequence, the phosphorylation
status, and the organism (see Supporting Information 1 for
details); however we anticipate that this data is tentative in
some cases due to sparse reporting in the literature. The list of
kinases is provided in Supporting Information Table S3.

Assays. To fully describe the assays and when applicable,
the name of the kinase profiling service commercial provider,
the assay technology, the measured effect and the ATP and
compound concentrations were captured (see Supporting
Information 2 for details).

Bioactivities. For all bioactivities, the original value,
operator, unit and display name (of possible values: Kd, Ki,
IC50, Pct_Ctrl, Pct_Inhib) were captured. Pct_Ctrl is one assay
results preprocessing method that attempts to correct for
variability by normalizing compound measurements relative to
controls: Pct_Ctrl =100 × Mean_on_compound/Mean_-
on_controls. Similarly, Pct_Inhib is defined as 1 − (100 ×
Mean_on_sample/Mean_on_controls). Those values were
then submitted to a set of standardization rules described in
details in Supporting Information 3. Briefly, Pct_Ctrl and
Pct_Inhib results were transformed in Pct_Effect values; all
bioactivities were then standardized (standardized result value,
SRV and their negative logarithm pSRV); an additional
property was created to monitor the applied transformations
(standardized result type, SRT).
The minimal set of properties required to capture a

bioactivity value was the compound and target names, the
organism, the result value, result operator, and result type. The
list of possible values for all properties related to bioactivities is
provided in Supporting Information Table S4.

Generation of Data Sets 1 and 2. The ensemble of
bioactivities initially captured was filtered to build data set 1:
only measurements from human kinases were kept, and
measurements were rejected where the exact kinase could not
be identified (Target Type = “Gene Family”) or where the
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standardized result type was “inconclusive”. In the analysis, two
naming conventions refer to the kinases that were assayed:

• “HGNC”, corresponding to the Target Name
• “Kinase”, corresponding to the Target Name, Binding

Site, and Mutation and describing the kinase with more
precision

The notion of coverage was introduced as follows: for a
Kinase−PKI or HGNC−PKI pair, the presence of at least one
measurement in data set 1 contributes one unit. By summing
over all pairs and dividing by the number of pairs (per data
source or across data set 1), the coverage of the data source or
of the data set is calculated.
Multiple measurements per Kinase−PKI pair were aggre-

gated to keep only one copy: the original measurements and
their sources were discarded, and only the number N, mean,
and standard deviation (SD) of pSRV were considered further.
Data set 2 was then generated by filtering out the aggregated
measurements with a pSRV SD greater than one standard
deviation unit.
Kinase- and PKI-Centric Indices. For each Kinase, the

number of PKIs having a pSRV_Mean, a pSRV_Mean below 6
(1 μM), and a pSRV_Mean below 7 (100 nM), the kinase
selectivity index at 1 μM (SI_k_1uM) and the kinase selectivity
index at 100 nM (SI_k_100 nM)35,50,51 were calculated. For
each PKI, the number of Kinases having a pSRV_Mean, a
pSRV_Mean below 6 (1 μM), and a pSRV_Mean below 7 (100
nM), the selectivity index at 1 μM (SI_1uM) and the selectivity
index at 100 nM (SI_100 nM) were calculated. All calculations
and data processing were performed with Pipeline Pilot version
8.5.49

SureChEMBL Searches. SureChEMBL (https://www.
surechembl.org/) is a large, freely available, live repository of
compound structures automatically extracted from full-text
patent documents.52 The SureChEMBL system consists of the
data pipeline and the user interface. The former automatically
detects named chemical entities in text, and chemical structures
in images. It annotates the incoming patent documents with
chemical structures, which are then stored in a database. The
latter allows users to search patent documents using text or
chemical queries and retrieve the compounds extracted from
specified document search hits.
The SureChEMBL repository was used to search for the

earliest patent documents claiming the PKIs in the data set.
The search was implemented as follows:

• Each of the PKIs in the data set was submitted to the
UniChem53 web service to run a search against the
SureChEMBL compound pool. In addition to exact
matching, UniChem allows connectivity matching, i.e.
searching for compounds with the same connectivity, by
ignoring stereochemistry, isotope or salt information.54

• For each of the 1132 search hits (53.8% of the data set),
all patent documents containing the hit (either in text or
image) from the three main patent authorities (WIPO,
USPTO, and EPO) were retrieved.

• The PKIs and their corresponding earliest patent
documents were annotated with bibliographic data,
such as priority date, title, inventor, and assignee.

• The target, target family, and target type properties were
manually assigned based on patent titles with additional
PubMed look ups when required. The affiliation type and
activity domain properties were manually assigned based

on the SureChEMBL-provided list of inventors and
affiliations.

The list of PKIs, patents, and related properties is provided in
Supporting Information Table S2.

Proteochemometric Models. Proteochemometric (PCM)
modeling creates predictive models using machine-learning.55,56

The methodology is related to conventional quantitative
structure−activity relationship (QSAR) modeling but includes
an explicit target protein-based descriptor alongside conven-
tional small molecule descriptors.57 This allows the pooling of
bioactivity data of several related targets into a single PCM
model. Previous application areas of PCM include GPCR
families and their ligands, viral mutants and enzyme inhibitors,
transporter proteins and compounds blocking these proteins,
and kinases and kinase inhibitors.58−64 While this is not the first
attempt to apply PCM to a PKI data set, it is, to the authors’
knowledge, the first time it has been applied on the large scale
demonstrated here and to a kinase data set of such ligand
diversity. Schürer and Muskal used a diverse public set, yet
constructed hundreds of separate QSAR models, an approach
that does not allow interpretation from the kinase perspective
(which residues contribute to binding of which compound).65

Finally, our additional aim is to explore the feasibility of PCM
analysis toward the rational design of kinase inhibitors with
biased, defined promiscuity.

Proteochemometric Data Set. To generate PCM models
with the broadest applicability domain, Ki data points from the
collected SAR set were merged with those present in ChEMBL
(release 19). For modeling, Ki values were -log10 transformed,
leading to pKi values. Multiple measurements were averaged; if
duplicate pairs were present in this set and ChEMBL, the
duplicates were discarded favoring the measurements presented
here over those already in ChEMBL. Furthermore, allosteric
data points were removed based on previously published work
(using data points that were retrieved from text mining paper
abstracts)66 and peptide-like PKIs were discarded. Peptides
were detected according to the protocol used by ChEMBL
(among others filters based on presence of a peptide bond and
known peptides).

Proteochemometric Descriptors. The binding pocket
was described using the kinase sequences alignment provided
by Huang et al.67 which was converted to physicochemical
properties using the first three Z-scales published by Sandberg
et al.68 as done previously.57 This led to 117 protein
descriptors. Three mean values for the total sequence for the
3 Z-scales (Z1_mean, Z2_mean, Z3_mean), and 3 scales per
residue (Z1_Res_1, Z2_res_1, etc.) times 38 residues. PKIs
were described using a combination of physicochemical
properties (37 descriptors, see Supporting Information Table
S5 for a full list) and FCFP_6 circular fingerprints.69 The
fingerprint features were selected based on their frequency
(optimal frequency was present in 50% of the PKIs) and a total
of 768 features were encoded as a fixed-length bit string.
Finally, 16 properties coded for presence of cofactors or
secondary kinase domains, and 4 encoded properties about the
activity type/interaction (IC50/Ki/Kd/predicted allosteric). In
total, the feature vector consisted of 942 descriptors per PKI/
kinase pair.

Proteochemometric Machine Learning. Script files for
R statistics (version 2.15.0) were prepared in Pipeline Pilot
version 8.5 using the “randomForest” package.49,70,71 Models
were trained using 10 000 trees on the EMBL-EBI cluster (45
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cores) in parallel using the “foreach” package.72 The optimal
value for “mtry” was empirically found to be a fraction of 0.3 of
the total descriptors. Scaling of the importance variables was
turned off and no imputation was performed.
Proteochemometric Regression Models. Several models

were created: the data set was split into random training sets of
10%, 30%, 50%, 70%, and 90% of the total data set.
Subsequently models were trained on these sets and validated
on the remaining 90%, 70%, 50%, 30%, and 10% of the set to
create learning curves. This process was performed four times,
splitting the set with a different seed every iteration. Finally a
full model was trained on 100% of the set, which was
subsequently interpreted and is available for prediction.
Model quality was validated using both the correlation

coefficient and the Root Mean Square Error (RMSE). The
combination was chosen as both are complementary. RMSE
can be overly optimiztic when the bulk of the compounds is
inactive (a simple inactive prediction suffices) whereas the R2

suffers from distortions if the modeled activity range is very low
(see Results for further details).

■ RESULTS

Data Set Composition. There were 356 908 entries in the
original data set, corresponding to 61 data sources, 482 HGNC
symbols and 2106 PKIs. Perhaps counterintuitively, the analysis
of the data sources indicates that the majority of bioactivities
were disclosed in journals not directly focused on medicinal
chemistry: 74.6% of the measurements were published in three
journals: Nature Chemical Biology (30.5%), Biochemical Journal
(22.6%), and Nature Biotechnology (21.5%) (Figure 1a).
Furthermore, 78.2% of the measurements came from three
articles and the two online sources (Figure 1b).
In vitro kinase profile commercial providers generated 68.5%

of the measurements, the major contributors being DiscoverX
(22.5%), Millipore (20.9%), and Reaction Biology (15.0%)
(Table 1). The vast majority of the measurements were of type
Pct_Ctrl (61.8%), followed by Ki (30.0%), Kd (7.7%), and IC50
(0.5%).

The standardized result type provides an assessment of the
amount of usable information within the data set: 9.9% of the
data were qualified as “inconclusive”, 14.8% as “inactive”
(ranges with thresholds indicating a lack of activity), 60.8% as
“calculated” (Pct_Effect, single point measurements), and
14.5% as “measured” (Ki, Kd, or IC50, in which a greater
confidence can be given than in single point measurement-
s;Table 2). Supporting Information Figure S1 compares across
the data sources the relative numbers of measurements and
their distribution according to the result types.

Figure 1. Distribution of measurements across (a) the journals and (b) the data sources.

Table 1. Distribution of Measurements Across Kinase Profile
Commercial Providersa

kinase profile provider measurements count percent of total

Ambit/DiscoverX 80328 22.5
Millipore 74620 20.9
Reaction Biology 53417 15.0
MRC Dundee 28778 8.1
Carna Biosciences 2725 0.8
Caliper Life Sciences 1856 0.5
Invitrogen 1910 0.5
Proquinase 931 0.3
Abbott 72742 20.4
Other 39595 11.1

aAlthough not a kinase profile provider, the large number of
measurements shared by Abbott justified the creation of a dedicated
category.

Table 2. Distribution of Measurements Across the
Standardized Result Types

result type measurements count percent of total

calculated 216894 60.8
inactive 52817 14.8
measured 51797 14.5
inconclusive 35394 9.9
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The distribution of the standardized result type values across
the result types is presented in Figure 2. It shows that

approximately half of the Kd measurements were considered as
inactive (to be compared with approximately one-third of the
Ki measurements, with another third being considered
inconclusive).
The analysis of the Target Type values indicates that 97.6%

of the measurements were obtained in assays where the target
could be mapped to a single HGNC symbol, with another 2.2%
coming from complexes. Here, 65.2% of the measurements
were generated in binding assays, 22.5%, in quantitative PCR
assays, and 11.2%, in fluorescence assays. Finally, almost all
measurements were generated in human kinase assays (99.5%).
The collected data cover widely the kinome, as can be

observed in Figure 3 where the majority of the branches in the
treelike representation of the kinome introduced by Manning et
al. feature measurements.1

A limited number of kinases have already proven to be
attractive targets for drug discovery efforts, and the number of
measurements available per HGNC symbol reflects this trend:
roughly one-third of the 482 genes exhibited more than 1000
measurements, another third had 250 to 1000 measurements,
and the last third less than 250 measurements (Figure 4a). The
10 most characterized kinases are ABL1, EGFR, FLT3, KIT,
LCK, PIM1, PRKACA, GSK3B, AURKB, and PDPK1, with
more than 2000 measurements each (Figure 4b). The 10 least
profiled kinases are PINK1, SGK233, ATR, CDK1, CDK8,
EFNA2, EIF2AK4, MAST3, SMG1, and STRADA, with less
than four measurements each (Figure 4c).
To focus on data of interest for drug discovery projects, data

set 1 was prepared by excluding measurements from nonhuman
kinases (1923 measurements) or from gene families (exact
kinase not identified, 267 measurements) and qualified as
inconclusive (35 392 measurements). In total, 319 320
measurements were further considered (89.5% of the initial
data set). Those were not distributed equally among the data
sources, since the sizes of the kinase panels depend on the

profiling organizations. The coverage across the data sources
was therefore analyzed. In total, the coverage was 15.6% when
considering the targets at the kinase level, and 20.0% at the
HGNC level (Table 3). Supporting Information Tables S6 and
S7 provide the counts and coverages for each data source, at the
Kinase and HGNC levels, respectively.
In data set 1, only 15.7% of the Kinase−PKI pairs do have at

least one measurement. But the distribution of coverage per
data source indicates that 42 data sources have an internal
coverage of 90% or more (68.9% of the data sources) at the
Kinase level, while only 7 have a coverage of 50% or less (Table
4). This highlights that data set 1 is a heterogeneous
“patchwork” of relatively densely populated submatrices of
Kinases-PKIs, separated by empty submatrices (Supporting
Information Figure S3).
The reproducibility of the measurements was then analyzed.

Data set 1 corresponds to 319 320 measurements, distributed
across 207 495 Kinase−PKI pairs. 70.6% of these pairs exhibit a
unique measurement, while only 1.8% had five measurements
or more (Table 5).
For the 29.4% of Kinase−PKI pairs with multiple measure-

ments, the distribution of the pSRV SD indicates that applying
a filter at SD equal or less than 1 unit would lead to the
rejection of only 570 pairs (Table 6), a relatively small number,
in the order of magnitude of the amount of information
contained in the profile of a single PKI against all Kinases.
Supporting Information Figure S4 shows the distribution of the
binned pSRV SD values split by number of measurements per
Kinase−PKI pair.
Data set 2 was created by applying the “pSRV SD ≤ 1” filter

to include only Kinase−PKI pairs with significant measure-
ments. It contains 627 Kinases, 2106 PKIs, and 206 925
Kinase−PKI pairs with a pSRV (15.6% of the total number of
pairs). For 316 Kinases (50.4%), at most 200 PKIs were tested
that provided a significant measurement, while only 51 Kinases
(8.1%) had more than 1000 PKIs tested against (Table 7).
By applying an upper limit of 100 nM for potent PKIs, it was

observed that the coverage of the kinome by potent inhibitors
is similar to the one observed in Data set 1 (Supporting
Information Figure S5). The distribution of the kinase
selectivity index at 100 nM across the kinome (limited to
Kinases with at least 100 PKIs to reduce sampling bias,
rejecting mutants, and nonkinase domains) indicates that some
Kinases seem more prone to inhibition than others, namely
CDC7, MAP2K5, FLT3, FLT1, and DDR1 (Supporting
Information Figure S6). However, the SI_k_100 nM does
not allow factoring in the number of tested PKIs. The number
of potent PKIs was plotted against the number of tested PKIs
to identify among the Kinases probed with many PKIs those
that proved difficult to inhibit (selective Kinases, such as NEK2,
MAPK1, MAPK12, MAPK13, MAPKKAPK2, AKT1, AKT2,
and AKT3) and those that were more prone to inhibition
(promiscuous Kinases, such as FLT3, CLK4, AURKB, KDR,
FLT1, CSF1R, RET, and CDC7) (Figure 5). For example, a
similar number of PKIs was tested against CLK4 (1206 PKIs)
and NEK2 (1210 PKIs); however, while 447 PKIs were active
below 1 μM and 175 below 100 nM against CLK4, only 71
PKIs were active below 1 μM and 11 below 100 nM against
NEK2. Of course, directly comparing these hit rates requires
assuming that the PKIs assayed against each Kinase (57% of the
total number of PKIs) covered the same chemical space, which
is not necessarily true: the numbers of PKIs are similar, but the
PKIs might be different. Furthermore, defining a Kinase as

Figure 2. Distribution of measurements across the standardized result
types, split by measured result types. The number of measurements is
labeled and is proportional to the radius of the discs. The color
corresponds to the original data type (yellow Pct_Ctrl, orange
PCT_Inhib).

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.6b00122
J. Chem. Inf. Model. 2016, 56, 1654−1675

1658

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00122/suppl_file/ci6b00122_si_004.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00122/suppl_file/ci6b00122_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00122/suppl_file/ci6b00122_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00122/suppl_file/ci6b00122_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00122/suppl_file/ci6b00122_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00122/suppl_file/ci6b00122_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00122/suppl_file/ci6b00122_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00122/suppl_file/ci6b00122_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.6b00122


“selective” or “promiscuous” relies on a similar assumption and
a more appropriate but more complex qualification for these
Kinases would be selective or promiscuous “within the
boundaries of the chemical space they were assayed against”.
A similar analysis of data set 2 can be performed by focusing

on PKIs instead of Kinases. Some of the collected data sources
describe the results of PKIs profiling against Kinase panels of
limited size. In addition, a number of measurements were
rejected when building data sets 1 and 2. As a consequence, a
significant number of PKIs from data set 2 present results
against 50 Kinases or less (925 PKIs, 43.9%) (Table 8), too
small a panel to allow the evaluation of kinase selectivity. In
parallel, 323 PKIs present results against at least 200 Kinases
(15.3%) (Table 8). At that level of coverage of the kinome, it
should be possible to identify nonselective kinase inhibitors,
and inhibitors already displaying some selectivity could be
prioritized (keeping in mind the possibility of a later
identification of additional inhibited kinases that were not

present in the initial panel). It is to be noted that this constraint
prevented any further analysis based on Murcko scaffolds, due
to the limited size of the sample left after filtering (2 Murcko
scaffolds with 5 PKIs, 3 Murcko scaffolds with 4 PKIs, 5
Murcko scaffolds with 3 PKIs, 22 Murcko scaffolds with 2 PKIs,
and singletons).
Table 9 presents the 10 PKIs with the highest number of

Kinases exhibiting at least one significant measurement (485
Kinases and more), and the structures of the top 25 PKIs are
shown in Supporting Information Figure S7. Not unexpectedly,
one can observe the presence of Staurosporine and derivatives
PKC412 and Go6976, which share a privileged kinase scaffold,
along with FDA-approved PKIs Sorafenib, Sunitinib, and
Pazopanib.
The same threshold for potency was used to assess which of

the most frequent PKIs were often observed to be potent
(Figure 6). Unsurprisingly, Staurosporine stands out as the
most promiscuous PKI, along with close structural analogs

Figure 3. Coverage of the kinome by the current data set. The kinase names and circles sizes are proportional to the number of corresponding
compounds. The picture was generated using the Kinome Render,73 and the kinome tree illustration is reproduced courtesy of Cell Signaling
Technology, Inc. (www.cellsignal.com). A high resolution version is available as Supporting Information Figure S2.
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Lestaurtinib and K252a. But structurally dissimilar PKIs such as
AZD7762 (a checkpoint kinase inhibitor that potentiates
chemotherapy-induced apoptosis),74,75 TAE_684 (a PKI
identified as an inhibitor of NPM-ALK and LRRK2)76,77 and
MK_8033 (a c-Met/Ron dual inhibitor)78 exhibit the same
apparent lack of selectivity.
Focusing then on the most selective PKIs, PKIs with

measurements on more than 450 Kinases and less than 15
Kinases inhibited below 100 nM were analyzed. Such selective
PKIs were the JNK2/3 inhibitor JNK_inhibitor_IX,79 the
EGFR inhibitor Tyrphostin_AG1478,80 the JNK inhibitor
AS602145,81 the GSK3 inhibitor AR_A0_14418,82 the p38-
MAPK signaling pathway inhibitors Skepinone_L83 and
SB_203580,84 the LRRK2 inhibitor HG_10_102_01,85,86 the
FLT3 inhibitor Tandutinib,87 and the dual PI3K/mTOR
inhibitor PI_10388 (Figure 6).

The apparent structural diversity of these selective PKIs rules
out the simplistic association of kinase selectivity with certain
scaffolds. Assuming that compounds sharing similar scaffolds
bind in similar ways in the orthosteric site, the importance of
scaffold decorations to fine-tune the interactions to these sites is
highlighted by comparing pairs of structurally related
compounds. Such an interesting pair comprises MK_8033
(tested on 214 Kinases out of which 176 were inhibited below
100 nM, 82.2%) and Skepinone_L (tested on 479 Kinases out
of which only 2 were inhibited below 100 nM, 0.4%) (Figure
6).
The most selective PKI was Akti_1_2, a dual AKT1-AKT2,

whose level of selectivity might be explained by its allosteric,
pleckstrin homology (PH), domain-dependent mode of
binding.89 This observation led us to further investigate the
influence of the PKIs binding modes on their kinase profiles.
PKIs with an unspecified mode of binding (assumed to be Type
I), Type II and covalent PKIs all compete with ATP to bind in
the catalytic site. Type I PKIs bind to activated kinases, type II
bind to inactivated kinases, and covalent PKIs bind irreversibly
to both activated and inactivated kinases. Allosteric PKIs do not
compete with ATP and bind kinases in several cavities (if
binding in the catalytic site, they do not interact with the
hinge). By comparing the value of the largest inhibition per PKI
across all Kinases to the number of Kinases observed within 10-

Figure 4. Number of measurements per HGNC symbol: (a) all kinases; (b) most popular kinases; (c) least popular kinases. The colors indicate the
result type.

Table 3. Coverage of Dataset 1 at the Kinase and HGNC
Levels

compounds
count

targets
count

pairs
count

count of pairs
with data

coverage
(%)

kinase
level

2106 627 1320462 207495 15.7

HGNC
level

2106 452 951912 191877 20.2

Table 4. Distribution of the Data Sources of Dataset 1 per Binned Coverage, at the Kinase Level

internal coverage (%) [0; 20] ]20; 30] ]30; 40] ]40; 50] ]50; 60] ]60; 70] ]70; 80] ]80; 90] ]90; 100]

count 1 2 2 2 0 2 5 5 42
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fold of that value (limiting ourselves as previously to the 322
PKIs exhibiting at least 200 Kinases with measurements), it was
observed that the largest inhibition was on average the highest
for type II PKIs, followed by covalent and type I PKIs (here,
PKIs are assumed to be of type I when not in the other
categories) (Figure 7). The allosteric PKIs were on average
weaker inhibitors. This is a similar observation to what was
found in previous work.66 While we have not compared the size
of the allosteric inhibitors to the competitive inhibitors in this
work, previously we found them to have a lower absolute
affinity but to be equally ligand efficient due to their smaller
molecular weight.66 This was also true for the kinase inhibitor
section of our data set. No significant difference was observed
for the number of Kinases observed within one log of the
largest inhibition per PKI across all Kinases.
An alternative explanation of the observed lower affinity

could be that allosteric PKIs were most often discovered by
serendipity and might therefore be less often the outcome of
numerous rounds of medicinal chemistry optimization, while
on the other hand type II and covalent PKIs are usually
rationally designed or optimized under the assumption that the
specific structural features of their binding modes will confer on
them an advantage in terms of kinase selectivity. The number of
Kinases with a measurement was therefore compared to the
SI_100 nM index, across the different binding modes classes.
As noted previously, allosteric PKIs were observed to be
significantly less potent than the other types of PKIs, and only
one allosteric PKI did exhibit a non-null value of SI_100 nM:
allosteric PKIs could therefore not be compared to the other
types for SI_100 nM. As recently observed by Sutherland et al.,
Type II PKIs exhibited larger SI_100 nM values than the Type
I and covalent PKIs, which were not significantly different
(Figure 8).90 It appears therefore that, in this data set, Type II
PKIs might achieve a higher potency but not necessarily a
better selectivity than Type I and covalent ones.
SureChEMBL Patent Analysis. Out of the 661 unique

patents, a majority (563; 85.2%) were assigned to commercial
companies, followed by 91 patents (13.8%) assigned to
academic institutions, and only 7 (1.1%) to academic−industry
partnerships. Most of the patents (552; 83.5%) were assigned
after 1995, with a significant increase of the number of patents
issued per year by industry in 2002−2003 and an apparent
decline in the industry since 2006 (Figure 9).
It should be noted that these observations are valid within

the boundaries of this data set which was not obtained via an
exhaustive search of all kinase-related patents for the same

period but via a nonexhaustive search of literature: trends on
the plot do not reflect the overall kinase inhibitor patent
productivity, but the publication bias of literature compounds.
In addition, no attempt was made to account for the multiple
mergers and acquisitions within the industrial sector, and the
assignees names were kept as in the original patents. The
assignees activity domains corresponded almost always to
pharmaceutical research (630; 95.3%), with 5 patents coming
from the agrochemical industry (0.8%), 19 (2.9%) from other
industries, and 7 (1.1%) that could not be attributed. The 12
assignees having the highest numbers of unique patents in the
data set are presented at Table 10.
Out of the 12 most prolific institutions, one is an academic

center, and the Abbott company alone accounts for 395
patented PKIs (34.9%) and 55 patents. This is not unexpected
since one single article from Abbott91 contributes to 1441 PKIs
to the complete data set (68.5%), some PKIs being not
exclusive to this article. The target families for the patent could
be identified in 301 cases (45.5%) and, not unexpectedly, it was
a kinase in all but 39 cases (5.9%) (Figure 10).
In 147 cases (22.2%), a disease or medical term was used

instead of a target name to define the scope of the patent, while
no disease or target info was provided in 189 cases (28.6%).
Finally, 24 patents were not related to pharmaceutical research.

Proteochemometric Analysis Results. The PCM data
set was composed of 117 148 data points (100 969 Ki, 979 IC50,
15 200 Kd) corresponding to 361 Kinases and 2860 PKIs (11%
matrix completeness). Approximately 27% were uniquely
present in data set 2, 1% were uniquely present in ChEMBL,
and 72% were present in both sets. The PCM models perform
very well on this data set. The ligand−target space is modeled
with an RMSE of 0.20 log units and an R0

2 of 0.94 (with the
externally validated performance reaching 0.41 ± 0.02 log units
and R0

2 0.74 ± 0.03 at 90%/10% cross-validated models) (see
the learning curves in Figure 11a). Grouping predictions per
target drops performance slightly to 0.44 ± 0.15 log units
RMSE and 0.65 ± 0.14 R0

2 (Figure 11b), and when grouped
per compound, performance is 0.36 ± 0.12 log units RMSE and
0.59 ± 0.22 R0

2 (Figure 11c). This illustrates that while the full
kinase ligand−target space is well modeled, there are negative
outliers, likely caused by a nonuniform sampling of the
interaction space. From a target perspective, some Kinases
are more densely populated with tested PKIs (Figure 3, Table
7), whereas from a chemical perspective, some PKIs have also
been tested on more Kinases than others (Figure 6).
Interestingly the average RMSE for individual compounds is

Table 5. Distribution of the Number of Measurements Per Kinase−PKI Pair

number of measurements per Kinase−PKI pair 1 2 3 4 5 or more

count 146564 25134 27656 4477 3664
percent total 70.63 12.11 13.33 2.16 1.77

Table 6. Binned Distribution of the pSRV SD

binned pSRV SD 0.0 ]0.0; 0.5] ]0.5; 1.0] ]1.0; 1.5] ]1.5; 2.0] >2.0

count 161844 39002 6079 507 58 5
percent total 78.00 18.80 2.93 0.24 0.03 0.00

Table 7. Distribution of the Binned Number of PKIs per Kinase

binned number of PKIs per Kinase [1; 200] ]200; 400] ]400; 600] ]600; 800] ]800; 1000] ]1000; 1200] ]1200; 1400] ]1400; 1600] >1600

count 316 137 70 29 24 36 14 0 1
percent total 50.40 21.85 11.16 4.63 3.83 5.74 2.23 0.00 0.16
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slightly lower than that for individual targets, whereas the
correlation coefficient is on average slightly higher for analysis
grouped per target than for grouped per PKI. In other words,

Figure 5. (a) Comparison across all Kinases between the number of
PKIs tested (x axis) and the number of PKIs active below 100 nM (y
axis). (b) Same comparison as in part a with a focus on the most
selective Kinases. Color and marker size reflect the potency of the
most potent inhibitor of each Kinase. Shown in parentheses is the
SI_k_100 nM.

Table 8. Distribution of the Binned Number of Kinases with Measurements per PKIa

binned number of Kinases per PKI [1; 25] ]25; 50] ]50; 75] ]75; 100] ]100; 200] ]200; 300] ]300; 400] ]400; 500] >500

count 628 297 244 446 168 36 192 87 8
percent total 29.82 14.10 11.59 21.18 7.98 1.71 9.12 4.13 0.38

aNote that two different bin sizes (25 and 100 Kinases) were used.

Table 9. List of the 10 PKIs with the Highest Number of
Kinases Exhibiting at Least One Significant Measurement

PKI name kinase count

Tyrphostin_AG1478 525
Akti_1_2 523
JNK_Inhibitor_IX 521
AS601245 518
PKC412 503
AR_AO_14418 503
Sorafenib 501
Go6976 501
Indirubin_6_bromo_oxime 493
Staurosporine 487

Figure 6. (a) Comparison across all PKIs between the number of
Kinases tested (x axis) and the number of Kinases with measurements
below 100 nM (y axis). (b) Same comparison as in part a with a focus
on the most selective PKIs. Color and marker size reflect the potency
of the most potently inhibited Kinase for each PKI.
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PKIs tend to show a lower variance across targets than the
other way around, target variance across PKIs. We also observe
this effect in our data: when the bioactivity points are grouped
by target the mean pKi of compounds is 6.16 (±0.87) log units,
whereas when the values are grouped by compound the mean
pKi of targets is 6.56 (±1.20) log units. As PKIs bind (on
average) with a relatively similar potency on different targets
(displaying a lower variance), the RMSE is relatively low.
However, the narrow spread makes it challenging for a model
to rank order the PKIs by affinity (does a PKI bind better to

target A than B?), and this translates in a relatively lower
correlation coefficient. Conversely, this means that targets can
display a greater variance in compound affinity. As a
consequence, targets are unlikely to have (on average) a similar
preference for all PKIs as indicated by the larger RMSE.
However, larger differences in affinity lead to the modeling
error having a lower influence on the compound ranking. For
example, two compounds A and B, A having a better affinity,
with a difference larger than the RMSE, are predicted correctly
ranked when the model is slightly mispredicting within the

Figure 7. Influence of the PKIs binding mode on their potency. (a) The x axis shows for each PKI the number of Kinases found within 10-fold of the
most potently inhibited Kinase, in log scale, and the y axis shows the value at which this Kinase is inhibited. Marker size reflects the number of
Kinases having measurements, for each PKI. (b) Boxplots show the upper quartile, median, average, and lower quartile for the value of the largest
inhibition per PKI across all Kinases.
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RMSE. If their difference is smaller than the model RMSE, the
chances are higher for these compounds to be ranked wrongly.
Here, the larger variance translates in a relatively higher
correlation coefficient.
In order to further quantify performance, the average RMSE

was also calculated (using all models that made up the learning
curves) for each target. R0

2 was ignored here as the full activity
range was smaller than 2.5 log units for some targets, which is
insufficient (assuming an average error of approximately 0.5 log
units).92,93 For both the validation sets grouped per Kinase and
per PKI, the average RMSE was plotted versus the frequency
(Figure 12). The plots show that our PCM models are capable
of a robust modeling of the kinase ligand−target space.

However, it should be noted that PKIs or Kinases with only a
few data points could display a variable performance.
Only 104 Kinases had Ki results on more than 600 PKIs, the

threshold we chose for the analysis. On that subset, the three
best modeled Kinases were PRKCZ, PAK1, and CAMK2B
(RMSE 0.22−0.24 log units) whereas GSK3B, AURKB, and
CLK4 were modeled the worst (RMSE 0.69−0.78 log units)
(Figure 12a). A representative validation plot for CAMK2B is
shown in Supporting Information Figure S8, and a
representative plot for GSK3B is in Supporting Information
Figure S9.
Much fewer PKIs (∼600−800) have been tested on the best

predicted Kinases than on the worst predicted ones (∼1000−

Figure 8. Influence of the PKI binding mode on the kinase selectivity. (a) The x axis shows for each PKI the number of Kinases with at least one
measurement, and the y axis shows in log scale the value of the SI_100 nM selectivity index. (b) The boxplots show the upper quartile, median,
average, and lower quartile for the value of the SI_100 nM selectivity index.
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1200). At the same time, their mean pKi (∼5.2) is on average
almost one log unit smaller than that of the worst predicted
ones (∼6.0) (Figure 12), and their mean SI_k_100 nM
(∼0.01) is also smaller than that of the worst predicted ones
(∼0.14), which might imply that the distribution of pKi values
is more important than the number of values (Supporting
Information Figure S10). This is also observed when plotting
the pKi values against the Kinases (Supporting Information
Figure S11).
The number of PKIs per Murcko scaffold94 was variable in

the data set, ranging from singletons and pairs (half of the
compounds) to 22 compounds sharing the same Murcko
scaffold (Supporting Information Figure S12a). Judging from
the RMSE, scaffold frequency did not seem to have an influence
on the quality of the predictions (Supporting Information
Figure S12b). In addition, the median similarity of the
compounds to the rest of the training set was calculated and
further investigation led to the conclusion that no trend could
be observed with regards to the RMSE or R2 (data not shown).

The worst modeled Kinases appear to have more PKIs,
which are on average more potent, and which cover a wider
range of potencies, than the best modeled ones. That might
seem counterintuitive if one reasons by analogy to the
pharmacophore perception problem. This problem states that
when a training set is built, it should contain several diverse
chemical series, with large ranges of potencies within each
series, in order to computationally identify the structural
features responsible for the biological activity. One explanation
for our observed inconsistency to this wider range might be as
follows: we judge the “ability to predict” (i.e., small RMSE
value) by excluding data from the set, building models without
the excluded data and then using the models to predict the
values for these data before comparing to the measured values:

• If the complete range of measured values is narrow, then
whatever the composition of the excluded set, there are
good chances that its range will be covered by that of the
model building set: we stay within the “applicability
domain” in terms of pKi values.

• On the other hand, if the range is wide, then the ranges
of excluded and model building data might not overlap
very well anymore, which might lead to poorer
performances.

Only 50 PKIs had Ki results on more than 200 Kinases, the
threshold we chose for the analysis. On that subset, the PKIs
whose activities were predicted the best were VX745,
CP_724714, and Roscovitine (RMSE 0.31−0.32 log units),
and the worst were Staurosporine, Bosutinib, and CEP_32496
(RMSE 0.91−0.96 log units) (Figure 12b), with the structures
shown in Figure 13. Representative plots for two are shown in
the Supporting Information Figures S13 (VX745) and S14
(Bosutinib).
The number of Kinases against which the PKIs were tested

does not seem to influence the RMSE (Figure 12b). But as
already observed with the validation set grouped per Kinase, the
mean pKi of the best predicted PKIs (∼5.2) is on average

Figure 9. Number of patents priority claims per year. The color indicates the affiliation type.

Table 10. List of the 12 Assignees Having the Highest
Numbers of Unique Patents

assignee number of patents

Abbott 55
Smithkline Beecham 24
Novartis AG 16
AstraZeneca 15
Pfizer 14
Warner Lambert 11
Boehringer Ingelheim 10
Dana Farber Cancer Inst. 10
Bayer AG 8
Glaxo Group 8
Hoffmann La Roche 8
Merck & Co 8
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almost one log unit smaller than that of the worst predicted
ones (∼6.3) (Figure 12b), and their mean SI_100 nM (∼0.01)
is also smaller than that of the worst predicted ones (∼0.26),
underlining again the importance of the distribution of the pKi
values (Supporting Information Figure S10b). This is also
observed when plotting the pKi values against the Kinases
(Supporting Information Figure S15).

It is never trivial to prospectively validate a model; however,
something can be said on the relevance of future predictions.
Novel PKIs might belong to the chemical space of the data set
(e.g., structures tested on a different Kinase, or new structures
similar to the data set ones) and then quantification of
reliability of predictions is relatively straightforward. Should a
structure not be completely covered, reliability is expected to be

Figure 10. Target families as identified in the patent titles. The bars are colored according to the priority claims year (one patent from 1900, covering
caffeine, was undisplayed for clarity).

Figure 11. Performance of proteochemometric modeling on the set (R0
2 and RMSE). The curves show the median value and median average

deviation (MAD) at different sizes of the training set based on the four different iterations (a) or based on the different targets or compounds (b, c).
(a) Full validation set (the dashed lines extrapolate to full model performance using the values obtained in random forest out-of-bag validation). (b)
Validation set grouped per target and subsequent median of these values (this method provides a better performance estimate of the models for
individual targets). (c) Validation set grouped per PKI and a subsequent median of these values (this method provides a better performance estimate
of the models for individual PKIs).
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lower; however, as we have shown, it is difficult to quantify the
reliability for individual compounds. Hence the best course of
action would be in our view to consider the average model
error.
Finally, when plotting the RMSE as a function of the number

of Kinases assayed for a PKI, no difference was observed

between PKIs with type I or type II binding modes (covalent
PKIs were represented by only two compounds and no
conclusion can therefore be made on this small population)
(Figure 14). It is to be noted that the three best and three worst
predicted compounds mentioned above were all type I
orthosteric binders.

Figure 12. (a) Average RMSE versus number of data points in the set grouped per PKI, for the Kinases with at least 600 PKIs tested with Ki results.
(b) Average RMSE versus number of data points in the set grouped per Kinase, for the PKIs with at least 200 Kinases tested with Ki results. The
color indicates the mean pKi across all Kinases/PKIs. The plots have been created on all models (different iterations of the learning curves) and give
a good idea of the error distribution of our PCM models.
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Model Interpretation. The model quality allows the
accurate prediction of PKI−Kinase activities, opening the
door for rational design of selectivity for individual PKIs.
Analyzing the descriptors (see Supporting Information Table

S8 for the complete list), several key properties were identified
to correlate with a higher Ki value across the board. For the
PKIs these were (in order of decreasing importance):
compound size (and related properties like number of bonds
and number of rings), lower predicted solubility (i.e., more
lipophilic compounds tend to have a higher affinity),95 larger
number of hydrogen bond donors, and a larger polar surface
area. Metz et al. had already highlighted the influence of the
number of hydrogen bonds donors and acceptors but had
excluded a correlation with size.91 In addition, a number of
molecular substructures were found to correlate with a higher
affinity. Out of the 15 substructures with the highest correlation
to affinity (averaged over all 20 models), 11 clearly correspond
to the Staurosporine class of compounds (they retrieve 10−19
of the 19 Staurosporine analogs), 3 retrieved bicyclic aromatic
systems such as azaindole (as observed in Vemurafenib) and
derivatives, and the last one is the common motif diamine
phenylpyrimidine, observed for example in Tamatinib (Figure
15, with more examples presented in Supporting Information
Figure S16).
Analysis of the molecular substructures correlated to the

prediction accuracy identified sets of similar substructures, as
seen in Figure 16 where the previously identified top 15
substructures are again highlighted.
Conversely we could identify protein features correlated to

higher affinity: Kinases with more electrophilic, large and
hydrophobic (small effect) residues tend to display higher
affinities. More specifically, key properties at specific positions
were found to correlate with relatively higher affinities:
alignment positions 13 (larger and more electrophilic amino
acids), 23 (large amino acids), 31 (hydrophobic and small
amino acids), and 35 (more hydrophobic). As an example,
Table 11 shows the amino acids observed at these four
positions in three Kinases of increasing mean pKi: PAK1 (mean

Figure 13. Examples of PKIs whose activities were well predicted by
our model (green, underlined) and predicted with lesser accuracy (red,
in italic).

Figure 14. Influence of the PKI binding mode type on the RMSE for the PKIs. The x axis shows the number of Kinases and the y axis shows the
RMSE value.
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pKi = 5.12, third smallest pKi value observed; RMSE = 0.23,
second smallest RMSE value observed), TYRO3 (mean pKi =
5.69; RMSE = 0.39), and FLT1 (mean pKi = 6.47, largest pKi
value observed; RMSE = 0.67, fourth largest RMSE value
observed). While on this example the properties of the amino
acids at position 13 do not allow a clear differentiation, the
trend is overall respected at the three other positions.
Position 13 belongs to the ß4 strand of the N lobe and lines

the back pocket of the orthosteric site, while position 23 in the
loop between the N lobe ß4 strand and the C lobe D helix lies
in the entrance pocket, separated from the hinge amino acids
by one amino acid (Figure 17). The side chains of the amino
acids at positions 13 and 23 point away from the ATP cavity
and cannot make any interaction with it. Position 31 belongs to
the catalytic loop in the C lobe and lines the phosphate pocket.
Lysine amino acids are conservatively observed at this position
in the kinome since the Lysine side chain points toward the

cavity and is engaged in stabilizing interactions with the ATP
phosphate groups. Position 35 belongs to the activation loop in
the C lobe and precedes the Asp-Phe-Gly (DFG) motif at the
N terminus of the activation loop, which conformational switch
distinguishes between type I and type II ligands. Its side chain
points toward the cavity, potentially interacting with ligands
(via direct hydrogen bonds to type II ligands for example). The
reason why the PCM model identified these four positions is
therefore not immediately related to a potential modulation
(depending on the nature of the amino acid) of direct
interactions with ligands.
The model might have captured more complex parameters

such as the impact of the presence of key amino acids on the
conformational plasticity of the kinases. A highly conserved
spatial motif of four hydrophobic amino acids spanning all
structural domains have been found to dynamically assemble
upon kinase activation, a process that depends on the

Figure 15. (a) List of the 15 substructures with the highest correlation to affinity (averaged over all 20 models. (b) examples of PKIs retrieved by
these substructures. The substructures (a) and hits (b) are colored by chemical class: green diamine phenylpyrimidine (DAPP) and related; blue
Staurosporine and related; orange azaindole and related.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.6b00122
J. Chem. Inf. Model. 2016, 56, 1654−1675

1669

http://dx.doi.org/10.1021/acs.jcim.6b00122


Activation Loop conformation and phosphorylation status.
These amino acids form a “Regulatory Spine” (R-Spine) that
stabilizes the kinase active conformation, coordinates the
motions of the N- and C-lobes and is disordered in the
inactive conformation.97 A second spine was later identified,
formed via the assembly of eight hydrophobic amino acids and
requiring the additional presence of the adenine ring of the
ATP (or an equivalent ring system from a synthetic ligand).
This “Catalytic Spine” (C-Spine) traverses and connects both
lobes.98 The protein kinase functionality requires conforma-
tional plasticity, provided by the spines assembly and
dismantlement, itself triggered by activation loop phosphor-
ylation state and ATP presence. The four positions identified
by the PCM model were all found in close proximity to the R-
and C-Spine amino acids (Table 12, Figure 18), a region of
strategically great importance.99 For the construction of the
PCM model we limited ourselves to a sequence alignment
based mainly on the ATP binding pocket. Hence, what we
observe interpreting the model for residues at positions 13, 23,
31, 35 might be a proxy for changes actually taking place in the
spine region. The currently used alignment includes half of the
Spines positions: two of the four R-Spine positions and four of
the eight C-Spine positions. It might very well be that

extending this alignment to include the full spine regions will
improve the PCM model and allow it to confirm the role these
amino acids play.
It is to be noted that a previous effort by Martin and

Mukherjee, relying on a 46 amino acids definition of the
binding site as composed of the ATP and back pockets, and on
a sequence identity as a similarity measure, identified a set of 16
amino acids most influential for interkinase SAR similarity. Our
method relied on a 38 amino acids definition of the binding site
and we translated our amino acids to physicochemical
properties, that could arguably be considered to be more
relevant for drug binding: we have previously shown that using
different descriptors leads to different descriptions of the
binding pocket.57 There, while performance of the models
trained was similar,100 interpretation might be diverging
between different descriptor types. Indeed, out of the 4
amino acids highlighted in our approach, only 1 is also present
in the 16 amino acids from Martin and Mukherjee, while 2 are
adjacent to 1 of Martin and Mukherjee and the fourth is located
5 amino acids away.

Figure 16. Impact of molecular substructures on the correlation with affinity (x axis) and on the importance for accuracy (y axis), both averaged over
the 20 models. The 15 substructures previously described are displayed and colored by chemical class (green diamine phenylpyrimidine (DAPP) and
related; blue Staurosporine and related; brown azaindole and related) while the other substructures are only represented by gray markers.

Table 11. Values of the Key Properties Correlated with Higher Affinities at the Four Identified Positionsa

PAK1 (mean pKi = 5.12) TYRO3 (mean pKi = 5.69) FLT1 (mean pKi = 6.47)

position desirable property (unit) amino acid value amino acid value amino acid value

13 large size (Da) Asn329 132 Lys572 146 Asn893 132
13 electrophilicity (KD score) Asn329 −3.5 Lys572 −3.9 Asn893 −3.5
23 large size (Da) Gly349 75 His598 155 Tyr914 181
31 small size (Da) Lys391 146 Ala647 89 Ala1024 89
31 hydrophobicity (KD score) Lys391 −3.9 Ala647 1.8 Ala1024 1.8
35 hydrophobicity (KD score) Thr406 −0.7 Ala662 1.8 Cys1039 2.5

aThe KD score corresponds to the Kyte and Doolitle hydrophobicity96.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.6b00122
J. Chem. Inf. Model. 2016, 56, 1654−1675

1670

http://dx.doi.org/10.1021/acs.jcim.6b00122


■ SUMMARY AND CONCLUSIONS
We have presented here our efforts in compiling, standardizing
and analyzing a very large set of kinase bioactivity profiles based
on published literature, followed by extensive proteochemo-
metric bioactivity modeling. The full data set is available as a
Supporting Information zip file and can be downloaded from
the ChEMBL FTP server.101 The bioactivity data will be fully
integrated and available in a future release of the ChEMBL
database. This will complement the existing kinase screening
depositions and will hopefully facilitate more comparative
chemogenomics studies in the community.
Different aspects of the data set composition were analyzed,

ranging from the data sources (journals, articles) to the data
types and providers, the patents covering the PKIs and the
corresponding patentees’ affiliations, the kinome coverage, the
selectivity or promiscuity of both Kinases and PKIs, and the
impact of the PKI type on both their potency and selectivity.

Though incomplete by nature due to the heterogeneity of
the sources, the data set allowed for a robust proteochemo-
metric prediction of kinase activity across the fraction of the
kinome addressed in the compiled literature: our models
facilitate the exploration of the kinase ligand−target space and
the rationalization of the global activity. The provided data files
in the Supporting Information enable the rational design of
compounds with a targeted selectivity profile, hopefully leading
to more specific leads or probes with higher efficacy. The key is
the ability to capture the differences in ligand−target
interaction space displayed by the kinases and their inhibitors.
Here it has been demonstrated that the current set allows for
the creation of PCM models capable to achieve just that.
However, the currently presented PCM model can be further
improved by descriptor tuning or inclusion of other parameters
such as protein domain102 or concentrations used in the
experiments. Although it was judged outside the scope of the
current work, our future plans include a dedicated study on a
high quality kinomewide PCM as proposed here.
In conclusion, in the opinion of the authors, the ever

increasing computational power, coupled to the development
of better algorithms (such as deep learning)103 will allow the
possibility of rational kinome inhibitor design to be a reality in
the very near future.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.6b00122.

Supporting figures: (1) Comparison across the data
sources of the relative numbers of measurements and of
their distribution according to the result types. (2) High
resolution version of Figure 3. (3) Coverage across data
sources, at the Kinase level. (4) Distribution of the

Figure 17. Mapping of the four positions where key properties
correlate with relatively higher affinities (carbon atoms in pink) on the
PAK1−ATP (carbon atoms in light green) crystal structure (PDB
Code: 3Q53, resolution: 2.09 A). The hinge amino acids are
highlighted in orange (carbon atoms in orange, only the backbone is
displayed). Key amino acids Met344 (gatekeeper) and Arg299 are also
displayed (carbon atoms in cyan). The hydrogen bonds between ATP
and the amino acids are represented as dotted lines.

Table 12. List, Amino Acid Identities and Locations of the
Four Positions Identified by the PCM Models and of the C-
and R-Spine Amino Acids in Their Vicinity

amino acid location

position 13 Asn329 N lobe, ß4 strand
R-Spine Tyr330 N lobe, ß4 strand
position 23 Gly349 N lobe ß4 strand to C lobe D-helix loop
C-Spine Leu352 C lobe, D-helix
R-Spine His387 C lobe, catalytic loop
position 31 Lys391 C lobe, catalytic loop
C-Spine Ile395 C lobe, ß7 strand
C-Spine Leu396 C lobe, ß7 strand
C-Spine Leu397 C lobe, ß7 strand
position 35 Thr406 C lobe, activation loop
R-Spine Phe408 C lobe, activation loop

Figure 18. Four positions where key properties correlate with
relatively higher affinities (carbon atoms in pink) are surrounded by
the regulatory (carbon atoms in light brown) and catalytic (carbon
atoms in light blue for the kinase, in light green for the ATP) spines in
this PAK1-ATP crystal structure (PDB code 3Q53, resolution 2.09 A).
The hinge amino acids are highlighted in orange (carbon atoms in
orange, only the backbone is displayed). Key amino acids Met344
(gatekeeper) and Arg299 are also displayed (carbon atoms in cyan).
The hydrogen bonds between ATP and the amino acids are
represented as dotted lines.
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binned pStandardized_Result_Value_SD. (5) Coverage
of the kinome by compounds from the current data set
PKIs exhibiting a STD_RESULT_VALUE of 100 nM or
less. (6) Spread of the SI_k_100 nM values across the
kinome, for the Kinases with at least 100 compounds
tested. (7) Structures of the 25 PKIs with the highest
number of Kinases. (8) Example of a well-modeled
kinase: CAMK2B. (9) Example of a poorly modeled
kinase: GSK3B. (10) Comparison between RMSE and
SI_(k)_100 nM values for the Kinases. (11) Influence of
the spread of pKi values on the RMSE for the Kinases.
(12) Relative populations of singletons, pairs, etc. and
boxplot of the RMSE vs the Murcko fragment. (13)
Example of a well-modeled compound: VX745. (14)
Example of a poorly modeled compound: Bosutinib.
(15) Influence of the spread of pKi values on the RMSE
for the PKIs. (16) Examples of compounds retrieved
using the substructures showing the highest correlation
to affinity (PDF)
Data collection procedures for kinases-related properties,
assays-related properties, and bioactivities processing
(PDF)
Complete data set (ZIP)
Supporting tables: (1) Data sources. (2) Compounds,
with SureChEMBL data. (3) HGNCs and Kinases. (4)
Bioactivities-related properties and their values. (5)
Compound physicochemical property descriptors. (6)
Counts and coverages for each data source at the Kinase
level. (7) Counts and coverages for each data source at
the HGNC level. (8) Calculated PCM descriptors and
their impact on affinity prediction (XLSX)
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