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In this study, dynamic testing principleswere applied to examinepro-

gression of analogy problem solving, the roles that cognitive flex-

ibility and metacognition play in children’s progression as well as

training benefits, and instructional needs of 7- to 8-year-old gifted

and average-ability children.Utilizing a pretest training posttest con-

trol group design, participants were split in four subgroups: gifted

dynamic testing (n = 22), gifted unguided practice (n = 23), average-

ability dynamic testing (n = 31), and average-ability unguided prac-

tice (n = 37). Results revealed that dynamic testing led to more

advanced progression than unguided practice, and that gifted and

average-ability children showed equivalent progression lines and

instructional needs. For children in both ability categories, cogni-

tive flexibility was not found to be related to progression in analogy

problem solving or training benefits. In addition, metacognition was

revealed tobeassociatedwith trainingbenefits. Implications for edu-

cational practice were provided in the discussion.
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1 INTRODUCTION

It has been proposed that cognitive abilities play an important role in children’s school performance. Both intelligence

(Rothet al., 2015), andexecutive functions (e.g.,Monette, Bigras,&Guay, 2011;Viterbori,Usai, Traverso,&DeFranchis,

2015) have been shown topredict school success.When a child is considered to be gifted in an educational context, this

is often basedon the results of an assessment procedure, including conventional, static testing of intelligence, or school

aptitude. These tests, however, have been shown not to be advantageous for all children, and do not unveil information
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about psychological processes involved in learning (e.g., Grigorenko, 2009). As conventional tests, for a large part, rely

on past learning experiences (Elliott, Grigorenko, & Resing, 2010), children who have had less than favorable learning

experiences, have been documented to underperform on these tests (Robinson-Zañartu & Carlson, 2013). Dynamic

tests, in contrast, aremuchmore focused on a child’s potential for learning (Sternberg&Grigorenko, 2002). As in these

tests, feedback and/or instruction are integrated into the testing procedure (Elliott, 2003), they allow for examining

to what extent children show improvement in performance after an intervention, and whether other cognitive fac-

tors, such as executive functions, play a role in learning. In the current study, dynamic testing principles were applied

to investigate to what extent two aspects of executive functioning, cognitive flexibility and metacognition, would be

related to static or dynamic progression in analogy problem solving of gifted and average-ability children.

1.1 Dynamic testing

Rather than measuring the knowledge or skills a child has already mastered, dynamic testing focuses on what a child

would achieve in a short time frame, and this assessment procedure is therefore expected to provide a more complete

picture of a child’s potential for learning (Elliott, 2003). The pretest training posttest design (Sternberg & Grigorenko,

2002) is a frequently used application of dynamic testing that allows for structuredmeasuring of a child’s learning pro-

gression. The graduated prompts technique (e.g., Campione & Brown, 1987) has been used successfully as a training

intervention in combination with said design. In this training approach, children are provided with structured prompts

each time theymake amistake in problem solving. In the current study, prompts were tailored to each individual prob-

lem to be solved, and became more specific gradually, ranging from metacognitive to cognitive prompts and modeling

(Resing & Elliott, 2011).

Similar to static test scores, dynamic testing outcomes have shown that there are many individual differences

between children; both in terms of the instruction they require to show learning progression, as well as in terms of the

level of progression they showafter training (e.g., Resing, 2013). Dynamic testing of childrenwhohave strong cognitive

capacities, nevertheless, seems an area researched less intensively. In earlier studies, dynamic tests for this group of

learners have predominantly been used as ameans to identify giftedness in disadvantaged populations (e.g., Kirschen-

baum, 1998), such as those who are economically disadvantaged (e.g., Borland & Wright, 1994). Previous research

further indicates that gifted children not only have a cognitive advantage, but, more specifically, learn new skills faster,

and are better at generalizing newly acquired knowledge (Calero, García-Martín, & Robles, 2011). The potential role of

executive functioning in dynamic testing of this group of children has, however, not yet been examined abundantly.

Dynamic tests frequently utilize inductive reasoning tasks (e.g., Resing, 2013; Stevenson, Heiser, & Resing, 2013).

Inductive reasoning is believed to play a central role in intelligence (Klauer & Phye, 2008), and is said to be of cru-

cial importance with regard to acquiring and applying knowledge (Goswami, 2012) and solving problems (Richland &

Burchinal, 2012).

1.2 Executive functioning

Thegraduatedprompts techniqueemployed in the current study includedprompts activatingdifferent aspects of exec-

utive functioning, for example, in relation to self-regulation and monitoring of the problem-solving process. Executive

functions comprise a number of complex cognitive processes enabling conscious control of thought and action (Mon-

ette et al., 2011) that are critical to purposeful, goal-directed behavior (Arffa, 2007). They are seen as the cognitive

component of self-regulation (Calkins & Marcovitch, 2010). Research suggests that executive functions include inhi-

bition, working memory and cognitive flexibility, which are key components of higher-order executive functions, such

as metacognition (Miyake et al., 2000). The latter is usually divided into two dimensions: knowledge and regulation of

cognitive activity (Schneider, 2010). To apply metacognition, assumed to play a role in developing new expertise (e.g.,

Sternberg, 1998), cognitive flexibility, working memory, and sufficient inhibition are prerequisites (Roebers, Cimeli,

Röthlisberger, & Neuenschwander, 2012).
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In addition, it hasbeenargued thatflexibility in applyingnewly learned skills andknowledge canbe seenas an impor-

tant aspect of cognitive functioning (e.g., Resing, 2013). Cognitive flexibility is said to include the ability to change per-

spectives spatially, or interpersonally, and being sufficiently flexible to adjust thinking to changing demands. Further, it

is seen as a key component of the ability to think outside the box, and shares many characteristics with creativity, task,

and set switching (Diamond, 2013).

Executive functioning has been found to be related to cognition (e.g., Ardila, Pineda &Rosselli, 2000). Studies inves-

tigating the relationship of executive functioning in a dynamic testing context, in particular with gifted children, how-

ever, are few, withmost studies focusing on the role of workingmemory (e.g., Resing, Xenidou-Dervou, Steijn, & Elliott,

2012; Swanson, 2011).

1.3 The current study

The current study utilized a dynamic test for analogical problem solving, a subtype of inductive reasoning,

employing graduated prompts techniques. Our main research aim was to provide more insight into the poten-

tial benefits of dynamic testing of gifted children. More specifically, we focused on the roles that ability, cog-

nitive flexibility, and metacognition play in repeatedly measured static versus dynamic progression in solving

analogies.

Our first cluster of research questions addressed children’s progression in solving analogies from pretest to

posttest. Based on previous research into progression of unprompted solving of analogy problems among young

children (e.g., Tunteler, Pronk, & Resing, 2008), we expected a significant main effect of time. We hypothesized (1a)

that both unguided practice and dynamic testing would lead to progression in solving analogies from session to

session. More importantly, we expected a significant interaction of time × condition, hypothesizing (1b) that chil-

dren in the dynamic testing condition would show more progression from pretest, before training, to posttest, after

training (e.g., Resing & Elliott, 2011; Stevenson et al., 2013). We further expected a significant interaction between

time and ability. Gifted children were reported to have a more extensive zone of proximal development (e.g., Calero

et al., 2011), therefore we hypothesized (1c) that gifted children would show more progression after unguided

practice experiences than their average-ability peers. We also expected a significant interaction of time × condi-

tion × ability, indicating that gifted children would show more progression after training than their average-ability

peers (1d).

Our second cluster of research questions concerned the association between executive functioning and chil-

dren’s progression from pretest to posttest. We expected a significant interaction between time and cognitive

flexibility. Considering that flexibility in applying skills and knowledge is suggested to be important for learning

and applying new knowledge (e.g., Resing, 2013), we hypothesized (2a) that children with higher levels of cogni-

tive flexibility would show more progression in solving analogies than their peers with lower levels of cognitive

flexibility. We also expected an interaction between time, condition, and cognitive flexibility, (2b) hypothesizing

that children with higher levels of cognitive flexibility would benefit more from dynamic training than those with

lower levels. Furthermore, a significant interaction between time, condition, ability, and cognitive flexibility was

expected. Building on empirical studies in which high-ability children were found to have an advantage in executive

functioning (e.g., Arffa, 2007), we hypothesized (2c) that the progression paths of gifted children with higher levels

of cognitive flexibility would be steeper than those of their average-ability peers with similar levels of cognitive

flexibility.

Moreover, as self-regulating, metacognitive skills were found to play a significant role in learning (e.g., Campione,

Brown, & Ferrara, 1982; Sternberg, 1998), we expected an interaction between time and metacognition, hypothesiz-

ing (3a) that children with higher levels of metacognition would showmore progression in solving analogies than their

peers with lower levels of metacognition.We also expected a significant interaction between time, metacognition, and

condition, and hypothesized (3b) that children with higher levels of metacognition would benefit more from training

than their age mates with lower levels of metacognition. Finally, a significant interaction was expected between time,

condition, ability, andmetacognition. Taking into account that high-ability childrenwere found to have an advantage in
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TABLE 1 Overview of the hypotheses (SA= solving analogies)

Hypothesis

1a Unguided practice and dynamic testing will lead to progression in SA over time

1b Dynamic testing will lead tomore progression from pre- to posttest

1c Gifted childrenwill showmore progression after unguided practice

1d Gifted childrenwill showmore progression after training

2a Higher levels of cognitive flexibility will lead tomore progression in SA

2b Higher levels of cognitive flexibility will lead tomore progression after dynamic training

2c Progression paths of gifted childrenwith higher levels of cognitive flexibility will be steeper

3a Higher levels of metacognition will lead tomore progression in SA

3b Childrenwith higher levels of metacognition will benefitmore from training

3c Progression paths after training of the gifted childrenwith higher levels of metacognition will be steeper

4a Gifted childrenwill need less metacognitive prompts

4b Gifted childrenwill need less cognitive prompts

self-regulation (e.g., Calero, García-Martín, Jiménez, Kazén, & Araque, 2007), we hypothesized (3c) that the progres-

sion paths after training of the gifted children who have higher levels of metacognition would be steeper than their

average-ability peers with similar levels of metacognition.

Our last research question focused on individual differences in instructional needs, asmeasured by the number and

the type of prompts required during training. As high-ability children were found to be more responsive to feedback

(Kanevsky&Geake, 2004), and tohaveanadvantage in self-regulation (e.g., Caleroet al., 2007),weexpected that gifted

children’s instructional needs during dynamic trainingwould be significantly different from their average-ability peers.

We hypothesized that gifted children would (4a) need both less metacognitive and (4b) less cognitive prompts than

their average-ability peers. Table 1 provides an overview of the hypotheses.

2 METHOD

2.1 Participants

In this study, 113 children, 54 boys and 59 girls, participated, ranging in age from 7.1 to 8.9 years (M = 7.90). The

average-ability children (n = 68) attended mainstream elementary schools, and those who were identified as gifted

were enrolled in special settings for gifted and talented children in theNetherlands. Gifted children (n=45)were over-

sampled and preliminary identification of giftedness took place on the basis of their enrolment in gifted education and

qualitative judgments of parents and teachers regarding their giftedness.1 Schools participated on a voluntary basis,

and written permission to participate was obtained from the children’s parents and schools prior to participation. Six

children dropped out, as they did not participate in each test session.

2.2 Design

The study utilized a 2 × 2 pretest–posttest control group design with randomized blocks with Ability category (gifted

vs. average ability) and Condition (dynamic testing vs. unguided practice) as variables (see Table 2). Blockingwas based

on the scores on the Raven Standard Progressive Matrices test (Raven, 1981), administered before the pretest. All

the children who had been identified as gifted had obtained Raven scores of at least the 90th percentile. Children in

the dynamic testing subgroups received training between pretest 2 and posttest, whereas children in the unguided

practice subgroups received an unrelated dot-to-dot control task of equal length between pretest 2 and posttest.
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TABLE 2 Overview of the design

Dynamic Testing (n= 53) Unguided Practice (n= 60)

Gifted (n= 22)
Average Ability
(n= 31) Gifted (n= 23)

Average Ability
(n= 37)

Prior to
dynamic/static
testing

Raven, BRIEF,
BCST-64

x x x x

Dynamic/static
test

Pretests 1 and 2 x x x x

Dynamic training Dynamic
training

Dynamic
training

Dot-to-dots
control task

Dots-to-dots
control task

Posttest x x x x

Thedesign includedpretest sessions1and2 toenable comparisonsbetweenstatic anddynamicprogression.During

the pretest sessions and the posttest, all children were only provided with short, general instructions. Administration

of the instruments, including the training session, took approximately 20–30minutes per session.

2.3 Materials

2.3.1 Raven

Participants were administered the Raven Standard ProgressiveMatrices Test (Raven, 1981) as a measure of intellec-

tual ability and a blocking instrument. The Raven test is a nonverbal intelligence test that measures fluid intelligence

by means of multiple choice figural analogies. The Raven Standard Progressive Matrices (internal consistency r = .91)

consists of five sets of twelve items each, with a total of 60 items. In this study, only the raw scores were used in the

analyses.

2.3.2 Berg Card Sorting Test-64 (BCST-64)

The BCST-64 (Piper et al., 2011), the shortened version of the BCST, containing 64 trials, was used to measure cogni-

tive flexibility. The BCST is an open-source computerized version of theWisconsin Card Sorting Test (WCST; Grant &

Berg, 1948). The unstandardized number of perseverative errorsmade during the administration of the BCST-64were

used as ameasure of the participants’ cognitive flexibility.Higher perseverative errors correspondwith lower cognitive

flexibility.

2.3.3 BRIEF

The teacherquestionnaireof theDutchversionof theBehaviorRating InventoryofExecutiveFunctions (BRIEF; Smidts

& Huizinga, 2009) was utilized to obtain teachers’ evaluation of children’s metacognition. The teacher questionnaire

contains 86 items that make up eight scales, and two indices. Scores on the BRIEF Metacognition Index (Cronbach’s

𝛼 = .95) were used to obtain the teacher’s evaluation of each child’s metacognition. Higher scores of the BRIEF are

associated withmore deviations from the norm, or impairment of executive functions. In the present study, raw scores

were used.

2.4 Dynamic version of geometric analogies

2.4.1 Pretests and posttest

The dynamic test used in this study was composed of geometric visuospatial analogies of the type A:B::C:D (see

Figure 1 for an example item). Both the pretests and the posttest consisted of 20 items of various difficulty. Six basic

geometrical shapeswere used in the construction of the analogies: squares, triangles, hexagons, pentagons, circles, and
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F IGURE 1 Example of a difficult analogy item

ovals. Each analogy was constructed by means of five possible transformations: changing position, adding or subtract-

ing an element, changing size, halving, and doubling. The test was administered as an open-ended paper-and-pencil

test, and children had to draw their answers.

The pretests andposttest, parallel sessionswith different, but equivalent analogy items,were composedof 20 trials.

The test sessions were equivalent in terms of the numbers of different elements, and transformations used for each

analogy item, as well as the order in which the items were presented in relation to their difficulty level. The children

receivedminimal instructions only in the two pretests and the posttest, as theywere told that they had to solve puzzles

with different shapes. The test leader then asked the child which shapes had to be drawn in the fourth box to solve the

puzzle.

2.4.2 Training

The current study employed one training session, consisting of 10 geometric analogies that were not used in either

the pretests or the posttest. The training session was based on graduated prompts techniques (Campione & Brown,

1987; Resing & Elliott, 2011), and consisted of five steps per item. The prompts were administered following a stan-

dardized protocol, and were provided hierarchically, from two very general metacognitive prompts to two concrete

cognitive prompts tailored to each specific item (see Appendix Table A1) . Prompts were given if a child could not solve

the analogy independently. After each prompt, childrenwere asked to draw the solution of the analogy, and check their

answer. If, after the fourth prompt, a child had not solved the analogy correctly, the test leader modeled the correct

answer for the child. After the four prompts had been provided, and/or the test leader had shown the correct answer,

the childrenwere asked to explainwhy they thought their answerwas correct. Then, the test leader provided a correct

self-explanation.

2.5 General procedure

The children were tested once a week over a period of five consecutive weeks. All tests and questionnaires part of the

present studywere administered following standard, protocolled instruction. At the beginning of the pretests, training

session, and posttest, the children were provided with the six geometrical shapes used in the analogies, and in cooper-

ation with the test leader named each shape, after which the test leader asked the child to draw the shapes below the

printed shapes, staying as close to the original as possible.

2.6 Scoring

Analogy items were scored on the basis of children’s drawings, in combination with their verbal explanations. Some of

the children experienced difficulties drawing the geometrical shapes. As each child had to copy the shapes used in the

analogies on the cover sheet, in the vast majority of cases the test leader knew which shapes the child was drawing. If

necessary, the child would be asked to point out on the cover sheet which shapes were intended.

For each item, the number of transformations that the child had applied correctly in solving the analogywas scored.

Each analogy item was constructed by means of 1, 2, 3, 4, or 6 transformations that the child had to apply correctly to

accurately solve the item, adding up to a total of 59 transformations per test session. The total number of transforma-

tions applied correctly in solving the analogies was taken as the outcome variable for each test session.
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To estimate coding reliability, the pretest 1 data were scored by both the first author and a student assisting in data

collection. An inter-rater reliability analysis showed that inter-rater agreement for the pretest 1 correct transforma-

tions was good (𝜅 = .83, p< .0001).

2.7 Analyses

Multilevel modeling was used to analyze the data. Multilevel modeling capitalizes on the hierarchical structure of the

data, allowing us to study relations among variables at different levels and across levels.We can simultaneously answer

level 1 questions about within-person change, and level-2 questions about how these changes vary across children

(Singer & Willett, 2003). In the current study, level 1 represented the repeated measurements of the number of cor-

rect transformations within children, and level 2 represented the variability between children. We followed a prede-

termined model building structure as proposed by Singer and Willett (2003); starting with two simple, unconditional

models and including our time-variant and time-invariant predictors in the successive models. The predictors were:

condition, ability category, cognitive flexibility, and metacognition. Two time-invariant predictors, metacognition and

cognitive flexibility, weremean centered to improve interpretation (Singer &Willett, 2003).

R (R Development Core Team, 2014) was used to fit the models. The fit of all models was compared using the likeli-

hood ratio test (LRT) and two fit indices: Akaike’s Information Criterion (AIC) and the Schwarz’s Bayesian Information

Criterion (BIC). The LRT follows a 𝜒2-distribution where the degrees of freedom are equal to the difference in the

number of estimated parameters between the models. The LRT compares the “log likelihood” of two models and tests

whether they differ significantly. The AIC and BIC are ad hoc criteria based on the log-likelihood statistic. The AIC and

BIC statistics can be compared for all pairs of models, whether themodels are nestedwithin one another or not. These

indices use a penalty function based on the number of parameters so that the more parsimonious model is favored. A

lower AIC and BIC value indicates a better fit of the model (Singer &Willett, 2003). All the discussed models were fit-

ted using the full maximum-likelihood (FML) estimation. Most of themodels differed in their fixed parts, and therefore

deviance based on FMLwas needed to be able to compare the successivemodels (Singer &Willett, 2003).

3 RESULTS

Before examining our research questions, one-way analyses of variance were conducted for each Ability category to

evaluate possible differences between children in the conditions. The Raven scores, pretest 1 number of correct trans-

formations, andage inmonthswereusedasdependent variables, andCondition (dynamic testing vs. unguidedpractice)

as independent variable. The findings for the gifted and average-ability children, analyzed separately, revealed no sig-

nificant differences in Raven scores (p = .53; p = .61), pretest 1 correct transformations (p = .40; p = .85), nor in age (p

= .52; p= .98) between the dynamic testing and unguided practice conditions, respectively.We also examined possible

differences between the gifted and average-ability children. The gifted children outperformed their peers on both the

Raven scores, and the pretest 1 correct transformations (for both measures, p < .001), but no significant differences

were found in age (p = .31). Descriptive statistics of all measures used in the current study, per condition and Ability

category are provided in Table 3.

We conducted growth curve analyses (Multilevel analysis;MLA) tomodel growth in the number of correct transfor-

mations. Table 4 presents the parameters and fit indices of the models. We first fitted the unconditional means model

(intercept-only model) to acquire the random effects that revealed a significant intercept effect (p < .001). We exam-

ined the intraclass correlation coefficient (ICC) as a measure of dependence; it describes the proportion of outcome

variance that lies between persons in the population (i.e., the cluster structure of the data). As indicated by the ICC

coefficient, of the total variation in the number of correct transformations, 54.38% could be attributable to differences

between children. This finding revealed that the observations were not independent, and indicated that therewas sys-

tematic variation in the outcome measure (transformations) worth exploring, both for the within-level and between-

level variance, reinforcing the choice of multilevel modeling.
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TABLE 3 Mean scores and standard deviations of Raven scores, pretest 1, pretest 2, posttest correct transforma-
tions, cognitive flexibility, andmetacognition per condition and ability group

Gifted Average Ability

Dynamic
Testing

Unguided
Practice

Dynamic
Testing

Unguided
Practice

N 22 23 31 37

Raven (raw scores) M (SD) 43.82 (4.22) 44.57 (3.78) 34.55 (5.53) 33.78 (6.47)

Pretest 1 (transformations) M (SD) 39.14 (15.13) 41.96 (9.26) 29.16 (13.56) 28.43 (15.77)

Pretest 2 (transformations) M (SD) 46.86 (17.62) 53.74 (4.05) 43.52 (13.40) 41.03 (18.27)

Posttest (transformations) M (SD) 54.59 (9.63) 53.91 (5.97) 52.77 (7.14) 41.68 (18.14)

Cognitive flexibility (perseverative errors) M (SD) 11.36 (5.14) 12.87 (7.43) 9.81 (5.53) 13.84 (7.79)

Metacognition (raw scores) M (SD) 59.91 (15.68) 61.61 (20.28) 59.47 (17.21) 60.30 (15.42)

TABLE 4 Results of the fittedmultilevel models for the number of correct transformations

Model Estimate(SE) Deviance AIC BIC

1. Intercept only 42.89(1.26)** 2,750.6 2,756.6 2,768.1

2. Time 8.13(.51)** 2,557.8 2,569.8 2,592.7

3. Condition 3.51(1.40)* 2,552.3 2,566.3 2,593.1

4. Ability category 8.23(2.39)** 2,541.5 2,557.5 2,588.1

5. Ability category× Time −2.21(.98)* 2,536.5 2,554.5 2,589.0

6. Ability category×Condition −3.85(2.82) 2,534.8 2,554.8 2,593.1

7. Cognitive flexibility −.13(.17) 2,536.0 2,556.0 2,594.3

8. Cognitive flexibility× Time .02(.07) 2,536.0 2,558.0 2,600.0

9. Cognitive flexibility×Condition .34(.21) 2,533.7 2,555.7 2,597.8

10. Cognitive flexibility ×Condition×Ability category .49(.35) 2,534.1 2,556.1 2,598.2

11.Metacognition −.03(.07) 2,513.7 2,533.7 2,571.9

12.Metacognition× Time .05(.03) 2,510.8 2,532.8 2,574.8

13.Metacognition×Condition .15(.07)* 2,509.3 2,531.3 2,573.3

14.Metacognition×Condition×Ability category −.06(.14) 2,509.1 2,533.1 2,578.9

Note. Significance: **p < .001, *p < .05. The deviance, AIC, and BIC statistics were examined for the relative goodness of fit of
the successivemodels.

In Model 2 (the unconditional growth model), we included our time predictor into the level-1 submodel to explain

the remainingwithin-child variance (117.8). The estimated rate of change in the number of correct transformations for

an average participant was 8.13 (p < .001); children generally improved in the number of correctly applied transfor-

mations. A negative covariance (−.56) was found between the slope and intercept. This indicated that children using

fewer correct transformations at pretest 1 increased their numberof correct transformations slightly faster across test

sessions than children with a higher number of correct transformations at pretest 1. Variance components revealed

remaining variance in the number of correct transformations both between, andwithin, children. Extending themodel

by adding other predictors could possibly reduce this variation.

Model 3 includedCondition as an explanatory variable for the number of correct transformations. Result of the LRT

showed that model fit improved (𝜒2(1) = 5.46, p = .02). Children of the unguided practice group had, on average, an

estimated rate of change of 7.31. Therefore, these children generally increased their number of correct transforma-

tions across test sessions. A positive fixed effect for Condition (training vs. unguided practice) of 3.51 revealed that the

dynamic training session influenced the performance of the children. In accordance with our expectation, those who
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received adynamic training session improvedmore in thenumberof correct transformations frompretest 2 toposttest

than the children in the unguided practice condition.

In Model 4 we included Ability category, gifted versus average-ability, as a predictor for initial status. Model 4 pro-

vided a better fit to the data compared toModel 3 (𝜒2(1)= 10.82, p= .001). Children’s Ability categorywas found to be

related to the number of correct transformations at pretest 1 as shown by a significant main effect of Ability category

(8.23). Specifically, children with higher intellectual ability scored, on average, higher on pretest 1 than average-ability

peers. Model 5 showed that Ability category was also a significant predictor for children’s rate of change, as indicated

by a significant interactionofAbility category andTime.Model fit improved (𝜒2(1)=4.96, p= .03). The estimate (−2.21)
revealed that average-ability children improved more in the number of correct transformations over time than gifted

children.

In Model 6 we examined whether the dynamic training session had different benefits for gifted and average-ability

children.We included the interaction effect of Ability category andCondition, which did not improvemodel fit (𝜒2(1)=
1.75, p= .19). No significant differencewas found in dynamic training benefits for gifted and average-ability children, as

revealed by the nonsignificant interaction effect (−3.85), indicating that gifted children did not showmore progression

in the number of correct transformations after training than their average-ability peers.

Model 7 showedno significantmain effect ofCognitiveflexibility;model fit did not improve (𝜒2(1)= .53,p= .47). The

nonsignificant interaction effect of Cognitive flexibility× Time inModel 8 (𝜒2(2)= .59, p= .75) indicated that we could

not support our expectation that childrenwith higher levels of cognitive flexibilitywould showmore progression in the

number of correct transformations than their age mates with lower levels of cognitive flexibility. Children with higher

levels of cognitive flexibility did also not benefitmore from the dynamic training session than childrenwith lower levels

of cognitive flexibility as shown in Model 9 (𝜒2(2) = 2.84, p = .24). Furthermore, results of Model 10 showed that the

progression paths of gifted children that had higher levels of cognitive flexibility were not steeper than those of their

average-ability peers (𝜒2(2) = 2.47, p = .29). The time-invariant predictor Cognitive flexibility was not included in the

remainingmodels.

Model 11 included the main effect of Metacognition. A nonsignificant effect was found, however, model fit did

improve after inclusion of the predictor (𝜒2(1)=22.80, p< .001). Results ofModel 12 showed that childrenwith higher

scores on the Metacognition Index showed equivalent progression in the number of correct transformations across

test sessions than their peers with lower scores on the Metacognition Index (𝜒2(1) = 2.97, p = .08). In Model 13, we

included the interaction effect of Metacognition and Condition, which led to an improvement in model fit (𝜒2(1) =
4.40, p= .04). The estimate (.149) showed that childrenwith higher scores on theMetacognition Index benefitedmore

from training than peers with lower scores. We included the three-way interaction between Condition, Ability cate-

gory, and Metacognition in Model 14. Results showed that the progression paths of gifted children that had higher

levels of metacognition were not steeper than those of their average-ability peers (𝜒2(1)= .20 p= .66).

In conclusion, Model 13 was shown to be themodel that best fitted the data based on the LRT, and the AIC and BIC

statistics. The dynamic sessions led to an improvement in the number of correct transformations the children used.

No differences in dynamic training benefits for gifted and average-ability children were found. The average-ability

children in the unguided practice condition did, however, show more improvement across test sessions than the

gifted children in the unguided practice session. Cognitive flexibility did not influence children’s progression over

time and the improvement in the number of transformations after receiving the dynamic training. The progression

paths did also not differ for gifted children with higher levels of cognitive flexibility and their average-ability peers.

Metacognition did not influence progression in the number of correct transformations. Children with lower levels of

metacognition, as indicated by higher scores on theMetacognition Index, showedmore improvement in the number of

correct transformations after the dynamic training than their peerswith higher levels ofmetacognition. Lastly, the pro-

gression paths did not differ between gifted children who had higher levels of metacognition and their average-ability

peers.

To examine our final research question regarding potential differences in the instructional needs of gifted and

average-ability children, we conducted a one-way analysis of variance (ANOVA) with two within-subjects factors

(metacognitive and cognitive prompts) and one between-subjects (Ability category) factorwith the number of prompts
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TABLE 5 Mean scores and standard deviations of the number ofmetacognitive and cognitive prompts received dur-
ing training per Ability category

Metacognitive Prompts Cognitive Prompts

M SD M SD

Gifted 11.91 2.14 2.41 4.47

Average ability 12.87 2.39 2.90 4.29

in each category as dependent variables. No significant differenceswere found in the number ofmetacognitive, F(1,51)

= 2.27, p = .14, or cognitive prompts, F(1,51) = .17, p = .69 across ability categories (see Table 5). These results sug-

gested that the two groups of children, gifted versus average-ability needed a similar number of steps during training,

indicating their need for instruction was similar from both a quantitative, relating to the total number of prompts, and

a qualitative, relating to differences in the type of prompts provided, perspective.

4 DISCUSSION

The current study explored the potential differential benefits of dynamic versus static testing of gifted and average-

ability children, and focusedon twoaspects of executive functioning, cognitive flexibility andmetacognition. First of all,

our results showed that childrenwhohadunguidedpracticeexperienceonly, andchildrenwhoweredynamically tested

showedprogression in thenumberof correct analogical transformations.Whenchildrenwere testeddynamically, how-

ever, their progression pathswere shown to bemore advanced, which supports previous findings (e.g., Stevenson et al.,

2013). In this sense, our findings build upon earlier studies in which it was posited that dynamic testing of children

reveals a more complete picture of their cognitive potential than static testing only (e.g., Elliott, 2003).

Moreover, our findings indicated, as expected, that gifted children start at a higher ability point, and keep this advan-

tage during following sessions. When looking into potential differences between gifted and average-ability children in

relation to the nature of progression, in contrast to our expectations, it was found that, in general, the average-ability

children showedmore progression than their gifted peers.We cannot, however, discount that the gifted children in the

current study might have experienced a ceiling effect in testing. If so, we would then have expected them to show a

differential need for instructions, which could not be supported by our data.Moreover, nomention of a ceiling effect is

made in previous research with participants of the same age (e.g., Tunteler et al., 2008). It must be mentioned, never-

theless, that it is not knownwhether any high-ability children participated in these studies. Therefore, this explanation

requires further research.

Looking more closely into training benefits, it was revealed that the gifted and average-achieving children showed

similar rather than different progression lines after training, whereas previous studies into dynamic testing of gifted

children found that these groups of children differed significantly in their performance and progression (e.g., Calero

et al., 2011; Kanevsky & Geake, 2004). In the light of the fact that all groups of children progressed after training, our

findings, ultimately, seem to suggest that dynamic testing might be better suited to reveal the cognitive potential of all

groups of children (Elliott et al., 2010), including those with above-average cognitive abilities.

We also examined the role that cognitive flexibility and metacognition play in progression in accuracy of analogical

reasoning, and training benefits. It could not be established that cognitive flexibility plays a role. A number of reasons

can be identified for the unexpected results regarding cognitive flexibility. First of all, research into executive func-

tioning among children is challenging. One important reason is the type of instruments used to measure executive

functioning. It has been noted that performance-based tasks, such as the BCST-64 used in the current study, rarely

measure one executive function only (e.g., Miyake et al., 2000). By definition, executive functions regulate various

cognitive processes, including for instance visuospatial processing. Performance-based tasks measure these other

processes as well, making measuring just one executive function, in isolation, difficult (Viterbori et al., 2015). The
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developmental nature of executive functions in childhood should also be taken into consideration (e.g., Diamond,

2013).Moreover, it should be noted that the cognitive flexibility task used in the current study is a singlemeasurement,

static test, whereas learning potential measures are dynamic. Therefore, future studies could research this relation-

ship further by utilizing a dynamic cognitive flexibility task, such as the dynamic Wisconsin Card Sorting Task (e.g.,

Boosman, Visser-Meily, Ownsworth,Winkens, &VanHeugten, 2014). These authors found that the dynamic executive

functioning indices were significantly associated with cognitive functions, whereas the static indices were not.

It was, nonetheless, found that metacognition had an effect on the training benefits, but not on the progression

from pretest to posttest. Childrenwho, according to their teachers, had lower levels of metacognition, in contrast with

our expectations, benefittedmore from training than their peerswith higher levels ofmetacognition. Furthermore, the

findings provide a first indication that a graduated prompts training procedure can, to a certain extent, compensate

for lower levels of metacognition. This notion is particularly relevant considering Sternberg’s (1998) assertion that

metacognition is an important ability in the development of expertise.

Although it seems plausible that the graduated prompts technique used in the current study also helps improve

metacognition, this tentative hypothesis should be investigated using several measurements of metacognition. It must

be noted that, although studies suggest that rating scales can be used successfully to obtain an approximation of chil-

dren’s executive functioning (Toplak,West, & Stanovich, 2013), using teacher ratings is a very indirect method of mea-

suring metacognition. However, due to the young age of the participants, it was not possible to use other instruments

to obtainmetacognitionmeasures. Self-reportmeasures are not recommended for young children, as they rely heavily

on verbal ability (Whitebread et al., 2009). Thinking aloud protocols, moreover, might not fully capture implicit cog-

nitive processes, as young participants might not be conscious of their metacognitive processes while solving a task

(Lai, 2011). In future research among older children, these instruments could be used to investigate the relationship

between metacognition and dynamic testing measures. Future studies should also focus on development and imple-

mentation of instruments that directly measure or predict executive functioning among young children.

Finally, we looked more closely into children’s instructional needs during dynamic training. Contrary to what we

expected based on previous literature (e.g., Calero et al., 2007; Kanevsky & Geake, 2004), we found no differences

in the instructional needs of the gifted versus average-ability groups of children: the two groups of children needed

a similar number of cognitive and metacognitive prompts. These results ultimately suggest that, compared with their

average-ability peers, gifted children did not differ in terms of the number of cognitive, metacognitive prompts, nor in

the extent to which they needed modeling, and, thus, can have similar needs for instructions to progress in learning.

Individual differences between children’s need for instructions, both within and across ability categories, were, how-

ever, found, as suggested by the standard deviations of both groups of children, which is in line with previous studies

(e.g., Resing, 2013).

In addition to the limitations mentioned above, the current study encountered some other limitations. First of all, it

is important tomention thatwe only used theRaven Standard ProgressiveMatrices as ameasure of intellectual ability.

Although the Raven test is known as a robust measure of intellectual ability (e.g., Jensen, 1998), we did not include

other factors deemed important for cognitive and intellectual functioning, such as task commitment or creativity (e.g.,

Renzulli &D’Souza, 2014).Moreover,weonly investigated correct analogical transformations,while other factors have

also been shown to be important in progression in analogical reasoning. Investigating strategy use, in particular, could

lead to interesting findings considering the assumed relationship between strategy use and aspects of executive and

intellectual functioning (e.g., Shore, 2000).

The results of the current study yield some important implications for educational professionals. It seems advisable

to administer a dynamic rather than a static testwhen children’s intellectual abilities are questioned, especially for chil-

drenwith lower levels ofmetacognition. In this light, investigating the interrelationship between executive functioning

and dynamic testing seems worthwhile, especially for children with lower levels of intellectual functioning or learning

disabilities. The benefits of dynamic testing for these special groups of children seem especially relevant within the

framework of response to intervention (RTI; e.g., Grigorenko, 2009). Research suggests dynamic testing may be used

successfully to identify or predict the responsiveness to intervention of these children (e.g., Fuchs, Compton, Fuchs,

Bouton, & Caffrey, 2011).
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Opponents of dynamic testing often argue that testing dynamically is more labor intensive, and, thus, more expen-

sive than testing statically. The dynamic test used in the present study, for example, in total, took approximately 60–90

minutes to administer, whereas for a static test with a single test session, 15–20 minutes would suffice. Nevertheless,

our findings suggest that taking extra time to test these children, including those identified as gifted, more than once

and administering a dynamic training session, helps them in unveiling their cognitive abilities, and, thus, is worth the

extra investment.

This notion becomes even more salient when taking into account that dynamic testing of children also provides

insight into their instructional needs (e.g., Bosma & Resing, 2012). The results of the current study remind us that,

when teachinghigh-ability children, these childrendonot, bydefinition, need less instructionor feedback thanaverage-

ability children, to showprogression in learning. Just like any other children, someof these children can also profit from

extra feedback or help so they can unveil their true cognitive potential. Finally, and most importantly, the results of

the present study indicate that children, even those who have already achieved excellent results, can show learning

progression when they are providedwith the right instructions.

ENDNOTE
1 In the Netherlands, intelligence testing is not standard practice in primary schools. For admittance to special talent or gifted

educational programs, teachers and parents’ nominations are often used. In the present study, these nominations were used,

in combinationwith a percentile rank score of at least 90 to identify children as gifted.
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APPENDIX

TABLE A1 Schematic overview of the graduated prompts training protocol

Step Instruction Incorrect Answer? Correct Answer?

1 This is another puzzle with four boxes. Do
you remember what we are going to do?
[have child provide an answer]

We are going to solve the puzzle by filling
the empty boxwith the correct figures.
Just draw the answer that you think is
correct in the empty box [have child draw
the answer]. Check whether you drew the
correct answer [have child check and
correct answer if necessary]

The picture you drew is
great, but it is not entirely
correct yet.

I will help you, but try to find
the correct answer with as
little help fromme as
possible.Wewill start
again after each try.

To step 5:Well done, that is
the correct answer!

Can you tell mewhy this this
the correct answer?

[Test leader models correct
self-explanation, as per the
protocol, tailored to each
item]

2 How dowe start? [have child provide an
answer]

First, have a good look at the figures in these
three boxes [point at A, B, C]

Do you now know the correct answer?
Just draw the answer that you think is
correct in the empty box [have child draw
the answer]

Check whether you drew the correct
answer [have child check and correct answer
if necessary]

Great picture! It is not
entirely correct. I will help
you somemore.

3 Have a good look at these boxes [point at A
and B]

What do you see? [Have child provide an
answer]

We see that A and B belong together. Do
you knowwhy? [have child provide an
answer]

[Then explain the transformations from A→ B
according to protocol, tailored per item]

Do you now know the correct answer?
Just draw the answer that you think is
correct in the empty box [have child draw
the answer]

Check whether you drew the correct
answer [have child check and correct answer
if necessary]

You drew another beautiful
picture. It is almost correct,
so I will help you a little bit
more.

4 Now have a good look at this box [point at C]
and this box [point at A]

What do you see? [Have child provide an
answer]

We see that A and C look alike, but that they
changed a little bit. Can you tell mewhy?
[Have child provide an answer]

[Then explain the similarities between A and C,
B according to protocol, tailored per item]

Do you now know the correct answer?
Just draw the answer that you think is
correct in the empty box [have child draw
the answer]

Check whether you drew the correct
answer [have child check and correct answer
if necessary]

What a beautiful picture. You
can draw very well. It is not
entirely correct; I will show
you the correct answer [test
leader draws correct answer]

Can you tell mewhy this this
the correct answer?

[Test leader models correct
self-explanation, as per the
protocol, tailored to each
item]




