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Tissue engineering is one of the most important areas of biomedical research [1]. 

Strategies to develop complex tissues or organs in vitro will help our understanding of 

organ physiology and pathology [2-4]. Development of organ cultures could also have 

applications in organ transplantation and regenerative medicine [5]. Furthermore, these 

organ cultures can be used to test candidate drugs which might ultimately reduce the use 

of animals in research [6, 7].  

One of the main issues in culturing complex organs is the lack of a vascular system [8]. In 

multicellular organisms, the vascular system allows the growth and function of organs by 

supplying nutrients and growth factors and by removing waste products [9]. The limited 

diffusion of nutrients and oxygen into the un-vascularized tissue mass, developed in vitro, 

hinders its growth and function into something resembling an organ [10]. To this end, 

several techniques have been developed to culture vascular networks, largely using 

mammalian cells and tissues.  

The mammalian cells and tissues commonly used for this purpose are: (i) endothelial cell 

lines (most commonly human umbilical vein endothelial cells or HUVECs [11-22]); (ii) 

stem cells (embryonic stem cells [23], mesenchymal stem cells [24] or induced pluripotent 

stem cells [25]); and (iii) tissue explants [26]. However, there are certain limitations to 

these techniques. The endothelial cell lines are extensively adapted to growth and 

proliferation in vitro, and therefore vascular cultures derived from these cells does not 

truly represent the in vivo vasculature [26]. The use of embryonic stem cells from 

mammals, especially from humans, raises ethical issues [27]. Furthermore, adult stem 

cells (mesenchymal and induced pluripotent stem cells) possess technical challenges in 

their isolation and derivation procedures [28, 29]. Similarly, the isolation of tissue 

explants from mammals (in most cases, rodents) requires invasive surgical procedures 

and therefore raises ethical concerns [27, 30]. 

For these reasons, it is important to develop alternative models for studying vascular 

morphogenesis in vitro. The zebrafish is one such emerging model species in the field of 

vascular development and regeneration [31]. In contrast to rodents, zebrafish embryos 

are externally fertilized allowing easy access to large number of embryos [32]. The 

embryos are fast-developing and transparent in early life stages, allowing easy access to 

cells and tissues (for in vitro manipulation) at different developmental stages [33]. 

Furthermore, genome comparison studies have shown significant similarities in the 

functional domains of many protein-coding genes of zebrafish and humans, and have 

shown that many human disease genes are also present in the zebrafish genome [34]. For 

these and other reasons, there is growing interest in the zebrafish as a model for human 

disease [32]. 

Several factors have been identified which influence the formation of blood vessels. These 

factors include: (i) growth factors (such as vascular endothelial growth factors, fibroblast 
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growth factors, angiopoietins and transforming growth factors [35]); (ii) extracellular 

matrix components (such as collagen type I and IV, fibronectin and laminin [36]); (iii) 

supporting cell types (such as pericytes and smooth muscle cells [37, 38]); and (iv) 

haemodynamic forces caused by blood flow [39]. In order to develop a physiologically 

relevant and functional vascular network in vitro, endothelial or stem cells, or tissue 

explants are cultured in the presence of naturally derived vascular growth factors, 

supporting cell types and extracellular matrix [12, 40, 41].  

Recently-developed microfluidic technology mimics the haemodynamic forces exerted by 

the blood flow in vivo, by culturing the cells in a closed system with circulating medium 

[42]. Using a combination of these factors, great advances have been made in recent years 

in developing a functional in vitro vascular network. In a landmark study, the vascular 

network developed inside a 3D scaffold connected to a microfluidic system allowed the 

growth and function of cardiac and hepatic tissues cultured on the outside of the scaffold 

[22].  

Little is known about using zebrafish cells for culturing vascular network. The benefits 

associated with zebrafish cell culture makes it a model of choice for in vitro studies. The 

availability of large number of externally fertilized embryos allow easy access to primary 

embryonic cells and tissues [33]. Zebrafish cell cultures are maintained at relatively low 

temperatures (26-28 °C) and do not require extra CO2 in the atmosphere for buffering the 

medium. In principle, this allows the zebrafish cells to be grown at room temperature, 

although the use of a simple incubator is recommended to maintain sterile conditions 

[43]. However, this can also be considered a disadvantage as these conditions are not ideal 

for human cells. 

A further advantage is the availability of transgenic lines such as fli:GFP [44] and kdrl:GFP 

[45], expressing green fluorescence protein in endothelial cells. These transgenic lines 

allow direct observation of vascular development in living embryos and in cell cultures 

[46, 47]. In contrast to endothelial cell lines such as HUVECs, zebrafish primary embryonic 

cells are closer to the in vivo state. Furthermore, the development of vascular networks in 

zebrafish embryonic cell culture takes place in a complex environment of other cell types, 

which is difficult to achieve working with isolated cell lines. On the other hand, culturing a 

mixture of cell types allows less control over the cell culture environment compared to 

pure endothelial cell lines. In this thesis, I have studied the use of zebrafish embryonic 

cells and tissues as a complementary model to the mammalian cells and tissues used for 

vascular development in vitro. 

In Chapter 2 I have reviewed the current advances in the field of developing in vitro 

vasculature. The review includes a brief overview of vascular development and 

requirements of the process in vivo. This is followed by an extensive survey of the 

developed techniques using endothelial cell lines, stem cells and tissue explants for the 
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formation of vascular networks in vitro. Then I have argued the importance of zebrafish as 

a complementary model for such studies. Finally I have discussed the advances in the 

microfluidic technology making breakthroughs in developing functional vascular cultures. 

In order to establish the basal requirements of zebrafish cell culture, in Chapter 3 I have 

cultured primary blastocyst cells in media supplemented with different concentrations of 

fetal bovine serum and zebrafish embryo extract. The concentrations of these nutrients in 

the media showing optimal growth of the blastocyst cells were used in further 

experiments. Furthermore, the growth of putative endothelial cells (fli:GFP+ or kdrl:GFP+ 

cells) was analysed in the blastocyst cell culture under basal conditions (without the 

additional growth factors). 

In Chapter 4 I have used different media compositions, growth factors and extracellular 

matrix components to analyse their effect on the generation of fli:GFP+ and kdrl:GFP+ cells 

in zebrafish blastocyst cell culture. Different media compositions tested were LDF medium 

(commonly used medium for zebrafish cell culture) and endothelial growth medium 

(commonly used medium for mammalian endothelial cells). The effect of different 

substrates i.e. gelatin and collagen type-I was compared to the uncoated polystyrene 

substratum. Finally, the effect of different concentrations of recombinant zebrafish 

vascular endothelial growth factor in the media on the percentage of fli:GFP+ and kdrl:GFP+ 

cells in cultures was analysed. 

In Chapter 5, I have analysed the effect of culturing blastocyst cells in suspension culture 

(to form embryoid body aggregates) compared to the adherent cultures on the generation 

of fli:GFP+ and kdrl:GFP+ cells. The migration of fli:GFP+ cells from the EB culture on 

collagen type-I, gelatin and fibrin substrates was analysed. The kdrl:GFP embryoid bodies 

showed the formation of vascular network-like structures. The dimensions of these 

networks varied on different substrates (collagen type-I and Geltrex™).  

Finally, in Chapter 6 I have developed a zebrafish EB model for sprouting vascular 

networks in 3D gel matrix. The effect of microfluidic flow on the growth of vascular 

sprouts in the 3D embryoid body cultures was examined. The results show an effect of 

microfluidic flow on the length and width of vascular sprouts. In addition, I have 

developed a technique for the sterile isolation and culture of liver and heart tissues from 5 

days post fertilization zebrafish larvae. The isolated tissue explants developed vascular 

sprouts when cultured in a 3D gel matrix. 
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