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Chapter 7

Summary and Conclusions

7.1 Expected and Unexpected Findings

As alluded to in Chapter 1, violations of modeling assumptions may have significant
effects that are hard to foresee. In the present chapter both expected and unexpected
effects are summarized. The findings suggest that, if the various sources of bias and
variability are not properly taken into account, the following warnings may be warranted:

• A measurement method may mistakenly seem to be interchangeable with its
golden standard (Chapter 2).

• The prediction error (the weighted difference between measurement and model
output), when used as a validation criterion, may be more variable than necessary,
leading to a higher probability of selecting a less than optimal model (Chapter 3).

• Intra-individual process noise may be mistaken as variability between measure-
ments and/or individuals (Chapters 4 and 5).

• Blood–effect-site equilibration half-life and potency of a drug may be underesti-
mated (Chapter 6).

7.2 The 95% Confidence Intervals of the Limits of
Agreement

Bland-Altman methods to assess agreement between two measurement methods were
studied in Chapter 2. The warning in the literature was confirmed that when multi-
ple measurements have been obtained in several individuals, an analysis that does not
take this into account may be expected to give limits of agreement that are too narrow.
However, using simulations it was shown that this has even more of an effect on the
confidence intervals around these limits. When reporting how closely measurements
between two devices are related, the accuracy of the limits of agreement is just as im-
portant as the limits themselves. Clearly, suitable software that permits easy calculation
of these confidence intervals can be helpful in assessing the value of medical devices. To
that end, an open-source web application was developed so that a Bland-Altman analysis
can be performed without the need to install any software apart from the ubiquitous
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web browser. In previous studies wrong conclusions on agreement between two meth-
ods may have been reached, particularly when the number of subjects was small. To
avoid inconclusiveness, it is proposed that studies that use Bland-Altman methods of
comparison should follow a standard format. By providing sufficient data on the as-
sumptions underlying an analysis of agreement next to the results, especially the 95%
confidence intervals of the limits of agreement and inter- and intra-individual variation,
ambiguity can be reduced and confidence in the results increased.

7.3 Akaike’s Information Theoretic Criterion

Akaike’s Information Theoretic Criterion (AIC) is a number representing a model’s good-
ness of fit, relative to competing models. The simulations performed in Chapter 3
demonstrated that, at least in a relatively simple mixed-effects modeling context with a
set of prespecified models, minimum mean AIC coincided with best predictive perfor-
mance.

It was found that in the presence of interindividual variability, prediction error by
itself becomes a less suitable validation criterion, because it does not take into account
whether estimated interindividual variability matches the variability in the validation
data. The context of AIC is the one where the random effects have been integrated out,
with the parameters at their (estimated) population values, which is to be done when
all data are acquired. This holds also for the validation data, so this context is different
from the case where prediction errors are calculated with the random effects set to zero.
In other words, interindividual variability is predicted as well; the distributions of the
model parameters are estimated to allow optimal prediction of a new set of data, even
when the individualized model parameter values remain unknown until enough data are
gathered.

7.4 Kalman-Filtered Concentrations and Measures
of Analgesia

The opioid buprenorphine significantly increased the resting state EEG ratio (a surro-
gate EEG measure of analgesia) and skin pain tolerance compared with placebo, as was
demonstrated in Chapter 4. A stochastic model was applied to the data, which ade-
quately characterized the concentration-time and effect-time courses for both the skin
heat stimulation and the resting state EEG ratio outcomes, with variations in the drug’s
absorption rate during a 144-hour treatment period. As measured by the potency param-
eter, the EEG effect was about 10 times more sensitive to buprenorphine than the skin
pain test. The findings suggest that the resting state EEG ratio is an objective alternative
for assessing opioid effect.

The stochastic PK-PD analysis was successful, in the sense that three kinds of random
sources could be identified: variability between individuals, variability within individu-
als, and variability in measurements. This allowed the computation of a time-dependent
variability in drug absorption from patch to blood. However, the effects of ignoring this
variability remained unknown.
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7.5 Kalman-Filtered Surrogate EEG Measures of
Anesthesia

An example where the standard two-stage (combining results from separate fits for each
individual) and nonlinear mixed-effects modeling (NONMEM) approach yielded nearly
identical parameter estimates was encountered in Chapter 5. Furthermore, it was found
that the interindividual variability identified by a mixed-effects but otherwise standard
PK-PD analysis was for a large part actually intra-individual variability, namely process
noise.

Analysis of permutation entropy data calculated from raw EEG measurements with
a first Kalman filter design displayed a large value of the steepness parameter (γ ≈ 17)
of the sigmoid-Emax model. As a consequence, the model output is very sensitive in the
region of loss of consciousness, but very insensitive in deeper levels of anesthesia. In
contrast, analysis of the data with an alternative Kalman filter design showed a relatively
low value (γ ≈ 2.5), where the model output responds smoothly to changes in anesthetic
concentration.

Simulations showed that the model parameters could be reliably estimated. Esti-
mated parameter values were similar if the Kalman filter was present or absent in the
model, except for the interindividual variability estimates. Without the Kalman filter,
these were overestimated with a factor of 10–30. Furthermore, the steepness parameter
was not overestimated. Interestingly, the largest interindividual variability (coefficient
of variation about 25%) was found to be present on the standard deviation of the process
noise.

7.6 Sampling Site Bias

Arteriovenous morphine-6-glucuronide (M6G) concentration differences were analyzed
in Chapter 6. Arterial plasma concentrations were higher just after infusion, whereas at
later times venous concentrations exceeded arterial concentrations. An extended phar-
macokinetic model adequately described the data; it consisted of three arterial compart-
ments, one central venous compartment, and one peripheral venous compartment.

The simulation studies revealed large biases in model parameters derived from ve-
nous concentration data. The biases were dependent on the value of t½,ke0 , the blood–
effect-site equilibration delay. Assuming that the true value of M6G’s t½,ke0 may be in
the range of 120 to 240 minutes (depending on the endpoint measured), we would have
underestimated t½,ke0 by 30%, whereas the potency parameter would have been overes-
timated by about 40%, when using venous plasma samples.

A delay between arterial and venous concentrations would not be unexpected. If
t½,ke0 would be estimated based on venous data, we would expect a smaller value than
if it would be based on arterial data. There are two other PD parameters, C50 and γ;
and interestingly their values may also be biased when estimated from venous data.
Most of the duration of the experiment, venous concentrations were higher than arterial
concentrations, so when the effect occurs at higher concentrations, this would lead to
an upward biased C50.

While this was not investigated, the biases are likely dependent on the administration
schedule. That means that the biases are very hard to know in advance, if the admin-


