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Chapter 5

Population Analysis of
Kalman-Filtered Permutation Entropy
of the Electroencephalogram*

General anesthetics produce dose-dependent effects on the electroencephalogram
(EEG), causing an increase in power combined with a decrease in average EEG fre-
quency.62 A novel EEG-derived parameter is the permutation entropy (PE) of the EEG.65

Important advantages are its robustness under eye blinks, and its ease of computation.
The permutation entropy quantifies the probability distribution of motifs present in the
signal, and it is determined by the dominant frequency in the EEG signal. But because
of the ordinal (counting) nature of the PE, it is dominated by the presence of high EEG
frequencies, even if they have quite small amplitudes.

Anesthetic concentration-effect data fits often show systematic misfits, due to corre-
lated residuals, which could lead to biased standard errors of parameter estimates and
false conclusions from statistical tests. Kalman filters may be constructed to separate
measurement and process noise.43,90 The first objective of the present study was to con-
struct a pharmacokinetic-pharmacodynamic (PK-PD) model, including a Kalman filter, to
analyze concentration-permutation entropy data sets. The second objective was to gain
more insight into the effects of the incorporation of a Kalman filter, by fitting models
with and without a Kalman filter to simulated data.

5.1 Methods

5.1.1 Ordinal Statistics and the Calculation of the
Permutation Entropy

With the possible exception of zero-crossing rate, most EEG indices use the EEG signal
as a continuously variable signal (to the limits of the measuring equipment). In contrast,
ordinal statistics rank the data from smallest to largest, and then compare the rankings.
Therefore, the use of ordinal descriptions of EEG may have the advantage of being re-

* Parts have been published in E Olofsen, J W Sleigh, A Dahan, Br J Anaesth 2008; 101:810–
821, 2008, and E Olofsen, PAGE 2011: Abstract #2202
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Figure 5.1: Lower panel: extraction of ordinal patterns from the EEG signal. As the
algorithm moves sequentially through the EEG signal, the sections (“motifs” consist-
ing of three data points’ length) are classified as one of the six possible patterns,
depicted in the middle panel. Upper panel: a histogram of the relative numbers of
each motif in the signal. The dashed-line motif is a demonstration of the operation
of the τ = 2 lag.

sistant to large artifacts that occur with low frequencies. In this article, we will refer to
the elemental patterns that are extracted from the EEG signal as “motifs” (see Figure 5.1
for graphical explanation). The EEG signal can therefore be considered to consist of a
sequence of ordinal motifs.

The use of PE to quantify EEG changes in seizures was originally proposed by Bandt
and Pompe,8 and this work has been further developed by Cao and colleagues.20 The
algorithm of the calculation of the PE is quite simple and is depicted diagrammatically
in Figure 1 as follows:

1. Fragment the continuous EEG signal (dotted line in the lower diagram of Figure 5.1),
into a sequence of motifs (some examples are shown above and below the signal);

2. Identify each motif as belonging to one of the six possible types (as shown as 6
diagrams in the middle panel in Figure 5.1) - according to their shape [we describe



Chapter 5 65

the six types as two varieties each of “slopes” (motifs #2 and #5 in Figure 5.1),
“peaks” (motifs #1 and #6), and “troughs” (motifs #3 and #4)];

3. Count the number of motifs of each of the six categories, to obtain the probability
of occurrence of each motif in the signal (pi) (upper diagram in Figure 5.1);

4. Calculate the PE of the resultant normalized probability distribution of the motifs,
using the standard Shannon uncertainty formula:76

PE = − Σpi · log(pi
)

log(number of motifs)
(5.1)

Thus, the PE is a way of quantifying the relative occurrence of the different motifs.
Like other entropies, the PE is simply a measure of the “spread-outness”, or “flatness”,
or “uncertainty” in the frequency distribution. When the EEG signal is dominated by
high frequencies, there will be almost equal numbers of each species of motif in each
EEG segment analyzed. The properly normalized entropy is maximal (PE=1.0), if there is
an equal distribution of motifs between each of the six patterns. Conversely, when the
signal consists of slow delta waves, there will be relatively more of the “slope” motifs
(motifs #2 and #5 in Figure 5.1), and fewer of the other “peak” and “trough” motifs,
and the entropy decreases. The PE of a signal consisting of a single motif (such as one
very long “up-slope”) is zero. However, the effective realistic minimum value of the PE is
about 0.4. It is important to note that the PE is very different from the spectral entropy in
its frequency response. The PE tends to decrease as the frequency decreases Figure 5.2),
whereas the value of the spectral entropy is completely independent of frequency per
se, but only measures the sharpness of the frequency peak. To test the responses of the
various PEs to variations in frequency, artificial “pseudo-EEG” signals were generated,
using a C++ computer program which allowed known amounts of white noise to be
added to various pure sine wave frequencies (Figure 5.2).

In summary, the PE quantifies the probability distribution of motifs present in the
signal, and is determined both by the dominant frequency in the EEG signal and by the
bandwidth. Because of the ordinal (counting) nature of the PE, this is dominated by the
presence of higher EEG frequencies, even if they have quite small amplitudes.

5.1.2 Parameters and Ties

The PE has two predefined parameters. (i) The “order” of the PE is the number of data
points that are included in each motif. We restricted our study to include only short
motifs of just three points (order=3). Exploratory data analysis suggested that the use
of longer motifs did not contribute to a better index of depth of anesthesia. (ii) The “lag”
(τ) of the PE is the number of sample points spanned by each section of the motif. In
the lower diagram in Figure 1, the dark grey motifs are of lag τ = 1, because they are
made up of adjacent data points. The longer light grey motif is of lag τ = 2, because
the length of each section of the motif is two data points. The importance of the lag
is that it gives the resultant PE different frequency characteristics (Figure 5.2). Most of
the anesthetic-related information in the EEG can be extracted using a lag (τ = 1) of one
sample step (assuming a sampling frequency of about 128 s−1). However, as described
in our earlier paper,65 the inclusion of lag (τ = 2) helped differentiate deeper planes of
anesthesia, and resulted in better PK-PD modeling.
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Figure 5.2: The frequency dependence of the permutation entropy with different lags
(τ = 1 and τ = 2), and response to added white noise or a second sine wave oscilla-
tion. Long signals (65536 samples) were used to minimize fluctuations.

It is possible that two (or indeed all three) of the data points in a motif may have
the same measured voltage because of the limited resolution of the analogue-digital
conversion, and therefore are not able to be ranked. Although this occurrence may
seem to be very unlikely, it raises the important issue of how to deal sensibly with
very small voltage fluctuations in the EEG. A flat-line EEG indicates an almost absolutely
quiescent cerebral cortex. If we have a high-resolution analogue-to-digital converter,
the PE will continue to estimate the minute fluctuations in the signal - and its value
typically increases. Unfortunately, these fluctuations are made up largely of various
types of measurement noise, and are not reflecting drug actions on the cerebral cortex.
This is most apparent when the burst suppression EEG pattern is present during deep
anesthesia. One solution is to arbitrarily assign a third parameter - the threshold level,
below which, most of the “signal” is thought to consist of noise. In our earlier paper,
we chose the value of 0.5 µV as a threshold level. If the difference between any two of
the points in the motif is below the threshold, then the motif was counted as a seventh
category of “motif” - a “tie”. However, for simplicity with regard to computations and
analysis, in the remainder of this chapter the standard PE (withm = 3, τ = 1) was used.

5.1.3 Application to Real EEG signals

Fourteen raw EEG data sets (from 7 male and 7 female patients; an extension of the data
described in an earlier publication62) without burst suppression were analyzed using the
population analysis approach. Step-wise changes in end-tidal isoflurane concentration
were applied. The pharmacokinetic part of the PK-PD describes the relationship between
the end-tidal and brain or effect-site concentration. The pharmacodynamic part of the
model describes the relationship between the brain concentration and the measured
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effect. It was assumed that this relationship is nonlinear, monotonically decreasing and
can be described by the inhibitory sigmoid-Emax model with steepness parameter γ.

Previously,62 we performed a two-stage analysis, i.e., the data were fitted for each
subject separately and next the obtained parameter values were averaged. In the present
chapter, first both a two-stage and population analysis were performed to assess the
importance of differences between the methods. Next, a population analysis of permu-
tation entropy data based on the same EEGs was performed to assess the performance
of permutation entropy versus BIS. An extended Kalman filter was constructed to ana-
lyze permutation entropy data. This was motivated by the fact that many data fits show
systematic misfits; this may lead to biased standard errors of parameter estimates and
false conclusions from statistical tests. Finally, simulations were performed to study
the effects of the incorporation of a Kalman filter by fitting models with and without a
Kalman filter to simulated data.

The Kalman filter is a method to track the state of a system in the presence of mea-
surement and system noise. The extended Kalman filter is a generalization for linearized
nonlinear systems. Tornøe et al. described90 its implementation in the statistical anal-
ysis package NONMEM.9 The Kalman filter state and functions of the state need to be
defined to describe how the state evolves in time, how it is affected by an input, and
how it propagates to the output. Two versions were constructed. Version A assumes
that colored noise is present on the model output, albeit limited by maximum and min-
imum values of PE. Version B assumes that noise enters the system at the input, so at
the level of anesthetic concentration. Because the process noise term is assumed to be
normally distributed, it was added to the logarithm of concentration. NONMEM version
7 was used for parameter estimation. The differential equations describing the effect-
site concentration, the Kalman filter state, and its variance were implemented as one
(recursive) difference equation. The Kalman filter gain could be solved from the esti-
mates of the measurement and process noise variances and hence needed no recursive
approximation. The initial filter state was a parameter to be estimated, in addition to
the parameters of the PK-PD model. The model incorporating Kalman filter version B
was used to generate 1000 sets of artificial data of 10, 20, 50 and 100 individuals, with
parameter values from the final model of the permutation entropy data. These data
were fitted by the same model to check that parameter estimation was consistent, and
by the model without Kalman filter.

5.1.4 PK-PD Modeling

The anesthetic concentration-effect data were analyzed with the pharmacodynamic
model as described earlier.62 Briefly, the pharmacodynamic model consisted of a hy-
pothetical effect compartment combined with a sigmoid-Emax model described by the
equations

dCe(t)
dt

= ke0 · (FET (t)− Ce(t)) (5.2)

and

E(t) = Emax + (Emin − Emax) · Ce(t)
Ce(t)+ IC

γ
50

, (5.3)

where FET (t) is end-tidal isoflurane concentration; ke0 the rate constant determining the
speed of equilibrium (we estimated the effect-site equilibration half-time t½,ke0 ), Ce(t)
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is the effect-site concentration, E(t) is the effect measure (permutation entropy or BIS),
Emax and Emin are the maximal and minimal values of E, IC50 is the concentration that
places E halfway between Emin and Emax, and γ is a steepness parameter. In the mixed-
effects analysis, all parameters were assumed to be lognormally distributed, and that
residual error was normally distributed. Parameters Emax and Emin were constrained to
the interval (0,1) and γ to the interval (0,25) via the inverse logit transform.

5.1.5 Two Extended Kalman Filters

Kalman filter A assumes that colored noise is present on the model output, albeit limited
by Emax and Emin. With

y(t) = log
(

1− E(t)
E(t)

)
,

where E(t) is given by equation (5.3), and

dx
dt
= g(x)+ ν = − x(t)

τ
+ ν,

where x is the state of the system and ν is system noise (a Wiener process67), the output
is given by

E′(t) = 1
1+ exp(x +y) + ε

So E′(t) resembles E(t), but contains colored noise, filtered by time constant τ , and
is, without the noise term, still constrained to the interval (0,1). Note that while we
retain the notation with τ , this parameter is different from the lag used to calculate the
permutation entropy.

Kalman filter B assumes that process noise enters the system at the input, so at
the level of anesthetic concentration. Because the noise term ν has to be normally
distributed, it was added to the logarithm of concentration, and then the system state
is

dx
dt
= g(x)+ ν = 1

τ

(
γ · log

(CET(t)+ CET,0

IC50

)
− x

)
+ ν (5.4)

and the output is given by

E′(t) = Emin + 1− Emin

1+ exp(x)
+ ε, (5.5)

where CET,0 a parameter that yields finite values of the logarithm and replaces Emax.
The time delay is determined by several factors.62 By placing the system noise at the
level of concentration, τ may be viewed as neural processing rather than blood–brain
concentration equilibration delay (t½,ke0 ).

For both versions, the derivative of g(x) with respect to x is −1/τ . This implies that
the differential equation for the variance P of x is

dP
dt
= −2P

τ
+ σ2

w .

Both x and P were solved for discrete time steps ∆t under the assumption that the



Chapter 5 69

input changes step-wise. For example, the next Pi+1 is given by

Pi+1 = Pi · exp
(
−2∆t
τ

)
+ τσ

2
w

2

(
1− exp(−2∆t

τ
)
)
.

In this way, the differential equations described here are transformed to difference equa-
tions, which can be solved by NONMEM, without the need for special compartment reset
records in the input file as described by Tornøe et al.90 The Kalman gain of the extended
Kalman filter depends on the derivative of E′(t) with respect to x, and was computed
as given by Tornøe et al.90

5.1.6 Simulation Study

The model incorporating Kalman filter version B was used to generate 1000 sets of
artificial data of 100 individuals, with parameter values from the final model of the per-
mutation entropy data. The individual data consisted of 241 data points (time between
0 and 60 min, ∆t 0.25 min). These data were fitted by the same model to check that the
parameter estimation is consistent, and by the model without Kalman filter to study its
effects on parameter estimates.

5.2 Results

5.2.1 Application to Real EEG signals

Two-Stage versus Population Analysis

Table 5.1 presents the results from the two-stage and population analyses of the BIS data.
The population analysis provides estimates of the parameters, and of their variability
across the population. The parameter estimates are similar, and interestingly, the SEMs
of the two-stage analysis and standard errors from the population analysis also agree.
On the other hand, the squares of the standard deviations from the two-stage analysis
do not correspond to the inter-individual variance. These two results are due to the fact
that interindividual variability is relatively small compared to parameter uncertainties in
each individual (residual intraindividual variance was 50.4 ± 6.23), despite the number of
observations per individual (≈ 200). Model fits are shown in the top panels of Figure 5.3.
Worst, median and best fits were selected based on the coefficient of determination (R2

≈ 0.79, 0.92, and 0.98 for IDs 24, 12, and 18 respectively). The bottom panels show the
applied (as measured) end-tidal isoflurane concentration.

Bispectral Index versus Permutation Entropy

Table 5.2 presents the results from population analysis of the permutation entropy data.
Apart from obvious differences with the results for the BIS between Emax and Emin the
much larger interindividual variability of γ is notable. This is related to the occurrence
of some rather high values of γ - see the steep fall in PE in Figure 5.3 for ID 12 (γ ≈ 18).
This, in turn, may be related to the occurrence of high-frequency EEG activity, falsely (or
not) increasing the measure of depth of anesthesia.
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Figure 5.3: Administered isoflurane concentration (FET, bottom panels), BIS and per-
mutation entropy data with fits (median ± 95% CI) without Kalman filter (PE), Kalman
filter A (PEA), and Kalman filter B (PEB), for three subjects.
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Figure 5.4: Upper panel: Close-up of the permutation entropy data fit of Subject 24.
The dashed line is the Kalman-filtered permutation entropy; the solid line is the
model prediction if there were no process noise. Middle panel: Electromyographic
activity (EMG). Lower panel: Administered isoflurane concentration (FET).

Table 5.1: Parameter estimates from the Two-Stage and Population Analyses of the BIS
data.

Two-Stage Analysis Population Analysis

Parameter Est. SD SEM Est. SE ω2 SE

t½,ke0 (min) 4.24 1.20 0.321 4.06 0.309 0.0744 0.0175
γ 5.94 4.14 1.11 5.05 0.831 0.508 0.255
IC50 (%) 0.575 0.107 0.0286 0.558 0.0302 0.0412 0.0182
Emax 95.9 1.86 0.497 95.8 0.508 0.0945 0.0443
Emin 27.2 10.8 2.87 27.4 2.55 0.199 0.0907

SEM is SD divided by the square root of the number of subjects.
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Table 5.2: Population Analysis of the PE Data (without Kalman filter).

Parameter Est. SE ω2 SE

t½,ke0 4.37 0.350 0.0803 0.0235
γ 6.79 2.52 2.27 1.63
IC50 0.506 0.0408 0.0633 0.0336
Emax 0.947 0.00296 0.0386 0.0145
Emin 0.727 0.00827 0.0238 0.00991

See Methods section for explanation of parameters.

Table 5.3: Population Analysis of the PE Data with Kalman Filter A.

Parameter Est. SE ω2 SE

t½,ke0 4.28 0.450 0.129 0.0328
γ 17.2 5.18 9.49 4.45
IC50 0.501 0.0393 0.0785 0.0415
Emax 0.937 0.00617 0.0636 0.0894
Emin 0.729 0.0111 0.0314 0.0121
τ 5.41 1.13 - -
σm 0.0113 0.000666 0.0326 0.0137
σs 0.102 0.0123 0.221 0.136
x0 -0.344 0.208 0.260 0.287

σm and σs are the standard deviations of the measurement
and process noise sources, respectively.
x0 is the initial state of the system.
A dash indicates that the ω2 was not estimable.

Kalman-Filtered Permutation Entropy

Table 5.3 and Figure 5.3 (PEA panels) present the results from population analysis of
the permutation entropy data with Kalman filter A. Unfortunately, the estimate of γ and
its interindividual variance increased (for ID 12 to ≈ 24, while it was limited to 25). It is
unfortunate, because it means that the PE as a candidate measure of depth of anesthesia
reduces to an on/off indicator.

Table 5.4 presents the results from population analysis of the permutation entropy
data with Kalman filter B. Now, the estimate of γ and its interindividual variance de-
creased to a useful value. In Figure 5.3 it can be seen that PEB is still sensitive to higher
isoflurane concentrations instead of being saturated. Moreover, note that all interindi-
vidual variabilities are smaller than those obtained from the analysis without Kalman
filter (although we do not know the right values - see next subsection using simulated
data). Figure 5.4 shows a close-up of the analysis for ID 24. High-frequency EEG activ-
ity and/or EMG activity elevates the PE. The Kalman-filtered PE seems to filter out this
activity. See also the EMG activity at about 60-65 minutes.

A bootstrap analysis has been proposed to validate the parameter estimates.30 Fur-
thermore, the method can be used to obtain 95% confidence intervals. Results from the
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Table 5.4: Population Analysis of the PE Data with Kalman Filter B.

Parameter Est. SE ω2 SE

t½,ke0 3.50 0.248 - -
γ 2.60 0.677 0.0355 0.0204
IC50 0.635 0.191 0.0210 0.0114
CET,0 0.280 0.163 - -
Emin 0.699 0.00832 0.0165 0.00726
σm 0.00837 0.000286 - -
σs 0.516 0.0398 0.0766 0.0384
x0 0.499 0.320 - -

CET,0 is a parameter related to Emax (see Methods).

Table 5.5: Bootstrap Analysis of the PE Data with Kalman Filter B.

Parameter Est. SE 95% CI ω2 SE 95% CI

t½,ke0 3.50 0.241 3.07-3.97
γ 2.77 0.823 1.73-4.79 0.0333 0.0252 0.00343-0.0909
IC50 0.679 0.225 0.392-1.23 0.0179 0.0129 0.00181-0.0430
CET,0 0.322 0.198 0.104-0.831
Emin 0.700 0.00787 0.684-0.716 0.0150 0.00681 0.00223-0.0281
σm 0.000839 0.000285 0.00787-0.00895
σs 0.516 0.0436 0.435-0.600 0.0724 0.0384 0.0157-0.157
x0 0.554 0.289 0.0767-1.21

bootstrap are given in Table 5.5. A comparison with the results in Table 5.4 shows that
all estimates, including the standard errors, are similar. Unfortunately, the estimate of
IC50 is rather imprecise; without the Kalman filter it was much more precise. Of course,
at this stage it is unknown which precision estimate is the most useful; the more precise
IC50 may be related to the description of the presence or absence of EMG activity rather
than EEG activity.

5.2.2 Simulation Study

One thousand simulated data were generated using the model with Kalman filter B and
parameter values listed in Table 5.4. These data were fitted with the same model, without
and with Kalman filter, the results of which are presented in Table 5.6 and Table 5.7,
respectively. The standard deviations from the 1000 estimates were calculated and the
medians of the 1000 estimates of the standard errors (actually only NONMEM’s succesful
estimation and covariance runs were used (≈ 930)). The medians were used because the
estimates of the standard errors in the analyses with Kalman filter sometimes had quite
large values; and also without the Kalman filter these are approximately lognormally
distributed.

Without the Kalman filter, the median(SE) were somewhat less than the SDs (the
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Table 5.6: Population Analysis of simulated data without Kalman filter.

Parameter Est. SD median(SE) ω2 SD median(SE)

t½,ke0 3.71 0.234 0.215 0.288 0.0675 0.0554
γ 2.67 0.222 0.211 0.625 0.149 0.133
IC50 0.531 0.0186 0.0173 0.0821 0.0207 0.0184
Emax 0.961 0.00218 0.00213 0.296 0.0438 0.0430
Emin 0.697 0.00632 0.00600 0.0562 0.0136 0.0118

Table 5.7: Population Analysis of simulated data with Kalman filter.

Parameter Est. SD median(SE) ω2 SD median(SE)

t½,ke0 3.46 0.0914 0.0927 - - -
γ 2.49 0.181 0.184 0.0328 0.00663 0.00642
IC50 0.622 0.0514 0.0506 0.0218 0.00502 0.00499
CET,0 0.270 0.0392 0.0395 - - -
Emin 0.699 0.00292 0.00282 0.0164 0.00247 0.00239
σm 0.00853 0.0000743 0.0000759 - - -
σs 0.480 0.0140 0.0145 0.0730 0.0124 0.0122
x0 0.442 0.0650 0.0638 - - -

means were also somewhat smaller (data not shown)). This may be related to the fact
that residuals are correlated if the Kalman filter is not applied. More importantly, the
estimates of interindividual variability are too large, for example for t½,ke0 , where it was
actually zero, or for γ where the estimates differ a factor of 20. The IC50 was set at
0.635; the estimate of 0.531 ± 0.0186 is clearly biased.

5.3 Discussion

Ordinal measures of EEG patterns have very different characteristics to traditional meth-
ods that use the raw EEG signal. The conceptual difference may be summed up in the
phrases: not “how large is the pattern?” but rather “how many patterns exist?”.65 Our
preliminary investigations65 indicated that the permutation entropy shows promise as
a practical EEG measure of GABAergic hypnotic drug effect. It appropriately tracks the
qualitative assessment of the EEG pattern from awake to sedated/lightly anesthetized,
and to deeply anesthetized. It requires minimal preprocessing and is very resistant to
blink artifacts.

A wide variety of other EEG indices have been used in PK-PD modeling.65 At the
present time, the most commonly used are the commercial ones (e.g., BIS). Most indices
require extensive and sophisticated artifact handling to achieve acceptable results, and
this always runs the risk of distorting the EEG signal. The resistance to blink artifacts
(and speed of computation) is a big advantage of the PE over other indices, producing
stable values in the pre- and early induction period. The PE is comparable with the BIS
in the spread of values between patients before and after loss-of-consciousness. Our
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present results indicate that the PK-PD models that may be constructed using the PE are
as acceptable as those constructed using the BIS.

A characteristic feature of the state of general anesthesia is the presence of large
slow fluctuations in the instantaneous frequency content of the EEG. The most extreme
example of this phenomenon is the burst suppression pattern, which needs special pre-
cautions,65 so for the present analyses only data without burst suppression were used.

As for all EEG monitors, the PE is effectively computed from an EEG signal which is
inextricably linked with the frontalis EMG. The same reason that makes the PE stable
during the awake state also makes it very sensitive to episodic high-frequency fluctua-
tions (artifactual, electromyographical, and neurophysiological) during deep anesthesia
(see Figures 5.2 and 5.4 for illustration).

So while the PE is insensitive to eye blinks, it is sensitive to high frequency compo-
nents present in the EEG just before loss of consciousness. This causes EEG effect param-
eters to respond relatively late and suddenly to a change from wakefulness into anesthe-
sia. This property also results in a steep concentration-effect relationship. Analysis of
EEG data with a Kalman filter accentuated or filtered out this phenomenon, depending
on the postulated location of process noise. Version B provided a more useful pharma-
codynamic model, because version A with the steep concentration-effect relationship
impedes timely prediction of (sudden) awakening. Furthermore, the large steepness
may, at least partly, be based on a confounding effect or artifact. It should be noted that
this artifact filtering is only possible if the anesthetic concentration is known. The main
difference between the two applied Kalman filters lies in the location of the process
noise, i.e., before or after the sigmoid-Emax concentration-effect relationship. Process
noise may substitute for model inadequacies, in this case an EEG effect which was (in
the model) not related to anesthetic concentration. So the confounding effect may need
to be scaled, due to nonlinearities, to the level of the real process noise.

Finally and most importantly, the simulation study showed that if Kalman filtering is
not applied, inter-individual variability may be overestimated; variability that is actually
intra-individual process noise.



76 Chapter 5


