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Chapter 3

Using Akaike’s Information
Theoretic Criterion in Mixed-Effects
Modeling of Pharmacokinetic Data: A
Simulation Study*

We first define population data as a set of one or more measurements in two or more
individuals e.g., patients, volunteers, or animals). Such data may be characterized by
mixed-effects models, where the mixed effects consist of fixed and random effects. Fixed
effects (or fixed effect factors) are, for example, the times at which the measurements
are obtained, and covariates such as demographic characteristics of the individuals.
Due to random effects (or random effect factors), the model output may vary between
measurements, and between individuals. When mixed-effects models are fitted to popu-
lation data, the question arises as to how many of those effects should be incorporated
in the model. This is the so-called problem of variable selection.40

One strategy is to observe the change in goodness-of-fit by adding one more parame-
ter and test the significance of that change.16 In the maximum likelihood approach, the
objective function value (OFV), being the minus two logarithm of the likelihood function,
is minimized. To attain a p-value of e.g., 0.05 or less, the decrease in OFV, when adding
one parameter, should be 3.84 or more.16

Another strategy is to apply Akaike’s information theoretic criterion (AIC), which can
be written as

AIC = OFV+ 2 ·D, (3.1)

where D is the number of parameters in the model.1,16,18,40 The model with the lowest
value of AIC is considered the best one. In the case of just adding one parameter, the
OFV needs to decrease only 2 points or more to be incorporated in the model, so the
associated p-value > 0.05 seems too high to justify this strategy.

When additional model parameters are incorporated, the significance of one model
parameter might change, but the interpretation of AIC does not.18 However, when multi-
ple significance tests are performed, the significance level of each individual test should
be corrected to a lower value, so a decrease of 2 points for one parameter does again
seem to be too low.

* E Olofsen, A Dahan, F1000Research 2015; 2:71
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Even if the strategy of using AIC leads to optimal variable selection, the question
arises as to whether this is also the case when using mixed-effects models. In theory,
the model that is best according to AIC is the one that minimizes prediction error1,96

and this is also true for a mixed-effects model when predicting data for individuals for
which no data have been obtained so far.96

In the literature, many simulation studies have assessed the performance of AIC, but
to our knowledge these were never done in selecting the model with minimal prediction
error for population data. In this article, we will define a toy pharmacokinetic model
and observe the performance of AIC when adding fixed effects to this model, as well as
when adding interindividual variability.

3.1 Methods

3.1.1 A Hypothetical Pharmacokinetic Model

Consider the following function y(t), an infinite sum of exponentials, and its relation-
ship with a (negative) power of time:57

y(t) =
∫∞

0
exp(−λt)dλ = −1

t
exp(−λt)

∣∣∣∣∞
0
= 1
t

for t > 0. (3.2)

Figure 3.1A shows that this function looks like a typical pharmacokinetic profile after
bolus administration. This model is to be regarded as a toy model, because we do not
expect it to adequately describe pharmacokinetic data, although variations of power
functions of time have been shown to fit pharmacokinetic data well.57 We approximate
y(t) = 1/t by the following sum of M exponentials:

ŷ(tj ; α,λ) =
M∑
m=1

αm exp(−λmtj). (3.3)

The M parameters λ and measurement time instants tj are fixed and are set to have
distinct values as described in the next subsections. The coefficients α (related to how a
drug dose is distributed across compartments) are parameters to be estimated. Let the
number of αm that are not fixed to zero be denoted by K. Then the above approximation
has the property that while the fits of models to the data would improve with increasing
K, we would need no less than K = M exponentials to obtain a perfect fit. Moreover,
with noisy data, it might be that for K < M an optimal fit is obtained in the sense that
then the associated prediction error of the model is minimal. Figure 3.1B shows how
eleven (in this case error-free) samples from this function can be approximated by sums
of exponentials.

3.1.2 Individual Data Modeling and Simulation

In the following, the time instants tj , j = 1, · · · ,M , centered around 1, were chosen
within [1/tmax, tmax] according to

tj =
(

j
M + 1− j

)γ
, (3.4)
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Figure 3.1: A: function y(t) = 1/t, and B: approximations obtained by fitting six and
three exponentials to the depicted eleven samples. Note the log-lin and log-log scales
for panels A and B, respectively. Time has arbitrary units.

with γ = log(tmax)/ log(M); tmax was set to 100 (see the time axis of Figure 3.1B for an
example with M = 11). Simulated data with constant proportional error were generated
via

y(tj) = 1
tj
(1+ εj), (3.5)

where εj denotes Gaussian measurement noise with variance σ2. TheM time constants
λ were fixed according to λm = 1/tm ,m = 1, · · · ,M . In this setting the model eq. (3.3)
can be fitted to simulated data using weighted linear least squares regression, with
weight factors w(tj) = 1/tj (note that no precaution is needed against ε ≤ −1). Linear
least squares regression is very fast and robust, so it allows for the evaluation of many
simulation scenarios.

3.1.3 Population Data Modeling and Simulation

Population data consisting of N individuals were simulated via

yi(tj) = 1
tj
· (exp(ηi)+ εij) with i = 1, · · · , N, (3.6)

where ηi denotes interindividual variability with variance ω2. The random effect ηi
influences the overall magnitude of the values of yi, but not the shape of the function
in time, so this is similar to a random effect that influences pharmacokinetic volume
of distribution. The nonlinear mixed-effects model for the population data was then
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written as:

ŷi(tj ; α,λ) =
M∑
m=1

αm exp(−λmtj + ηi). (3.7)

Note that with N > 1, a perfect fit is no longer obtained with K = M nonzero coefficients
α, because the εij are generally different for different i (individuals). Just one different
ηi for each individual i cannot compensate for M different εij .

3.1.4 Statistical Analysis

Simulation data were generated via eq. (3.6) in R.85 Model fitting was also done in R, with
function “lm()” from package “stats”, except for nonlinear mixed-effects model fitting
for simulated data withω2 > 0, which was done in NONMEM version 7.3.0.9 Parameters
α (see eq. (3.7)) were either fixed to zero or free. Although the α are expected to be
positive with pharmacokinetic data, they were not constrained to be positive. So it was
not possible for parameters to become essentially fixed to zero due to that constraint,
which would reduce the dimensionality of the model. Prediction error (ν2) was calculated
with

ν2 = 1
N ·M

N∑
i=1

M∑
j=1

 zi(tj)− ŷi(tj
)

w(tj
)

2

, (3.8)

using predictions based on eq. (3.7) with the random effects ηi = 0. Validation data
zi(tj) were also generated via eq. (3.6), but with different realizations of εij and ηi.
Error terms weighted with w(tj) = 1/tj are homoscedastic, which is an assumption
underlying regression analysis and allows for the interpretation of ν2 as independent of
time. The objective function OFV was also calculated at the estimated parameters using
the validation data, denoted OFVv , which should on average be approximately equal to
Akaike’s criterion (see Supplementary material). OFVv was compared with AIC and also
with Akaike’s criterion with a correction for small sample sizes (AICc 18)

AICc = OFV+ 2 ·D ·
(

1+ D + 1
N ·M −D − 1

)
. (3.9)

The above criteria were normalized by dividing them by the number of observations (see
Supplementary material for motivation), and averaged over 1000 runs (unless otherwise
stated; and runs where NONMEM’s minimization was not successful were excluded). For
plotting purposes, 95% confidence intervals or confidence regions for means were deter-
mined using R’s packages “gplots” and “car”, under the assumption that averages over
1000 variables are normally distributed. Model selection frequencies were calculated
based on optimal models according to AICc as determined for each simulation data set.

3.1.5 Selection of Parameter Values

Simulation parametersM and σ2 are expected to determine the number of exponentials
K; if the number of measurements M increases and/or the measurement error σ2 de-
creases, K will increase. Without interindividual variance, soω2 = 0, the information in
the data increases as N increases, so also in that case K is expected to increase. With
N = 2, M = 11 and σ2 = 0.5, pilot simulations indicated a K ≈ 4. When ω2 > 0, predic-
tion error will increase, but it is less easy to predict what its effect will be on K. For ω2
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Table 3.1: Selecting K = 1, · · · ,M = 11 evenly spaced rate constants from λ: 0 and
1 denote αm to be fixed to zero, and a free parameter to be estimated, respectively
(see eq. (3.7)).

K m : 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 1 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 1
3 1 0 0 0 0 1 0 0 0 0 1
4 1 0 0 1 0 0 0 1 0 0 1
5 1 0 0 1 0 1 0 1 0 0 1
6 1 0 1 0 1 0 1 0 1 0 1
7 1 0 1 1 0 1 0 1 1 0 1
8 1 1 0 1 1 0 1 1 0 1 1
9 1 1 0 1 1 1 1 1 0 1 1

10 1 1 1 1 1 0 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1

values of 0, 0.1, and 0.5 were selected - values that are encountered in practice. Because
there is only one random effect in the mixed-effects model, the relatively low number of
individuals N = 5 was selected.

For a certain choice of M , there are 2M − 1 possible combinations of λs to choose
for the terms exp(−λmtj) in the sum of exponentials (excluding the case of a model
without exponentials). Because accurate evaluation of all models at different parameter
values is not feasible with respect to computer time, the set of possible combinations
was reduced to one with evenly spaced λs. Table 3.1 gives an example for the case
M = 11.

3.2 Results

Figure 3.2 shows the averaged prediction error versus number of exponentials for all
possible choices of λ, with N = 2, M = 11, σ2 = 0.5, and ω2 = 0. From the figure it is
clear that prediction error may indeed increase if the number of exponentials selected
is too large. The bigger solid circles correspond to the models chosen in Table 3.1;
in general the evenly spaced selection of exponents resulted in models with smallest
prediction error.

Figure 3.3 shows simulation results using the model set defined in Table 3.1, starting
from K = 4, with parameters N = 5, M = 11, σ2 = 0.5, and ω2 = 0. The model with
K = 6 exponentials had minimal mean AICc , and also minimal mean OFVv and minimal
mean squared prediction error (ν2). WithN = 5,M = 11, there are still visible differences
between AICc and AIC; although AIC would in this case also select the optimal model, AIC
appears to favor more complex models. Note that the sizes of the confidence intervals
and confidence regions can be made arbitrarily small by choosing the number of runs
to be higher than the selected number of 1000 (at the expense of computer time).

Figure 3.4 shows simulation results with ω2 = 0.1; mixed-effects analysis was used
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Figure 3.2: Mean squared prediction error ν2 (eq. (3.8)) as a function of the number of
exponentials, with 2047 models, averaged over 100 runs, N = 2, M = 11, σ2 = 0.5,
ω2 = 0. The dashed line represents the prediction error from the true model, so
that ν2 = σ2. The bigger solid circles correspond to the models chosen in Table 3.1.
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Figure 3.3: Mean OFVv as a function minus of two log-likelihood (-2LL), the number
of exponentials, AIC and AICc (top four panels), and AIC, AICc , prediction error ν2,
and model selection frequencies as a function of the number of exponentials (lower
four panels), averaged over 1000 runs, N = 5, M = 11, σ2 = 0.5, ω2 = 0. The
dashed lines represent the theoretical values for an infinite amount of data (see
Appendix). Error bars and ellipses denote 95% confidence intervals and confidence
regions, respectively. The numbers in the confidence regions denote the number of
exponentials. The solid lines in the middle upper panels are lines of identity.
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Figure 3.4: Mean OFVv , AICc prediction error ν2, and model selection frequencies
as a function of the number of exponentials, for ω2 = 0.1; parameters otherwise
identical to those for Figure 3.3.
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Figure 3.5: Mean OFVv , AICc prediction error ν2, and model selection frequencies
as a function of the number of exponentials, for ω2 = 0.5; parameters otherwise
identical to those for Figure 3.3.
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to fit the population data. The main difference with the results of data with ω2 = 0 is
the overall increase in OFVv and AICc . The optimal number of exponentials remained
K = 6.

Figure 3.5 shows simulation results withω2 set at the higher value of 0.5. The main
differences with the results of data withω2 = 0.1 are again the overall increase in OFVv ,
AICc and prediction error, and also in the variability in the prediction error. The optimal
number of exponentials remained K = 6, although AICc begins to favor the models with
larger K (a simulation with N increased to 7, both OFVv and AICc favored larger models;
data not shown).

3.3 Discussion

With the objective of creating a simulation context resembling pharmacokinetic analy-
sis where concentration data are approximated by a sum of exponentials, the toy model
y(t) = 1/t was chosen. In this setting, reality - the reality of the toy model - is always un-
derfitted. When mixed-effects models were fitted to the simulated data, mean AICc was
approximately equal to the validation criterion mean OFVv . The minima of mean AICc
and mean OFVv coincided. With large interindividual variability, mean expected predic-
tion error (ν2, see eq. (3.8)), with random effects fixed to zero), was less discriminative
between models, so that it becomes less suitable as a validation criterion; it does not
take into account whether estimated interindividual variability matches the variability
in the validation data.

3.3.1 Akaike’s versus the Conditional Akaike Information
Criterion

Vaida and Blanchard proposed a conditional Akaike information criterion to be used in
model selection for the “cluster focus”.96 It is important to stress that their definition of
cluster focus is the situation where data are to be predicted of a cluster that was also used
to build the predictive model. In that case, the random effects have been estimated, and
then the question arises how many parameters that required. In our situation, a cluster is
the data from an individual; AIC was used in the situation of predicting population data
consisting of individual data that were not used to build the model. This would seem to
be the most common situation in clinical practice. Furthermore, AIC for the population
focus is asymptotically equivalent with leave-one-individual-out cross-validation; AIC
for the individual focus with leave-one-observation-out cross-validation.31

3.3.2 Akaike’s versus the Bayesian Akaike Information
Criterion

We chose to perform simulations using the model given by eq. (3.2) because approxi-
mating data with a sum of exponentials is daily practice in pharmacokinetic analysis
where data are obtained from “infinitely complex” systems, and we cannot hope to find
the “correct” model. The Bayesian information criterion (BIC) is consistent in the sense
that it selects the correct model, given an infinite amount of data.18 The reason that AIC
can be used in “real-life” problems is that as the amount of data goes to infinity, the
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complexity, or dimension, of the model that should be applied should also go infinity.19

Burnham and Anderson show that it is possible to choose the prior for BIC in such a
way that it incorporates the knowledge that more complex models should be favored if
the amount of data increases, and so that the BIC “reduces” to AIC.18,19 In the situation
that the correct model set belongs to the set of evaluated models, a selection criterion
that both finds the correct model and minimizes prediction error would be preferable -
but Yang concluded that this may not be possible.98

3.3.3 Model Selection Criterion AIC and Predictive
Performance

It should be noted that minimizing AIC has a more general interpretation than just
minimizing prediction error ν2 as given for example by eq. (3.8). The interpretation of
minimizing AIC is minimizing the difference between the the information contained in
the data and captured by the model.18 Independent or future population data z are not
just predicted by ŷ ; also the distributions of the expected random effects ε and η are
characterized by σ̂2 and ω̂2. That is why OFVv (and not ν2) is the criterion to be used
to assess the predictive performance of a model.

3.3.4 Regression Weights as Functions of the Model Output

The simulated data were analyzed using weighted (non)linear regression, see eq. (3.6)),
where measurement noise was weighted according to the exact function value. In prac-
tice, when the weights are unknown, the model output may be used to weight the data.
In that case simulated data should be generated (cf. eq. (3.6)) via

yi(tj) = 1
tj
· exp(ηi) · (1+ εij). (3.10)

The likelihood function and AIC are both still well-defined if the model output ŷi(tj) 6= 0.
Prediction errors are to be calculated with

ν2 = 1
N ·M

N∑
i=1

M∑
j=1

 zi(tj)− ŷi(tj
)

ŷi(tj
)

2

, (3.11)

where where ŷ possibly becomes arbitrarily close to zero for less than optimal models,
and ν2 may be based on long-tailed distributed numbers. To be able to compare predic-
tion errors from different models, the weight factors could be chosen identical for all K
to the model output of the largest model - see Appendix for further analysis.

3.3.5 Model Selection Uncertainty

Theoretically, and in the discussed simulations, minimum mean AIC is related to best
mean predictive performance, where the mean is taken across multiple studies and pre-
specified models. This holds independent of the number of models. However, in prac-
tice, we have data from one study and the task of specifying the models to consider.
As soon as there is more than one model, there is a nonzero probability that the model
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selected based on AIC would have, on average, a larger prediction error than the optimal
one. Also, if we were able to repeat the study, the average prediction error based on the
models with minimum AIC would be larger than optimal. With many models, model
selection is called unstable in the sense that each time a study is repeated it would lead
to the selection of another model.

The figure panels with the model selection frequencies (Figure 3.3, Figure 3.4, and
Figure 3.5) show: 1) there is a relationship between the model with highest selection
probability and minimum mean prediction error, but this relationship is not one-to-one;
2) there can be an almost as large selection probability for a model that is not associated
with minimum mean prediction error; but 3) in that case, their minimum mean prediction
errors are comparable.

Models with equal mean predictive properties may have different properties in dif-
ferent extrapolation scenarios. Model averaging,18 where model parameters or their
predictions are averaged, reduces model selection instability and hence may be used to
avoid model specific inference which discards model selection uncertainty. Data dredg-
ing18 refers to the situation where there is an increasingly large set of models which
are not prespecified. At the point the data dredging is stopped (by the investigator, or
by the computer), the best model is at high risk to fit only the data at hand, and hence
cannot be used for prediction.21

3.3.6 Limitations of the Study

We recognize the following limitations of our study:

• The simulation model contained only one random effect to describe interindividual
variability, and therefore the number of random effect (co)variances was fixed to
one in the model set used for fitting. While the number of (co)variance parameters
should be counted as ordinary parameters,96 at least in well behaved situations,36

we did not investigate the process of optimizing this part of a random effects
model.

• The nonlinearity in the mixed-effects model was simply due to a multiplicative
factor exp(η) in the model output. Usually, random effects in pharmacokinetic
models have more complex influence on the model output. However, the lognor-
mal nature of exp(η) is a characteristic property of both our toy model and general
pharmacokinetic models.

• The characteristics of the exponentials incorporated in the regression models were
evenly spaced, and the values of the rate constants λ were fixed. We expect that
with more freedom in the specification of the set of models, prediction errors
with overfitted models may be worse. However, the agreement between AICc and
prediction error should persist.

• We did not evaluate all possible models within their definition, but only those listed
in Table 3.1, and it makes sense to limit the model set to reduce model selection
instability.18,98 We did not address how to optimally select the rate constants λ.
Stepwise selection methods have their disadvantages.83 With stepwise forward
selection, AICc may even perform worse than AIC.60
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• We did not evaluate the process of covariate selection. However, the set of ex-
ponentials may be viewed as a number of (somewhat correlated) predictors. It is
therefore expected that the present findings also hold for other types of covariates.

3.4 Conclusion

In conclusion, the present simulation study demonstrated that, at least in a relatively
simple mixed-effects modeling context with a set of prespecified models, minimum
mean AICc coincided with best predictive performance, also in the presence of interindi-
vidual variability.

Acknowledgment: The authors would like to thank J. de Goede for many fruitful
discussions.

3.A Appendix: Supplementary Material

In the following, we summarize theory on the maximum likelihood approach and AIC
relevant for this paper. We start with the situation for data from one individual and
show how AIC is related to OFVv . Subsequently we discuss the situation for population
data.

Suppose the model for measured data yj , j = 1, · · · ,M is given by (cf. eqs ( (3.5),
(3.6), and (3.10))

yj = ŷj +wj · εj ,
where ŷj is the model output, wj are weight factors, and εj are independent normally
distributed with mean zero and variance σ2. The likelihood function L for this data set
is then given by

L(y ; θ) =
M∏
j=1

1

wjσ
√

2π
exp

−1
2

(
yj − ŷj
wjσ

)2
 , (3.12)

where the set of parameters θ contains σ2 and those needed to calculate ŷ . The ob-
jective function value (OFV) is defined as minus two times the natural logarithm of the
likelihood:

OFV = −2 log(L(y ; θ) =
M∑
j=1

log(w2
j )+M log(σ2)+M log(2π)+ 1

σ2

M∑
j=1

(
yj − ŷj
wj

)2

.

(3.13)
Note that in writing “OFV”, the data and parameters it depends on have been omitted.
Now maximum likelihood is obtained when OFV is minimal; constant terms such as
M log(2π) may then be discarded (for example, in NONMEM’s calculation of the the
objective function). The minimum is attained for certain values of parameters of ŷ , and
for the parameter value of σ2, when the derivative of OFV with respect to that parameter
is zero:

∂OFV
∂σ2

= M
σ2
− 1(
σ2)2

M∑
j=1

(
yj − ŷj
wj

)2

= 0,
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so the maximum likelihood estimator of σ2 is

σ̂2 = 1
M

M∑
j=1

(
yj − ŷj
wj

)2

.

By subsituting this estimate in eq. (3.13), we obtain

OFV =
M∑
j=1

log(w2
j )+M log(σ̂2)+M log(2π)+M. (3.14)

By substituting this result in eq. (3.1), we have

AIC =
M∑
j=1

log(w2
j )+M log(σ̂2)+M log(2π)+M + 2D.

The term 2D arises from the fact that in minimizing the Kullback-Leibler information,
i.e., a measure of the distance between reality and the best approximating model, ex-
pectations have to be taken over a data space leading to estimates of parameters θ (and
hence ŷ , and possibly w (see below)) and over a second independent data space y .18

So AIC as defined above should on average be approximately equal the value of OFV
(eq. (3.13)), with estimated values for the parameters and validation data zj denoted
OFVv :

OFVv =
M∑
j=1

log(w2
j )+M log(σ̂2)+M log(2π)+ 1

σ̂2
·
M∑
j=1

(
zj − ŷj
wj

)2

. (3.15)

So when OFV and AIC are both minimized, the latter term - the sum of squared weighted
prediction errors - should also be minimal. For the plots in this paper, the measures OFV,
OFVv , AIC, and AICc , were normalized by dividing them by the number of data samples.
With an infinite amount of data, and σ̂2 = σ2, the normalized criteria should attain the
value of log(σ2)+ log(2π)+ 1.

Note that if the weights wj are taken as in subsection “Data simulation”, the term∑
log(w2

j ) vanishes (this is a just a curiosity of that choice of weights); if the wj are
taken as the measurements yj , the expectation of this term is the same for every K (for
every model considered here). However, if the weights are taken as the model output
ŷj , the expectation of the term will not vanish for a less than perfect model, and will
differ between different models. To compare their ν2, the weights for all models could
be fixed to the model output of the best model - but since that is unknown at this point -
to the output of the largest model.

For population data, the likelihood function is the product across individual marginal
likelihoods where the random effects have been integrated out. For one individual i, and
the model given by eq. (3.6), the likelihood Li is

Li =
(

1

σ
√

2π

)M
·
∫∞
−∞

exp

−1
2

M∑
j=1

 exp(ηi)+ εij − exp(η′
)

σ

2· 1

ω
√

2π
·exp

[
−1

2

(
η′

ω

)2
]
dη′.

The εij have on average mean zero and variance σ2, and NONMEM’s first-order condi-
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Figure 3.6: Theoretical values of the normalized log-likelihood with σ2 = 0.5, as a
function of ω2 (interindividual variability), for different values of M (the number of
observations per individual).

tional estimation method linearizes around the empirical Bayesian estimate of ηi, so
that exp(η′) = exp(η̂i) · (1+ η′). The equation then reduces to

Li =
(

1

σ
√

2π

)M
·
∫∞
−∞

exp

[
−1

2
·M ·

(
1+

(
η′ · exp(η̂i)

σ

)2
)]
· 1

ω
√

2π
·exp

[
−1

2

(
η′

ω

)2
]
dη′;

next some algebra gives for the expected value of minus two log Li:

− 2 logLi = M · (log(σ2)+ log(2π)+ 1)+ log(M · exp(2ηi) ·ω2/σ2 + 1). (3.16)

The minus two log-likelihood for the population data is the sum ofN individual−2 logLi.
Now let the expected normalized likelihood be NL, which is the expected population
minus two log-likelihood divided by N · M , taking into account that the ηi have on
average mean zero and variance ω2:

NL = log(σ2)+log(2π)+1+ 1
M

∫∞
−∞

log(M ·exp(2η′)·ω2/σ2+1)·exp

[
−1

2

(
η′

ω

)2
]
dη′.

(3.17)
Figure 3.6 depicts the normalized log-likelihood (with eq. (3.17) evaluated numerically)
as a function of ω2, for σ2 = 0.5 and three values of M . For large M , the last term in
eq. (3.17) (the integral divided by M) goes to zero, and the uncertainty left in the data
is determined only by σ2. Values for M = 11, and ω2 = 0, 0.1, and 0.5 were used as
“target” values in Figures 3.3 - 3.5. The observed averaged normalized log-likelihoods
will be larger, because the models used do not fit perfectly, and the parameters are
estimated instead of set to their true values.
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The context of AIC is also the one where the ηs have been integrated out (but with
the parameters at their estimated values), which is to be done when all data are acquired.
So while the characteristics of the set of (validation) data are optimally captured, this
context is different from the case where prediction errors are calculated with the random
effects set to zero instead of integrated out. In that case, the above AIC and OFVv
criteria do not match, as the components of the likelihood in eq. (3.12) are no longer
independent (they can only independent if the true values of η for the individuals are
also zero). Note however, that from the higher perspective of optimally characterizing
a future set of population data, this is a less important case.
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