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Chapter 1

Introduction

1.1 A Modeling Odyssey

When modeling data from experiments, many explicit and implicit assumptions have
to be made about the deterministic and random processes that produced the data. One
of the assumptions is that “unexplained” variation in the measurements is independent
and identically distributed. “Independent” means that the value of a measurement is
not influenced by previous (or subsequent) ones. One situation where this assumption
is easily violated is with data from multiple subjects, because of differences between the
characteristics of those subjects, which are the same within the data from each subject.

The collection of assumptions is referred to by the term “model”. To estimate both
the parameters of the deterministic part of the model and the properties of the random
processes, the program NONMEM was developed in the 1970s,78,77 and its development
continues to this day.9 NONMEM is an acronym for “NONlinear Mixed-Effects Model”.9

From the beginning, it was called into question if the complexity, and the associated
computational cost, of NONMEM was worth the effort. Warnings that model parameter
estimates and/or their standard errors could be biased if assumptions were violated,
were balanced by examples that the parameter estimates and their standard errors were
about the same with more naive estimation methods.

Part of the modeling process with NONMEM often involves obtaining successful es-
timation and covariance steps, specified as $ESTIMATION and $COVARIANCE records
in a control file, which starts with the promising $PROBLEM record. Even when the syn-
tax of the model specification records is correct, these commands usually lead to an
unexpected (but correct!) response from the program - hence the leaflet interpretation
of a famous dialogue in the science fiction literature.22 The estimation step typically
takes a lot of computer time, with the possibility that it fails with the message that the
objective function is infinite. The covariance step should output the standard errors
of the estimated parameters. It also takes a lot of computer time, and it fails if it en-
counters a singular matrix, which means that, even with the model specified, there is
still an infinite number of ways to describe the available data. The objective function
is a number related to the likelihood of observing the data, conditional on the values
of model parameters. Usually, and in NONMEM, it is calculated as minus two times the
natural logarithm of the likelihood (discarding terms that are constant with respect to
the model parameter values). So if the objective function is infinite, there is actually
zero likelihood of observing the data. With a reasonable model, such a result does not
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seem to make sense. To obtain standard errors of the parameter estimates, the “Hes-
sian” and/or “cross-product gradient matrix” needs to be inverted. If such a matrix is
singular, it cannot be inverted. This might be caused by the model having too many
parameters. But in this situation, there is no output of a possibly large standard error
indicating which parameter causes overparameterization. One reason that NONMEM
might fail to give successful and/or useful estimation and covariance steps, is that the
model specified in the control file contains explicit or implicit assumptions about the
data that are violated. For example, by writing

θi = θ̃ · exp(ηi) (1.1)

it will be assumed that model parameter θi is lognormally distributed around θ̃ across
the population.9 The lognormal distribution is unimodal, but for example a population
with groups of low- and high responders could be bimodal, leading to estimation prob-
lems.

In the following chapters of this thesis, different conditions where assumptions are
violated will be investigated. Most of the situations are explored using simulated data,
but the characteristics of these data were based on studies in patients or volunteers.
The next sections in this chapter introduce those situations by the people that first
proposed solutions to handle these situations. In all cases, these solutions are given by
single characteristic formulas.

1.2 The Limits of Agreement

One of the papers in Nature’s Top 10097 is called “Statistical methods for assessing
agreement between two methods of clinical measurement”, written by Martin Bland and
Douglas Altman in 1986.14 In this important paper, the authors explain why the corre-
lation coefficient may not be a good measure of agreement. For example, the correlation
coefficient may be high, while agreement is low, because the correlation coefficient is not
sensitive to scaling factors such as a bias term. Bland and Altman proposed to calculate
“limits of agreement” (LoA):

LoA = d̄± 2s, (1.2)

where d̄ and s denote the mean and standard deviation of the differences between the
measurements, respectively. The mean is the bias of one measurement method with
respect to the other. The above equation looks familiar: the LoA contain 95% of the
differences, if these follow a normal distribution. However, the properties of the differ-
ences are not known and have to be estimated, so Bland and Altman also showed how
to calculate d̄ and s.

Very often, data are obtained from a group of subjects with multiple paired mea-
surements in each subject. Bland and Altman warned that in this case the differences
may not be considered as statistically independent, and estimated limits of agreement
could be too narrow if this is not taken into account. However, the calculations become
much more complicated, for which there is no readily available software.

Therefore, in Chapter 2, the development of a freely available implementation in
JavaScript is described, which is able to run in a Web browser. We validate the imple-
mentation by giving a formal description of both the basic and more advanced Bland-
Altman comparison methods, and by using simulated data so that it can be verified
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that the calculations are correct. We also study the effects caused by failing to take the
presence of multiple paired measurements per subject properly into account. Because
the results depend on the properties of the data, and analysis methods used, we list
important items for a standard format of reporting comparison studies.

1.3 An Information Theoretic Criterion

Another entry in Nature’s Top 10097 is called “A new look at the statistical model iden-
tification”, written by Hirotugu Akaike in 1974. He proposed “An Information theoretic
Criterion” for model selection - AIC - which he invented while taking a seat in a com-
muter train according to his review of his Citation Classic.2 In his honor, the first letter
of AIC is usually pronounced as “Akaike”. The criterion may be written as

AIC = −2 logL+ 2p, (1.3)

where L is the likelihood of observing the data, and p the number of parameters of the
model used to calculate L. It is often stated that when AIC is used for model discrim-
ination it leads to “overfitting”, i.e., it selects models with a higher dimension than the
dimension of the model that generated the data.18 But for example with experimental
pharmacometric data it may not be possible to identify the correct model, because of the
complexity of the processes governing drug disposition and action. Instead of trying to
find the correct model, a more useful objective might be to minimize the prediction error
of drug concentrations or drug effects in subjects with unknown drug characteristics.
In that case, the AIC might be the selection criterion of choice.

In Chapter 3, we perform Monte Carlo simulations using a model of pharmacoki-
netic data (a power function of time) with the property that fits with common multi-
exponential models can never be perfect - thus resembling the situation with real data.
AIC and AICc (the criterion with a correction for small sample sizes) values are calculated
and averaged. The average predictive performances of the models, quantified using sim-
ulated validation sets, are compared to the means of the AICs. These simulations are
also done at different levels of interindividual variability in the pharmacokinetic volume
of distribution, to check that AIC remains a valid criterion under these circumstances.

1.4 The Kalman Filter

Another “Citation Classic” is on a paper by Rudolf Kalman.45,44 It contains the mathe-
matical foundation for another paper from the same year43, introducing the “Kalman
filter”. The Kalman filter filters measurements to obtain optimal estimates of the state
of the system and its uncertainty, by feeding back the difference between measurements
and predictions multiplied by what is now called the “Kalman gain” KK :32

KK = PKCTK ·
(
CKPKCTK + RK

)−1
(1.4)

where the terms on the right side of the equation denote properties of the system and
of the noise perturbing the system and the measurements.
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In Chapter 4, the pharmacokinetic-pharmacodynamic (PK-PD) properties of
buprenorphine transdermal patch in healthy volunteers on electroencephalographic
(EEG) characteristics and pain tolerance are studied. Because the latter effect is often
based on subjective measurements, electroencephalography offers a possibility to ob-
jectively quantify and track the changes in the the activity of the brain when an opioid
is administered.

Usually, the pharmacokinetic and pharmacodynamic states are assumed to deter-
ministically depend on drug administration only. However, there could be variability
in the absorption rate from the patch and/or in the blood–effect-site equilibration rate.
The estimates of buprenorphine’s properties could be biased if such variability is not
taken into account. Therefore, a population PK-PD model with stochastic differential
equations was implemented in the NONMEM to analyze the PK and PD data simultane-
ously.

1.5 The Entropy of Permutations

In the 1940s, Claude Shannon proposed the following measure of uncertainty:75

Entropy = −
∑
pi logpi, (1.5)

where pi is the probability of event i to be observed. Shannon selected this function of
the probabilities because of its desirable mathematical properties. For example, entropy
is maximal if all events are equally likely to occur, and entropy is zero if none of the
events are likely to occur, except one.

A frequently used electroencephalographic index of central anesthetic drug effect is
the “Bispectral Index“ (BIS). The algorithm that is used to calculate the BIS is not in the
public domain, and is subject to repetitive updates with unknown changes. On the other
hand, open source indices are often highly sensitive to artifacts due to muscle activity
(e.g., eye blinking).

The EEG waveform can be described as a sequence of ordinal patterns. The per-
mutation entropy (PE) describes the relative occurrence of each of these patterns.8 The
normalized PE is high (almost maximal) when the signal has predominantly high fre-
quencies and low (approximately 40% of maximal) when the signal consists of only low
frequencies. The permutation entropy was shown to be insensitive to eye blink arti-
facts.65 With high amplitude eye blinks, the low amplitude high frequency components
indicative of awakeness still dominate the permutation entropy, because permutations
are not dependent on amplitude per se, but only on amplitude rankings.

The cost of sampling EEG indices is quite independent on the amount of samples,
so these can be acquired at high sampling rate. However, PK-PD model fits then show
correlations between the samples. For example, if a measurement is above the line
representing the model fit, there is a high probability that the next measurement is
also above the model output. This represents another situation where the data are not
independent, and model parameter estimates may be biased unless a Kalman filter is
used. Therefore, in Chapter 5 models using stochastic differential equations for the
state of the brain are studied using simulated and experimental data.
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1.6 Location, Location, Location, of the Sampling
Site

About 40 years ago Lewis Sheiner79 (but see also Hull41 and Segre74) pointed out that
it is important to take into account a delay between drug concentration in the arterial
blood and the effect-site:

dCe(t)
dt

= ke0 · (Cb(t)− Ce(t)) , (1.6)

where ke0 is the blood–effect-site equilibration rate. This equation is able to describe, for
example, the phenomenon of increasing drug effect with decreasing blood concentration
- namely for as long as Cb(t) is higher than Ce(t). In pharmacokinetic-pharmacodynamic
modeling studies, venous plasma samples are sometimes used to derive pharmacody-
namic model parameters. In principle, the same equation can be used, but because there
is an arterio-venous delay, ke0 will be estimated with a bias towards a smaller value.

In Chapter 6, the extent of arteriovenous concentration differences of morphine-6-
glucuronide is quantified based on arterial and venous blood samples in volunteers. An
extended pharmacokinetic model is described with standard compartments for the arte-
rial data that are linked to additional compartments for the venous data. The extent of
bias in pharmacodynamic model parameter estimates is explored via simulation studies
with NONMEM. Furthermore, simulations are presented where a pharmacokinetic model
based on arterial data is connected to a pharmacodynamic model based on venous data,
to assess the influence of this mismatch on the predicted effect.

1.7 NONMEM and Beyond the Infinite

As may be expected, violations of modeling assumptions may have just mild but also
significant effects on the data analysis results. As may also be expected, violations
may also have significant modeling effects that are perhaps not expected in advance.
Therefore, in Chapter 7, the findings of the five studies that are presented in this thesis
will be revisited in detail. The existence of increasingly more powerful computers and
increasingly more sophisticated software like NONMEM is invaluable for studies like
those described, because it provides the means to look one or more dimensions deeper
than the present state-of-the-art.
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Chapter 2

Improvements in the Application and
Reporting of Advanced Bland-Altman
Methods of Comparison*

In many fields of science, two different methods of measurement may require compar-
ison. Altman and Bland4,13 developed a comparison method which paired the difference
between measures taken using two devices to the mean of the two values, thus avoiding
mathematical traps and statistical misconceptions associated with previous methods
of comparison.58 Their original method was attractively simple, intuitive, and required
very little calculation. It became very well-known and widely cited. After the method
was presented in a short article in a medical journal,14 the paper has now been cited
more than 22,000 times. Initially, interest was placed on measuring the bias between
the two measures; in later papers by Bland and Altman, the assessment of agreement
between methods was emphasized. If the “limits of agreement” (LoA) were acceptable,
then one method of measurement might be interchanged with another. This decision
of “acceptability” is in essence a value judgement tailored to the specific comparison,
and emphasizes the fundamentally largely qualitative features of this method of analy-
sis.23 In many studies, remarkably wide limits appear to be accepted, without employing
pre-defined criteria for judgement, or considering the consequences of accepting poor
correspondence of the measures, such as a wrong decision or a mis-diagnosis.51

Bland and Altman extended their method to allow analysis of more complex data
structures, such as repeated measures taken from a number of subjects, where vari-
ation can be caused by both within and between subject factors.15,12 In their original
examples, they compared pairs of measurements where each pair was from a separate
subject. An example might be hemoglobin concentration in a blood sample.80 In the
later papers, they considered subjects in whom repeated pairs of measurements were
made. These measurements could be made under two conditions. In one condition,
the measurements might be of a feature that could be reasonably expected to remain
the same over the period of study (i.e., the true value remains constant). In another
circumstance, the quantity measured could be of a feature that could easily change be-
tween each sampling occasion, for example cardiac output before and during treatment,
termed “true value varies”.15 These additional features require different procedures for

* E Olofsen, A Dahan, G Borsboom, G Drummond, J Clin Monit Comput 2015; 29:127–139
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analysis which take into account the type and structure of the data. Inappropriate anal-
ysis can substantially overestimate the agreement between methods.

Not only do such specific features of the data affect the LoA, they also influence the
precision with which the “limits of agreement” can be estimated, that is the confidence
intervals (CI) with which the LoA can be defined. Clearly, substantial CI for the LoA will
degrade their value in comparing measurement methods. To allow adequate evaluation
of the results of comparison studies, reports should not only provide the limits of agree-
ment, but also the precision of these estimates. Bland and Altman observe that although
CI for the LoA are necessary, they are rarely provided in reports.11,13 Approximate meth-
ods for estimating the CI are simple,11 but when the data structure is more complex,
simple approximations are inappropriate. Thus with greater complexity of data used in
comparison studies, papers not only fail to report exactly how the comparisons were
calculated, but also signally fail to present sufficient data, such as CI for the estimated
LoA, to allow adequate conclusions.51

We suggest that these deficiencies observed in comparison studies may largely re-
sult from three related factors. First, each form of data requires a different procedure
to calculate the LoA and the CI of this estimate. Second, these procedures are not ac-
curately defined, since most of the source papers describe several methods that may
not be explicitly identified when the paper is cited. Third, the software available for
calculating these descriptive statistics only implements the simpler methods, which are
inappropriate for more complex data.

Since this general method is now very widely used, we set out in this paper to provide
a freely available and formal means to estimate the LoA and the associated CI of the es-
timated values. This could improve substantially the reporting of comparison data. To
use the routines, the analysis requires the exact data structure to be defined. The anal-
ysis procedure could be reported when the results are presented. Because we detected
some errors, possibly typographical, in the extant descriptions of the procedures used,
the exact procedures used for each calculation will be provided for scrutiny. Asymptot-
ically valid assumptions may lead to inaccurate results with real data sets, so the most
robust methods available are provided. Suggestions are given for a standard format of
reporting that would improve analysis and interpretation of comparison studies.

2.0.1 Definitions and Notation

Let measurements obtained from a measurement device be called X. If these are ob-
tained from i = 1, · · · , n subjects, we denote that by adding a subscript and write Xi.
If there are mi measurements from subject i we add a second subscript and write Xij ,
with j = 1, · · · ,mi. In the following, if the subscripts ij are omitted, all possible values
of i and j are implied.

A model for the measurements X is

Xij = Txij + Exij ,

i.e., the measured values Xij are the sum of true values Txij and measurement errors
Exij . To indicate explicity that there may be a systematic shift in the measurements
with respect to the true values, we could refine the definition and write

Xij = Txij + Bx + Exij ,
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where Bx is defined as the bias and the mean of Ex as zero. However, it may be that the
the bias is not the same for each individual, and therefore we refine the model as

Xij = Txij + Bx + Ixi + Exij ,

and take the random variables Ix and Ex as statistically independent and with means
of zero. The variances of Ix and Ex are denoted by σ2

xI and σ2
xw , respectively. These

are the between-subjects (subscript I) and within-subject (subscript w) variances of the
differences of the measurements and the true values.

Bland and Altman proposed to look at the differences between two sets of measure-
ments, X and Y :

Dij = Xij − Yij = Tij + B + Ii + Eij ,
with Tij = Txij−Tyij , and similar expressions for B, I, and E. Variances of (independent)
sums of differences are additive, soσ2

dI = σ2
xI+σ2

yI andσ2
dw = σ2

xw+σ2
yw . The subscript

d denotes that these variances are associated with the differences D. The variance of
the differences is σ2

d = σ2
dI + σ2

dw . A Bland-Altman plot shows the differences versus
the means Mij = (Xij + Yij)/2.

In a single individual, repeated measurements may be made of a quantity that can
reasonably be assumed to have a constant “true” value, over the time span of the mea-
surements, such as bone length in a single day. We define this as the “true value con-
stant” condition. In such circumstances, there is no specific requirement to have, in
each subject, paired simultaneous measurements made by two methods. On the other
hand, many quantities can vary substantially over a short time, especially when manipu-
lated using some procedure. Examples include heart rate, cardiac output, and breathing
frequency. Here the true value is varying: measurements of such quantities using two
methods are often intended to capture the changing values: this is the “true value varies”
situation, and requires paired measurements for accurate analysis. The differences be-
tween the true values, Tij , are only known when these are zero, i.e., when Txij = Tyij .
This will be the case when the sampling times associated with xij and yij are iden-
tical. In other words, when the data are paired, the true values Txij and Tyij may be
varying within an individual, as their differences will be zero. When the experimental
conditions are kept the same when taking measurements from each individual, Txij and
Tyij may be assumed to be constant and equal within each individual: this is the “true
value constant” situation.

Bland and Altman defined the limits of agreement (LoA) as

LoA = B ± 1.96 · σd,

where B is the overall bias and σd is the standard deviation of the differences. This
definition states that 95% of the differences lie within the limits of agreement, assuming
1) the differences are normally distributed, and 2) the parameters B and σd are known
exactly. In practice these have to be estimated.

2.0.2 Estimation Methods for the Limits of Agreements

Bland and Altman showed how to estimate the limits of agreement for the following
situations:15,12

• The True value varies method, which may be used if the measurement data are
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paired, so that varying true values within the repeated measurements cancel due
to the fact that differences are analyzed.

• The True value constant method, which may be used if the true value is for all
practical purposes constant within the repeated measurements, and hence these
do not have to be paired.

• The Pooled data method, which ignores information about measurements possibly
originating from different subjects, so the method assumes that between-subjects
variability is absent, or that the subject-specific biases in the two measurement
devices are identical (Ixi = Iyi).

2.0.3 Confidence Intervals for the Limits of Agreements

The importance of confidence intervals (CI) for the limits of agreement has been em-
phasized by Bland and Altman and other authors (see e.g.,39,51,94) The 95% confidence
intervals for the limits of agreement should contain the true limits 95% of the times that
these are estimated. Until the paper by Zou,100 equations to compute these were only
available for the Pooled data method and for the True value constant method when there
are equal numbers of measurements per individual.15 Zou derived equations for the
True value varies method and generalized the True value constant method for unequal
numbers of measurements per individual. Furthermore, Donner and Zou28 developed
the MOVER (Methods of Variance Estimates Recovery), which gives a set of equations for
more accurate confidence intervals.

2.1 Methods

2.1.1 Implementation

We implemented the analysis methods described by Bland and Altman,12 based on
ANOVA, in JavaScript,54 and created a library with functions that expand the Array
object. These functions perform statistical operations, such as calculating the sums of
squares necessary for the ANOVA tables. Functions that involve percentiles of distri-
butions and correlation coefficients call the jStat library.95 The Flot library72 provides
functions to create graphs. To call these libraries from a HyperText Markup Language
(HTML) file, the jQuery library86 is used.

For all Bland-Altman methods, we derived expressions for 95% confidence intervals
of the limits of agreement (see Appendix), using the approach of Bland and Altman15,
and implemented these in the library. We modified the True value varies method for
the unbalanced case, i.e., where the number of measurements is not equal for each
individual. Bland and Altman base the analysis on an ANOVA table,12 because that is
easily accessible. However, as Thomas and Hultquist note,87 the subject partial sum of
squares is, with unbalanced data, only X2 distributed if there is no between-subjects
variance; they also show an alternative sum of squares that has more useful properties
in the presence of large between-subjects variability (see Section 2.A.6). Depending on
the ratio of the between-subjects and the total variability, our implementation selects
the standard or the modified True value varies method automatically. In the following,
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when we refer to the “true value varies method” we refer to this automatic method unless
we explicitly state otherwise.

The derived expressions for the 95% confidence intervals are exact only asymptoti-
cally, so the MOVER100 and a bootstrap method29 (see Section 2.A.3) were implemented
to assess the utility of the different methods with finite data.

An HTML file to be accessed by a Web browser was constructed, with a box into which
input data can be pasted, and a button to start the available Bland-Altman analyses.
Output plots and tables with parameter estimates are then created, along with guidance
regarding the meaning of these output values. In addition, a table of the data is displayed
to allow a check that these have been input correctly.

2.1.2 Output of the Analyses

From the differences (the X − Y data), the bias B and the limits of agreement are calcu-
lated. The bias, or grand mean of the differences, is identical for all analysis methods.
The standard error of the bias is calculated according to the analysis method, and may
therefore differ between methods. With the Pooled data method, the standard error
of the bias is usually smaller than with the other methods if there is between-subjects
variation in the bias. For the bias and the LoA, 95% confidence intervals are estimated
using the derived equations and the bootstrap. The data are plotted with the estimated
bias, LoA, and the 95% confidence intervals of the bias and LoA.

For the True value varies and True value constant methods, the within-subject vari-
ance and the between-subjects variance are given; the latter with its associated F and P
values. When the between-subjects variance of the bias is small, the P value will be high,
and results of the different methods similar. The ratio of between-subjects variance and
the total variance is given as τ . A value of τ greater than zero indicates the need to take
between-subjects variability into account.

Spearman’s rank correlation coefficient ρ between the size of the bias and the mean
values is given with its associated P value. A significant correlation suggests the need
for a more sophisticated approach than described in this paper.15

We will not study the statistical properties of F and ρ. Significance levels for hypoth-
esis tests based on these statistics may be influenced by between-subjects variability or
unbalanced data, but we consider this topic outside the scope of the present paper.

2.1.3 Diagnostic Plots

In the developed Web application, the analysis consists of pasting the data, and just one
click on a button. Before accepting the results, a necessary step is to inspect diagnostics
plots to ensure that the assumptions underlying the analysis are not violated. Quantile-
quantile plots of the residuals and the individual means are presented to check for their
normality. The quantiles of the differences and of the individual means are plotted
versus the quantiles of the normal distribution. If these lie close to the line of identity,
the distributions of the differences and of the individual means may be approximated
by normal distributions. Outliers may be detected if there are a few points far from
the line of identity. Furthermore, the residuals should be independent of the means
of the observations and the subject identification numbers. Plots of the (studentized)
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residuals are presented as another tool to check for outliers. See the papers by Bland
and Altman4,12 for further discussion.

2.1.4 Validation Study

We applied the three Bland-Altman methods to simulated data sets, generated using a
function in our JavaScript library (see Section 2.A.8). The bias was set to zero, and the
total variance to one. We adjusted the proportion of the between-subjects variance with
respect to the total variance, as was done by Hamilton and Lewis38 and Zou.100 The
number of measurements per subject was varied. We used a pattern of either “5,5,5” or
“1,5,9”, to assess the dependence of the LoA on balanced versus unbalanced data. The
pattern was repeated to obtain a number of subjects of 6, 12, 24, 48, and 96.

From 10,000 Monte Carlo simulations, i.e., repeated data generation and analysis
steps), sample means of estimated variances were computed to be compared with sam-
ple variances of the estimated parameters themselves. Converging agreement between
these estimates as the number of subjects increases would indicate that the derived
expressions are correct. Coverage frequencies were computed to show how often the
estimated confidence intervals contain the z-value of 1.96 (as the true distribution has
mean and variance of exactly zero and one, respectively).

2.1.5 Application

An example data file was created (using a C++ program; see Section 2.A.8) where the
measurement of some quantity was simulated 15 times in 20 subjects. The measure-
ments X and Y were paired. The measurements X had a mean bias of B = 0.5 units,
relative to the Y values. The within-subject and between-subjects variances were set to
σ2
dw = 0.2 and σ2

dI = 0.5, respectively. The mean of the true value was set to 6 and and
its within-subject variance to 2.25. With these parameter values, the simulated data have
characteristics similar to the data described by Biancofiori et al.10 The data are shown
in Figure 2.1. The variation of the dashed lines reflect between-subjects variability; the
variation of the data around the dashed lines indicate within-subject variability. The
data were analyzed using the Pooled data method and the True value varies method.

2.2 Results

2.2.1 Validation Study

Table 2.1 presents the Monte Carlo simulation results for the True value varies method
with 12 subjects, mi pattern 1,5,9, and total number of observations 60. The means of
the estimated variances of the differences are close to the actual value of unity for all
values of τ , showing that this method gives accurate estimates of the limits of agreement
(the LoA are directly related to the variance of the differences). The means of the esti-
mated variances of the bias are similar to the actual variances, showing that the derived
expressions for the variance of the bias are valid. The means of the estimated variances
of the limits of agreement are also similar to their actual variances, which indicates that
the derived expressions for the variance of the limits of agreement are also valid.
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Figure 2.1: Simulated data for the example Bland-Altman analysis. Small dots denote
all data; the large dots denote the data for each indicated subject. Dotted lines:
overall bias; dashed lines: subject-specific bias.
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Table 2.1: Means of estimated variances are shown for differences, and means of
estimated variances and actual variances are shown for the bias and the limits of
agreement (LoA). Because the limits of agreement are symmetric, values for their
variances should be approximately the same.

Variances of: Bias LoA

τ differences Theoretical Actual Theoretical Lower limit Upper limit

0.1 1.001 0.027 0.028 0.065 0.066 0.066
0.3 1.002 0.046 0.047 0.107 0.109 0.109
0.5 0.995 0.058 0.061 0.150 0.150 0.156
0.7 0.998 0.069 0.070 0.191 0.194 0.188
0.9 0.999 0.079 0.078 0.234 0.227 0.235

Table 2.2 presents the coverage frequencies associated with the estimated 95% con-
fidence intervals from the True value varies method. The coverage frequencies are less
than they should be, so the CI are too narrow. Because the variances of the limits of
agreement are well estimated (see Table 2.1, this is caused by a violation of the assump-
tion that the standard deviation of the limits of agreement is normally distributed (see
Section 2.A.3). Because there are differences in the one-sided coverage frequencies for
the lower and upper sides, while these should all be 0.975, better CIs would be asymmet-
ric. Table 2.3 presents coverage frequencies associated with the parametric bootstrap-t
confidence intervals. In comparison with the results in Table 2.2, these are closer to
the desired values. Table 2.4 presents coverage frequencies associated with MOVER
confidence intervals. which are even closer to the desired values.

With balanced data (pattern of 5,5,5), the properties of the standard and modified
True value varies methods are similar. With unbalanced data (pattern of 1,5,9), the
standard True value varies method underestimates variability at large values of τ ; the
modified True value varies method underestimates variability at small values of τ (data
not shown). With both the True value varies and the True value constant methods and
96 subjects, the two-sided coverage frequencies are between 0.93 and 0.95, and the one-
sided coverage frequencies showed a small asymmetry. When the true value is constant,
the True value constant method and the True value varies method have identical statis-
tical properties (see Section 2.A.7), so no further numerical values are presented here
for the True value constant method.

Tables 2.5 and 2.6 present the simulation results for the Pooled data method. In the
presence of between-subjects variability (τ > 0):

• the variance of the differences is underestimated;

• the variance of the bias is seriously underestimated (the means of the estimated
variances of the bias are less than the actual variance);

• the variance of the limits of agreement is seriously underestimated (the means of
the estimated variances of the LoA are less than their actual variance);

• the coverage frequencies are below 0.95 for the two-sided and mostly below 0.975
for the one sided confidence intervals.
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Table 2.2: Coverage frequencies for the two-sided asymptotic 95% confidence intervals
and one-sided asymptotic 97.5% confidence intervals obtained by the True value
varies method. Because the limits of agreement are symmetric, values for corre-
sponding coverage frequencies should be approximately the same. With 10,000 sim-
ulations the estimation error for frequency 0.95 is approximately 0.0002.

Lower limit Upper limit

τ Lower limit Upper limit Lower side Upper side Lower side Upper side

0.1 0.931 0.934 0.943 0.988 0.991 0.944
0.3 0.919 0.923 0.926 0.994 0.993 0.930
0.5 0.906 0.905 0.910 0.996 0.996 0.909
0.7 0.905 0.907 0.909 0.997 0.997 0.910
0.9 0.915 0.913 0.917 0.998 0.997 0.915

Table 2.3: Coverage frequencies for the bootstrap-t confidence intervals; see Table 2.2
for explanation.

Lower limit Upper limit

τ Lower limit Upper limit Lower side Upper side Lower side Upper side

0.1 0.937 0.941 0.963 0.974 0.977 0.964
0.3 0.931 0.937 0.962 0.969 0.973 0.965
0.5 0.934 0.929 0.964 0.970 0.968 0.961
0.7 0.942 0.937 0.967 0.975 0.976 0.961
0.9 0.951 0.952 0.978 0.974 0.976 0.976

Table 2.4: Coverage frequencies for the MOVER confidence intervals; see Table 2.2 for
explanation.

Lower limit Upper limit

τ Lower limit Upper limit Lower side Upper side Lower side Upper side

0.1 0.952 0.950 0.980 0.972 0.973 0.977
0.3 0.947 0.948 0.970 0.978 0.976 0.971
0.5 0.946 0.939 0.962 0.984 0.981 0.958
0.7 0.945 0.949 0.963 0.983 0.985 0.964
0.9 0.958 0.951 0.970 0.987 0.984 0.967
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Table 2.5: Simulation results for the Pooled data method; see Table 2.1 for explanation.

Variances of: Bias LoA

τ Differences Theoretical Actual Theoretical Lower limit Upper limit

0.1 0.989 0.016 0.027 0.049 0.060 0.061
0.5 0.945 0.016 0.068 0.047 0.143 0.137
0.9 0.905 0.015 0.110 0.045 0.282 0.282

Table 2.6: Coverage frequencies for the asymptotic confidence intervals obtained by
the the Pooled data method; see Table 2.2 for explanation.

Lower limit Upper limit

τ Lower limit Upper limit Lower side Upper side Lower side Upper side

0.1 0.914 0.911 0.934 0.980 0.980 0.931
0.5 0.713 0.727 0.792 0.921 0.930 0.797
0.9 0.532 0.527 0.653 0.878 0.882 0.645

2.2.2 Application

The upper panel in Figure 2.2 shows the Bland-Altman analysis of the simulated data
with the True value varies method. The ratio of between-subjects variance and total
variance τ ≈ 0.73. The bias is estimated as 0.498 with bootstrap 95% CI 0.171 to 0.830.
The limits of agreements are -1.12 to 2.11 with 95% CIs -1.77 to -0.70 and 1.69 to 2.77,
which are asymmetric as can be seen in the figure. The asymptotic 95% CI are 0.187 to
0.809 for the mean, and are -1.61 to -0.62 and 1.62 to 2.60 for the limits of agreement.

The lower panel in Figure 2.2 shows the Bland-Altman analysis of simulated data
with the Pooled data method. The bias was estimated as 0.498 with asymptotic CI 0.406
to 0.589. The limits of agreements were -1.09 to 2.08 with CIs -1.24 to -0.93 and 1.93
to 2.24. Note that the application of the Pooled data method is inappropriate here,
and gives limits of agreement that are too narrow and confidence intervals that are
much too narrow. The MOVER and parametric bootstrap-t confidence intervals would
be inaccurate too, because these would be based on inaccurate estimates of variability.

2.3 Discussion

2.3.1 The Methods of Comparison

We found that the modified True value varies method has statistical properties identical
to the True value constant method, under the condition that the true value is constant.
That means that the modified True value varies method may be used both when the
true value is varying and when it is constant. The True value constant method is only
needed if the number of measurements from two devices is not equal in one or more
individuals. However, if the true value is not constant, which is usually the case, there
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Figure 2.2: Upper panel: Bland-Altman analysis of simulated data with the True value
varies method. Solid line: zero bias; dotted lines: overall bias; dashed lines: limits
of agreement. The shaded areas indicate Student’s-t and MOVER 95% confidence
intervals. Lower panel: Bland-Altman analysis of simulated data with the Pooled
data method. The shaded areas indicate the asymptotic 95% confidence intervals.
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will be a risk of biased estimates. Part of the True value constant method calculates the
repeatability coefficients, which should be reported (see below).

With unbalanced data, the standard True value varies method provides better confi-
dence intervals with small between-subjects variability; the modified True value varies
method provides better confidence intervals with large between-subjects variability. The
methods incorporate sums of squared quantities which have the most advantageous sta-
tistical properties in the presence of small or large between-subjects variability. Our im-
plementation chooses the best method automatically based on the estimated intraclass
correlation (τ ; see Section 2.A.6).

Our validation study showed that the expressions derived in the Appendix for the
variance of the limits of agreement are valid, but for the confidence intervals them-
selves only asymptotically (for infinitely large data sets). The MOVER100 provided very
good confidence intervals with finite data sets, and outperformed the bootstrap in terms
of coverage and speed. The MOVER uses percentiles of X2 distributed quantities; the
parametric bootstrap relies on the established model, and uses the variances of the X2

distributed quantities to studentize the LoA. So the present methods to obtain confi-
dence intervals all assume that the between-subjects and within-subject variabilities are
normally distributed. This assumption, however, also underlies the limits of agreement
themselves. If the assumption of normality does not hold, the number of differences
within the LoA may be different from 95%.

For the True value constant method, Hamilton and Lewis found coverage frequencies
that were too large.38 In contrast, we obtained values close to 0.95 with 96 subjects. This
discrepancy may be the result of using a possibly incorrect expression for calculating
the confidence intervals (see Section 2.A.7; see also the erratum to their paper).

2.3.2 Mixed-Effects Models

In the literature,10,55 the “mixed-effects” analysis approach has been applied. This ap-
proach takes the presence of random effects on different levels into account (here the
level of the individuals and the levels of the measurements), based on assumptions con-
cerning the probability distributions of the random effects. The methods described in
this paper also take the two levels of random effects into account, but calculate their
means and variances without assumptions on their distributions per se. However, as
noted above, if the random effects are not normally distributed, the LoA need not con-
tain 95% of the differences. Dedicated mixed-effects modeling software allows for the
analysis of data from arbitrarily complex designs, but flexible model specification for
the inclusion of fixed effects or covariates is not easily implemented in a Web browser
application. For many applications, the present direct approach, for two sources of vari-
ability, is sufficient. However, as always, this should be checked using the diagnostic
plots (which are provided by our library).

2.3.3 Explanatory Simulations

Bland and Altman, and others, have warned that if the presence of multiple paired mea-
surements per individual is not taken into account, simple pooled analysis gives limits
of agreement that are too narrow. The validation and application studies in the present
analysis confirm this, although the effects on the limits of agreement may not be sub-
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stantial. In the analysis of an example data set, Bland and Altman obtained limits of
agreement that were indeed similar.12 We found that the effect of multiple measure-
ments per individual on the confidence intervals for the limits of agreement is very
much greater. We now apply the derived expressions (see Appendix) to explain the ef-
fects of small numbers of subjects (as is often the case in clinical studies) on the expected
variability of the estimates from Bland and Altman analysis.

In the upper panels of Figure 2.3, the expected standard deviation of the differences is
plotted in relation to the proportion of between-subjects variance compared to the total
variance (τ) for 6 and 24 subjects and 5 paired observations in each subject. This is done
using eq. (2.10). As the number of subjects becomes larger, the term n−1

n in eq. (2.10)
soon becomes negligible. In the middle panel of Figure 2.3, the theoretical standard
deviation of the bias is plotted, obtained by using eq. (2.3), either by substituting the
expected value of the variance from the Pooled data for σ2

dw and σ2
dI = 0, or their values

used in this simulation. The latter corresponds to using the expected values from the
True value varies method as these are unbiased (see Appendix). The figure shows that
the standard deviation may be in error by a factor of two; note that this variability is
one part of the expression to obtain the 95% CIs of the limits of agreement (eq. (2.7)).
Finally, in the lower panel of Figure 2.3, the theoretical standard deviation of the limits
of agreement is shown, obtained by using eqs (2.6) and (2.3), with either eq. (2.10) or
eq. (2.14) from the Pooled data and modified True value varies methods, respectively.
Clearly, when using the Pooled data method, so when the presence of multiple paired
measurements per individual is not taken into account, the confidence intervals obtained
can easily be half their actual width when analyzing experimental data sets.

2.3.4 Towards a Standard Format of Reporting

Based on the literature and our findings described above, we propose the following
standard format of reporting a Bland-Altman analysis:

• The types of the procedures used for the analysis.

• The mean of the differences (bias) and the limits of agreement, with their 95%
confidence intervals.

• The standard deviation of the differences with its SE.

• Within-subject variability and between-subjects variability or the intraclass corre-
lation (τ), with their/its SE, because that indicates that between-subjects variability
was estimated.

• Repeatability coefficients which indicate the precision of the measurement devices.

• Remarks on visual inspection of the diagnostic plots - these may be shown or noted
to be adequate.

2.3.5 The JavaScript Library

We have written software to execute the method of Bland and Altman to estimate bias
and limits of agreement, with 95% confidence intervals, using JavaScript. Advantages of
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Figure 2.3: Effects of between subject variation (τ) and different numbers of subjects on
key quantities in Bland-Altman analysis. The left panels show results for 6 subjects,
the right panels results for 24 subjects. Upper panels: The standard deviation (SD) of
the differences as a function of between-subjects variability, estimated by the Pooled
data (dotted line) and True value varies (solid line) methods. Middle panels: The
standard deviation of the bias as a function of between-subjects variability, estimated
by the Pooled data (dotted line) and True value varies (solid line) methods. Lower
panels: The standard deviation of the limits of agreement (LoA) as a function of
between-subjects variability, estimated by the Pooled data (dotted line) and True value
varies (solid line) methods.
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JavaScript are 1) that the user only needs a Web browser to perform all computations; 2)
the user may inspect the code of the application; 3) the files containing the application
can (but need not) be located on a web server; and in the case of using a server 4) the
data remain private and do not have to be transferred to the server. A disadvantage of
JavaScript is that there are relatively few mathematical/statistical libraries available.

2.3.6 Conclusion

In this report, we have confirmed that when multiple measurements have been taken in
several individuals, a Pooled data approach may be expected to give limits of agreement
that are too narrow. Furthermore, we have shown convincingly that this has even more
of an effect on the confidence intervals around these limits. When reporting how closely
measurements between two devices are related, the accuracy of the limits of agreement
is just as important as the limits themselves. Clearly, suitable software that permits
easy calculation of these confidence intervals can be helpful in assessing the value of
medical devices. Our results suggest that in previous studies wrong conclusions on
agreement between two methods were likely, particularly when the number of subjects
was small. To avoid ambiguity, we propose that studies that use the Bland and Altman
method of comparison should follow a standard format. By providing sufficient data,
especially the 95% CI of the limits of agreement, and between and within subject varia-
tion, ambiguity can be reduced and confidence in the results increased. The JavaScript
library (including the validation script and example data set) to perform the discussed
analyses may be obtained from one of the authors (E.O.).

Acknowledgment: The statistical properties of the simulated data for the example
application were inspired by a real data set kindly provided by Prof. L.A.H. Critchley.

2.A Appendix: Derivations

This section summarizes all theory needed to compute the limits of agreement and their
95% confidence intervals for the situations described by Bland and Altman.12

2.A.1 The Model

The model for differences Dij is the sum of a constant bias B and independent random
variables,15

Dij = B + Ii + Eij ,
where I and E have zero means and variances σ2

dI and σ2
dw , respectively; σ2

dI denotes
between-subject variance, σ2

dw denotes within-subject variance, and σ2
dI + σ2

dw = σ2
d

is the total variance of the differences. There is a total of Nobs observations from Nid

individuals (i = 1, · · · , Nid), with mi observations for individual i (j = 1, · · · ,mi).
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2.A.2 The Mean of the Differences

Let the “grand” mean of the Dij be estimated by

B̂ = 1
Nobs

Nid∑
i=1

mi∑
j=1

Dij . (2.1)

The expected value of B̂ is B; the variance of B̂ is

VAR
{
B̂
}
= E

{
B̂2
}
−
(
E
{
B̂
})2

.

The Dij have expected variance σ2
dw only for equal subscripts i = k and j = l and

autocovariance σ2
dI for all j,y = 1…mi in each subject i = k

E


Nid∑
i=1

mi∑
j=1

Dij

 ·
Nid∑
k=1

mk∑
l=1

Dkl

 = Nobs · σ2
dw +

Nid∑
i=1

m2
i

 · σ2
dI

So

VAR
{
B̂
}
= σ

2
dw
Nobs

+
∑Nid
i=1m

2
i

N2
obs

· σ2
dI . (2.2)

And for equal mi = Nobs/Nid

VAR
{
B̂
}
= σ

2
dw
Nobs

+ σ
2
dI
Nid
. (2.3)

An alternative estimator of B is

B̂a = 1
Nid

Nid∑
i=1

1
mi

mi∑
j=1

Dij . (2.4)

The expected value of B̂a is B; the variance of B̂a is

VAR
{
B̂
}
=
 1

N2
id

Nid∑
i=1

1
mi

 · σ2
dw +

σ2
dI
Nid
. (2.5)

For equalmi = Nobs/Nid, this variance is also equal to eq. (2.3). It can be shown that with

unequal mi,
1
N2

id

∑Nid
i=1

1
mi
> 1
Nobs

, and
∑Nid
i=1m

2
i

N2
obs

> 1
Nid

. Using these results, it can be seen

that B is more precisely estimated with eq. (2.2) when σ2
dI is small, and more precisely

estimated with eq. (2.5) when σ2
dw is small.

An estimate of VAR
{
B̂
}
, or VAR

{
B̂a
}
, can be obtained by substituting estimates of

σ2
dw and σ2

dI in eq. (2.2) or eq. (2.5). Estimators of these variances are derived below.

A 95% confidence interval for B̂ or B̂a may be obtained by assuming these have a
Student’s t-distribution with Nid − 1 degrees of freedom.
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2.A.3 Limits of Agreement and Their Confidence Intervals

The limits of agreement (LoA) are estimated by

LoA = B̂ ± 1.96 · σ̂d. (2.6)

To obtain the variance of the LoA, the variances of B̂ and σ̂2
d are needed:

VAR{LoA} = VAR
{
B̂
}
+ 1.962 · VAR {σ̂d} (2.7)

The former is given by eq. (2.2) above; the latter can be obtained by assuming that sums
of squares are X2 distributed, and using

VAR {σ̂d} ≈
VAR

{
σ̂2
d

}
4E
{
σ̂2
d

} .
Expressions for VAR

{
σ̂2
d

}
are derived below. Confidence intervals around the LoA can

finally be constructed by taking 1.96 times the square root of VAR{LoA}, assuming the
LoA are normally distributed. This procedure was described by Bland and Altman.15

Confidence Interval Estimation by the MOVER

Donner and Zou described the application of the MOVER (Method of Variance Estimates
Recovery) to estimate confidence intervals of the LoA.28,100 We implemented eqs (5)
and (6) from the paper by Zou100 in our JavaScript library. The method combines con-
fidence intervals for the estimated bias and the standard deviaton of the differences in
eq. (2.6). The latter CI is based on percentiles of the X2 distributions assumed for the
sums of squares that are used to compute the standard deviation. The confidence inter-
val for the mean used here is the one based on the normal approximation (see Zou100)
instead of on Student’s t-distribution. Otherwise, the CI of the LoA are too wide.

Parametric Bootstrap-t Confidence Intervals

When the LoA are not normally distributed, their confidence intervals may be asymmet-
ric, for example when the estimated value of a statistic scales with its estimation error. A
bootstrap procedure29 may be used to construct better confidence intervals. In the para-
metric bootstrap, data sets are simulated using the established model. In the present
context, the model consists of an overall bias, the partitioning of the total variance in
between-subjects and within-subject variance, and their estimated values. From each
of the bootstrap data sets, the LoA are calculated, and their 2.5% and 97.5% percentiles
determined. The bootstrap-t interval “studentizes” the bootstrap estimated LoA using
their associated standard deviation. Often, this is a disadvantage of this method, but in
our case expressions for the standard error of the LoA can be derived (see below) that
have sufficient accuracy. Furthermore, the bootstrap-t is applicable to location statistics
- such as percentiles - in particular.29 A nonparametric procedure based on resampling
of individuals gave confidence intervals that were both too symmetric and too narrow.
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2.A.4 The Pooled Data Method

The Variance of the Differences

Let the variance of the Dij be estimated by

σ̂2
d =

1
Nobs

Nid∑
i=1

mi∑
j=1

(
Dij − B̂

)2
, (2.8)

with B̂ as defined in Section 2.A.2. Expanding the sums of squares yields

Nid∑
i=1

mi∑
j=1

D2
ij − 2 ·

Nid∑
i=1

mi∑
j=1

Dij

 ·
 1
Nobs

Nid∑
k=1

mk∑
l=1

Dkl

+ Nid∑
i=1

mi∑
j=1

 1
Nobs

Nid∑
k=1

mx∑
l=1

Dkl

2

.

The expected value of the first part is

E


Nid∑
i=1

mi∑
j=1

D2
ij

 = Nobs ·
(
σ2
dw + σ2

dI

)
,

and the expected values of the second and third parts can be found using the result in
Section 2.A.2. We then find

E
{
σ̂2
d

}
=
(

1− 1
Nobs

)
· σ2

dw +
1−

∑Nid
i=1m

2
i

N2
obs

 · σ2
dI .

For equal mi = Nobs/Nid

E
{
σ̂2
d

}
=
(

1− 1
Nobs

)
· σ2

dw +
(

1− 1
Nid

)
· σ2

dI . (2.9)

At this point there is only an estimator of σ2
dw (eq. (2.8)) available, while an estimator

of σ2
dI is not avaliable. The commonly used unbiased estimator of the variance, which

divides the sum of squares by Nobs − 1 instead of Nobs (in eq. (2.8)) would give

E
{
σ̂2
dc

}
= σ2

dw +
Nobs

Nobs − 1
· Nid − 1
Nid

· σ2
dI , (2.10)

which can only be an unbiased estimator - of σ2
dw - if σ2

dI = 0.

Limits of Agreement and their Confidence Intervals

For now, σ2
dI is taken to be zero. The sum of squares

Nid∑
i=1

mi∑
j=1

(
Dij − B̂

)2
,

normalized by σ2
dw , is assumed to have a X2 distribution with Nobs − 1 degrees of free-

dom, so the variance of this quantity is 2(Nobs − 1). The variance of the unbiased esti-
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mator of σ̂2
d (eq. (2.8)) is then

VAR
{
σ̂2
d

}
= 2σ4

dw
Nobs − 1

,

and

VAR {σ̂d} ≈
VAR

{
σ̂2
d

}
4E
{
σ̂2
d

} = σ2
dw

2(Nobs − 1)
.

Next, the variance of the LoA is given by the sum of the variance of the mean of the differ-
ences eq. (2.2) and 1.962 times the variance of the standard deviation of the differences,
so

VAR{LoA} =
(

1
Nobs

+ 1.962

2(Nobs − 1)

)
· σ2

dw .

Confidence intervals around the LoA can then be constructed by using the procedure
described in Section 2.A.3.

2.A.5 The Standard True Value Varies Method

The ANOVA calculates two mean sums of squares:

MSSR = 1
Nobs −Nid

·
Nid∑
i=1

mi∑
j=1

(
Dij − B̂i

)2
, (2.11)

and

MSSI = 1
Nid − 1

·
Nid∑
i=1

mi ·
(
B̂i − B̂

)2
,

where

B̂i = 1
mi

mi∑
k=1

Dik.

Their expected values are
E{MSSR} = σ2

dw ,

and

E{MSSI} = σ2
dw +

1
Nid − 1

· N
2
obs −

∑Nid
i=1m

2
i

Nobs
· σ2

dI = σ2
dw + λ · σ2

dI ,

where λ denotes an abbreviation. Therefore estimators of the components of variance
are

σ̂2
dw = MSSR,

and

σ̂2
dI =

(
MSSI− σ̂2

dw

)
· (Nid − 1) ·Nobs

N2
obs −

∑Nid
i=1m

2
i

=
(
MSSI− σ̂2

dw

)
/λ

Next the variance of the differences can be estimated by

σ̂2
d = σ̂2

dw + σ̂2
dI = (1− 1/λ) ·MSSR+ (1/λ) ·MSSI.
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Now (Nobs−Nid)·MMSR/σ2
dw is approximately X2 distributed withNobs−Nid degrees of

freedom, and (Nid−1) ·MSSI/(σ2
dw +λσ2

dI) is approximately X2 distributed with Nid−1
degrees of freedom, at least with balanced data, so when mi values are equal.17 The
properties of the X2 distributed quantities can be used to derive an expression for the
variance of σ̂2

d :

VAR
{
σ̂2
d

}
=

2
(
(1− 1/λ)σ2

dw

)2

Nobs −Nid
+

2
(
σ2
dw/λ+ σ2

dI

)2

Nid − 1
.

This result can be transformed and added to the variance of the mean to obtain approx-
imate confidence intervals as in Section 2.A.3. The MOVER (see Section 2.A.3) may be
applied, using percentiles of the X2 distributions of MSSR and MSSI, to obtain better
confidence intervals.

2.A.6 The Modified True Value Varies Method

An alternative mean sum of squares was studied by Thomas and Hultquist.87 They used
the expression

MSSIa = 1
Nid − 1

·
Nid∑
i=1

·
(
B̂i − B̂a

)2
. (2.12)

Note that B̂a is used here (eq. (2.4)), which may be different from B̂ with unbalanced
data. The expectation of MSSIa is

E{MSSIa} = 1
Nid

·
Nid∑
i=1

1
mi
· σ2

dw + σ2
dI = λ · σ2

dw + σ2
dI , (2.13)

where λ is an abbreviation. Next the variance of the differences can be estimated by

σ̂2
d = (1− λ) ·MSSR+MSSIa.

Thomas and Hultquist show87 that (Nid−1) ·MSSIa/(λ ·σ2
dw +σ2

dI) is close to a X2 dis-
tribution with Nid−1 degrees of freedom, for σ2

dI ≥ σ2
dw/4. Burdick and Graybill gave17

a method to obtain confidence intervals for σ̂2
d , which may also be used to obtain con-

fidence intervals for 1.96 · σ̂d, but this method was not investigated given the accuracy
of the MOVER (see Section 2.A.3). The properties of the X2 distributed quantities can be
used to derive an expression for the variance of σ̂2

d :

VAR
{
σ̂2
d

}
=

2
(
(1− λ)σ2

dw

)2

Nobs −Nid
+

2
(
λσ2

dw + σ2
dI

)2

Nid − 1
. (2.14)

This result can be transformed and added to the variance of the mean to obtain approx-
imate confidence intervals as in Section 2.A.3. Zou showed100 how to use the MOVER
using the distributions of MSSR and MSSIa (see Section 2.A.3) to obtain better confidence
intervals.



Chapter 2 27

2.A.7 The True Value Constant Method

To obtain expressions for the 95% confidence intervals for the True value constant
method, the approach of Bland and Altman15 was followed, but generalized for un-
balanced data. In this method, sums of squares are calculated from the measurements
themselves rather than from their differences. These sums of squares have the same
properties concerning their X2 distributions as described in Section 2.A.6. In the deriva-
tion of Bland and Altman15 the wrong expression was used for the variance of the mean.
They substituted the estimated variance of the differences (σ̂2

d ) instead of the variance of
the differences between the within-subject means (s2

d̄ - for equalmi, the ratio of eq. (2.13)
and Nid is equal to eq. (2.3)). Because the variance of the differences is larger than the
variance of the differences between the within-subject means, the resulting 95% CI will
be too wide.

The True value constant method calculates the means of theX and Y data per subject:
X̄i =

∑mi
j=1Xij , and likewise for Y . Next, the variance of the differences between the

within-subject means is calculated, which is the variance of X̄i − Ȳi, which is equal to
the variance of B̂i, so it is identical to eq. (2.12) from the modified True value varies
method. Furthermore, The True value constant method calculates sums of squares as
given by eq. (2.11), but separately for the X and Y data, and subsequently adds these.
The expectation of that result is σ2

dw = σ2
xw +σ2

yw , which is identical to the expectation
of eq. (2.11). Thus when the true value is indeed constant, the True value constant
method has properties identical to the modified True value varies method, except that
with the latter method, the number of measurements from both measurement devices
needs to be the same (mxi = myi), to be able to calculate the Dij . Furthermore, the
separate estimates of σ2

xw and σ2
yw from the True value constant method may be used

to assess repeatability of the measurement devices.11

2.A.8 Generation of Simulation Data

The simulated data for the validation study and the example analysis were generated
using variants of the following pseudocode:

for (i=0; i<n; i++) {
Ix[i] = sxI*normal();
Iy[i] = syI*normal();
for (j=0; j<m[i]; j++) {
X[i][j] = Bx + Ix[i] + sxw*normal();
Y[i][j] = By + Iy[i] + syw*normal();

}
}

Here n is the number of subjects, and m[i] is the number of paired measurements for
subject i. sxI and syI are the standard errors of the between-subjects variabilities, and
swx and swy are the standard errors of the within-subject variabilities. normal() is a
function that generates normally distributed numbers with a mean of zero and variance
of 1. Ix and Iy are the subject-specific biases, and X and Y are data arrays. With the
above pseudocode the expected overall bias is Bx - By, the true value constant and zero,
and the expected between-subjects and within-subjects variances are σ2

dI = sxI2 + syI2

and σ2
dw = sxw2 + syw2, respectively.
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Chapter 3

Using Akaike’s Information
Theoretic Criterion in Mixed-Effects
Modeling of Pharmacokinetic Data: A
Simulation Study*

We first define population data as a set of one or more measurements in two or more
individuals e.g., patients, volunteers, or animals). Such data may be characterized by
mixed-effects models, where the mixed effects consist of fixed and random effects. Fixed
effects (or fixed effect factors) are, for example, the times at which the measurements
are obtained, and covariates such as demographic characteristics of the individuals.
Due to random effects (or random effect factors), the model output may vary between
measurements, and between individuals. When mixed-effects models are fitted to popu-
lation data, the question arises as to how many of those effects should be incorporated
in the model. This is the so-called problem of variable selection.40

One strategy is to observe the change in goodness-of-fit by adding one more parame-
ter and test the significance of that change.16 In the maximum likelihood approach, the
objective function value (OFV), being the minus two logarithm of the likelihood function,
is minimized. To attain a p-value of e.g., 0.05 or less, the decrease in OFV, when adding
one parameter, should be 3.84 or more.16

Another strategy is to apply Akaike’s information theoretic criterion (AIC), which can
be written as

AIC = OFV+ 2 ·D, (3.1)

where D is the number of parameters in the model.1,16,18,40 The model with the lowest
value of AIC is considered the best one. In the case of just adding one parameter, the
OFV needs to decrease only 2 points or more to be incorporated in the model, so the
associated p-value > 0.05 seems too high to justify this strategy.

When additional model parameters are incorporated, the significance of one model
parameter might change, but the interpretation of AIC does not.18 However, when multi-
ple significance tests are performed, the significance level of each individual test should
be corrected to a lower value, so a decrease of 2 points for one parameter does again
seem to be too low.

* E Olofsen, A Dahan, F1000Research 2015; 2:71
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Even if the strategy of using AIC leads to optimal variable selection, the question
arises as to whether this is also the case when using mixed-effects models. In theory,
the model that is best according to AIC is the one that minimizes prediction error1,96

and this is also true for a mixed-effects model when predicting data for individuals for
which no data have been obtained so far.96

In the literature, many simulation studies have assessed the performance of AIC, but
to our knowledge these were never done in selecting the model with minimal prediction
error for population data. In this article, we will define a toy pharmacokinetic model
and observe the performance of AIC when adding fixed effects to this model, as well as
when adding interindividual variability.

3.1 Methods

3.1.1 A Hypothetical Pharmacokinetic Model

Consider the following function y(t), an infinite sum of exponentials, and its relation-
ship with a (negative) power of time:57

y(t) =
∫∞

0
exp(−λt)dλ = −1

t
exp(−λt)

∣∣∣∣∞
0
= 1
t

for t > 0. (3.2)

Figure 3.1A shows that this function looks like a typical pharmacokinetic profile after
bolus administration. This model is to be regarded as a toy model, because we do not
expect it to adequately describe pharmacokinetic data, although variations of power
functions of time have been shown to fit pharmacokinetic data well.57 We approximate
y(t) = 1/t by the following sum of M exponentials:

ŷ(tj ; α,λ) =
M∑
m=1

αm exp(−λmtj). (3.3)

The M parameters λ and measurement time instants tj are fixed and are set to have
distinct values as described in the next subsections. The coefficients α (related to how a
drug dose is distributed across compartments) are parameters to be estimated. Let the
number of αm that are not fixed to zero be denoted by K. Then the above approximation
has the property that while the fits of models to the data would improve with increasing
K, we would need no less than K = M exponentials to obtain a perfect fit. Moreover,
with noisy data, it might be that for K < M an optimal fit is obtained in the sense that
then the associated prediction error of the model is minimal. Figure 3.1B shows how
eleven (in this case error-free) samples from this function can be approximated by sums
of exponentials.

3.1.2 Individual Data Modeling and Simulation

In the following, the time instants tj , j = 1, · · · ,M , centered around 1, were chosen
within [1/tmax, tmax] according to

tj =
(

j
M + 1− j

)γ
, (3.4)
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Figure 3.1: A: function y(t) = 1/t, and B: approximations obtained by fitting six and
three exponentials to the depicted eleven samples. Note the log-lin and log-log scales
for panels A and B, respectively. Time has arbitrary units.

with γ = log(tmax)/ log(M); tmax was set to 100 (see the time axis of Figure 3.1B for an
example with M = 11). Simulated data with constant proportional error were generated
via

y(tj) = 1
tj
(1+ εj), (3.5)

where εj denotes Gaussian measurement noise with variance σ2. TheM time constants
λ were fixed according to λm = 1/tm ,m = 1, · · · ,M . In this setting the model eq. (3.3)
can be fitted to simulated data using weighted linear least squares regression, with
weight factors w(tj) = 1/tj (note that no precaution is needed against ε ≤ −1). Linear
least squares regression is very fast and robust, so it allows for the evaluation of many
simulation scenarios.

3.1.3 Population Data Modeling and Simulation

Population data consisting of N individuals were simulated via

yi(tj) = 1
tj
· (exp(ηi)+ εij) with i = 1, · · · , N, (3.6)

where ηi denotes interindividual variability with variance ω2. The random effect ηi
influences the overall magnitude of the values of yi, but not the shape of the function
in time, so this is similar to a random effect that influences pharmacokinetic volume
of distribution. The nonlinear mixed-effects model for the population data was then
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written as:

ŷi(tj ; α,λ) =
M∑
m=1

αm exp(−λmtj + ηi). (3.7)

Note that with N > 1, a perfect fit is no longer obtained with K = M nonzero coefficients
α, because the εij are generally different for different i (individuals). Just one different
ηi for each individual i cannot compensate for M different εij .

3.1.4 Statistical Analysis

Simulation data were generated via eq. (3.6) in R.85 Model fitting was also done in R, with
function “lm()” from package “stats”, except for nonlinear mixed-effects model fitting
for simulated data withω2 > 0, which was done in NONMEM version 7.3.0.9 Parameters
α (see eq. (3.7)) were either fixed to zero or free. Although the α are expected to be
positive with pharmacokinetic data, they were not constrained to be positive. So it was
not possible for parameters to become essentially fixed to zero due to that constraint,
which would reduce the dimensionality of the model. Prediction error (ν2) was calculated
with

ν2 = 1
N ·M

N∑
i=1

M∑
j=1

 zi(tj)− ŷi(tj
)

w(tj
)

2

, (3.8)

using predictions based on eq. (3.7) with the random effects ηi = 0. Validation data
zi(tj) were also generated via eq. (3.6), but with different realizations of εij and ηi.
Error terms weighted with w(tj) = 1/tj are homoscedastic, which is an assumption
underlying regression analysis and allows for the interpretation of ν2 as independent of
time. The objective function OFV was also calculated at the estimated parameters using
the validation data, denoted OFVv , which should on average be approximately equal to
Akaike’s criterion (see Supplementary material). OFVv was compared with AIC and also
with Akaike’s criterion with a correction for small sample sizes (AICc 18)

AICc = OFV+ 2 ·D ·
(

1+ D + 1
N ·M −D − 1

)
. (3.9)

The above criteria were normalized by dividing them by the number of observations (see
Supplementary material for motivation), and averaged over 1000 runs (unless otherwise
stated; and runs where NONMEM’s minimization was not successful were excluded). For
plotting purposes, 95% confidence intervals or confidence regions for means were deter-
mined using R’s packages “gplots” and “car”, under the assumption that averages over
1000 variables are normally distributed. Model selection frequencies were calculated
based on optimal models according to AICc as determined for each simulation data set.

3.1.5 Selection of Parameter Values

Simulation parametersM and σ2 are expected to determine the number of exponentials
K; if the number of measurements M increases and/or the measurement error σ2 de-
creases, K will increase. Without interindividual variance, soω2 = 0, the information in
the data increases as N increases, so also in that case K is expected to increase. With
N = 2, M = 11 and σ2 = 0.5, pilot simulations indicated a K ≈ 4. When ω2 > 0, predic-
tion error will increase, but it is less easy to predict what its effect will be on K. For ω2



Chapter 3 33

Table 3.1: Selecting K = 1, · · · ,M = 11 evenly spaced rate constants from λ: 0 and
1 denote αm to be fixed to zero, and a free parameter to be estimated, respectively
(see eq. (3.7)).

K m : 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 1 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 1
3 1 0 0 0 0 1 0 0 0 0 1
4 1 0 0 1 0 0 0 1 0 0 1
5 1 0 0 1 0 1 0 1 0 0 1
6 1 0 1 0 1 0 1 0 1 0 1
7 1 0 1 1 0 1 0 1 1 0 1
8 1 1 0 1 1 0 1 1 0 1 1
9 1 1 0 1 1 1 1 1 0 1 1

10 1 1 1 1 1 0 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1

values of 0, 0.1, and 0.5 were selected - values that are encountered in practice. Because
there is only one random effect in the mixed-effects model, the relatively low number of
individuals N = 5 was selected.

For a certain choice of M , there are 2M − 1 possible combinations of λs to choose
for the terms exp(−λmtj) in the sum of exponentials (excluding the case of a model
without exponentials). Because accurate evaluation of all models at different parameter
values is not feasible with respect to computer time, the set of possible combinations
was reduced to one with evenly spaced λs. Table 3.1 gives an example for the case
M = 11.

3.2 Results

Figure 3.2 shows the averaged prediction error versus number of exponentials for all
possible choices of λ, with N = 2, M = 11, σ2 = 0.5, and ω2 = 0. From the figure it is
clear that prediction error may indeed increase if the number of exponentials selected
is too large. The bigger solid circles correspond to the models chosen in Table 3.1;
in general the evenly spaced selection of exponents resulted in models with smallest
prediction error.

Figure 3.3 shows simulation results using the model set defined in Table 3.1, starting
from K = 4, with parameters N = 5, M = 11, σ2 = 0.5, and ω2 = 0. The model with
K = 6 exponentials had minimal mean AICc , and also minimal mean OFVv and minimal
mean squared prediction error (ν2). WithN = 5,M = 11, there are still visible differences
between AICc and AIC; although AIC would in this case also select the optimal model, AIC
appears to favor more complex models. Note that the sizes of the confidence intervals
and confidence regions can be made arbitrarily small by choosing the number of runs
to be higher than the selected number of 1000 (at the expense of computer time).

Figure 3.4 shows simulation results with ω2 = 0.1; mixed-effects analysis was used
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Figure 3.2: Mean squared prediction error ν2 (eq. (3.8)) as a function of the number of
exponentials, with 2047 models, averaged over 100 runs, N = 2, M = 11, σ2 = 0.5,
ω2 = 0. The dashed line represents the prediction error from the true model, so
that ν2 = σ2. The bigger solid circles correspond to the models chosen in Table 3.1.
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Figure 3.3: Mean OFVv as a function minus of two log-likelihood (-2LL), the number
of exponentials, AIC and AICc (top four panels), and AIC, AICc , prediction error ν2,
and model selection frequencies as a function of the number of exponentials (lower
four panels), averaged over 1000 runs, N = 5, M = 11, σ2 = 0.5, ω2 = 0. The
dashed lines represent the theoretical values for an infinite amount of data (see
Appendix). Error bars and ellipses denote 95% confidence intervals and confidence
regions, respectively. The numbers in the confidence regions denote the number of
exponentials. The solid lines in the middle upper panels are lines of identity.
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Figure 3.4: Mean OFVv , AICc prediction error ν2, and model selection frequencies
as a function of the number of exponentials, for ω2 = 0.1; parameters otherwise
identical to those for Figure 3.3.
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Figure 3.5: Mean OFVv , AICc prediction error ν2, and model selection frequencies
as a function of the number of exponentials, for ω2 = 0.5; parameters otherwise
identical to those for Figure 3.3.
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to fit the population data. The main difference with the results of data with ω2 = 0 is
the overall increase in OFVv and AICc . The optimal number of exponentials remained
K = 6.

Figure 3.5 shows simulation results withω2 set at the higher value of 0.5. The main
differences with the results of data withω2 = 0.1 are again the overall increase in OFVv ,
AICc and prediction error, and also in the variability in the prediction error. The optimal
number of exponentials remained K = 6, although AICc begins to favor the models with
larger K (a simulation with N increased to 7, both OFVv and AICc favored larger models;
data not shown).

3.3 Discussion

With the objective of creating a simulation context resembling pharmacokinetic analy-
sis where concentration data are approximated by a sum of exponentials, the toy model
y(t) = 1/t was chosen. In this setting, reality - the reality of the toy model - is always un-
derfitted. When mixed-effects models were fitted to the simulated data, mean AICc was
approximately equal to the validation criterion mean OFVv . The minima of mean AICc
and mean OFVv coincided. With large interindividual variability, mean expected predic-
tion error (ν2, see eq. (3.8)), with random effects fixed to zero), was less discriminative
between models, so that it becomes less suitable as a validation criterion; it does not
take into account whether estimated interindividual variability matches the variability
in the validation data.

3.3.1 Akaike’s versus the Conditional Akaike Information
Criterion

Vaida and Blanchard proposed a conditional Akaike information criterion to be used in
model selection for the “cluster focus”.96 It is important to stress that their definition of
cluster focus is the situation where data are to be predicted of a cluster that was also used
to build the predictive model. In that case, the random effects have been estimated, and
then the question arises how many parameters that required. In our situation, a cluster is
the data from an individual; AIC was used in the situation of predicting population data
consisting of individual data that were not used to build the model. This would seem to
be the most common situation in clinical practice. Furthermore, AIC for the population
focus is asymptotically equivalent with leave-one-individual-out cross-validation; AIC
for the individual focus with leave-one-observation-out cross-validation.31

3.3.2 Akaike’s versus the Bayesian Akaike Information
Criterion

We chose to perform simulations using the model given by eq. (3.2) because approxi-
mating data with a sum of exponentials is daily practice in pharmacokinetic analysis
where data are obtained from “infinitely complex” systems, and we cannot hope to find
the “correct” model. The Bayesian information criterion (BIC) is consistent in the sense
that it selects the correct model, given an infinite amount of data.18 The reason that AIC
can be used in “real-life” problems is that as the amount of data goes to infinity, the
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complexity, or dimension, of the model that should be applied should also go infinity.19

Burnham and Anderson show that it is possible to choose the prior for BIC in such a
way that it incorporates the knowledge that more complex models should be favored if
the amount of data increases, and so that the BIC “reduces” to AIC.18,19 In the situation
that the correct model set belongs to the set of evaluated models, a selection criterion
that both finds the correct model and minimizes prediction error would be preferable -
but Yang concluded that this may not be possible.98

3.3.3 Model Selection Criterion AIC and Predictive
Performance

It should be noted that minimizing AIC has a more general interpretation than just
minimizing prediction error ν2 as given for example by eq. (3.8). The interpretation of
minimizing AIC is minimizing the difference between the the information contained in
the data and captured by the model.18 Independent or future population data z are not
just predicted by ŷ ; also the distributions of the expected random effects ε and η are
characterized by σ̂2 and ω̂2. That is why OFVv (and not ν2) is the criterion to be used
to assess the predictive performance of a model.

3.3.4 Regression Weights as Functions of the Model Output

The simulated data were analyzed using weighted (non)linear regression, see eq. (3.6)),
where measurement noise was weighted according to the exact function value. In prac-
tice, when the weights are unknown, the model output may be used to weight the data.
In that case simulated data should be generated (cf. eq. (3.6)) via

yi(tj) = 1
tj
· exp(ηi) · (1+ εij). (3.10)

The likelihood function and AIC are both still well-defined if the model output ŷi(tj) 6= 0.
Prediction errors are to be calculated with

ν2 = 1
N ·M

N∑
i=1

M∑
j=1

 zi(tj)− ŷi(tj
)

ŷi(tj
)

2

, (3.11)

where where ŷ possibly becomes arbitrarily close to zero for less than optimal models,
and ν2 may be based on long-tailed distributed numbers. To be able to compare predic-
tion errors from different models, the weight factors could be chosen identical for all K
to the model output of the largest model - see Appendix for further analysis.

3.3.5 Model Selection Uncertainty

Theoretically, and in the discussed simulations, minimum mean AIC is related to best
mean predictive performance, where the mean is taken across multiple studies and pre-
specified models. This holds independent of the number of models. However, in prac-
tice, we have data from one study and the task of specifying the models to consider.
As soon as there is more than one model, there is a nonzero probability that the model
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selected based on AIC would have, on average, a larger prediction error than the optimal
one. Also, if we were able to repeat the study, the average prediction error based on the
models with minimum AIC would be larger than optimal. With many models, model
selection is called unstable in the sense that each time a study is repeated it would lead
to the selection of another model.

The figure panels with the model selection frequencies (Figure 3.3, Figure 3.4, and
Figure 3.5) show: 1) there is a relationship between the model with highest selection
probability and minimum mean prediction error, but this relationship is not one-to-one;
2) there can be an almost as large selection probability for a model that is not associated
with minimum mean prediction error; but 3) in that case, their minimum mean prediction
errors are comparable.

Models with equal mean predictive properties may have different properties in dif-
ferent extrapolation scenarios. Model averaging,18 where model parameters or their
predictions are averaged, reduces model selection instability and hence may be used to
avoid model specific inference which discards model selection uncertainty. Data dredg-
ing18 refers to the situation where there is an increasingly large set of models which
are not prespecified. At the point the data dredging is stopped (by the investigator, or
by the computer), the best model is at high risk to fit only the data at hand, and hence
cannot be used for prediction.21

3.3.6 Limitations of the Study

We recognize the following limitations of our study:

• The simulation model contained only one random effect to describe interindividual
variability, and therefore the number of random effect (co)variances was fixed to
one in the model set used for fitting. While the number of (co)variance parameters
should be counted as ordinary parameters,96 at least in well behaved situations,36

we did not investigate the process of optimizing this part of a random effects
model.

• The nonlinearity in the mixed-effects model was simply due to a multiplicative
factor exp(η) in the model output. Usually, random effects in pharmacokinetic
models have more complex influence on the model output. However, the lognor-
mal nature of exp(η) is a characteristic property of both our toy model and general
pharmacokinetic models.

• The characteristics of the exponentials incorporated in the regression models were
evenly spaced, and the values of the rate constants λ were fixed. We expect that
with more freedom in the specification of the set of models, prediction errors
with overfitted models may be worse. However, the agreement between AICc and
prediction error should persist.

• We did not evaluate all possible models within their definition, but only those listed
in Table 3.1, and it makes sense to limit the model set to reduce model selection
instability.18,98 We did not address how to optimally select the rate constants λ.
Stepwise selection methods have their disadvantages.83 With stepwise forward
selection, AICc may even perform worse than AIC.60
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• We did not evaluate the process of covariate selection. However, the set of ex-
ponentials may be viewed as a number of (somewhat correlated) predictors. It is
therefore expected that the present findings also hold for other types of covariates.

3.4 Conclusion

In conclusion, the present simulation study demonstrated that, at least in a relatively
simple mixed-effects modeling context with a set of prespecified models, minimum
mean AICc coincided with best predictive performance, also in the presence of interindi-
vidual variability.

Acknowledgment: The authors would like to thank J. de Goede for many fruitful
discussions.

3.A Appendix: Supplementary Material

In the following, we summarize theory on the maximum likelihood approach and AIC
relevant for this paper. We start with the situation for data from one individual and
show how AIC is related to OFVv . Subsequently we discuss the situation for population
data.

Suppose the model for measured data yj , j = 1, · · · ,M is given by (cf. eqs ( (3.5),
(3.6), and (3.10))

yj = ŷj +wj · εj ,
where ŷj is the model output, wj are weight factors, and εj are independent normally
distributed with mean zero and variance σ2. The likelihood function L for this data set
is then given by

L(y ; θ) =
M∏
j=1

1

wjσ
√

2π
exp

−1
2

(
yj − ŷj
wjσ

)2
 , (3.12)

where the set of parameters θ contains σ2 and those needed to calculate ŷ . The ob-
jective function value (OFV) is defined as minus two times the natural logarithm of the
likelihood:

OFV = −2 log(L(y ; θ) =
M∑
j=1

log(w2
j )+M log(σ2)+M log(2π)+ 1

σ2

M∑
j=1

(
yj − ŷj
wj

)2

.

(3.13)
Note that in writing “OFV”, the data and parameters it depends on have been omitted.
Now maximum likelihood is obtained when OFV is minimal; constant terms such as
M log(2π) may then be discarded (for example, in NONMEM’s calculation of the the
objective function). The minimum is attained for certain values of parameters of ŷ , and
for the parameter value of σ2, when the derivative of OFV with respect to that parameter
is zero:

∂OFV
∂σ2

= M
σ2
− 1(
σ2)2

M∑
j=1

(
yj − ŷj
wj

)2

= 0,
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so the maximum likelihood estimator of σ2 is

σ̂2 = 1
M

M∑
j=1

(
yj − ŷj
wj

)2

.

By subsituting this estimate in eq. (3.13), we obtain

OFV =
M∑
j=1

log(w2
j )+M log(σ̂2)+M log(2π)+M. (3.14)

By substituting this result in eq. (3.1), we have

AIC =
M∑
j=1

log(w2
j )+M log(σ̂2)+M log(2π)+M + 2D.

The term 2D arises from the fact that in minimizing the Kullback-Leibler information,
i.e., a measure of the distance between reality and the best approximating model, ex-
pectations have to be taken over a data space leading to estimates of parameters θ (and
hence ŷ , and possibly w (see below)) and over a second independent data space y .18

So AIC as defined above should on average be approximately equal the value of OFV
(eq. (3.13)), with estimated values for the parameters and validation data zj denoted
OFVv :

OFVv =
M∑
j=1

log(w2
j )+M log(σ̂2)+M log(2π)+ 1

σ̂2
·
M∑
j=1

(
zj − ŷj
wj

)2

. (3.15)

So when OFV and AIC are both minimized, the latter term - the sum of squared weighted
prediction errors - should also be minimal. For the plots in this paper, the measures OFV,
OFVv , AIC, and AICc , were normalized by dividing them by the number of data samples.
With an infinite amount of data, and σ̂2 = σ2, the normalized criteria should attain the
value of log(σ2)+ log(2π)+ 1.

Note that if the weights wj are taken as in subsection “Data simulation”, the term∑
log(w2

j ) vanishes (this is a just a curiosity of that choice of weights); if the wj are
taken as the measurements yj , the expectation of this term is the same for every K (for
every model considered here). However, if the weights are taken as the model output
ŷj , the expectation of the term will not vanish for a less than perfect model, and will
differ between different models. To compare their ν2, the weights for all models could
be fixed to the model output of the best model - but since that is unknown at this point -
to the output of the largest model.

For population data, the likelihood function is the product across individual marginal
likelihoods where the random effects have been integrated out. For one individual i, and
the model given by eq. (3.6), the likelihood Li is

Li =
(

1

σ
√

2π

)M
·
∫∞
−∞

exp

−1
2

M∑
j=1

 exp(ηi)+ εij − exp(η′
)

σ

2· 1

ω
√

2π
·exp

[
−1

2

(
η′

ω

)2
]
dη′.

The εij have on average mean zero and variance σ2, and NONMEM’s first-order condi-
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Figure 3.6: Theoretical values of the normalized log-likelihood with σ2 = 0.5, as a
function of ω2 (interindividual variability), for different values of M (the number of
observations per individual).

tional estimation method linearizes around the empirical Bayesian estimate of ηi, so
that exp(η′) = exp(η̂i) · (1+ η′). The equation then reduces to

Li =
(

1

σ
√

2π

)M
·
∫∞
−∞

exp

[
−1

2
·M ·

(
1+

(
η′ · exp(η̂i)

σ

)2
)]
· 1

ω
√

2π
·exp

[
−1

2

(
η′

ω

)2
]
dη′;

next some algebra gives for the expected value of minus two log Li:

− 2 logLi = M · (log(σ2)+ log(2π)+ 1)+ log(M · exp(2ηi) ·ω2/σ2 + 1). (3.16)

The minus two log-likelihood for the population data is the sum ofN individual−2 logLi.
Now let the expected normalized likelihood be NL, which is the expected population
minus two log-likelihood divided by N · M , taking into account that the ηi have on
average mean zero and variance ω2:

NL = log(σ2)+log(2π)+1+ 1
M

∫∞
−∞

log(M ·exp(2η′)·ω2/σ2+1)·exp

[
−1

2

(
η′

ω

)2
]
dη′.

(3.17)
Figure 3.6 depicts the normalized log-likelihood (with eq. (3.17) evaluated numerically)
as a function of ω2, for σ2 = 0.5 and three values of M . For large M , the last term in
eq. (3.17) (the integral divided by M) goes to zero, and the uncertainty left in the data
is determined only by σ2. Values for M = 11, and ω2 = 0, 0.1, and 0.5 were used as
“target” values in Figures 3.3 - 3.5. The observed averaged normalized log-likelihoods
will be larger, because the models used do not fit perfectly, and the parameters are
estimated instead of set to their true values.
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The context of AIC is also the one where the ηs have been integrated out (but with
the parameters at their estimated values), which is to be done when all data are acquired.
So while the characteristics of the set of (validation) data are optimally captured, this
context is different from the case where prediction errors are calculated with the random
effects set to zero instead of integrated out. In that case, the above AIC and OFVv
criteria do not match, as the components of the likelihood in eq. (3.12) are no longer
independent (they can only independent if the true values of η for the individuals are
also zero). Note however, that from the higher perspective of optimally characterizing
a future set of population data, this is a less important case.
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Chapter 4

Stochastic
Pharmacokinetic-Pharmacodynamic
Analysis of the Effect of Transdermal
Buprenorphine on
Electroencephalogram and
Analgesia*

Opioids are used widely in the treatment of moderate-to-severe cancer and noncancer
pain.91 There are currently 2 monumental challenges in the treatment of chronic pain:
the objective assessment of opioid effect in a setting in which abuse and accidental
overdose is highly prevalent and the need for proper dosing strategies. The efficacy
of opioids and other centrally acting analgesics often is determined rather subjectively
by the use of quantitative sensory testing, questionnaires, and so on.59 To determine a
suitable objective biomarker as a measure of opioid drug effect is challenging.

One possibility is the electroencephalography (EEG), which is a widely available and
noninvasive tool for recording brainwave activity simultaneously from multiple brain
regions. Several drug classes that act on the central nervous system generate a repro-
ducible effect on the EEG obtained at rest.46,50 For example, Liley et al.48 showed that the
effect of remifentanil on frontally recorded resting EEG could be dissociated from the
EEG effects of propofol, an anesthetic acting at a different receptor target in the central
nervous system. The EEG is therefore of great interest in evaluating the effect of drugs
used in anesthesia and pain treatment.

Because opioid effects are delayed relative to their plasma concentration pro-
file, because of the time needed to reach and interact with the opioid receptors, a
pharmacokinetic-pharmacodynamic (PK-PD) analysis may be used.49,52 PK-PD analysis
links dose to effect and makes it possible to take inter- and intraindividual variability into
consideration when designing appropriate dosing strategies.52 Indeed, a drug-induced
EEG effect can produce a dynamic outcome applicable in PK-PD modeling, which may be

* A E Olesen, E Olofsen, T Andresen, C Graversen, A M Drewes, A Dahan, Anesth Analg 2015;
121:1165–1175
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used to determine population-predicted values for dose and effect, leading to a more
rational approach for effective dosing regimens.

In the current study, we assessed the effect of transdermal buprenorphine on the
resting EEG and experimental pain in healthy volunteers to elucidate the PK-PD profile of
transdermal buprenorphine. Transdermal buprenorphine is an appealing treatment for
chronic pain, because it is an agonist for analgesia but a partial agonist for respiratory
depression over its clinical dose range.26,25 Modeling the effect of an opioid given by
a transdermal patch should consider the possibility that the absorption rate may not
be constant. For example, changes in skin temperature may lead to changes in drug
absorption from the patch.56 Hence, the PK-PD model that we apply should take into
account a variable uptake of drug from patch or dermal reservoir.

Here, we applied a stochastic PK-PD technique that accounts for varying drug ab-
sorption as first described by Tornøe et al.89 We previously applied a stochastic PK-PD
(SPKPD) model to assess the effect of ketamine on cardiac output and chronic pain re-
lief.64,24

We measured 2 opioid effects: pain relief and changes in EEG. Rather than using
conventional indices derived from the EEG, such as spectral edge, median frequency,
peak frequency, or power spectrum, we used the ratio of slow-to-fast EEG frequencies
as a biomarker for opioid effect. Dichotomizing the frequency spectrum into low- and
high-frequency components has the advantage in that it compensates for interindividual
variability in the frequency distributions and minimizes the number of EEG features
traditionally obtained from the various frequency bands.88

We hypothesize (1) that the resting EEG is a reliable and objective surrogate for
buprenorphine’s effect and (2) that SPKPD analysis allows the computation of the time-
dependent variability in drug absorption from patch to blood. Our approach will lead
to a better understanding of the behavior of the patch.

4.1 Methods

This double-blind, randomized, placebo-controlled, crossover study was approved by
the North Denmark Region Committee on Health Research Ethics and the Danish
Health and Medicines Authority and registered at ClinicalTrials.gov under number
NCT00647127. The study was performed according to the principles of Good Clini-
cal Practice of the European Union from June 2008 until August 2009 in the research
laboratories of Mech-Sense, Aalborg University Hospital, Denmark, and all subjects gave
written informed consent. Descriptions and analyses of portion of the data were re-
ported previously.6,5,7,33,81,82 These reports include data on the effect of buprenorphine
and fentanyl on evoked potentials, analgesia, and antihyperalgesia using a set of nocicep-
tive tests (including pressure pain, ultraviolet B light burn injury, intradermal capsaicin-
induced hyperalgesia, and conditioned pain modulation).

4.1.1 Study Design

Twenty-two healthy, opioid-naive male volunteers (mean age 23.1 ± 3.8 years) were re-
cruited to participate in the study. Subjects received a transdermal patch (NorspanTM

144-h; Norpharma, Vedbæk, Denmark) or a placebo patch (Norpharma) identical in ap-
pearance for 144 hours, followed, after removal of the patch, by a 3-day follow-up period.



Chapter 4 47

A washout period of 10 days was observed between treatments. The subjects were hos-
pitalized during the treatment phase, with regular assessments of blood pressure, heart
rate, respiratory rate, and oxygen saturation.

An independent pharmacist performed the randomization using an electronic ran-
domization list downloaded from randomization.com. Sample size calculation was
based on previous studies on the influence of opioids on experimental heat pain and
was used to set the number of subjects to detect an effect in these previous descriptive
studies.81,82 To show an increase in pain tolerance threshold of 2°C (with a power of 90%,
SD = 1.70 and α = 0.05), 16 subjects are required in each group. Taken into account the
variability and possible loss of data, the number in each group was increased to 22.

Blood Sampling and Buprenorphine Assay

Nine microliters of venous blood samples were collected in EDTA blood collection tubes
at baseline and 6, 9, 12, 24, 36, 48, 60, 72, 78, 84, 96, 120, 144, 168, 192, and 216 hours
after application of the patches. The blood samples were immediately centrifuged at 4°C
at 3000 rpm for 15 minutes. Next, plasma was separated into two 2-mL polypropylene
tubes (the second sample served as duplicate). Both tubes were stored at -80°C until
analysis. The buprenorphine analysis has been published before.6

Thermal Cutaneous Stimulation

The response to a noxious thermal stimulus was obtained at baseline and 24, 48, 72,
and 144 hours after application of the patches. Pain was applied using a thermode (TSA
II NeuroSensory Analyser; Medoc Ltd, Ramat Yishai, Israel) applied to the right volar
forearm. The temperature increased from a baseline of 32°C to a maximum of 52°C with a
rate of 1°C/s. The subject pressed a button on reaching the heat pain tolerance threshold.
Three consecutive stimulations were performed, and the average was computed. All
subjects were familiarized with the procedure before the study.

The Electroencephalogram

The resting EEG was recorded at baseline and 4, 24, 48, 72, and 144 hours after appli-
cation of the patches. An EEG amplifier (NuAmp; Neuroscan, El Paso, TX) was used to
record the electrical activity on the scalp. Two electrodes were placed at Cz and CPz
locations according to the international 10-20 system. In addition, one electrode was
mounted at the right earlobe serving as reference, whereas one electrode was placed 2
cm frontal to the Cz electrode serving as ground electrode. The electrodes were mounted
using electrode gel to reduce the impedance to < 5 kΩ, and the positions of the elec-
trodes were maintained during the experiment by using an elastic fixation cap (Carefix
Head, Ikast, Denmark). The EEG data were recorded with a sampling rate of 1 kHz. The
data were recorded with an online notch filter at 50 Hz and band pass filter with cutoff
frequencies of 0.5 and 300 Hz. Resting EEG recordings were obtained after pain tests and
blood sampling by a research nurse in a quiet room with dimmed light as participants
lay in supine position with eyes open.

The EEG signals were processed off-line. The processing included the following steps:
(1) Artifact rejection by visual inspection, leaving at least 1 minute of valid recording for
further analysis (Neuroscan version 4.3.1; Compumedics, El Paso, TX); and (2) high-pass
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filtering to remove DC offset and linear detrending by a first-order Butterworth filter
with cutoff frequency 0.5 Hz performed in MATLAB (The MathWorks Inc., Natick, MA).

4.1.2 Data Analysis

EEG Analysis: Time-Frequency Analysis

Time-frequency analysis can be applied in several ways; recent studies showed that a
continuous wavelet transform (CWT) is advantageous over more traditional methods
such as the Fourier transform.3 The CWT is based on a mother wavelet function, which
was a complex Morlet wavelet for the current study.70,84,35,27 The time-frequency co-
efficients of the Cz EEG channel were rectified and integrated over time to obtain the
marginal distribution in the frequency bands: δ (0.5-3.5 Hz), θ (3.5-7.5 Hz), α1 (7.5-10.5
Hz), α2 (10.5-13.5 Hz), β1 (13.5-18.5 Hz), β2 (18.5-24.5 Hz), and β3 (24.5-32 Hz). The
frequency bands were normalized into percentage of the total power (0.5-32 Hz). An
EEG ratio was used to evaluate the results. The EEG ratio was defined as the percentage
sum of the slow conducting frequency bands (δ+θ+α1) divided by the percentage sum
of the fast conducting frequency bands (α2 + β1 + β2 + β3).

Stochastic Model for Buprenorphine Absorption

We assume that the absorption rate of buprenorphine from patch into the dispo-
sition compartment varied over time; see Figure 4.1. The noise in the absorption
(i.e., process noise) was modeled using the following stochastic differential equa-
tions:89,64,24,90,61,53,42

dAa(t)/dt = −ka(t) ·Aa(t) (4.1)

dAd(t)/dt = ka(t) ·Aa(t)− ke(t) ·Ad(t) (4.2)

ka(t) = exp(Z(t)) (4.3)

dZ(t) = σw · dw(t), (4.4)

where Aa(t) is amount of drug in the absorption compartment at time t (Aa(0) = 20 mg),
Ad(t) is the amount of drug in the disposition compartment, ka(t) is the absorption rate
(set to zero when the patch is removed), ke(t) is the elimination rate constant, Z is a
link variable,w(t) is the Wiener process, and σw is the standard deviation of changes in
Z(t) per the square root of time (i.e., σw is the variability in the absorption rate constant
in the log domain). A Wiener process is a model of Brownian random motion resulting
from a sum of many small normally distributed fluctuations.32 This parameterization
constrains ka(t) to be positive; ka(t = 0) is a variable to be estimated. The buprenor-
phine concentration is given by the ratio of Ad and the volume of distribution, Vd.

Pharmacodynamic (PD) Analysis

The PD part of the models assumes an effect compartment in which the drug appears
with a delay:

dCe(t)/dt = ke0 · (Cd(t)− Ce(t)) (4.5)
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Figure 4.1: Schematic representation of the stochastic pharmacokinetic-
pharmacodynamic model, in which the pharmacokinetic part consists of the transfer
of drug from patch to disposition compartment Vd with rate constant ka. Fluctua-
tions in ka are modeled by noise process νa. Vd is linked to the effect-site compart-
ment. ke0 is the blood–effect-site equilibration constant; possible fluctuations are
modeled by noise process νe0.

where Cd(t) is the drug concentration in the disposition compartment at time t, Ce(t) is
the effect-site concentration at time t, and ke0 is the blood–effect-site equilibration rate
constant. The PD effect (EF) was assumed to be related to Ce(t):

EF(t) = BLN · (1+ (Ce(t)/C100)γ) (4.6)

where BLN is the baseline value, C100 is the effect-site concentration causing a 100%
increase in surrogate effect measure, and γ is a shape parameter. Finally, an additional
stochastic differential equation for ke0 was tested.

Statistical Analysis

The population pharmacokinetic-pharmacokinetic (PK-PD) analyses were performed by
implementing the models in the statistical software package NONMEM (version VII, level
2; Icon Development Solutions, Hanover, MD). For the SPKPD analysis, an extended
Kalman filter was incorporated.90,61,53,42 NONMEM’s subroutine ADVAN13 was used to
integrate drug amounts in absorption, disposition, and effect compartments and addi-
tional Kalman filter state variables. PK and PD data were analyzed simultaneously. The
2 PD data sets were analyzed separately (PK/resting EEG, PK/skin pain tolerance). Resid-
ual error was assumed to have both an additive and a relative error for concentrations
and only an additive error term for the PD end points. Goodness-of-fit plots were cre-
ated for the PK and PD data to check for model adequacy and possible outliers. P values
< 0.01 were considered significant.

4.2 Results

4.2.1 EEG Spectrum and Pain Response

EEG data were not available from 3 subjects because of technical problems with the EEG
equipment. These subjects did provide pain data. The mean age of the subjects (± SD, n
= 22) was 22.5 ± 1.8 years, mean height 181.2 ± 5.8 cm, and mean weight 73.3 ± 7.4 kg.
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Figure 4.2 displays the impact of buprenorphine and placebo on the spectral distribution
of the EEG at baseline and after 72 hours of patch application.

Figure 4.2E shows a greater shift from fast to slow activity of the EEG spectrum in
the buprenorphine group after 72 hours (dotted and solid red lines) than in the baseline
group (dotted and solid blue lines). The absolute and relative individual and average
EEG ratio and pain tolerance data are given in Figures 4.3 and 4.4. Compared with
placebo, buprenorphine increased EEG ratio by 0.2 to 0.3 points (paired t test: P = 0.006
at t = 48 hours; P = 0.0006 at 72 hours; P = 0.001 at 144 hours) and heat pain tolerance
threshold by 1 to 2°C (paired t test: P = 0.0008 at 48 hours; P = 0.005 at 72 hours; P =
0.03 at 144 hours).

4.2.2 PK-PD Analysis

The individual and average plasma buprenorphine concentrations are given in Fig-
ure 4.3E and Figure 4.3F. A separate PK-PD analysis was performed on the PK/resting
EEG ratio data and the PK/skin pain tolerance data. In none of the analyses, parameter
γ was significantly different from 1, indicating that the PD effect was linearly related to
the buprenorphine effect-site concentration.

PK Analysis

The PK parameters are given in Table 4.1. The initial value for the absorption rate con-
stant (ka) was 0.005 h-1, elimination rate constant 0.04 h-1, and volume of distribution
11 L. Similarly, the standard deviation of the noise of the absorption process and stan-
dard deviations and residual errors were of similar magnitude between analyses (σw
0.11 1/

√
h, σ1 0.01 ng/mL, and σ2 0.14). The variability in the absorption rate is quan-

tified by σw , indicating that ka varies by 0.11 per hour and, for example, will range
between approximately 0.003 h-1 and 0.008 h-1 after 10 hours of the patch application
if no information via PK or PD samples is obtained.

PK goodness-of-fit plots are given in Figure 4.5, and examples of PK data fits are given
in Figure Figure 4.6, (panels G, H, and I). Both show that the SPKPD model adequately de-
scribed the PK data. For none of the PK parameters was interindividual error estimable,
which indicates that the variability in the parameter estimates was mainly caused by
within-subject, rather than between-subject, variability. In none of the subjects did drug
absorption remain constant during the 144-hour buprenorphine treatment, as observed
by the fluctuations in ka over time (Figure 4.6, panels J, K, and L).

PD Analysis

Examples of PD data fits are given in Figure 4.6 (panels A-C and D-F). For EEG ratio, the
best, median, and worst fits are given as based on the coefficient of determination (R2).
Note that a negative value for R2 was observed for the worst fit, indicating that the fit
is worse than just using the mean of the data. PD parameter estimates are given in
Table 4.1. For all data fits, the 95% confidence intervals were calculated (broken lines
in Figure 4.6). These intervals are based on both the measurement and the prediction
errors and may therefore vary in time, depending on the information obtained from the
measurements (PK or PD), which is fed back to the stochastic differential equations of
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Figure 4.2: A-E: Examples from one subject of the spectral distribution of the resting
electroencephalography measurement at baseline (A and B) and after 72 hours of
placebo (C) and buprenorphine (D). A shift is visible after 72 h of buprenorphine
treatment from fast toward slow oscillations. E: Frequency versus absolute activity
for buprenorphine and placebo treatment at baseline and 72 h. Absolute activity
was calculated by a continuous wavelet transform using a complex Morlet function
with bandwidth parameter of 128 Hz and wavelet center frequency of 0.5 Hz.
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Figure 4.3: Individual data (A) and averages (B) of the effect of a 144 h (6 day) adminis-
tration of buprenorphine by transdermal patch on the electroencephalography (EEG)
ratio. In panel B, the placebo averages are given. Over time buprenorphine increased
the EEG ratio significantly compared with placebo. Individual data (C) and aver-
ages (D) of the effect of the 144 h buprenorphine patch on skin heat pain tolerance
(units °C). In panel D, the placebo averages are included. Over time buprenorphine
increased skin heat pain tolerance significantly compared with placebo. Individual
(E) and average (F) buprenorphine plasma concentrations during and 2.5 days after
the buprenorphine patch application. In panels A, C, and E, each line represents one
subject; in panels B, D, and F, the data are mean ± SEM.
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Figure 4.6: Best (A), median (B), and (C) worst data fits of the electroencephalography
(EEG) ratio and corresponding data fits of skin heat pain tolerance (D, E, and F), and
plasma buprenorphine concentration (G, H, and I). Goodness of fit was based on the
coefficient of determination (R2). The bottom graphs (J, K, and L) depict the changing
absorption rate constant (ka) over time. The black dots are the measured data; the
continuous lines are the data fit; and the broken lines are the 95% confidence inter-
vals; in panels G-I, the dotted lines are the buprenorphine effect-site concentrations
(derived from EEG data). Note that at t = 144 h the patch was removed (ka set to 0).



Chapter 4 55

Table 4.1: Parameter Estimates of the SPKPD Analysis

Resting EEG ratio Heat pain tolerance

Parameter Estimate ± SEE ω2 ± SEE Estimate ± SEE ω2 ± SEE

ka (h-1) 0.005 ± 0.001 a 0.005 ± 0.001 a

ke (h-1) 0.04 ± 0.002 a 0.04 ± 0.002 a

Vd (L)b 11.6 ± 0.9 a 11.4 ± 0.9 a

σw (1/
√
h) 0.11 ± 0.01 a 0.11 ± 0.01 a

σ1 (ng/mL) 0.01 ± 0.003 0.01 ± 0.003
σ2 0.14 ± 0.03 0.14 ± 0.03
BLNc 1.18 ± 0.06 0.03 ± 0.03 46.5 ± 0.60 0.02 ± 0.006
t½,ke0 (h) 24.8 ± 8 0.7 ± 0.4
C100 (ng/mL) 0.90 ± 0.10 a 9.2 ± 2.5 a

σ3 0.11 ± 0.01 1.10 ± 0.20

SPKPD = stochastic pharmacodynamic-pharmacodynamics;

EEG = electroencephalography; SEE = standard error of estimate;

ω2 = between-subject variability (in the log-domain);

ka = initial absorption rate constant, i.e., at t = 0;

ke = elimination rate constant; Vd = volume of distribution;

σw = standard deviation of the noise process (Z in Equations (4.3) and (4.4));

σ1 and σ2 = standard deviations of additive and relative error;

respectively, for the concentration estimates;

BLN = baseline value; t½,ke0 = blood–effect-site equilibration half-life;

C100 = effect-site concentration causing a 100% increase (i.e., doubling) in effect;

σ3 = additive error for the effect estimates with unit for pain tolerance °C;
aNot estimable; bVd values are relative to the buprenorphine bioavailability (it is

assumed that 100% of the buprenorphine absorbed from the patch becomes

systemically available); cUnit for BLN pain tolerance is °C.
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Figure 4.7: Pharmacodynamic goodness-of-fit plots. A and C, Measured electroen-
cephalography (EEG) ratio versus individual-predicted and population-predicted EEG
ratio. B and D, Measured skin heat pain tolerance (units °C) versus individual-
predicted and population-predicted skin heat pain tolerance.

the model.90 The updated states of the differential equations can be seen as sudden
updates of the estimated absorption rates, concentrations, and PD end points.

Goodness-of-fit plots are given in Figures 4.7 to 4.9. Figure 4.7 shows the measured
versus population-predicted (Fig. 4.7A, EEG ratio; and Fig. 4.7B, heat pain tolerance) and
measured versus individual-predicted (Fig. 4.7C, EEG ratio; and Fig. 4.7D, heat pain tol-
erance) data. Figure 4.8 shows the spaghetti plots for EEG ratio error (Fig. 4.8A) and heat
pain tolerance error (Fig. 4.8B). Figure 4.9 gives the log-likelihood profiles of the (PK and
PD) model parameters. The objective function is most sensitive to changes in parameter
BLN (EEG ratio, Fig. 4.9E; and heat pain tolerance, Fig. 4.9F) and least sensitive to changes
in t½,ke0 (half-life from ke0) (EEG ratio, Fig. 4.9C). A bootstrap analysis (1000 simulations
drawing random samples from the subject pool) was performed to assess the sensitivity
of the model output to exclude subjects from the data set (data not shown). The results
show that excluding subjects did not result in systematic changes in parameter values.
Overall, the inspection of the data fits and diagnostic plots indicates that the SPKPD
adequately described the data.
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Figure 4.8: Spaghetti plots for electroencephalography ratio (A) and pain tolerance (B)
showing residual error versus time.

Hysteresis

In Figure 4.10, examples of buprenorphine plasma concentration versus effect are plot-
ted and show that no significant hysteresis was detected for pain tolerance. In contrast,
a significant hysteresis was observed for EEG ratio, with a value for parameter t½,ke0 of
24 ± 8 hours. The log-likelihood profile of parameter t½,ke0 shows a rather flat surface
profile with values that range from -50% to +100% of the optimal estimate within its 95%
confidence interval (Fig. 4.9C). Removal of parameter t½,ke0 from the model resulted in
an increase of Objective Function Value > 20 points. A stochastic differential equation
to account for fluctuations of ke0 did not improve the data fits. Hence, this approach
was discarded.

EEG Ratio versus Heat Pain Tolerance

The EEG ratio was more sensitive to buprenorphine than skin pain tolerance, with a
10 ± 3 (mean ± SE) times greater potency: resting EEG ratio C100 = 0.90 ± 0.10 ng/mL
versus EEG ratio C100 = 9.01 ± 1.90 ng/mL. To get an indication of whether the EEG is
a good predictor of heat pain tolerance, the 2 PD models were coupled via their cor-
responding plasma concentrations (obtained from taking the measurement variability
σ , into account). Figure 4.11 shows that the EEG predicts heat pain tolerance with ac-
ceptable uncertainty compared with the skin test when coupling the PD models to their
corresponding plasma concentrations.

4.3 Discussion

Our main findings are that the EEG ratio can be used as a surrogate measure of buprenor-
phine effect and that the SPKPD analysis, which includes tracking and update features,
allowed the computation of the time-dependent variability in drug absorption from
patch to blood. Both results confirm our study hypotheses. We demonstrated that
buprenorphine’s absorption varied over time, ranging from -40% to +60% of baseline
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Figure 4.9: Likelihood profiles showing the change in objective function versus a rel-
ative change in the denoted parameter (A-I) while estimating the remaining param-
eters. The dashed line denotes a change of 3.84 points in objective function (OFV),
indicating the P = 0.05 level. The crossings of the likelihood profiles with the dashed
lines give a parameter range corresponding to a 95% confidence interval. (A) ka is
the buprenorphine absorption rate; (B) ke is the buprenorphine elimination rate con-
stant; (C) t½,ke0 is the blood–effect-site equilibration constant; (D) Vd is the volume
of distribution; (E) Baseline (BLN) is the electroencephalography (EEG) ratio baseline
estimate; (F) BLN is the heat pain tolerance baseline estimate; (G) σw is the variability
in the absorption rate constant in the log domain; (H) C100 is the effect-site concen-
tration causing a 100% increase in EEG ratio; (I) C100 is the effect-site concentration
causing a 100% increase in heat pain tolerance.
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absorption, and that buprenorphine’s effect on the EEG ratio is 10 times more sensitive
than buprenorphine’s effect on dulling noxious skin stimuli.

4.3.1 Variations in Absorption Rate

The heat pain tolerance data were previously analyzed by Andresen et al.6 The input to
their PD model consisted of cubic splines fitted to the measured concentrations because
no PK model could be found to adequately describe transdermal drug delivery. Although
splines give smooth curves, they cannot correct for measurement error, which may result
in possibly amplified errors of the interpolated values. Although the structural PK model
that we applied may be simple, it provides the PD model with interpolated concentration
values based on best estimates of drug absorption and disposition at the sampling times
of the effect parameters.

Tornøe et al.89 were the first to model subcutaneous drug absorption with a varying
absorption rate. In the current study, we analyzed transdermal drug absorption using
an approach similar to theirs. Assuming that the release of drug from the patch is
constant over time, variations in drug absorption from the skin may be related to diurnal
changes in local skin blood flow because of fluctuations in skin temperature, cardiac
output, and ambient temperature. For example, the drug label for buprenorphine warns
patients to avoid exposing the patch to external heat. For the fentanyl transdermal
patch, heat-related toxicity has been described and was related to a significant (25%-
30%) increase in plasma fentanyl concentration because of an increased drug release
from the patch.56 In our study, it is unknown whether the ka fluctuations affected our
PD outcome significantly. Theoretically, quantifying the fluctuations in ka by modeling,
the process noise could increase the precision of the estimate of the onset and offset
of effect. However, the design of our study prohibited the precise estimation of t½,ke0 .
For heat pain tolerance, no hysteresis between plasma concentration and effect was
detected, and for EEG ratio, the log-likelihood profile of t½,ke0 exhibits a rather large 95%
confidence interval (12-48 hours), indicating that the support for hysteresis is limited.
Still, excluding this parameter from the model had a significant negative effect on the
objective function value, which suggests that the slow distribution of buprenorphine
from plasma to brain is detectable in the EEG data. It is of interest to note that Andresen
et al.6 found a direct and linear effect of buprenorphine on heat pain tolerance similar
to our observations.

4.3.2 EEG Ratio as Biomarker of Opioid Effect

The response to skin heat pain test is quite subjective, whereas the resting EEG is a
more objective measure of drug effect.59 This is the first study to assess the effect
of the long-term administration of an opioid on the EEG and particularly on the EEG
ratio. Most studies on the effect of opioids on resting EEG use Fast Fourier Transform
to convert the raw EEG signal into quantifiable measures, such as spectral edge and
median frequency.49 Several of these studies show that slowing of the frequency of the
EEG reflects a narcotic or sedative drug effect.46,49,73,66 In the current study, a CWT
was used to extract information from the raw EEG signal, followed by the evaluation
of multiple frequency bands combined in a single EEG ratio. The design of the wavelet
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analysis was chosen to be comparable with previous studies on analgesic effect and
resting EEG.35,34

The rationale for using an EEG ratio is that opioids produce high-voltage corti-
cal bursts associated with increases in EEG spectral power in predominantly the low-
frequency range (0-10 Hz).99 However, the frequency-specific alterations in cortical EEG
oscillations depend on the receptor type that is activated.99 Because buprenorphine is
a mixed agonist-antagonist opioid receptor modulator (i.e., acting at multiple opioid re-
ceptors), it seems more rational to assess the entire frequency range rather than the
individual frequency bands independently. In addition, because the EEG power between
subjects varies considerably, opioids may cause larger effects in some subjects (e.g.,
subjects with an initial higher power). Using the ratio of the normalized EEG spectral
distribution partly cancels out such bias, as the EEG ratio assesses the relative distri-
bution between low- and high-frequency oscillations and quantifies how this balance is
altered by buprenorphine administration in comparison with placebo treatment.

An interesting observation in our study is that the resting EEG effects were more
sensitive to buprenorphine than the pain responses, with just one-tenth of the concen-
tration at the effect-site required for a doubling of effect (C100). This makes the EEG
ratio an attractive biomarker of opioid effect compared with pain intensity testing when
measuring the PD of opioid analgesics, especially when long-term administrations are
tested.

The findings on the effect of buprenorphine on the resting EEG ratio were obtained
in healthy male volunteers without coadministration of sedative hypnotic agents. For
clinical use, it would be interesting to investigate in future studies whether the ratio
would still be detectable in the presence of a potent IV or inhaled anesthetic agent. Al-
though the mechanisms behind coadministration are not yet understood, several recent
studies have been focused on this topic. Liley et al.48 used a fixed-order autoregres-
sive moving average model to analyze EEG signals from 2 frontal electrodes and found
that during the simultaneous administration of remifentanil and propofol, increasing
remifentanil concentrations caused significant changes in the cortical EEG. In line with
this, Kortelainen et al.47 used the frequency spectrum from the Fz channel to separate
the effects of propofol and remifentanil and found the entire frequency range from 2 to
20 Hz to contribute to the remifentanil effect, although the low frequencies from 1 to 5
Hz showed the most discriminative oscillations.

4.4 Conclusions

In this study, the effect of transdermal buprenorphine on the cortical EEG (EEG ratio) and
on heat pain tolerance was investigated; the EEG ratio was defined as (% slow frequency
bands, 0-10.5 Hz)/(% fast frequency bands, 10.5-32 Hz). We showed that the EEG ratio is
a reliable surrogate measure of buprenorphine effect, with a 10-fold greater sensitivity
than heat pain tolerance. In addition, we successfully analyzed the data with a SPKPD
model that allowed us to compute the time-dependent variability in drug absorption
from patch to skin. The analysis showed a high variability in absorption, possibly related
to diurnal variations in skin blood flow.
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Chapter 5

Population Analysis of
Kalman-Filtered Permutation Entropy
of the Electroencephalogram*

General anesthetics produce dose-dependent effects on the electroencephalogram
(EEG), causing an increase in power combined with a decrease in average EEG fre-
quency.62 A novel EEG-derived parameter is the permutation entropy (PE) of the EEG.65

Important advantages are its robustness under eye blinks, and its ease of computation.
The permutation entropy quantifies the probability distribution of motifs present in the
signal, and it is determined by the dominant frequency in the EEG signal. But because
of the ordinal (counting) nature of the PE, it is dominated by the presence of high EEG
frequencies, even if they have quite small amplitudes.

Anesthetic concentration-effect data fits often show systematic misfits, due to corre-
lated residuals, which could lead to biased standard errors of parameter estimates and
false conclusions from statistical tests. Kalman filters may be constructed to separate
measurement and process noise.43,90 The first objective of the present study was to con-
struct a pharmacokinetic-pharmacodynamic (PK-PD) model, including a Kalman filter, to
analyze concentration-permutation entropy data sets. The second objective was to gain
more insight into the effects of the incorporation of a Kalman filter, by fitting models
with and without a Kalman filter to simulated data.

5.1 Methods

5.1.1 Ordinal Statistics and the Calculation of the
Permutation Entropy

With the possible exception of zero-crossing rate, most EEG indices use the EEG signal
as a continuously variable signal (to the limits of the measuring equipment). In contrast,
ordinal statistics rank the data from smallest to largest, and then compare the rankings.
Therefore, the use of ordinal descriptions of EEG may have the advantage of being re-

* Parts have been published in E Olofsen, J W Sleigh, A Dahan, Br J Anaesth 2008; 101:810–
821, 2008, and E Olofsen, PAGE 2011: Abstract #2202
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Figure 5.1: Lower panel: extraction of ordinal patterns from the EEG signal. As the
algorithm moves sequentially through the EEG signal, the sections (“motifs” consist-
ing of three data points’ length) are classified as one of the six possible patterns,
depicted in the middle panel. Upper panel: a histogram of the relative numbers of
each motif in the signal. The dashed-line motif is a demonstration of the operation
of the τ = 2 lag.

sistant to large artifacts that occur with low frequencies. In this article, we will refer to
the elemental patterns that are extracted from the EEG signal as “motifs” (see Figure 5.1
for graphical explanation). The EEG signal can therefore be considered to consist of a
sequence of ordinal motifs.

The use of PE to quantify EEG changes in seizures was originally proposed by Bandt
and Pompe,8 and this work has been further developed by Cao and colleagues.20 The
algorithm of the calculation of the PE is quite simple and is depicted diagrammatically
in Figure 1 as follows:

1. Fragment the continuous EEG signal (dotted line in the lower diagram of Figure 5.1),
into a sequence of motifs (some examples are shown above and below the signal);

2. Identify each motif as belonging to one of the six possible types (as shown as 6
diagrams in the middle panel in Figure 5.1) - according to their shape [we describe
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the six types as two varieties each of “slopes” (motifs #2 and #5 in Figure 5.1),
“peaks” (motifs #1 and #6), and “troughs” (motifs #3 and #4)];

3. Count the number of motifs of each of the six categories, to obtain the probability
of occurrence of each motif in the signal (pi) (upper diagram in Figure 5.1);

4. Calculate the PE of the resultant normalized probability distribution of the motifs,
using the standard Shannon uncertainty formula:76

PE = − Σpi · log(pi
)

log(number of motifs)
(5.1)

Thus, the PE is a way of quantifying the relative occurrence of the different motifs.
Like other entropies, the PE is simply a measure of the “spread-outness”, or “flatness”,
or “uncertainty” in the frequency distribution. When the EEG signal is dominated by
high frequencies, there will be almost equal numbers of each species of motif in each
EEG segment analyzed. The properly normalized entropy is maximal (PE=1.0), if there is
an equal distribution of motifs between each of the six patterns. Conversely, when the
signal consists of slow delta waves, there will be relatively more of the “slope” motifs
(motifs #2 and #5 in Figure 5.1), and fewer of the other “peak” and “trough” motifs,
and the entropy decreases. The PE of a signal consisting of a single motif (such as one
very long “up-slope”) is zero. However, the effective realistic minimum value of the PE is
about 0.4. It is important to note that the PE is very different from the spectral entropy in
its frequency response. The PE tends to decrease as the frequency decreases Figure 5.2),
whereas the value of the spectral entropy is completely independent of frequency per
se, but only measures the sharpness of the frequency peak. To test the responses of the
various PEs to variations in frequency, artificial “pseudo-EEG” signals were generated,
using a C++ computer program which allowed known amounts of white noise to be
added to various pure sine wave frequencies (Figure 5.2).

In summary, the PE quantifies the probability distribution of motifs present in the
signal, and is determined both by the dominant frequency in the EEG signal and by the
bandwidth. Because of the ordinal (counting) nature of the PE, this is dominated by the
presence of higher EEG frequencies, even if they have quite small amplitudes.

5.1.2 Parameters and Ties

The PE has two predefined parameters. (i) The “order” of the PE is the number of data
points that are included in each motif. We restricted our study to include only short
motifs of just three points (order=3). Exploratory data analysis suggested that the use
of longer motifs did not contribute to a better index of depth of anesthesia. (ii) The “lag”
(τ) of the PE is the number of sample points spanned by each section of the motif. In
the lower diagram in Figure 1, the dark grey motifs are of lag τ = 1, because they are
made up of adjacent data points. The longer light grey motif is of lag τ = 2, because
the length of each section of the motif is two data points. The importance of the lag
is that it gives the resultant PE different frequency characteristics (Figure 5.2). Most of
the anesthetic-related information in the EEG can be extracted using a lag (τ = 1) of one
sample step (assuming a sampling frequency of about 128 s−1). However, as described
in our earlier paper,65 the inclusion of lag (τ = 2) helped differentiate deeper planes of
anesthesia, and resulted in better PK-PD modeling.
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Figure 5.2: The frequency dependence of the permutation entropy with different lags
(τ = 1 and τ = 2), and response to added white noise or a second sine wave oscilla-
tion. Long signals (65536 samples) were used to minimize fluctuations.

It is possible that two (or indeed all three) of the data points in a motif may have
the same measured voltage because of the limited resolution of the analogue-digital
conversion, and therefore are not able to be ranked. Although this occurrence may
seem to be very unlikely, it raises the important issue of how to deal sensibly with
very small voltage fluctuations in the EEG. A flat-line EEG indicates an almost absolutely
quiescent cerebral cortex. If we have a high-resolution analogue-to-digital converter,
the PE will continue to estimate the minute fluctuations in the signal - and its value
typically increases. Unfortunately, these fluctuations are made up largely of various
types of measurement noise, and are not reflecting drug actions on the cerebral cortex.
This is most apparent when the burst suppression EEG pattern is present during deep
anesthesia. One solution is to arbitrarily assign a third parameter - the threshold level,
below which, most of the “signal” is thought to consist of noise. In our earlier paper,
we chose the value of 0.5 µV as a threshold level. If the difference between any two of
the points in the motif is below the threshold, then the motif was counted as a seventh
category of “motif” - a “tie”. However, for simplicity with regard to computations and
analysis, in the remainder of this chapter the standard PE (withm = 3, τ = 1) was used.

5.1.3 Application to Real EEG signals

Fourteen raw EEG data sets (from 7 male and 7 female patients; an extension of the data
described in an earlier publication62) without burst suppression were analyzed using the
population analysis approach. Step-wise changes in end-tidal isoflurane concentration
were applied. The pharmacokinetic part of the PK-PD describes the relationship between
the end-tidal and brain or effect-site concentration. The pharmacodynamic part of the
model describes the relationship between the brain concentration and the measured
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effect. It was assumed that this relationship is nonlinear, monotonically decreasing and
can be described by the inhibitory sigmoid-Emax model with steepness parameter γ.

Previously,62 we performed a two-stage analysis, i.e., the data were fitted for each
subject separately and next the obtained parameter values were averaged. In the present
chapter, first both a two-stage and population analysis were performed to assess the
importance of differences between the methods. Next, a population analysis of permu-
tation entropy data based on the same EEGs was performed to assess the performance
of permutation entropy versus BIS. An extended Kalman filter was constructed to ana-
lyze permutation entropy data. This was motivated by the fact that many data fits show
systematic misfits; this may lead to biased standard errors of parameter estimates and
false conclusions from statistical tests. Finally, simulations were performed to study
the effects of the incorporation of a Kalman filter by fitting models with and without a
Kalman filter to simulated data.

The Kalman filter is a method to track the state of a system in the presence of mea-
surement and system noise. The extended Kalman filter is a generalization for linearized
nonlinear systems. Tornøe et al. described90 its implementation in the statistical anal-
ysis package NONMEM.9 The Kalman filter state and functions of the state need to be
defined to describe how the state evolves in time, how it is affected by an input, and
how it propagates to the output. Two versions were constructed. Version A assumes
that colored noise is present on the model output, albeit limited by maximum and min-
imum values of PE. Version B assumes that noise enters the system at the input, so at
the level of anesthetic concentration. Because the process noise term is assumed to be
normally distributed, it was added to the logarithm of concentration. NONMEM version
7 was used for parameter estimation. The differential equations describing the effect-
site concentration, the Kalman filter state, and its variance were implemented as one
(recursive) difference equation. The Kalman filter gain could be solved from the esti-
mates of the measurement and process noise variances and hence needed no recursive
approximation. The initial filter state was a parameter to be estimated, in addition to
the parameters of the PK-PD model. The model incorporating Kalman filter version B
was used to generate 1000 sets of artificial data of 10, 20, 50 and 100 individuals, with
parameter values from the final model of the permutation entropy data. These data
were fitted by the same model to check that parameter estimation was consistent, and
by the model without Kalman filter.

5.1.4 PK-PD Modeling

The anesthetic concentration-effect data were analyzed with the pharmacodynamic
model as described earlier.62 Briefly, the pharmacodynamic model consisted of a hy-
pothetical effect compartment combined with a sigmoid-Emax model described by the
equations

dCe(t)
dt

= ke0 · (FET (t)− Ce(t)) (5.2)

and

E(t) = Emax + (Emin − Emax) · Ce(t)
Ce(t)+ IC

γ
50

, (5.3)

where FET (t) is end-tidal isoflurane concentration; ke0 the rate constant determining the
speed of equilibrium (we estimated the effect-site equilibration half-time t½,ke0 ), Ce(t)
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is the effect-site concentration, E(t) is the effect measure (permutation entropy or BIS),
Emax and Emin are the maximal and minimal values of E, IC50 is the concentration that
places E halfway between Emin and Emax, and γ is a steepness parameter. In the mixed-
effects analysis, all parameters were assumed to be lognormally distributed, and that
residual error was normally distributed. Parameters Emax and Emin were constrained to
the interval (0,1) and γ to the interval (0,25) via the inverse logit transform.

5.1.5 Two Extended Kalman Filters

Kalman filter A assumes that colored noise is present on the model output, albeit limited
by Emax and Emin. With

y(t) = log
(

1− E(t)
E(t)

)
,

where E(t) is given by equation (5.3), and

dx
dt
= g(x)+ ν = − x(t)

τ
+ ν,

where x is the state of the system and ν is system noise (a Wiener process67), the output
is given by

E′(t) = 1
1+ exp(x +y) + ε

So E′(t) resembles E(t), but contains colored noise, filtered by time constant τ , and
is, without the noise term, still constrained to the interval (0,1). Note that while we
retain the notation with τ , this parameter is different from the lag used to calculate the
permutation entropy.

Kalman filter B assumes that process noise enters the system at the input, so at
the level of anesthetic concentration. Because the noise term ν has to be normally
distributed, it was added to the logarithm of concentration, and then the system state
is

dx
dt
= g(x)+ ν = 1

τ

(
γ · log

(CET(t)+ CET,0

IC50

)
− x

)
+ ν (5.4)

and the output is given by

E′(t) = Emin + 1− Emin

1+ exp(x)
+ ε, (5.5)

where CET,0 a parameter that yields finite values of the logarithm and replaces Emax.
The time delay is determined by several factors.62 By placing the system noise at the
level of concentration, τ may be viewed as neural processing rather than blood–brain
concentration equilibration delay (t½,ke0 ).

For both versions, the derivative of g(x) with respect to x is −1/τ . This implies that
the differential equation for the variance P of x is

dP
dt
= −2P

τ
+ σ2

w .

Both x and P were solved for discrete time steps ∆t under the assumption that the
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input changes step-wise. For example, the next Pi+1 is given by

Pi+1 = Pi · exp
(
−2∆t
τ

)
+ τσ

2
w

2

(
1− exp(−2∆t

τ
)
)
.

In this way, the differential equations described here are transformed to difference equa-
tions, which can be solved by NONMEM, without the need for special compartment reset
records in the input file as described by Tornøe et al.90 The Kalman gain of the extended
Kalman filter depends on the derivative of E′(t) with respect to x, and was computed
as given by Tornøe et al.90

5.1.6 Simulation Study

The model incorporating Kalman filter version B was used to generate 1000 sets of
artificial data of 100 individuals, with parameter values from the final model of the per-
mutation entropy data. The individual data consisted of 241 data points (time between
0 and 60 min, ∆t 0.25 min). These data were fitted by the same model to check that the
parameter estimation is consistent, and by the model without Kalman filter to study its
effects on parameter estimates.

5.2 Results

5.2.1 Application to Real EEG signals

Two-Stage versus Population Analysis

Table 5.1 presents the results from the two-stage and population analyses of the BIS data.
The population analysis provides estimates of the parameters, and of their variability
across the population. The parameter estimates are similar, and interestingly, the SEMs
of the two-stage analysis and standard errors from the population analysis also agree.
On the other hand, the squares of the standard deviations from the two-stage analysis
do not correspond to the inter-individual variance. These two results are due to the fact
that interindividual variability is relatively small compared to parameter uncertainties in
each individual (residual intraindividual variance was 50.4 ± 6.23), despite the number of
observations per individual (≈ 200). Model fits are shown in the top panels of Figure 5.3.
Worst, median and best fits were selected based on the coefficient of determination (R2

≈ 0.79, 0.92, and 0.98 for IDs 24, 12, and 18 respectively). The bottom panels show the
applied (as measured) end-tidal isoflurane concentration.

Bispectral Index versus Permutation Entropy

Table 5.2 presents the results from population analysis of the permutation entropy data.
Apart from obvious differences with the results for the BIS between Emax and Emin the
much larger interindividual variability of γ is notable. This is related to the occurrence
of some rather high values of γ - see the steep fall in PE in Figure 5.3 for ID 12 (γ ≈ 18).
This, in turn, may be related to the occurrence of high-frequency EEG activity, falsely (or
not) increasing the measure of depth of anesthesia.
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Figure 5.3: Administered isoflurane concentration (FET, bottom panels), BIS and per-
mutation entropy data with fits (median ± 95% CI) without Kalman filter (PE), Kalman
filter A (PEA), and Kalman filter B (PEB), for three subjects.
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Figure 5.4: Upper panel: Close-up of the permutation entropy data fit of Subject 24.
The dashed line is the Kalman-filtered permutation entropy; the solid line is the
model prediction if there were no process noise. Middle panel: Electromyographic
activity (EMG). Lower panel: Administered isoflurane concentration (FET).

Table 5.1: Parameter estimates from the Two-Stage and Population Analyses of the BIS
data.

Two-Stage Analysis Population Analysis

Parameter Est. SD SEM Est. SE ω2 SE

t½,ke0 (min) 4.24 1.20 0.321 4.06 0.309 0.0744 0.0175
γ 5.94 4.14 1.11 5.05 0.831 0.508 0.255
IC50 (%) 0.575 0.107 0.0286 0.558 0.0302 0.0412 0.0182
Emax 95.9 1.86 0.497 95.8 0.508 0.0945 0.0443
Emin 27.2 10.8 2.87 27.4 2.55 0.199 0.0907

SEM is SD divided by the square root of the number of subjects.
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Table 5.2: Population Analysis of the PE Data (without Kalman filter).

Parameter Est. SE ω2 SE

t½,ke0 4.37 0.350 0.0803 0.0235
γ 6.79 2.52 2.27 1.63
IC50 0.506 0.0408 0.0633 0.0336
Emax 0.947 0.00296 0.0386 0.0145
Emin 0.727 0.00827 0.0238 0.00991

See Methods section for explanation of parameters.

Table 5.3: Population Analysis of the PE Data with Kalman Filter A.

Parameter Est. SE ω2 SE

t½,ke0 4.28 0.450 0.129 0.0328
γ 17.2 5.18 9.49 4.45
IC50 0.501 0.0393 0.0785 0.0415
Emax 0.937 0.00617 0.0636 0.0894
Emin 0.729 0.0111 0.0314 0.0121
τ 5.41 1.13 - -
σm 0.0113 0.000666 0.0326 0.0137
σs 0.102 0.0123 0.221 0.136
x0 -0.344 0.208 0.260 0.287

σm and σs are the standard deviations of the measurement
and process noise sources, respectively.
x0 is the initial state of the system.
A dash indicates that the ω2 was not estimable.

Kalman-Filtered Permutation Entropy

Table 5.3 and Figure 5.3 (PEA panels) present the results from population analysis of
the permutation entropy data with Kalman filter A. Unfortunately, the estimate of γ and
its interindividual variance increased (for ID 12 to ≈ 24, while it was limited to 25). It is
unfortunate, because it means that the PE as a candidate measure of depth of anesthesia
reduces to an on/off indicator.

Table 5.4 presents the results from population analysis of the permutation entropy
data with Kalman filter B. Now, the estimate of γ and its interindividual variance de-
creased to a useful value. In Figure 5.3 it can be seen that PEB is still sensitive to higher
isoflurane concentrations instead of being saturated. Moreover, note that all interindi-
vidual variabilities are smaller than those obtained from the analysis without Kalman
filter (although we do not know the right values - see next subsection using simulated
data). Figure 5.4 shows a close-up of the analysis for ID 24. High-frequency EEG activ-
ity and/or EMG activity elevates the PE. The Kalman-filtered PE seems to filter out this
activity. See also the EMG activity at about 60-65 minutes.

A bootstrap analysis has been proposed to validate the parameter estimates.30 Fur-
thermore, the method can be used to obtain 95% confidence intervals. Results from the
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Table 5.4: Population Analysis of the PE Data with Kalman Filter B.

Parameter Est. SE ω2 SE

t½,ke0 3.50 0.248 - -
γ 2.60 0.677 0.0355 0.0204
IC50 0.635 0.191 0.0210 0.0114
CET,0 0.280 0.163 - -
Emin 0.699 0.00832 0.0165 0.00726
σm 0.00837 0.000286 - -
σs 0.516 0.0398 0.0766 0.0384
x0 0.499 0.320 - -

CET,0 is a parameter related to Emax (see Methods).

Table 5.5: Bootstrap Analysis of the PE Data with Kalman Filter B.

Parameter Est. SE 95% CI ω2 SE 95% CI

t½,ke0 3.50 0.241 3.07-3.97
γ 2.77 0.823 1.73-4.79 0.0333 0.0252 0.00343-0.0909
IC50 0.679 0.225 0.392-1.23 0.0179 0.0129 0.00181-0.0430
CET,0 0.322 0.198 0.104-0.831
Emin 0.700 0.00787 0.684-0.716 0.0150 0.00681 0.00223-0.0281
σm 0.000839 0.000285 0.00787-0.00895
σs 0.516 0.0436 0.435-0.600 0.0724 0.0384 0.0157-0.157
x0 0.554 0.289 0.0767-1.21

bootstrap are given in Table 5.5. A comparison with the results in Table 5.4 shows that
all estimates, including the standard errors, are similar. Unfortunately, the estimate of
IC50 is rather imprecise; without the Kalman filter it was much more precise. Of course,
at this stage it is unknown which precision estimate is the most useful; the more precise
IC50 may be related to the description of the presence or absence of EMG activity rather
than EEG activity.

5.2.2 Simulation Study

One thousand simulated data were generated using the model with Kalman filter B and
parameter values listed in Table 5.4. These data were fitted with the same model, without
and with Kalman filter, the results of which are presented in Table 5.6 and Table 5.7,
respectively. The standard deviations from the 1000 estimates were calculated and the
medians of the 1000 estimates of the standard errors (actually only NONMEM’s succesful
estimation and covariance runs were used (≈ 930)). The medians were used because the
estimates of the standard errors in the analyses with Kalman filter sometimes had quite
large values; and also without the Kalman filter these are approximately lognormally
distributed.

Without the Kalman filter, the median(SE) were somewhat less than the SDs (the
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Table 5.6: Population Analysis of simulated data without Kalman filter.

Parameter Est. SD median(SE) ω2 SD median(SE)

t½,ke0 3.71 0.234 0.215 0.288 0.0675 0.0554
γ 2.67 0.222 0.211 0.625 0.149 0.133
IC50 0.531 0.0186 0.0173 0.0821 0.0207 0.0184
Emax 0.961 0.00218 0.00213 0.296 0.0438 0.0430
Emin 0.697 0.00632 0.00600 0.0562 0.0136 0.0118

Table 5.7: Population Analysis of simulated data with Kalman filter.

Parameter Est. SD median(SE) ω2 SD median(SE)

t½,ke0 3.46 0.0914 0.0927 - - -
γ 2.49 0.181 0.184 0.0328 0.00663 0.00642
IC50 0.622 0.0514 0.0506 0.0218 0.00502 0.00499
CET,0 0.270 0.0392 0.0395 - - -
Emin 0.699 0.00292 0.00282 0.0164 0.00247 0.00239
σm 0.00853 0.0000743 0.0000759 - - -
σs 0.480 0.0140 0.0145 0.0730 0.0124 0.0122
x0 0.442 0.0650 0.0638 - - -

means were also somewhat smaller (data not shown)). This may be related to the fact
that residuals are correlated if the Kalman filter is not applied. More importantly, the
estimates of interindividual variability are too large, for example for t½,ke0 , where it was
actually zero, or for γ where the estimates differ a factor of 20. The IC50 was set at
0.635; the estimate of 0.531 ± 0.0186 is clearly biased.

5.3 Discussion

Ordinal measures of EEG patterns have very different characteristics to traditional meth-
ods that use the raw EEG signal. The conceptual difference may be summed up in the
phrases: not “how large is the pattern?” but rather “how many patterns exist?”.65 Our
preliminary investigations65 indicated that the permutation entropy shows promise as
a practical EEG measure of GABAergic hypnotic drug effect. It appropriately tracks the
qualitative assessment of the EEG pattern from awake to sedated/lightly anesthetized,
and to deeply anesthetized. It requires minimal preprocessing and is very resistant to
blink artifacts.

A wide variety of other EEG indices have been used in PK-PD modeling.65 At the
present time, the most commonly used are the commercial ones (e.g., BIS). Most indices
require extensive and sophisticated artifact handling to achieve acceptable results, and
this always runs the risk of distorting the EEG signal. The resistance to blink artifacts
(and speed of computation) is a big advantage of the PE over other indices, producing
stable values in the pre- and early induction period. The PE is comparable with the BIS
in the spread of values between patients before and after loss-of-consciousness. Our



Chapter 5 75

present results indicate that the PK-PD models that may be constructed using the PE are
as acceptable as those constructed using the BIS.

A characteristic feature of the state of general anesthesia is the presence of large
slow fluctuations in the instantaneous frequency content of the EEG. The most extreme
example of this phenomenon is the burst suppression pattern, which needs special pre-
cautions,65 so for the present analyses only data without burst suppression were used.

As for all EEG monitors, the PE is effectively computed from an EEG signal which is
inextricably linked with the frontalis EMG. The same reason that makes the PE stable
during the awake state also makes it very sensitive to episodic high-frequency fluctua-
tions (artifactual, electromyographical, and neurophysiological) during deep anesthesia
(see Figures 5.2 and 5.4 for illustration).

So while the PE is insensitive to eye blinks, it is sensitive to high frequency compo-
nents present in the EEG just before loss of consciousness. This causes EEG effect param-
eters to respond relatively late and suddenly to a change from wakefulness into anesthe-
sia. This property also results in a steep concentration-effect relationship. Analysis of
EEG data with a Kalman filter accentuated or filtered out this phenomenon, depending
on the postulated location of process noise. Version B provided a more useful pharma-
codynamic model, because version A with the steep concentration-effect relationship
impedes timely prediction of (sudden) awakening. Furthermore, the large steepness
may, at least partly, be based on a confounding effect or artifact. It should be noted that
this artifact filtering is only possible if the anesthetic concentration is known. The main
difference between the two applied Kalman filters lies in the location of the process
noise, i.e., before or after the sigmoid-Emax concentration-effect relationship. Process
noise may substitute for model inadequacies, in this case an EEG effect which was (in
the model) not related to anesthetic concentration. So the confounding effect may need
to be scaled, due to nonlinearities, to the level of the real process noise.

Finally and most importantly, the simulation study showed that if Kalman filtering is
not applied, inter-individual variability may be overestimated; variability that is actually
intra-individual process noise.
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Chapter 6

Arterial and Venous
Pharmacokinetics of
Morphine-6-Glucuronide and Impact
of Sampling Site on
Pharmacodynamic Parameter
Estimates*

Pharmacokinetic-pharmacodynamic (PK-PD) modeling is an important tool to ex-
amine the dynamic behavior of drugs, and because the analysis yields an estimation of
drug potency and delay between blood concentration and effect (hysteresis), it allows
for an accurate prediction of effect. The hysteresis occurs because of the distributional
disequilibrium between the site at which the drug is measured and the site of action (=
biophase kinetics).92 Most contemporary PK-PD models are correctly based on arterial
blood samples.92 However, occasionally, arterial blood samples are not available. This
may, for example, occur when it is deemed inappropriate to place arterial catheters and
it is assumed that similar results will be obtained by using venous blood samples.

The human ethics committee of our institution expressed its concerns regarding
the placement of arterial catheters in healthy volunteers participating in PK-PD studies
on long-acting opioids. They reasoned that for some drugs, just a small difference
in PD parameter estimates would be obtained when sampling from a venous site and
consequently that it was judged unnecessary (and hence unethical given the possibility
of serious complications) to place an arterial catheter. We have ample experience with
arterial catheter placement and over the years did not encounter any complications. We
do agree with them, however, that the consequences of complications such as radial
artery occlusion, nerve damage, or pseudo aneurysm of the radial artery are serious and
need to be carefully balanced against the gain of obtaining arterial blood samples. In
cooperation with the human ethics committee we therefore decided to perform a study
in volunteers in which both arterial and venous (from a peripheral site, i.e., the arm) drug

* E Olofsen, R Mooren, E van Dorp, L Aarts, T Smith, J den Hartigh, A Dahan, Anesth Analg
2010; 111:626–632
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samples were obtained after IV infusion of the opioid morphine-6-glucuronide (M6G),
a drug of long action.69 The dose chosen, 0.3 mg/kg, causes long-lasting analgesia but
only moderate respiratory depression.69,71,68

The present study was performed in 3 steps. Initially, we determined the arterial and
venous concentrations of M6G after a rapid IV infusion. Next, we built a PK model of the
drug distribution between arterial and venous blood. Finally, we performed simulation
studies to help us to understand the consequences of the (erroneous) assumption that
arterial and venous data are equal and the effect on PD parameter estimates when using
venous rather than arterial drug concentrations to drive the effect compartment. We
hypothesized that because we were dealing with a slow-acting drug, there is no difference
between an arterial sample-based model and a venous sample-based model.

6.1 Methods

6.1.1 Subjects

Seventeen healthy volunteers (9 men, 8 women, ages 19 to 34 years and body mass
index <28) participated in the study after approval of the protocol by the local ethics
committee and after giving written informed consent. All subjects were asked to refrain
from food for at least 8 hours before the start of the study.

6.1.2 Study Design

After arrival in the laboratory, 2 venous catheters (in the left and right cubital veins) and 1
arterial catheter (in the radial artery at the wrist of the nondominant arm) were inserted.
One venous catheter was placed for drug infusion; the other venous catheter and the
arterial catheter were placed for blood sampling. At t = 0, 0.3 mg/kg M6G was infused
IV over 90 seconds. Next, arterial and venous samples were obtained (simultaneously)
at times t = 5, 10, 20, 30, 40, 50, 60, 80, 120, 180, 240, 300, 360, and 420 minutes.
Plasma was separated within 10 minutes of blood collection and stored at -25°C until
analysis. M6G measurement has been described.71 Briefly, serum was pretreated by
protein precipitation with acetonitril; M6G was measured using liquid chromatography
with tandem mass spectrometry. The between-days coefficients of variation were 4.1%
and 4.0% for 75 and 1800 µg/L, respectively; the within-day coefficients of variation were
0.5% and 2.0%. The quantitation limit was set at 20 ng/mL.

6.1.3 Pharmacokinetic Analysis

The arterial and venous concentration data were analyzed simultaneously. To that end,
the arterial data were analyzed first with 2 or 3 compartments. Next, arterial and venous
data were analyzed simultaneously with 3 compartments for arterial data and 1 or 2
compartments for venous data. Objective function values were reported for the latter 2
cases, to give an indication for the importance of the second venous compartment. The
venous samples are from the periphery, i.e., the forearm. Data analysis was performed
with the statistical package NONMEM VI, version 1.2. Model selection (the number of
compartments) was based on the goodness-of-fit criterion, i.e., the magnitude of the
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decrease in minimum objective function value (MOFV; X2 test (for nested models): P <
0.01 was considered significant).

For the concentrations in the central and peripheral venous compartments (CV1 and
CV2 , respectively) we write (Figure 6.1A)

VV1 · dCV1/dt = CLAV ·
(
CA1 − CV1

)− CLV2 ·
(
CV1 − CV2

)
(6.1)

VV2 · dCV2/dt = CLV2 ·
(
CV1 − CV2

)
, (6.2)

where VV1 and VV1 are the volumes of the central and peripheral venous compartments,
CLAV the arteriovenous (AV) clearance, and CLV2 the central-peripheral venous clearance
(see Appendix and Figure 6.1A for details).

6.1.4 Simulation Studies

Simulation studies were conducted to assess the influence of sampling site on estimated
PD parameter values and on prediction. The PD model consisted of an inhibitory sigmoid
Emax model, with a baseline effect of 1 and a minimum effect of 0 (e.g., describing the
respiratory effect of M6G):

Effect(t) = 1/
(
1+ (Ce(t)/EC50)γ

)
, (6.3)

where where Ce(t) is the effect-site concentration at time t, EC50 the effect-site con-
centration giving 50% effect, and γ a shape factor (the Hill coefficient). An effect site is
postulated. The equilibration rate constant between arterial blood and effect site is ke0

with half-life t½,ke0 . The effect site has to be linked to arterial blood concentrations to
obtain correct PD parameter estimates (Figure 6.1). However, when only venous blood
samples are available, the effect site may be (incorrectly) linked to venous blood concen-
trations (Figure 6.1). EC50 was set to 500 (a typical value for pain relief from M6G with
t½,ke0 values ranging from 2 to 6 hours),68 γ to 1 (as observed in studies on the effect
of M6G on minute ventilation [where maximal respiratory depression = apnea] and with
t½,ke0 values ranging from 1 to 2 hours)69 or 2.5 (as observed in studies on the effect
of M6G on pain relief)4 and t½,ke0 , as given above. These 3 parameters had lognormal
distributions across the population with variance 0.1 (coefficient of variation ≈30%)69,68

The SE of the additive intraindividual error was set to 0.1.

Study I

The purpose of the first set of simulations was to determine the influence of linking
venous blood samples to the effect site on PD parameters. One thousand Monte Carlo
simulations were performed to generate PD data with arterial concentrations driving
the effect site. These PD data were next fitted using arterial or venous concentration
data driving the effect site. Using arterial concentration data should yield parameter
estimates close to the ones used for simulation; using venous concentrations might
yield estimates that are biased because of the erroneous location of the sampling site.
For each simulated data set (n = 1000), the ratios of the parameters based on venous and
arterial data were calculated. This was done for a range of t½,ke0 values: 5, 10, 15, 20,
30, 45, 60, 90, 120, 150, 180, and 240 minutes. In studies on respiration and analgesia a
large variation in t½,ke0 values has been observed between 60 and 240 minutes.69,68 From
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Figure 6.1: Two schematic representations of the pharmacokinetic (PK) model used
to simultaneously analyze the arterial and venous morphine-6-glucuronide (M6G)
data. A: Model in terms of volumes and clearances. A1, A2, and A3 are arterial
compartments, and V1 and V2 are venous compartments. CLA1 , CLA2 , CLA3 , CLV1 ,
and CLV2 , are the clearances from compartmentsA1, A2, A3, V1, and V2, respectively.
An effect site has been postulated, driven by arterial M6G concentrations (EC linked
toA1) and an effect site driven by venous concentrations (EC linked to V1; as if venous
concentrations were equal to arterial ones). The latter representation is erroneous
and tested in the current study. B: Model in terms of rate constants and NONMEM
compartments. We assumed that k14 equals k10 (or CLA1/VA1 ). This has no influence
on the model but indicated that V4 and V5 (and the clearance between them) have to
be interpreted in relation to k14 (or CLAV). The ke0 is the rate constant depicting the
equilibration between blood and effect site. The k40 is the elimination rate from the
central venous compartment and is equivalent to kv0.
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the 1000 simulation data sets, the median and 95% confidence intervals of the ratios of
the parameters based on venous and arterial data were calculated. t½,ke0 values chosen
below the values typically seen in respiratory and pain studies (1 hour) do reflect values
that may occur when examining other end points, such as opioid-induced changes in
electroencephalographic data.

Study II

To get an indication of the effect of using a biased PD parameter set, as may occur in
clinical settings when PK and PD data sets derived from distinct arterial and venous
concentration data sets are linked (e.g., effect-controlled target-controlled infusion sys-
tems), we simulated the link between a PK model based on arterial data and a PD model
based on venous data. Simulations were performed using the median estimates from
Study I. To quantify the bias, we made a comparison to a simulation in which PK and PD
models are both based on arterial data.

6.2 Results

All subjects completed the study without major side effects. Figure 6.2 shows the time
course of the plasma concentrations of M6G for the samples obtained from arterial (ra-
dial artery) and venous (elbow) sites for 3 subjects. In Figure 6.3 the difference between
arterial and venous M6G concentrations are plotted over time.

The data indicate that just after the 90-second infusion (with relatively high M6G
concentrations), arterial concentrations exceeded the venous ones because the net drug
flow is into the tissues of the arm. At later times (>40 minutes, with relatively low
M6G concentrations), venous concentrations exceeded arterial concentrations because
the net drug flow is from tissue to blood.

A schematic representation of the final “extended” PK model is given in Figure 6.1:
for the arterial site (i.e., body), 3 compartments were required (MOFV, 2 compartments =
2389.811 versus 3 compartments = 2167.616); for the venous site (i.e., forearm), 2 com-
partments were required (MOFV 1 compartment = 4693.153 versus 2 compartments =
4418.097). Best, median, and worst data fits and goodness-of-fit plots are shown in Fig-
ure 6.2. Spaghetti plots (measured and predicted concentrations versus time) for the
arterial and venous plasma concentration data are given in Figure 6.4. Without excep-
tion, the data were well described by the model. The model parameters are collected
in Table 6.1. A significant equilibration delay was present between the central arterial
and venous compartments (t½,kv0 = 2.00 ± 0.45 minutes, median ± SE). Figure 6.5 shows
the results of simulation study I. For both values of γ, the results indicate that large
biases are to be expected when using venous PK data as input to the PD model, albeit
the magnitude of the bias depends on the “true” value for parameter t½,ke0 (for analgesia
the true values range from 2 to 6 hours; for respiratory depression, from 1 to 2 hours).
For parameter t½,ke0 the bias (as reflected by the ratio parameter derived from venous
PK over arterial PK) is an underestimation of the “true” value ranging from a decrease of
60% at a “true” t½,ke0 value of 5 minutes to a decrease of 30% at a value of 240 minutes.
For C50 the estimation from venous PK data yields a small bias (an overestimation rang-
ing from +10% to -2%) in the t½,ke0 range of 5 to 90 minutes. At larger values of t½,ke0 the
bias increases to an overestimation of 30% to 40% at t½,ke0 = 240 minutes. Parameter γ
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Table 6.1: Pharmacokinetic Parameter Estimates

Parameter Estimate SE of estimate ω2 SE of ω2

VA1 (L) 4.45 0.69 0.07 0.04
VA2 (L) 4.73 0.36 0.03 0.01
VA3 (L) 5.07 0.27 0.02 0.01
CLA1 (L/min) 0.14 0.006 0.03 0.01
CLA2 (L/min) 0.55 0.10 -
CLA3 (L/min) 0.07 0.01 -
t½,kv0 (min) 2.00 0.45 0.12 0.10
VV1 (L) 0.05
VV2 (L) 1.88 0.38 0.68 0.25
CLV2 (L/min) 0.06 0.01 0.27 0.18
σ2 arterial 0.003 0.001
σ2 venous 0.02 0.006

VA1 , VA2 , and VA3 are the volumes of the arterial compartments

A1, A2, and A3, with intercompartmental clearances CLA1 , CLA2 ,

and CLA3 , respectively.

t½,kv0 is the half-life of drug elimination from compartment V1.

VV1 is the volume of venous compartment V1; VV2 is the volume

of venous compartment V2 with intercompartmental clearance

CLV2 . VV1 is derived from VV1 = CLA1/kv0,which implies that

in the steady state, arterial and venous concentrations are equal.

The ω2 are between-subjects variabilities (in the log-domain);

the σ 2 are the residual errors.
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Figure 6.2: Best (A), median (B), and worst (C) pharmacokinetic (PK) data fits. Pink
symbols, arterial samples; cyan symbols, venous samples. Solid lines, data fits. M6G,
morphine-6-glucuronide. Inserts are the samples and data fits of the first hour of
the experiment. D and E: Goodness-of-fit plots for the individual PK model for the
arterial (D) and venous (E) concentrations. Shown are the observed (y-axis) versus
individual predicted (x-axis) PK data.
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Figure 6.3: Difference between arterial and venous morphine-6-glucuronide (M6G) con-
centrations over time. The line through the data is the NONMEM population fit.
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Figure 6.4: Spaghetti plots of measured and predicted morphine-6-glucuronide (M6G)
concentrations in time. A: Measured (solid circles) and predicted (solid black lines)
arterial concentrations. B: Measured (solid circles) and predicted (solid black lines)
venous concentrations. The bold lines are the average model-based predicted con-
centrations.
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Figure 6.5: Results of simulation study I. A and D: Concentration site dependence on
t½,ke0 ; B and E: Concentration site dependence on C50; C and F: Concentration site
dependence on γ. The ratio of the parameters obtained by using venous and arterial
pharmacokinetic data are plotted against t½,ke0 . A, B, and C are simulations with
γ = 1; D, E, and F with γ = 2.5. t½,ke0 values range from 5 to 240 minutes. Values
are median (of 1000 simulations) ± 95% confidence interval.
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Figure 6.6: Results of simulation study II. Linking arterial pharmacokinetic (PK) data
to pharmacodynamic (PD) models derived from venous (cyan symbols) and arterial
(pink symbols) PK data. The data are simulated for 3 different values of t½,ke0 : A: 5
minutes, B: 60 minutes, and C: 240 minutes. The effect simulated was a maximum
of a 50% decrease in effect for the PD model derived from venous data.
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is overestimated at t½,ke0 values <20 minutes by about 10%, whereas at larger values it
is underestimated, reaching 25% at t½,ke0 = 240 minutes.

Figure 6.6 shows the results of simulation study II. The cyan symbols are the PD
data that occur when an arterial PK set is linked to a PD parameter set derived from a
venous PK data set for 3 values of t½,ke0 (5, 60, and 240 minutes). The pink symbols are
the PD data derived from “arterial” PK and PD sets. The simulations were such that the
maximum “venous” PD peak effect was 50% of control. As is obvious from the presented
simulations, there are clear differences in effect between the arterial and venous PD
models. For example, at low t½,ke0 values, venous peak effect exceeded arterial peak
effect (for t½,ke0 = 60 minutes the venous peak effect is 30% greater at t = 60 minutes).
However, at increasing values of t½,ke0 the differences decrease, and at t½,ke0 values
between 150 and 180 minutes the arterial peak effect exceeds the venous peak effect
(Figure 6.6C). For all values of t½,ke0 , peak effect occurred somewhat earlier in the venous
PD model.

6.3 Discussion

This study was designed to evaluate the effect of venous versus arterial blood sampling
(derived from the cubital vein and radial artery, respectively) of the µ-opioid M6G on the
bias of parameter estimates derived from PD models using simulated data of volunteers.
We chose a combined arterial-venous model to model the AV differences in PK (which
gives information of the kinetics at the site of sampling), rather than just a PK model that
described the venous PK data in terms of an “arterial” model. The values of the arterial
PK parameters were well in agreement with those presented in the literature.68 Previous
studies assessed the relevance of AV concentration differences on PK-PD modeling. For
example, in the rat, Tuk et al.93 measured arterial and venous concentrations of the
benzodiazepine midazolam and linked them to effect (using electroencephalographic
amplitude). Using a “traditional” effect-compartment model, differences in PD model
parameters were apparent for EC50 (104 versus 86 ng/mL for arterial versus venous
sampling) and ke0 (0.32 versus 313 min-1). With an extended effect-compartment model
(by characterizing the delay between arterial and venous sampling sites, comparable to
our approach depicted in Figure 6.1), the model parameters did improve, although large
differences did persist (EC50 = 89 ng/mL, ke0 = 2.5 min-1).93

The AV concentration difference of a drug is, for a large part, determined by its in-
teraction with the tissue at the venous sampling site (the venous concentration is not a
reflection of the mixed venous/pulmonary artery concentrations). As was discussed by
Gumbleton et al.,37 mechanisms for the generation of AV concentration differences in
the forearm arise from an elimination process (the drug is taken up by the muscles in the
arm and metabolized in the muscle cells), by a distributional process (drug equilibration
between plasma and tissue, which is dependent on the fraction of cardiac output going
to the sample arm, perfusion and temperature-dependent capillary shunting, diffusion
into and affinity for muscle tissue), or the combination of the two. M6G is a drug that
is eliminated from the plasma exclusively through renal clearance. Because no tissue
metabolic processes are known for M6G, the AV difference for this drug is determined
solely by a distributional process in the forearm (equilibration between plasma and mus-
cle tissue occurs at times >120 minutes, which is 4 times the half-life for the lower t½,ke0 ;
see next paragraph). The PK-PD consequence of a large distributional AV concentration
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difference is illustrated by Gumbleton et al.37 showing that the determination of PD
parameters will be highly biased when using a first-order effect-compartment model.
In contrast, when the AV differences are related to an elimination process only (with
instantaneous equilibration between plasma and tissue and a constant AV difference),
little bias in parameter estimates is expected.37

Our results are in agreement with the theoretical studies of Tuk et al.92 and Gum-
bleton et al.37 However, our extended PK model differs significantly from their applied
PK models. Most importantly, the venous part of our PK model has two compartments
(V1 and V2), and theirs has only one. This makes comparison of our parameter kv0 not
possible between studies. For the PK parameters of the venous compartments it can be
calculated that clearance from the venous site is characterized by two half-lives, with
values of 1.4 and 33 minutes, respectively. This suggests a secondary slow equilibration
of M6G between arterial and venous blood and as such explains the large bias in the
PD parameter estimates derived from venous blood samples. In our simulation study I
we showed further that the bias in parameter estimates is critically dependent on the
value of t½,ke0 . When using venous M6G PK values as input to our first-order effect-
compartment model and assuming that the “true” t½,ke0 value of M6G ranges from 60 to
240 minutes, as observed for M6G’s effect on respiration and analgesia,69,68 we would
have underestimated t½,ke0 by 30% and γ by 25%, while the potency parameter (EC50)
would have been overestimated by about 40%. The estimations were also dependent on
the value of the Hill coefficient γ (which may vary from 1 in respiratory studies to 2.5
in analgesia studies),69,68 although this effect was less in magnitude (Figure 6.5).

In simulation study II, the effect of the use of biased PD parameters (i.e., derived from
venous blood samples) linked to an arterial PK set was explored. A situation in which
the two are linked may occur in, for example, target-controlled infusion systems that
incorporate PD model parameters to steer effect rather than target plasma concentration.
The bias in predicted effect was dependent on the value of t½,ke0 with respect to the
magnitude of effect and the timing of peak effect. The bias was such that a useful
application of the model is not warranted in a clinical setting. Note, however, that if the
PD model is derived from a venous PK set and linked to venous PK data, the bias would be
minimal (but only when using an infusion scheme identical to that used in establishing
the venous model), although the parameter estimates are biased in comparison with an
arterial PK set and PD model.92 Evidently, such an approach makes reliable comparisons
with studies using arterial PK and PD models impossible and also is in violation of
the principle that the effect site is directly linked to arterial rather than venous blood
concentrations.

In conclusion, there are significant AV differences in M6G plasma concentration,
related to a distributional process in the forearm. Biases exceeding 10% - 20% in PD
model parameters will occur when linking venous concentration to effect, using the
traditional effect-compartment model.

6.A Appendix: Linking Venous Compartments

It is assumed that the arterial morphine-6-glucuronide (M6G) concentrations are com-
pletely described by a 2- or 3-compartment model. The venous compartment then needs
to be linked to the arterial pharmacokinetic (PK) model without affecting the latter, sim-
ilar to linking an effect compartment.
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For the amount of drug in the central (AV4) and peripheral (AV5) venous compart-
ments we write (Figure 6.1B)

dAV4/dt = k14 ·AV1 − k40 ·AV4 + k54 ·AV5 − k45 ·AV4 (6.4)

dAV5/dt = k45 ·AV4 − k54 ·AV5, (6.5)

where k14, k54, and k45 are rate constants between compartments V1 and V4, V5 and
V4, and V4 and V5, respectively; k40 is the elimination rate constant from compartment
V4. We set k14 equal to k10 (= CLA1/VA1 ; Figure 6.1A) so that V4 is not trivial in size but
rather

V4 = V1 · k14/k40. (6.6)

This is an alternative yet exact method to keep the arterial PK part unaffected. We
devised this method to avoid potential numerical problems in NONMEM with very small
volume parameters. So k40 (Figure 6.1B) equals kv0 (= CLV1/VV1 ; Figure 6.1A); and t½,kv0

(= log(2)/kv0) is a parameter to be estimated.
It must be noted that, given the above, parameters VV1 , VV2 , and CLV2 in Table 6.1

and Figure 6.1A are to be interpreted in relation to CLAV (= CLA1), which will differ from
the true arterial-venous clearance.
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Summary and Conclusions

7.1 Expected and Unexpected Findings

As alluded to in Chapter 1, violations of modeling assumptions may have significant
effects that are hard to foresee. In the present chapter both expected and unexpected
effects are summarized. The findings suggest that, if the various sources of bias and
variability are not properly taken into account, the following warnings may be warranted:

• A measurement method may mistakenly seem to be interchangeable with its
golden standard (Chapter 2).

• The prediction error (the weighted difference between measurement and model
output), when used as a validation criterion, may be more variable than necessary,
leading to a higher probability of selecting a less than optimal model (Chapter 3).

• Intra-individual process noise may be mistaken as variability between measure-
ments and/or individuals (Chapters 4 and 5).

• Blood–effect-site equilibration half-life and potency of a drug may be underesti-
mated (Chapter 6).

7.2 The 95% Confidence Intervals of the Limits of
Agreement

Bland-Altman methods to assess agreement between two measurement methods were
studied in Chapter 2. The warning in the literature was confirmed that when multi-
ple measurements have been obtained in several individuals, an analysis that does not
take this into account may be expected to give limits of agreement that are too narrow.
However, using simulations it was shown that this has even more of an effect on the
confidence intervals around these limits. When reporting how closely measurements
between two devices are related, the accuracy of the limits of agreement is just as im-
portant as the limits themselves. Clearly, suitable software that permits easy calculation
of these confidence intervals can be helpful in assessing the value of medical devices. To
that end, an open-source web application was developed so that a Bland-Altman analysis
can be performed without the need to install any software apart from the ubiquitous



90 Chapter 7

web browser. In previous studies wrong conclusions on agreement between two meth-
ods may have been reached, particularly when the number of subjects was small. To
avoid inconclusiveness, it is proposed that studies that use Bland-Altman methods of
comparison should follow a standard format. By providing sufficient data on the as-
sumptions underlying an analysis of agreement next to the results, especially the 95%
confidence intervals of the limits of agreement and inter- and intra-individual variation,
ambiguity can be reduced and confidence in the results increased.

7.3 Akaike’s Information Theoretic Criterion

Akaike’s Information Theoretic Criterion (AIC) is a number representing a model’s good-
ness of fit, relative to competing models. The simulations performed in Chapter 3
demonstrated that, at least in a relatively simple mixed-effects modeling context with a
set of prespecified models, minimum mean AIC coincided with best predictive perfor-
mance.

It was found that in the presence of interindividual variability, prediction error by
itself becomes a less suitable validation criterion, because it does not take into account
whether estimated interindividual variability matches the variability in the validation
data. The context of AIC is the one where the random effects have been integrated out,
with the parameters at their (estimated) population values, which is to be done when
all data are acquired. This holds also for the validation data, so this context is different
from the case where prediction errors are calculated with the random effects set to zero.
In other words, interindividual variability is predicted as well; the distributions of the
model parameters are estimated to allow optimal prediction of a new set of data, even
when the individualized model parameter values remain unknown until enough data are
gathered.

7.4 Kalman-Filtered Concentrations and Measures
of Analgesia

The opioid buprenorphine significantly increased the resting state EEG ratio (a surro-
gate EEG measure of analgesia) and skin pain tolerance compared with placebo, as was
demonstrated in Chapter 4. A stochastic model was applied to the data, which ade-
quately characterized the concentration-time and effect-time courses for both the skin
heat stimulation and the resting state EEG ratio outcomes, with variations in the drug’s
absorption rate during a 144-hour treatment period. As measured by the potency param-
eter, the EEG effect was about 10 times more sensitive to buprenorphine than the skin
pain test. The findings suggest that the resting state EEG ratio is an objective alternative
for assessing opioid effect.

The stochastic PK-PD analysis was successful, in the sense that three kinds of random
sources could be identified: variability between individuals, variability within individu-
als, and variability in measurements. This allowed the computation of a time-dependent
variability in drug absorption from patch to blood. However, the effects of ignoring this
variability remained unknown.
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7.5 Kalman-Filtered Surrogate EEG Measures of
Anesthesia

An example where the standard two-stage (combining results from separate fits for each
individual) and nonlinear mixed-effects modeling (NONMEM) approach yielded nearly
identical parameter estimates was encountered in Chapter 5. Furthermore, it was found
that the interindividual variability identified by a mixed-effects but otherwise standard
PK-PD analysis was for a large part actually intra-individual variability, namely process
noise.

Analysis of permutation entropy data calculated from raw EEG measurements with
a first Kalman filter design displayed a large value of the steepness parameter (γ ≈ 17)
of the sigmoid-Emax model. As a consequence, the model output is very sensitive in the
region of loss of consciousness, but very insensitive in deeper levels of anesthesia. In
contrast, analysis of the data with an alternative Kalman filter design showed a relatively
low value (γ ≈ 2.5), where the model output responds smoothly to changes in anesthetic
concentration.

Simulations showed that the model parameters could be reliably estimated. Esti-
mated parameter values were similar if the Kalman filter was present or absent in the
model, except for the interindividual variability estimates. Without the Kalman filter,
these were overestimated with a factor of 10–30. Furthermore, the steepness parameter
was not overestimated. Interestingly, the largest interindividual variability (coefficient
of variation about 25%) was found to be present on the standard deviation of the process
noise.

7.6 Sampling Site Bias

Arteriovenous morphine-6-glucuronide (M6G) concentration differences were analyzed
in Chapter 6. Arterial plasma concentrations were higher just after infusion, whereas at
later times venous concentrations exceeded arterial concentrations. An extended phar-
macokinetic model adequately described the data; it consisted of three arterial compart-
ments, one central venous compartment, and one peripheral venous compartment.

The simulation studies revealed large biases in model parameters derived from ve-
nous concentration data. The biases were dependent on the value of t½,ke0 , the blood–
effect-site equilibration delay. Assuming that the true value of M6G’s t½,ke0 may be in
the range of 120 to 240 minutes (depending on the endpoint measured), we would have
underestimated t½,ke0 by 30%, whereas the potency parameter would have been overes-
timated by about 40%, when using venous plasma samples.

A delay between arterial and venous concentrations would not be unexpected. If
t½,ke0 would be estimated based on venous data, we would expect a smaller value than
if it would be based on arterial data. There are two other PD parameters, C50 and γ;
and interestingly their values may also be biased when estimated from venous data.
Most of the duration of the experiment, venous concentrations were higher than arterial
concentrations, so when the effect occurs at higher concentrations, this would lead to
an upward biased C50.

While this was not investigated, the biases are likely dependent on the administration
schedule. That means that the biases are very hard to know in advance, if the admin-
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istration schedule is different than the one upon which a model is based. While this is
arguably always the case, because a PD model may also be imperfect when it is based
on arterial concentrations, it seems prudent to not further confound a PK-PD analysis
by basing it on venous concentrations.

So because of large arteriovenous differences in M6G concentrations, biases in phar-
macodynamic model parameters will occur when linking venous concentration to effect
using a traditional effect-compartment model.

7.7 NONMEM: User, stop. Stop, will you? Stop,
User. Will you stop User? Stop, User.*

This thesis ends with a few suggestions for future studies.

1. The Bland-Altman plot gives limits of agreement, and when preset criteria are met,
a new measurement method may be assessed to be as good as the golden standard.
But what is the probability that this decision is correct?

2. The simulations performed to study the behavior of Akaike’s criterion incorpo-
rated only one interindividual variability term. The expected value of the criterion
remained minimal at the optimal model and the probability of selecting the op-
timal model remained the same. Do these findings remain true with many more
random effects? When would multimodel inference18 be of help?

3. Implementing the Kalman filter is quite difficult because of the complex deriva-
tion of, and much larger number of differential equations. This leads to further
analyses being carried out with biased results with respect to the variances of the
random effects. How could the implementation be facilitated?

4. Interindividual variability may be dealt with by Bayesian individualization.63 How-
ever, this possibility vanishes if this variability is actually also filtered intra-
individual variability. Should monitors of depth of anesthesia incorporate a
Kalman filter?

5. Arterial-venous concentration differences were significant for the one drug studied
leading to biased pharmacodynamic model parameter estimates. Without an a
priori reason why this would not hold for another drug under investigation, venous
sampling is not to be recommended if accurate pharmacodynamic model building
is desired. But could there be a predictive covariate for the magnitude of the
concentration differences?

* Adapted quote of HAL (http://www.imdb.com/title/tt0062622/quotes)
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Samenvatting

Voorziene en Onvoorziene Bevindingen

Voor het fitten (passend maken) van gemengde modellen van de eigenschappen
van geneesmiddelen werd in de jaren zeventig van de vorige eeuw een start gemaakt
met de ontwikkeling van het computerprogramma “NONMEM”, en dit programma wordt
nog steeds verbeterd. Een gemengd model kan rekening houden met zowel onverklaar-
bare verschillen tussen individuen als verklaarbare (zoals verschillen tussen mannen en
vrouwen).

NONMEM is gemaakt om instructies van een gebruiker op te volgen, die in een “con-
trol file” aangekondigd worden met het woord “$PROBLEM”. Twee belangrijke stappen
zijn: 1) “$ESTIMATION”: geef de meest aannemelijke waarden van de parameters van het
model, en 2) “$COVARIANCE”: geef een indicatie van de schattingsfouten in de waarden
van de vorige stap. De parameterschattingen zijn in een bepaalde zin optimaal als een
zeker criterium, de zogenaamde “objective function” een minimum heeft bereikt.

Beide stappen kunnen foutmeldingen opleveren. De eerste stap kan bijvoorbeeld
melden dat de OBJECTIVE FUNCTION INFINITE is; de tweede stap bijvoorbeeld dat er
een MATRIX, benodigd voor het verkrijgen van de schattingsfouten, SINGULAR is. (Het
gebruik van woorden in hoofdletters lijkt onbeleefd, maar hoofdletters waren heel ge-
bruikelijk in de tijd dat de ontwikkeling van NONMEM begon.) Dit soort foutmeldingen
kunnen optreden zelfs als het voorgestelde model heel plausibel is, en vaak nadat veel
rekentijd verstreken is. Het lijkt er - onterecht natuurlijk - wel eens op alsof er een
diepere reden is om de stappen te dwarsbomen - vandaar de interpretatie van een be-
roemde discussie uit de science fiction literatuur22 op het kaartje. In werkelijkheid was
NONMEM onmisbaar voor de in dit proefschrift besproken studies.

Bij het fitten worden er expliciete en impliciete aannamen gedaan, bijvoorbeeld dat
gewicht normaal verdeeld is of altijd positief is, of geslacht twee waarden kan aannemen.
In de inleiding, Hoofdstuk 1, werd er op gezinspeeld dat een statistische analyse, waarbij
gedane aannamen geschonden worden, resultaten kan opleveren die wel te verwachten
waren, of juist moeilijk te voorzien zijn. In dat hoofdstuk werden de onderwerpen in-
geleid waarbij de gevolgen van het schenden van aannamen bestudeerd werden. In alle
gevallen gaat het om analyses met behulp van lineaire of niet-lineaire gemengde mo-
dellen. In de volgende secties worden zowel de verwachte als onverwachte resultaten
samengevat. De bevindingen suggereren dat de volgende waarschuwingen gerechtvaar-
digd zijn:

• Een meetmethode kan ten onrechte als uitwisselbaar met de “gouden standaard”
bevonden worden als interindividuele variabiliteit aanwezig is, en omgekeerd
(Hoofdstuk 2).
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• De voorspellingsfout (gewogen verschil tussen meting en uitkomst van een mo-
del), gebruikt als validatiecriterium, kan onzekerder worden als interindividuele
variabiliteit aanwezig is. Dit leidt tot een grotere kans om aan een suboptimaal
model de voorkeur te geven (Hoofdstuk 3).

• Intra-individuele “procesruis” - variatie in metingen die niet verklaard kan worden
door meetfouten - kan ten onrechte worden aangezien als variatie tussen indivi-
duen (Hoofdstukken 4 en 5).

• De werkzaamheid van een geneesmiddel en de equilibratie-halfwaardetijd tussen
concentraties in het bloed en op plaats van werking worden mogelijk onderschat
(Hoofdstuk 6).

De 95% Betrouwbaarheidsintervallen van de Grenzen van Over-
eenstemming

De methoden van Bland en Altman om de overeenstemming tussen twee meetme-
thoden te bepalen werden bestudeerd in Hoofdstuk 2. In het bijzonder werd er gekeken
naar de invloed van correlatie tussen metingen binnen individuen. De waarschuwing in
de literatuur, dat een analyse waarbij er geen rekening wordt gehouden met correlaties
te nauwe grenzen van overeenstemming kan opleveren, werd bevestigd. Maar dankzij
simulaties kwam er naar voren dat correlaties een groter effect hebben op de betrouw-
baarheidsintervallen rond te grenzen van overeenstemming. Bij het rapporteren van
de overeenstemming tussen twee meetmethoden is de nauwkeurigheid van de grenzen
van overeenstemming natuurlijk net zo belangrijk als de grenzen zelf. Software die ge-
schikt is om deze berekeningen gemakkelijk uit te voeren kan van pas komen bij het
evalueren van de toepasbaarheid van nieuwe medische apparaten. Met dat doel werd
een “open source” webapplicatie ontwikkeld zodat een Bland-Altman analyse uitgevoerd
kan worden zonder software te installeren (behalve een webbrowser die vrijwel altijd
beschikbaar is). Het zou kunnen dat in eerdere studies incorrecte conclusies over de
uitwisselbaarheid van meetmethoden werden getrokken door een te beperkt aantal in-
dividuen. Om ambivalentie te voorkomen werd voorgesteld een standaard te hanteren
voor het uitvoeren en rapporteren van Bland-Altman analyses. Door naast de analyse-
resultaten ook voldoende gegevens over de gedane aannames te verschaffen kan het
vertrouwen in de resultaten worden vergroot.

Het op de Informatietheorie Gebaseerde Criterium van Akaike

Het criterium van Akaike is een getal dat een maat is voor de kwaliteit van een model.
De absolute waarde van het getal is niet relevant; het getal is alleen te interpreteren ten
opzichte van de grootte van het getal voor alternatieve modellen. De simulaties die
in Hoofdstuk 3 werden besproken lieten zien dat, in het geval van een verzameling
vooraf gespecificeerde eenvoudige gemengde modellen, de gemiddelde minimum AIC
overeenkomt met de beste prestaties in het kader van het voorspellen van nieuwe data.

Een andere bevinding was dat in aanwezigheid van interindividuele variabiliteit de
voorspellingsfout als zodanig minder geschikt wordt om als modelvalidatiecriterium
gebruikt te worden, omdat deze in principe geen rekening kan houden met deze vari-
abiliteit. De context van AIC in het geval van gemengde modellen is die waarbij inter-
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individuele variabiliteit wordt meegenomen door te integreren over alle mogelijkheden.
Dit gebeurt met de parameters op de geschatte waarden voor de populatie, nadat alle
data zijn verzameld. Dit geldt ook voor de validatiedata, dus deze context verschilt van
die waarbij voorspellingsfouten worden berekend aan de hand van de voorspelling voor
het “gemiddelde” individu. Met andere woorden, de interindividuele variabiliteit wordt
ook voorspeld; de verdelingen van de parameters van een model worden geschat voor
de optimale voorspelling van een verzameling nieuwe data, ook al blijven de geïndivi-
dualiseerde modelparameters onbekend totdat genoeg data is verzameld.

Concentraties en Maten voor Analgesie Nasporen met het Kalman
Filter

In Hoofdstuk 4 werd de stijging in de tolerantie voor hittepijn en in de “EEG ratio in
rusttoestand” ten gevolge van het morfinomimeticum buprenorfine bestudeerd. De EEG
ratio is een surrogaatmaat voor de diepte van analgesie, gebaseerd op de verhouding van
de aanwezigheid van snelle en langzame golven in het EEG. Deze data werd adequaat
beschreven met een stochastisch model, waarbij variabiliteit werd aangenomen in de
absorptie uit de buprenorfinepleister gedurende de 144 uur dat deze was aangebracht.
Afgaand op de parameter die de werkzaamheid kwantificeert, was de EEG ratio ongeveer
10 maal gevoeliger voor buprenorfine dan de hittepijntest. De bevindingen suggereren
dat de EEG ratio een gevoelige en objectieve maat is om te kijken naar het effect van de
toediening van opioïden.

De stochastische PK-PD analyse was succesvol, in de zin dat drie bronnen van va-
riabileit konden worden geïdentificeerd: residuele (“onverklaarde”) variabiliteit tussen
individuen, variabiliteit in de individuen (procesruis), en variabiliteit tussen metingen.
Dit maakte het mogelijk de variatie in de tijd te volgen van de absorptie van buprenorfine
uit de pleister. In dit hoofdstuk werd niet gekeken naar de invloed van het negeren van
deze bron van variabiliteit. Het kan zijn dat een farmacokinetisch model waarbij pro-
cesruis niet ingebouwd is zo slecht fit, dat de concentratiemetingen zelf een betere basis
vormen voor een farmacodynamisch model. Maar een Kalman filter geeft een optimale
voorspelling van de concentraties, in de aanwezigheid van procesruis en meetruis.

Surrogaatmaten voor Anesthesie Nasporen met het Kalman Filter

Een voorbeeld waarbij een standaard analyse (het combineren van de resultaten van
individuele fits) en een analyse met (niet-lineaire) gemengde modellen (NONMEM) vrijwel
dezelfde parameterschattingen opleverde werd aangetroffen in Hoofdstuk 5. Een an-
dere bevinding was dat de interindividuele variabiliteit, geschat met NONMEM, eigenlijk
voor een groot deel intra-individuele variabiliteit oftewel procesruis was.

De permutatie-entropie is een maat voor de onvoorspelbaarheid van een signaal,
waarbij de amplitude op zich geen rol speelt, maar alleen de amplitude van een meting
ten opzichte van enkele daaraanvoorafgaande metingen. De analyse van de permutatie-
entropie van het EEG met behulp van een eerste ontwerp van een Kalman filter leverde
een zeer grote niet-lineariteit van het farmacodynamische model op. Dat houdt in dat
het model heel gevoelig is rond het verlies of de terugkeer van het bewustzijn, maar dat
het diepere anesthesie niet kan volgen. Een tweede ontwerp gaf een veel kleinere mate
van niet-lineariteit, waarbij het model de concentratie van het toegediende anestheticum
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vloeiender kon volgen. Het verschil tussen deze ontwerpen had te maken met de locatie
van de procesruis - aan de uitgang of aan de ingang van het farmacodynamisch model.

Als data wordt gesimuleerd, dan kan er gekeken worden of een analyse met behulp
van modellen inclusief een Kalman filter de eigenschappen van die data inderdaad op-
levert. Het bleek dat de eigenschappen betrouwbaar teruggeschat kunnen worden. De
parameterwaarden hingen nauwelijks af van de aan- of afwezigheid van een Kalman fil-
ter, behalve voor de parameters die interindividuele variabiliteit aangeven. Zonder een
Kalman filter waren deze soms met een factor van 10 tot 30 overschat. Ook bleek dat
de niet-lineariteit goed geschat werd. De grootste overgebleven interindividuele variabi-
liteit bleek aanwezig op de standaarddeviatie van de procesruis. Deze bevindingen zijn
interessant omdat ze een aanwijzing kunnen vormen bij het verklaren van de onvoor-
spelbaarheid in de farmacodynamiek van anesthetica.

De Locatie van Bloedafname en Systematische Fouten

Arterioveneuze morfine-6-glucuronide (M6G) concentratieverschillen werden bestu-
deerd in Hoofdstuk 6. Vlak na toediening van M6G waren arteriële concentraties hoger
dan veneuze; later waren veneuze concentraties hoger dan arteriële. Een farmacoki-
netisch model met een uitbreiding om zowel arteriële als veneuze concentraties te be-
schrijven deed dat adequaat; het bestond uit drie compartimenten voor de arteriële data
en twee compartimenten extra voor de veneuze data.

Simulatiestudies lieten grote systematische fouten in parameterschattingen zien als
daarvoor de veneuze data in plaats van de arteriële data gebruikt werden. De grootte van
de systematische fouten hing af van de equilibratie-halfwaardetijd tussen concentraties
in het bloed en op plaats van werking. Onder de aanname dat de werkelijke waarde
ergens tussen de twee en vier uur ligt (afhankelijk van het farmacodynamisch eindpunt)
dan zou deze equilibratie-halfwaardetijd met een factor van ongeveer 30% onderschat
worden, en de werkzaamheid met een factor van 40%.

Een equilibratietijd tussen arteriële en veneuze concentraties is niet vreemd, en het
valt dan ook te verwachten dat de equilibratie-halfwaardetijd tussen concentraties in het
bloed en op plaats van werking onderschat wordt als bij de analyse veneuze in plaats
van arteriële concentraties gebruikt worden. Er zouden ook systematisch schattingsfou-
ten van de werkzaamheid en niet-lineariteit van de farmacodynamiek van M6G kunnen
optreden. Maar van te voren is het niet eenvoudig te zeggen of deze onder- of over-
schat zouden worden. Aangezien de veneuze concentraties gedurende het grootste deel
van het experiment hoger lagen dan de arteriële, valt te verklaren dat de werkzaamheid
overschat werd.

Hoewel dit niet nader werd onderzocht, is de grootte van systematische schattings-
fouten waarschijnlijk afhankelijk van het toedieningsschema van een geneesmiddel. Dat
betekent dat die fouten erg moeilijk vooraf in te schatten zijn, vooral als het toedienings-
schema afwijkt van het schema dat werd gebruikt bij de opstellen van een model. Hoewel
te beargumenteren is dat dit altijd het geval is, omdat een farmacodynamisch model ook
nooit perfect is als het gebaseerd is op arteriële concentraties, lijkt het verstandig om
de kwaliteit van een PK-PD analyse niet te beperken door het te baseren op veneuze
concentraties.

De studie liet ook zien dat arterioveneuze concentratieverschillen kunnen leiden
tot grote fouten in voorspellingen van de farmacodynamiek, als het farmacodynamisch
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model wordt gekoppeld aan veneuze concentraties, beschreven met een standaard far-
macokinetisch model.

NONMEM: Gebruiker, Houdt Op. Houdt U Op? Houdt Op, Gebrui-
ker. Houdt U Op, Gebruiker? Houdt Op, Gebruiker.

Deze samenvatting eindigt met enkele suggesties voor nieuwe studies.

• De grafiek van Bland en Altman toont de grenzen van overeenstemming, en wan-
neer aan vooraf gestelde criteria wordt voldaan kan een nieuwe meetmethode als
“net zo goed” worden bevonden als de “gouden standaard”. Maar wat is de kans
dat deze beslissing correct is?

• De simulaties die werden uitgevoerd om het gedrag van het fitcriterium van Akaike
te bestuderen, bevatten slechts een enkele bron van interindividuele variabiliteit.
De verwachte waarde van het criterium bleef minimaal voor het optimale model,
en de kans het optimale model te kiezen bleef hetzelfde in aan- en afwezigheid
van deze variabiliteit. Blijven deze resultaten gelden in de aanwezigheid van veel
meer bronnen van variabiliteit? Wanneer kan inferentie door middel van een ver-
zameling van modellen nuttig zijn?

• Het implementeren van een Kalman filter in NONMEM is nogal lastig vanwege de
complexe afleiding van en het grote aantal benodigde differentiaalvergelijkingen.
Maar dat leidt ertoe dat er veel analyses gedaan blijven worden zonder een Kalman
filter, met als gevolg systematische fouten in de geschatte relevantie van bronnen
van interindividuele variabiliteit. Hoe zou de implementatie vereenvoudigd kun-
nen worden?

• Bayesiaanse optimalisatie van een model voor een specifiek individu is een ma-
nier om met interindividuele variabiliteit om te gaan.63 Maar deze mogelijkheid
verdwijnt als deze variabiliteit eigenlijk gefilterde intra-individuele variabiliteit is.
Zouden monitors van de diepte van anesthesie eigenlijk een Kalman filter moeten
hebben?

• Arterioveneuze concentratieverschillen kunnen significant zijn, en leiden tot sys-
tematische fouten in de schattingen van farmacodynamische parameters. Zonder
een a priori reden waarom dit niet zou gelden voor een nog niet in dit opzicht
bestudeerd geneesmiddel, kan veneus in plaats van arterieel bloed afnemen niet
aanbevolen worden als adequate farmacodynamische modellenbouw gewenst is.
Maar zou er een voorspellende covariaat voor de grootte van arterioveneuze con-
centratieverschillen bestaan?
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