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Predictability of Extreme Events in Social Media
José M. Miotto*, Eduardo G. Altmann
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Abstract

It is part of our daily social-media experience that seemingly ordinary items (videos, news, publications, etc.) unexpectedly gain
an enormous amount of attention. Here we investigate how unexpected these extreme events are. We propose a method that,
given some information on the items, quantifies the predictability of events, i.e., the potential of identifying in advance the
most successful items. Applying this method to different data, ranging from views in YouTube videos to posts in Usenet
discussion groups, we invariantly find that the predictability increases for the most extreme events. This indicates that, despite
the inherently stochastic collective dynamics of users, efficient prediction is possible for the most successful items.
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Introduction

When items produced in social media are abundant, the public

attention is the scarce factor for which they compete [1–3].

Success in such economy of attention is very uneven: the

distribution of attention across different items typically shows

heavy tails which resemble Pareto’s distribution of income [4] and,

more generally, are an outcome of complex collective dynamics

[5–12] and non-trivial maximizations of entropic functions

[13,14]. Increasing availability of large databases confirm the

universality of these observations and renew the interest on

understanding the dynamics of attention, see Tab. 1.

Universal features of heavy-tailed distributions do not easily lead

to a good forecast of specific items [5], a problem of major

fundamental and practical interest [15–19]. This is illustrated in

Fig. 1, which shows that the heavy-tailed distribution appears at

very short times but items with the same early success have radically

different future evolutions. The path of each item is sensitively

dependent on idiosyncratic decisions which may be amplified

through collective phenomena. An important question is how to

quantify the extent into which prediction of individual items is

possible (i.e., their predictability) [20]. Of particular interest –in

social and natural systems– is the predictability of extreme events

[21–26], the small number of items in the tail of the distribution that

gather a substantial portion of the public attention.

Measuring predictability is difficult because it is usually

impossible to disentangle how multiple factors affect the quality

of predictions. For instance, predictions of the attention that

individual items are going to receive rely on (i) information on

properties of the item (e.g., metadata or the attention received in

the first days) and (ii) a prediction strategy that converts the

information into predictions. The quality of the predictions reflect

the interplay between these two factors and the dynamics of

attention in the system. In particular, the choice of the prediction

strategy is crucial. Instead, predictability is a property of the system

and is by definition independent of the prediction strategy (it is the

upper bound for the quality of any prediction based on the same

information on the items). A proper measure of the predictability

should provide direct access to the properties of the system,

enabling a quantification of the importance of different informa-

tion on the items in terms of their predictive power.

In this paper we introduce a method to quantify the

predictability of extreme events and apply it to data from social

media. This is done by formulating a simple prediction problem

which allows for the computation of the optimal prediction

strategy. The problem we consider is to provide a binary (yes/no)

prediction whether an item will be an extreme event or not

(attention passes a given threshold). Predictability is then

quantified as the quality of the optimal strategy. We apply this

method to four different systems: views of YouTube videos,

comments in threads of Usenet discussion groups, votes to Stack-

Overflow questions, and number of views of papers published in

the journal PLOS ONE. Our most striking empirical finding is

that in all cases the predictability increases for more extreme

events (increasing threshold). We show that this observation is a

direct consequence of differences in (the tails of) the distributions of

attention conditioned by the known property about the items.

The paper is divided as follows: Sec. Motivation motivates the

problem of event prediction by showing that it is robust to data

with heavy tails. Sec. Methods introduces the method to quantify

predictability, which is used in the Sec. Application to Data. A

summary of our findings appears in Sec. Conclusions.

Motivation

Characterization of Heavy-tails
Different systems in which competition for attention takes place

share similar statistical properties. Here we quantify attention of
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published items in 4 representative systems (see Appendix S1, Sec.

1 for details; all the data is available in Ref. [27]):

N views received by 16.2 million videos in YouTube.com

between Jan. 2012 and Apr. 2013;

N posts written in 0.8 million threads in 9 different Usenet

discussion groups between 1994 and 2008;

N votes to 4.6 million questions published in Stack-Overflow

between Jul. 2008 and Mar. 2013.

N views of 72246 papers published in the journal PLOS ONE

from Dec. 2006 to Aug. 2013 (see also Ref. [28]).

The tails of the distribution P(X ) of attention X (views, posts,

etc.) received by the items (videos, threads, etc.) at a large time t

after publication is characterized without loss of generality using

Extreme Value Theory. It states that for large thresholds xp the

probability P(X DXwxp) follows a Generalized Pareto distribution

[29]

P(XwxDXwxp)* 1z
x{xp

sa

� �{a

: ð1Þ

The fits of different partitions of our databases yield a[½0:50,4:36�
and are statistically significant already for relatively small xp’s (p-

valuew0:05 in 52 out of 59 fits, see Appendix S1, Sec. 2 and Fig. S1

for details). These results confirm the presence of heavy tails, an

observation reported previously in a variety of cases (see Tab. 1).

This suggests that our databases are representative of social media

more generally (while scientific publications are usually not classified

as social media items, from the point of view of their online views,

they are subject to the same attention-gathering process).

Prediction of Extreme Events
Prediction in data with heavy tails is typically not robust. As an

example, consider using as a predictor X̂X of the future attention

Table 1. Examples in which fat-tailed distributions of popularity across items have been reported.

System Item Attention measure Refs.

Online Videos video views, likes [18]

Discussion Groups threads posts, answers [38]

Publications papers citations, views [6,8,15,19]

Twitter tweet retweets [9]

WWW webpage views [11]

Online Petitions petition signers [39]

doi:10.1371/journal.pone.0111506.t001

Figure 1. Dynamics of views in YouTube. Colored histograms: distributions of views at fixed times after publication (0.3 million videos from
our database). Gray lines at the bottom: trajectories of 120 videos which had the same early success (50 views 2 days after publication). Black
histogram: distribution of views of the 120 selected videos 2 months after publication.
doi:10.1371/journal.pone.0111506.g001
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the mean X̂X~
P?

x~1 xP(x), which is the optimal predictor, if we

measure the quality of prediction with the standard deviation of X .

For heavy-tailed distributions, the mean and standard deviation

may not be defined (for av1 and av2, respectively), making

prediction not robust (i.e., it depends sensitively on the training

and target datasets). This illustrates the problems heavy-tails

typically appear when value predictions are issued and indicates

the need for a different approach to prediction of attention.

We consider the problem of event prediction because, as shown

below, it is robust against fat-tailed distributions. We say an event

E happens at time t if the cumulative attention X (t) received by

the considered item until time t is within a given range of values.

We are particularly interested in predicting extreme events

X (t)wx�, i.e., to determine whether the attention to an item

passes a threshold x� before time t. The variable to be predicted

for each item is binary: E or �EE (not E). We consider the problem

of issuing binary predictions for each item (E will occur or not),

which is equivalent to a classification problem and different from a

probabilistic prediction (E will occur with a given probability).

Heavy tails do not affect the robusteness of the method because all

items for which X (t)wx� count the same (each of them as one

event), regardless of their size x. Indeed, the tails of P(Xwx�)
determine simply how the probability of an event P(E) depends

on the threshold x� (we assume P(X ) exists).

Methods

In this section we introduce a method to quantify predictability

based on the binary prediction of extreme events. This is done by

arguing that, despite the seeming freedom to choose between

different prediction strategies, it is possible to compute a single

optimal strategy for this problem. We then show how the quality of

prediction can be quantified and argue that the quality of the

optimal strategy is a proper quantification of predictability.

Predictions are based on information on items which generally

lead to a partition of the items in groups g[f1, . . . ,Gg that have

the same feature [30]. As a simple example of our general

approach, consider the problem of predicting at publication time

t~0 the YouTube videos that at t~t�~20 days will have more

than x�~1000 views (about P(E)&6% of all videos succeed). As

items’ information, we use the category of a video so that, e.g.,

videos belonging to the category music correspond to one group g

and videos belonging to sport correspond to a different group g’.
Since the membership to a group g is the only thing that

characterizes an item, predictive strategies can only be based on

the probability of having E for that group, P(EDg).

In principle, one can think about different strategies on how to

issue binary predictions on the items of a group g. They can be

based on the likelihood (L) P(EDg) or on the posterior (P)

probability P(gDE) [22], and they can issue predictions stochas-

tically (S), with rates proportional to the computed probabilities, or

deterministically (D), only for the groups with largest P(gDE) or

P(EDg). These simple considerations lead to four (out of many)

alternative strategies to predict events (raise alarms) for items in

group g

(LS) stochastically based on the likelihood, i.e., with probability

minf1,bP(EDg)g, with b§0;

(LD) deterministically based on the likelihood, i.e., always if

P(EDg)wp�, with 0ƒp�ƒ1;

(PS) stochastically based on the posterior, i.e., with probability

minf1,b’P(gDE)g, with b’§0;

(PD) deterministically based on the posterior, i.e., always if

P(gDE)wp’�, with 0ƒp’�ƒ1.

In the limit of large number of predictions (items), the fraction of

events that strategy (LS) predicts for each group g matches the

probability of events P(EDg) and therefore strategy (LS) is reliable
[31] and can be considered a natural extension of a probabilistic

predictor. Predictions of strategies (LD), (PS) and (PD) do not

follow P(EDg) and therefore they are not reliable.

The quality of a strategy for event prediction is assessed by

computing the false alarm rate (or False Positive Rate, equal to one

minus the specificity) and the hit rate (True Positive Rate, equal to

the sensitivity) over all predictions (items), see Appendix S1, Sec. 3

for details. Varying the amount of desidered false alarms of the

prediction strategy (b,p�,b’, and p’� in the examples above), a

curve in the hit | false-alarm space is obtained, see Fig. 2(a). The

overall quality is measured by the area below this curve, known as

Area Under the Curve (AUC) [32]. For convenience, we use the

area between the curve and the diagonal (hits = false-alarms),

P~2AUC{1 (equivalent to the Gini coefficient). In this way,

PS[({1,1) represents the improvement of strategy S against a

random prediction. In absence of information PS~0 and perfect

predictions lead to P~1. In the YouTube example considered

above, we obtain PPSvPLSvPPDvPLD (17%, 18%, 29%,

32%), indicating that strategy (LD) is the best one.

We now argue that strategy (LD) is optimal (or dominant [33]),

i.e., for any false alarm rate it leads to a larger hit rate than any

other strategy based on the same set of P(EDg). To see this, notice

that strategy (LD) leads to a piecewise linear curve, see Fig. 2(b),

and is the only ordering of the groups that enforces convexity in

the hit | false-alarms rates space, see Appendix S1, Sec. 4 for a

formal derivation. The ranking of the groups by P(EDg) implies a

ranking of the items, an implicit assumption in the measure of the

performance of classification rules [32,34]. The existence of an

optimal strategy implies that the freedom in choosing the

prediction strategy argued above is not genuine and that we can

ignore the alternative strategies. In our context, it implies that the

performance of the optimal strategy measures a property of the

system (or problem), and not simply the efficiency of a particular

strategy. Therefore, we use the quality of prediction of the optimal

strategy (P:PLD) to quantify the predictability (i.e., the potential

prediction) of the system for the given problem and information.

By geometrical arguments we obtain from Fig. 2 (b) (see Appendix

S1, Sec. 5)

P~
X

g

X
hvg

P(g)P(h) P(EDh){P(EDg)ð Þ
P(E)(1{P(E))

, ð2Þ

where P(g) is the probability of group g and g is ordered by

decreasing P(EDg), i.e., hvg[P(EDh)wP(EDg).

The value of P can be interpreted as the probability of a correct

classification of a pair of E and �EE items [32,34]. In practice, the

optimality of this strategy is dependent on the estimation of the

ordering of the groups according to P(EDg). Wrong ordering may

occur due to finite sampling on the training dataset or non-

stationarities in the data. In fact, any permutation of indexes in Eq.

(2) reduces P.

Results

Application to Data
Here we apply our methodology to the four social-media data

described above. We consider the problem of predicting at time

t1§0 whether the attention x of an item at time t�wt1 will pass a

threshold x�. In practice, the calculation of P from the data is

done counting the number of items: (i) in each group g

Predictability of Extreme Events in Social Media
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[P(g)~(#items in g)=(#items)]; (ii) that lead to an event

½P(E)~(#items that crossed the threshold x� at t�)=(#items)�;
and (iii) that lead to an event given that they are in group g
½P(EDg)~(#items in g that crossed the threshold x� at t�)=(#
items in g)�. Finally, the groups are numbered as g~1,2, . . . ,G
by decreasing P(EDg) and the sum over all groups is computed as

indicated in Eq. (2). In Ref. [27] we provide a python script which

performs this calculation in the data.

We report the values of P obtained from Eq. (2) considering two

different informations on the items:

1) the attention at prediction time x(t1);

2) information available at publication time t~0 (metadata).

In case 1), a group g corresponds to items with the same x(t1).
These groups are naturally ordered in terms of P(EDg) by the value

of x(t1) and therefore the optimal strategy is equivalent to issue

positive prediction to the items with x(t1) above a certain

threshold. In case 2), the groups correspond to items having the

same meta-data (e.g., belonging to the same category). In this case,

we order the groups according to the empirically observed P(EDg)
(as discussed above). Before performing a systematic exploration of

parameters, we illustrate our approach in two examples:

N Consider the case of predicting whether YouTube videos at

t�~20 days will have more than x�~1,000 views. For case 1),

we use the views achieved by the items after t1~3 days and

obtain a predictability of P~90%. For case 2), we obtain that

using the day of the week to group the items leads to P~3%
against P~31% obtained using the categories of the videos.

This observation, which is robust against variations of x� and

t�, shows that the category but not the day of the week is a

relevant information in determining the occurrence of extreme

events in YouTube.

N Consider the problem of identifying in advance the papers

published in the online journal PLOS ONE that received at

leas t 7500 v iews 2 years a f ter pub l icat ion, i .e

X (t�~2years)wx�~7500 (only P(E)~1% achieve this

threshold). For case 1), knowing the number of views at

t1~2 months after publication leads to a predictability of

P~93%. For case 2), a predictability P~19% is achieved

alone by knowing the number of authors of the paper –

surprisingly, the chance of achieving a large number of views

decays monotonously with number of author (g increases with

number of authors).

The examples above show that formula (2) allows for a

quantification of the importance of different factors (e.g., number

of authors, early views to the paper) to the occurrence of extreme

events, beyond correlation and regression methods (see also Ref.

[19]). Besides the quantification of the predictability of specific

problems, by systematically varying t1,t�, and x� we can quantify

how the predictability changes with time and with event

magnitude. Our most significant finding is that in all tested

databases and grouping strategies the predictability increases with

x�, i.e., extreme events become increasingly more predictable, as

shown in Fig. 3.

Discussion

We now explain why predictability increases for extreme events

(increasing x�). We first show that this is not due to the reduction

of the number of events P(E). Consider the case in which E is

defined in the interval ½xf {Dx,xf zDx). Assuming P(X ) to be

smooth in X , for Dx?0 at fixed xf we have that P(E)?P(xf )Dx

and P(EDg)?P(xf Dg)Dx (P(g) remains unaffected), and Eq. (2)

yields

P~

P
g

P
hwg P(g)P(h) P(xf Dh){P(xf Dg)

� �
P(Ef )½1{DxP(xf )� , ð3Þ

which decreases with Dx?0. This shows that the increased

predictability with x� is not a trivial consequence of the reduction

of P(E) (Dx?0), but instead is a consequence of the change in

P(EDg) for extreme events E.

Systematic differences in the tails of P(X Dg) lead to an increased

predictability of extreme events. Consider the case of two groups

Figure 2. Quantifying the quality of event-prediction strategies requires measuring both the hit and false alarm rates. (a)
Performance of Strategy (LS) and Strategy (LD) for the problem of predicting views of YouTube videos 20 days after publication based on their
categories. The symbols indicate where the rate of issued predictions for a given group equals 1 (the straight lines between the symbols are obtained
by issuing predictions randomly with a growing rate). (b) Illustration of the prediction curve (red line) for an optimal strategy with three groups
g~1,2,3 with P(1)~P(2)~P(3)~1=3 and P(ED1)~0:3,P(ED2)~0:2,P(ED3)~0:1.
doi:10.1371/journal.pone.0111506.g002
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with cumulative distributions P(EDg) that decay as a power law as

in Eq. (1) with exponents a and a’~azE, with P(1)~P(2). From

Eq. (2), P for large x� (1{P(E)&1) can be estimated as

P~
1

4

P(ED1){P(ED2)

P(ED1)zP(ED2)
~

1

4

x{a
� {x{(azE)

�

x{a
� zx

{(azE)
�

&
1

8
log (x�)E, ð4Þ

where the approximation corresponds to the first order Taylor

expansion around E~0. The calculation above can be directly

applied to the results we obtained issuing predictions based on

metadata. The logarithmic dependency in Eq. (4) is consistent with

the roughly linear behavior observed in Fig. 3(a,b). A more

accurate estimation is obtained using the power-law fits of Eq. (1)

for each group g and introducing the P(EDg) obtained from these

fits in Eq. (2). The red line in Fig. 3 shows that this estimation

agrees with the observations for values x� &> xp, the threshold used

in the fit. Deviations observed for x�&xp (e.g., for PLOS ONE

data in panel (d)) reflect the deviations of P(EDg) from the Pareto

distribution obtained for small thresholds xp%x�. This allows for

an estimation of the predictability for large thresholds x� even in

small datasets (when the sampling of E is low).

A similar behavior is expected when prediction is performed

based on the attention obtained at short times t1. Eq. (3) applies in

this case too and therefore the increase in predictability is also due

to change in P(EDg) with x� for different g (and not, e.g., due to

the decrease of P(E)). For increasingly large x� the items with

significant probability of passing threshold concentrate on the

large x(t1) and increase the predictability of the system. We have

verified that this happens already for simple multiplicative

stochastic processes, such as the geometric Brownian motion (see

Fig. S2). This provides further support for the generality of our

finding. The dynamics of attention in specific systems affect the

shape of predictability growth with threshold.

Altogether, we conclude that the difference in (the tails of) the

distribution of attention of different groups g is responsible for the

increase in predictability for extreme events: for large x�, any

informative property on the items increases the relative difference

among the P(EDg). This corresponds to an increase of the

information contained in the grouping which leads to an increase

in P.

Conclusions

In summary, we propose a method, Eq. (2), to measure the

predictability of extreme events for any given available informa-

tion on the items. We applied this measure to four different social

media databases and quantified how predictable the attention

Figure 3. Predictability increases for extreme events. If the attention an item receives at time t� is above a threshold, X (t�)wx� , an event E is
triggered. The plots show how the predictability P changes with x� using two different informations to combine the items in groups fgg. Black
circles: P at time t~0 using metadata of the items to group them. The red lines are computed using as probabilities P(EDg) the Extreme Value
distribution fits for each group at a threshold value xp , see Eq. (1) and SI Sec. 2. Blue squares: P at time t1vt� using X (t1), i.e., the attention the
item obtained at day t1 . The dashed lines are the values of the 95% percentile of the distribution generated by measuring P in an ensemble of
databases obtained shuffling the attribution of groups (g) to items (the colors match the symbols and symbols are shown only where P is at least
twice this value). Results for the four databases are shown: (a) YouTube (X : views of a video; metadata: video category); (b) Usenet discussion groups
(X : posts in a thread; metadata: discussion group of the thread); (c) Stack-Overflow (X : votes to a question; metadata: programming language of the
question, see SI Sec. 2 for details); (d) PLOS ONE (X : online views of a paper; metadata: number of authors of the paper).
doi:10.1371/journal.pone.0111506.g003
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devoted to different items is and how informative are different

properties of the items. We quantified the predictability due to

metadata available at publication date and due to the early success

of the items and found that usually the latter quickly becomes

more relevant than the former. Our results can also be applied for

combinations of different informations on the items (e.g., a group g
can be composed by videos in the category music with a fixed

x(t1)). In practice, the number of groups G should be much

smaller than the observations in the training dataset to ensure an

accurate estimation of P(EDg). Our most striking finding is that

extreme events are better predictable than non-extreme events, a

result previously observed in physical systems [23] and in time-

series models [22,26]. For social media, this finding means that for

the large attention catchers the surprise is reduced and the

possibilities to discriminate success enhanced.

These results are particularly important in view of the

widespread observation of fat-tailed distributions of attention,

which imply that extreme events carry a significant portion of the

total public attention. Similar distributions appear in financial

markets, in which case our methodology can quantify the increase

in predictability due to the availability of specific information (e.g.,

in Ref. [35] Internet activities were used as information to issue

predictions). For the numerous models of collective behavior

leading to fat tails [6,8–11,15,19], the predictability we estimate is

a bound to the quality of binary event predictions. Furthermore,

our identifications of the factors leading to an improved

predictability indicate which properties should be included in the

models and which ones can be safely ignored (feature selection).

For instance, the relevant factors identified in our analysis should

affect the growth rate of items in rich-get-richer models [11,12] or

the transmission rates between agents in information-spreading

models [36]. The use of P to identify relevant factors goes beyond

simple correlation tests and can be considered as a measure of

causality in the sense of Granger [37].

Predictability in systems showing fat tails has been a matter of

intense debate. While simple models of self-organized criticality

suggest that prediction of individual events is impossible [5], the

existence of predictable mechanisms for the very extreme events

has been advocated in different systems [24]. In practice,

predictability is not an yes/no question [7,20] and the main

contribution of this paper is to provide a robust quantification of

the predictability of extreme events in systems showing fat-tailed

distributions.

Supporting Information

Figure S1 Distribution functions for each dataset.
Dashed red line: fit of the generalized Pareto distribution (see

Appendix S1 Sec. 2); Gray lines: each of the categories (see

Appendix S1 Sec. 2); Blue solid line: combined data.

(PDF)

Figure S2 Predictability of simple stochastic processes.
An ensemble of random walkers evolve through the dynamics

Xi(tz1)~Xi(t)(1ze), where e*N (mi,
ffiffiffiffi
mi

p
) (Geometric Brow-

nian Motion with Gaussian steps. The predictability of extreme

events P was computed for t1~3 steps and t�~15 steps. GBM:

mi~2 Vi and X (0)*U(0,1); GBM heterogeneous: mi*N (2,0:7)
and X (0)*U(0,1), fixed in time; GBM, init exp: mi~2 Vi and

X (0)*E(1=6); GBM, t1~1 the same as GBM for t1~1; GBM,

time decay: model proposed in Ref. [15], similar to GBM

heterogeneous but with a rate that decays in time

(Xi(tz1)~Xi(t)(1zefi(t) with mi*N (1,0:5); fi(t) is a log-normal

surviving probability with parameters mt
i*LN (6:5,0:5) and

s*LN (1,0:2)).

(PDF)

Appendix S1 Details on procedures, analysis and data.

(PDF)
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