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Figure 3.1: Schematic representa-
tion of spin µ interacting with a me-
chanical resonator with spring con-
stant k and displacement q(t) of the
magnet. The dashed line shows the
position axis that is used in Fig.3.2.

3
A resonator magnetically cou-
pled to a semi-classical spin

We calculate the change of the properties of a res-
onator, when coupled to a semiclassical spin through the
magnetic field coming from a magnetic moment on the
tip. Starting with the Lagrangian of the complete sys-
tem, we provide an analytical expression for the linear
response function for the motion of the resonator, thereby
considering the influence of the resonator on the spin and
vice versa. This analysis shows that the resonance fre-
quency and effective dissipation factor can change signif-
icantly due to the relaxation times of the spin.

This chapter is based on J. M. de Voogd, J. J. T. Wa-
genaar, and T. H. Oosterkamp, “Dissipation and

resonance frequency shift of a resonator mag-
netically coupled to a semiclassical spin”, Sci.
Rep., vol. 7, 42239, Feb. 2017
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Resonators and spins are ubiquitous in physics, espe-
cially in quantum technology, where they can be con-
sidered as the basic building blocks, as they can collect,
store and process energy and information1. The valid-
ity of this information is, however, of limited duration as
these building blocks leak practically always to the en-
vironment, which on its own can be seen as a bath of
resonators and spins2. If in particular we focus on the
situation where a resonator is coupled to a certain spin,
then the spin’s interaction with the environment naturally
causes, besides a shift of resonance frequency, an extra
dissipation channel for the resonator. Despite this sim-
ple qualitative explanation and many experimental3 and
theoretical efforts4, an applicable full picture that quanti-
tatively describes the response of a resonator coupled to
a spin and their environments is, to our knowledge, still
lacking. Here we derive classically the linear response
function of the non-conservative system consisting of a
resonator and a semiclassical spin. We show that the qual-
ity factor and resonance frequency of the resonator can be
significantly influenced due to the relaxation times of the
spin.

We start with a Lagrangian description, that includes
the degrees of freedom of the resonator and the spin, to
find the coupled equations of motion (EOMs) that de-
scribe the resonator displacement and the spin magnetic
moment, finding that this magnetic moment depends on
the path the resonator takes. This is fundamentally differ-
ent from conventional magnetic force microscopy (MFM)5,
where one assumes a fixed polarization of the spins, as is
indeed the case in magnetized samples. Even in magnetic
resonance force microscopy (MRFM), which is usually fo-
cused on paramagnetic spins, it is generally assumed that
the spin is not, or at least not significantly, influenced by
the resonator6. We will show that this influence actually
opens a dissipation channel and that the resonance fre-
quency shift is more subtle than generally assumed.

Furthermore, we find in our analytical results that the
interaction amplitude as function of temperature is a curve
that for certain conditions shows an optimum, see Fig. 3.3,
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similar to the curves found in experiments where the tails
have heuristically been fitted with power laws7. Parts of
the analysis we present here have been used in Ch. 7 to
explain the experimental results obtained by approach-
ing a native oxide layer on silicon with an ultra-sensitive
MRFM probe. The equations derived in this chapter were
found to closely resemble the measured shift in resonance
frequency and reduced quality factor as function of tem-
perature and resonator - spin surface distance.

Finding an accurate description of the interaction of the
building blocks of quantum devices with the environment
can be seen as a widespread and major research area since
not being able to understand, control and minimize the
interaction is a major bottleneck in the field of quantum
computing8, detector fabrication in astronomy9, MRFM
and high resolution MRI10 and the development of opto-
mechanical hybrid quantum devices11.

3.1 Basic Principles

The configuration of our theoretical analysis is given in
Fig. 3.1a. A semiclassical spin, with magnetic moment µ,
is located at laboratory position rs and feels a magnetic
field B(rs, t) that is produced by a magnet. The magnet
is attached to a mechanical resonator that has spring con-
stant k0 and (effective) mass me f f . The origin of the lab-
oratory frame is chosen to be the equilibrium position of
the magnet’s center. The displacement of the magnet from
this equilibrium position is denoted by q(t). See Fig. 3.1.
The Lagrangian for this system is given by

L =
1
2

me f f q̇2 − 1
2

k0q2 + µ · B(q) + IS. (3.1)

IS stands for an expression containing the internal spin
degrees of freedom that needs to be included to derive
the spin EOM12.

The resonator-spin system does not live in an isolated
world. Therefore we include dissipation and decay to
the environment into the EOMs. The first differential
equation, derived with respect to the resonator displace-
ment, includes the Raleigh dissipation −γq̇ of the res-
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onator. This results in

me f f q̈ + γq̇ + k0q− µ ·
∂

∂q
B = Fext(t), (3.2)

where the last term, Fext(t), is an external force that is
exerted on the resonator.

Starting with the Lagrangian, which contains the de-
grees of freedom for the resonator and the spin, leads
to the force interaction term −µ · ∂

∂q B. This is the same
as −µ ·∇B‖q, because of the vanishing curl of the mag-
netic field. Here ∇B‖q is the gradient of the magnetic
field component in the direction of the movement of the
resonator. In MRFM −µ ·∇B‖q is often derived from cal-
culating the force-field from the gradient of the potential
energy ∇ (µ · B), assuming that µ does not depend on the
position of the resonator13. However, as µ follows the
classical path, we will show by solving the spin EOM that
µ is influenced by the resonator and it is therefore a priori
not at all obvious that ∂

∂q µ = 0.
The other set of differential equations can be found by

deriving the EOM with respect to the spin degrees of free-
dom. Since the spin interacts with the environment, we
can expect an effectively decaying amplitude that is of-
ten described by T1 and T2; the time constants associated
with the decay of the semiclassical magnetic moment lon-
gitudinal and perpendicular to the magnetic field, respec-
tively14. If one assumes that the system consists of an en-
semble of paramagnetic spins, instead of a single isolated
spins, the average magnetic moment per spin decays to
a certain equilibrium vector µ∞, according to the master
equation15. However, if a single spin over time has on av-
erage the same behavior as the average of an ensemble at
a certain moment, i.e. the spin satisfies ergodicity, then we
can combine the ensemble’s master equation and the sin-
gle spin EOM to find a differential equation that describes
the average behavior of the single semiclassical spin. This
is the Bloch equation:

µ̇ = γsµ× B + T−1 (µ∞ − µ) . (3.3)

Here γs is the gyromagnetic ratio and T−1 ≡ 1
T2

(
1− B̂B̂T)+

1
T1

B̂B̂T , where the hat denotes the unit-vector in the direc-
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tion of the specified vector and B̂T is the transposed unit
vector.

The spin equilibrium magnetic moment µ∞(t) is the
vector to which the spin magnetic moment would decay
to if given the time. As the resonator moves, the magnetic
field changes, and so does µ∞. We will assume that the
environment of the spin is a heat bath, connected to the
spin by means of the relaxation times. However, does the
spin’s equivalent spin ensemble have a well defined tem-
perature? As derived in the original paper of Bloember-
gen et al. (1948), the differential equation describing the
population difference n for particles in a two level system
is

dn
dt

= −2Wn +
n0 − n

T1
, (3.4)

where W is the rate that the particle changes energy level
due to an applied field and n0 is the population differ-
ence between the energy levels when the ensemble is in
equilibrium, in others words when the ensemble has the
temperature of the heat bath. −2Wn is proportional to
the incoming energy and n0−n

T1
is the connection to the

heat bath. This results in

n∞ =
n0

1 + 2WT1
, (3.5)

where n∞ is the steady state solution. Thus when 2WT1 � 1,
the spin ensemble, and hence our semiclassical spin, is
connected well enough to the heat bath to assume that
our spin has a well defined temperature. For spin- 1

2 this
condition yields16

πγ2
s
∣∣B′∣∣2 q2T1g (ω0)� 1, (3.6)

where B′ = ∂
∂q B

∣∣∣
r=rs

and g (ω) the spin’s normalized ab-

sorption line that is usually described by a Lorentzian or
Gaussian that peaks around the Larmor frequency at a
value of 1. ω0 is the resonance frequency of the cantilever
at which the cantilever oscillated with amplitude q. This
makes this condition hard to satisfy when the resonator
has a resonance frequency around the Larmor frequency,
and one should minimize the resonator’s movement q.
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When this condition is not met, the spin saturates and
the temperature increases or might be undefined17. How-
ever, for example in MRFM, mechanical resonators tend to
have resonance frequencies much lower than the Larmor
frequency and so it is much easier to satisfy this condi-
tion.
Assuming the condition is satisfied we can now derive µ∞

from the canonical ensemble and find for spin- 1
2

µ∞ = µs tanh (βµs |B|) B̂, (3.7)

where β ≡ 1
kBT is the inverse temperature and µs ≡ Sh̄γs

is the magnitude of the non-averaged spin magnetic mo-
ment with spin number S = 1

2 . This result can easily be
generalized for other spin numbers18. For simplicity we
will stick to the formula for spin- 1

2 particles here.

3.2 Susceptibility

To find the resonance frequency and quality factor of the
resonator, we will need to calculate the interaction term
up to linear order in q. Higher order terms will give rise
to nonlinear effects. Interaction terms with even powers
in q are usually experimentally uninteresting since they
will produce even multiples of the fundamental resonance
frequency. These multiples are not measured or can easily
be filtered. The higher order terms with uneven powers of
q can, however, lead to disturbing nonlinear effects as in a
Duffing oscillator19. One can lower the amplitude of q to
suppress higher order terms and therefore the nonlinear
effects, but in experiments this is usually limited by the
signal-to-noise ratio.

The zeroth order term does not contribute to the dy-
namics of the system, however it does give rise to a con-
stant deflection of the resonator. This can be solved by
shifting the origin of the laboratory frame by the amount
of the deflection; this causes, however, a (usually small)
change of the coordinates of the spin.

To find the interaction term −µ · ∂B
∂q up to first order in

q, we first need to solve Eq. 3.3 for µ and find the constant
and q-dependent parts. By substituting q → λq we use
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Figure 3.2: This graph shows the
single spin contributions to the
spring constant as function of a po-
sition axis parallel to the direction of
resonator movement, as visualized
by the dashed line in Fig. 3.1. In
the simulation we attached a mag-
netic dipole (with magnetic moment
of 19 pAm2 in the direction of q)
on a mechanical resonator. The res-
onator is connected, by means of the
magnetic field, to an electron spin
at a temperature of 300 mK. The
distance between the center of the
dipole and x = 0 is 2.5 µm. To
demonstrate the spatial behavior of
the κ-terms we avoided imaginary
terms by setting T1 = 0 in κ2 and
T2 = 0 in κ3. The black line shows
the sum of these κ-terms.

perturbation theory to find that −µ · ∂B
∂q can be expressed

as

−µ ·
∂B
∂q

= µ0 · B′ + λ
(
µ1 · B′ − qµ0 · B′′

)
+O

(
λ2
)

, (3.8)

where B′ = ∂
∂q B

∣∣∣
r=rs

was defined previously and B′′ =

∂2

∂q2 B
∣∣∣
r=rs

. Here µ is perturbed into a q-independent part

µ0 and a linear term µ1. The higher order terms O
(
λ2)

can be omitted, as well as the first term on the right hand
side that only gives rise to the constant deflection.

At first we are mostly interested in solutions that do
not decay over time and do not depend on initial condi-
tions because then the linear response function can con-
veniently be given in the Fourier domain which makes
it easy to compare with experiments. The Fourier Trans-
form F{ } of the linear response function, or simply sus-
ceptibility χ (ω) ≡ q̃(ω)

F{Fext} , can be calculated from Eq. 3.2

χ (ω) =
1

k0 −me f f ω2 + iγω + κ
, (3.9)

where κ = κ1 + κ2 + κ3, with κ1 ≡ −µ0 · B′′ and κ2 + κ3 ≡
F{µ1 · B′}

q̃(ω)
. De Voogd et al. (2017) present the calculation of
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the κ-terms, which turn out to be:

κ1 = −µs tanh (βµsB0)
∣∣∣B′′‖B̂0

∣∣∣ ,

κ2 (ω) = − µs

B0

βµsB0

cosh2 (βµsB0)

∣∣∣B′‖B̂0

∣∣∣2 1
1 + iωT1

,

κ3 (ω) = − µs

B0
tanh (βµsB0)

∣∣∣B′⊥B̂0

∣∣∣2×1−
2 T2

T1
− (ωT2)

2 + iωT2

(
1 + 2 T2

T1

)
(1 + iωT2)

2 + (ωsT2)
2

 ,

where B0 ≡ B (q = 0) and the notation v‖B̂0
and v⊥B̂0

is
used to indicate the part of v parallel and perpendicular
to B̂0 respectively for any vector v. κ2 and κ3 are derived
from µ1‖B̂0

and µ1⊥B̂0
respectively.

If we compare this result with the conventional approach
that neglects the effect of the resonator on the spin, we
see that in that approach we have only the term κ1

20.
However, κ1 is real and therefore it cannot describe the
extra dissipation channel that has been seen in experi-
ments21. The derivation which has been done here does
include the linear effect of the resonator on the spin and
vice versa. This produces two extra terms in the linear
response function that are partly imaginary. Each of the
κ-terms is shown separately in Fig. 3.2 as a function of the
spin position. This position axis is indicated in Fig. 3.1 by
the dashed line. Which effect these terms have in prac-
tice, where usually more than one spin is present, will be
shown in the next section.

3.3 Spin Bath - Resonator Coupling

We assume that all spins in the system act individually
and do not influence each other, except through the relax-
ation times. We can then sum over the κ-terms for each
spin to find the susceptibility of the resonator connected
to a whole ensemble of spins, i.e. κ = ∑s κ1(rs) + κ2(rs) +

κ3(rs). Moreover, if the spins in the sample have an av-
erage nearest neighbor distance smaller than the typical
spatial scale of the applied magnetic field, we can see the
sample as a spin continuum and hence, instead of sum-
ming, integrate over the sample with spin density ρ(r).
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Figure 3.3: Calculated frequency
shift and added dissipation of a me-
chanical resonator due to dangling
bonds on a silicon surface, equiv-
alent to the setup of Den Haan
et al. (2015). a) Impression of a
NdFeB magnet (with magnetic mo-
ment 19 pAm2 in the direction of
q) attached to an ultrasoft silicon
cantilever with spring constant k =
70 µN/m, together leading to a nat-
ural frequency of ω0

2π = 3 kHz.
The surface of the sample has a na-
tive oxide containing 0.14 electron
spins/nm2 that are visualized by
the red balls (not to scale). b,c) The
resonance frequency shift and the
damping of the cantilever as func-
tion of the temperature. The center
of the magnet is positioned at a dis-
tance of 2.2 µm to the silicon sam-
ple. The results are shown for vari-
ous T1, showing a maximal opening
of the additional dissipation chan-
nel for T1 = 1/ω0. Note that in the
lower graph that a the blue line and
dashed black line lies on top of each
other.
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If we calculate the result for a volume with constant spin
density, it can be found by partial integration of the vol-
ume in the direction of the movement of the resonator

κ(ω) =ρβµ2
s C

(ωT1)
2 + iωT1

1 + (ωT1)2 +

boundary term +O
(

1
(ω2

s −ω2) T2
2

)
, (3.10)

with

C =
∫∫∫

V
d3r

∣∣∣B′||B0

∣∣∣2
cosh2 (βµsB0)

. (3.11)

The boundary term vanishes when the volume bound-

aries in the q-direction are large. The O
(

1
(ω2

s−ω2)T2
2

)
can

be neglected for resonance frequencies away from the Lar-
mor frequency and for T2 � 1

ωs
.

From κ we can calculate the frequency and Q-factor shifts
as seen in experiments by Den Haan et al. (2015) (Ch. 7).

For Q0 ≡
√

k0me f f
γ � 1√

2
, the susceptibility has a maxi-

mum close to the natural frequency ω0 ≡
√

k0
me f f

. Then,
as long as the influence of the spin leads only to a small
correction of the susceptibility, i.e. κ � k0, the relative
frequency shift is given by

∆ω

ω0
≈ 1

2
Re (κ(ω0))

k0
. (3.12)

The imaginary part of κ causes the change in Q-factor.
The new Q-factor is given by

1
Q
≈ 1

Q 0
+

Im (κ(ω0))

k0
. (3.13)

In Fig. 3.3 we show an example of an experiment with a
magnet attached to an ultrasoft cantilever, which is posi-
tioned above a silicon sample. The native oxide contains
electron spins that interact with the resonating magnet.
The frequency shift and quality factor depend differently
on T1. In this simulation we have set T2 to zero only af-
ter we checked that the O term in Eq. 3.10 can indeed
be neglected: setting T2 = T1 gives an additional fre-
quency shift of about 1 nHz and a five orders of magni-
tude lower shift in Q-factor compared to the results shown
in Fig. 3.3c.
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3.4 Discussion and Conclusions

We have calculated the linear response function of a me-
chanical resonator coupled to a spin. The linear response
function of the resonator shows extra terms that result in
a shift of the resonance frequency and a drop of the Q-
factor of the resonator, compared to the bare resonator
characteristics. In practice, this means that despite hav-
ing resonance frequencies that are not even close to the
Larmor frequency, one encounters dissipation of the res-
onator due to the inhomogeneous field it creates. Eventu-
ally this might not be a surprise since the resonator alters
the heat capacity of the spin’s equivalent spin ensemble.
Although this is closely related to the magnetic loss en-
hancement in nonmagnetic glassy systems22, we did not
find any description in literature that provides a quantita-
tive and detailed account of how this influences the linear
response of the resonator, despite the many reported and
unexplained results23. The results presented here have
been experimentally verified24 and have been used to cal-
culate the frequency shift in a simple, yet powerful, satu-
ration measurement protocol25.

We have chosen to do the calculations completely in the
(semi)classical regime as we are especially interested in
the expectation value of spin and resonator. Moreover this
leads to an intuitive description and fairly simple calcu-
lations. The classical treatment has it limitations though:
Berman et al. (2006a) have raised the point that in a quan-
tum description, if the cantilever position is constantly
measured, there is an influence on the spin because of
the projections that are constantly occurring in the act of
measuring. This might introduce random quantum jumps
which, when they are not time averaged over timescales
longer than T1, are not taken into account in our descrip-
tion. Furthermore, when pulses are applied, for exam-
ple in spin resonance techniques, a precise time evolution
of the system is needed. Moreover, sending hard pulses
might violate the condition for the temperature and linear
response of the spin that we have encountered in Sec. 3.1.
In this case one might move to a calculation involving
the spin-operators. The theory presented here would still
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give a fair indication about the enhancement of dissipa-
tion, which is of importance in the field of hybrid quan-
tum systems that are pushing the limit of macroscopic
superpositions26.


