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Chapter 2

Accuracy of the detection of

binding events using 3D

single-particle tracking

Nanoparticles can be used as markers to track the position of biomolecu-
les inside living cells. The activity of a protein can sometimes be inferred
from changes in the mobility of the attached particle. Mean squared dis-
placement analysis is the most common method to obtain mobility infor-
mation, such as the di�usion coe�cient D, from trajectories of tracked
particles. The precision of D sets a limitation to discriminate changes in
mobility caused by biological events from the statistical variation inher-
ent to di�usion. This issue is of particular importance in an experiment
aiming to quantify dynamic processes.

Here, we present simulations and 3D tracking experiments with gold
nanorods freely di�using in glycerol solution to establish the best analysis
parameters to extract the di�usion. We applied this knowledge to the
detection of a temporary change in di�usion, as it can occur due to the
transient binding of a particle to an immobile structure within the cell.
The simulations show that the spatial accuracy of the particle tracking
generally does not limit the detection of such binding event. However,
changes in mobility can only be detected reliably when they last for a
su�cient number of frames.

This chapter is based on: S.Carozza, J. Culkin, J. van Noort Accuracy of the
detection of binding events using 3D single-particle tracking, 2017, BMC Biophysics
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2.1 Introduction

Cells present a dynamic environment for the biomolecules that orches-
trate life: important processes such as intracellular or intramembrane
tra�cking [1�3] protein dynamics [4, 5] and gene delivery [6, 7] can be
studied in detail by analyzing the mobility of the molecules involved.
Single-molecule tracking (SMT) is a powerful tool to investigate such
dynamic processes. SMT discloses information unobtainable using en-
semble techniques, because following molecules individually can reveal
variations in behavior that occur during the process, including rare events
that are otherwise obscured in the ensemble. The high precision of SMT
relies on the possibility to localize a single molecule with higher accuracy
than the di�raction limit [8]. Ultimately, the accuracy of localization
depends on the optical brightness of the molecule. Because most bio-
molecules can not be detected using optical microscopy, they need to be
labeled with �uorescent markers like organic dyes or �uorescent proteins.
Alternatively, metal or semiconductor nanoparticles have been used as
labels to track single molecules. Single-particle tracking (SPT) [9] is ad-
vantageous over SMT because nanoparticles are generally brighter than
�uorophores and can therefore be tracked with better precision. More-
over, as opposed to single �uorophores, nanoparticles do not bleach,
which extends the time span over which a single molecule can be fol-
lowed. However, nanoparticles are larger than single �uorophores, and
will thus a�ect the mobility of the molecules of interest. A more detailed
discussion on the advantages of metal nanoparticles over other labels is
presented in Chapter 1, Section 1.1.1.

From SPT one can obtain long time traces of single molecules, that
are then analyzed to quantify mobility. The mean squared displacement
(MSD) of the particle reveals characteristic modes of mobility like free
di�usion, con�ned di�usion and active transport, which are characterized
by parameters such as di�usion coe�cient (D), velocity and con�nement
size. The ability to track individual molecules, labeled with nanoparti-
cles, with nanometer precision and over long times would make it possible
to observe transient changes in the mobility of the molecule that could
not be observed using other methods. For example, the binding of a
transcription factor to its DNA target has been challenging to detect at
the single-molecule level. Though �uorescence correlation spectroscopy
(FCS) and SMT approaches have been used to study this process [10,
11], the short length of the traces, due to photobleaching and/or di�usion
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out of the detection volume, generally directs data analysis to ensemble
properties rather than those of single molecules. Therefore, SPT could
provide a unique alternative for monitoring the dynamics of an attached
molecule.

How reliable are the mobility parameters extracted from such SPT
experiments? In the case of active transport, the localization accuracy
is the most important factor in�uencing the precision of the particle ve-
locity [12]. In the case of di�usion an evaluation of the accuracy of D
is more complex: di�usion is a stochastic process, and this requires the
measurement of many independent localizations to obtain D with high
precision. The precision of D is of high relevance for biological exper-
iments, as it sets a threshold to discriminate a biologically meaningful
change in di�usion from the intrinsically stochastic variations.

Here we investigated how accurately the di�usion coe�cient of a par-
ticle can be measured in a SPT experiment, and how well we can detect
a transition in its di�usion behavior. The issue of accuracy of di�usion
coe�cients has been addressed before, with a theoretical approach and
simulations [12, 13], but mainly in 2D. 2D SPT can provide higher tem-
poral resolution than in 3D, but the images are limited in space to single
planes and the tracking can be performed only as long as the particle
stays in the plane: the use of 2D SPT is therefore limited to tracking
in cell compartments that can be approximated to 2D such as the cell
membrane [14, 15]. The simulations in this report extend the analysis of
the accuracy of the detection of D to 3D tracking experiments.

We used a particular kind of nanoparticles, gold nanorods (GNRs),
as labels for 3D SP using two-photon excitation. We used a two-photon
multifocal scanning microscope to acquire multiple z sections forming a
3D stack of images. Some 3D SPT techniques have a higher temporal
resolution compared to z sectioning, like for example the use of cylindri-
cal lens to extract 3D positioning [1]. However, the use of astigmatism
is not compatible with two-photon excitation, and thus lacks the bene-
�ts of higher signal-to-noise; total internal re�ection �uorescence (TIRF)
microscopy [16] gives high spatial and temporal resolution, but within
a limited 3D area, not su�cient to cover the entire volume of a cell;
orbital tracking [17] tracks only one particle at the time and cannot ben-
e�t from the high throughput of parallel tracking. A good alternative to
two-photon multifocal microscopy is two-photon light sheet microscopy
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[18] that provides good penetration depth in the sample and a compa-
rable acquisition speed; for SPT these two techniques present similar
challenges.

The outline of this chapter is as follows: �rst, we addressed the in�u-
ence of positional accuracy of the 3D tracking scheme on the precision
of the extracted MSD with simulations; then we analyzed the accuracy
of the obtained di�usion coe�cient with simulations and experiments;
we optimized the parameters that are used to obtain D from the MSD;
�nally we simulated traces containing a change in di�usion behavior and
established the experimental boundaries for resolving such changes.

2.2 Materials and methods

Experimental setup

The acquisition of 3D movies of single GNRs was performed on a home-
built two-photon multifocal scanning microscope as previously reported
in [19], with some small changes. A near IR pulsed laser (Coherent
Chameleon Ultra) was used for excitation; the laser beam was split in
an array of 625 beams by a di�ractive optical element (DOE, custom
made by Holoeye). A fast scanning mirror, driven with an Archimedean
spiral function, was used to scan the array of beams over the sample:
this way we obtained a wide and homogenous excitation on an area
of about 60 µm x 60 µm, and collect images of tens of GNRs within
this area. A piezo-stage (PIfoc, PI) was used to move the objective in
the z-axis to collect 3D images. We acquired images with an EMCCD
Camera (Photometrics QuantEM 512SC). The frame size was 400 pixels
x 400 pixels, corresponding to about 60 µm x 60 µm and the separation
between z slices was typically 0.5 µm. We acquired 10 z slices per stack,
at a rate of 10 frames/s: the time resolution of our 3D localization was
therefore 1 s/stack. A more detailed description of the setup can be
found in Chapter 1, Section 1.2.3.

Sample preparation

Samples of GNRs of two di�erent sizes were used: 47±4 nm x 14±2
nm GNRs were synthesized through a seed-mediated method [20], while
53±6 nm x 16±3 nm GNRs were purchased from Nanopartz (A12-25-
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780-CTAB). Both GNRs samples were coated with a polyethylene glycol
(PEG) layer before use. GNR sizes were obtained from transmission elec-
tron microscope (TEM, JEOL JEM 1010) images of both batches. The
TEM images also provided a measure for the size dispersion within the
two samples. The GNR sizes used for our theoretical calculations were
increased by the thickness of a PEG layer. The size of the PEG layer
(which cannot be seen in TEM) was measured independently using �uo-
rescence correlation spectroscopy (FCS, [21]), yielding an e�ective PEG
layer thickness of 8.1 nm (see Figure S1). GNRs were �rst suspended in
small volumes of demineralized water, then glycerol was added to reach
the desired concentration of 95% and 90%. For SPT in glycerol both
GNR samples were excited at a wavelength of 770 nm.

Simulations

Simulations of movies of di�using GNRs were performed in LabVIEW
using the following procedure: a set of 3D trajectories was created, ac-
cording to a given di�usion coe�cient D (or multiple values of D, in case
of changes in behavior); a stack of empty frames was then �lled with a
3D Gaussian peak for each time coordinate, and amplitude and standard
deviation of the peak were set using typical values obtained experimen-
tally for single GNRs (amplitude=1000 a.u., sxy=300 nm, sz=650 nm);
Poissonian noise was added to each pixel in the peak in order to sim-
ulate shot-noise; an o�set (1000 a.u.) and a background noise (1 a.u.)
were added to the entire 3D stack of images, re�ecting the camera gain
settings and detection noise. As opposed to experimental movies, in
simulated movies we introduced only one GNR to prevent incorrect tra-
jectory assignments when GNRs would cross. We simulated videos with
a frame rate of 10 frames/s, as typically collected by our setup. The
frame size was 300 pixels x 300 pixels (corresponding to about 52 µm x
52 µm, and the separation between z slices was 1 µm.

Data analysis

Image analysis was also performed in LabVIEW. The same analysis was
applied to simulated and real movies. In each 3D stack of images, peaks
were detected and �tted with a 3D Gaussian function: from the �t we
obtained position, intensity, o�set and width of each peak. When more
than one trace was present in the movie, peaks were connected to traces
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Figure 2.1
Steps to extract the di�usion constant of single GNRs in glycerol. From a movie of 3D
stacks of frames (as the frame in a), trajectories of single GNRs were extracted (b),
and on each of them a MSD analysis was performed. c) The MSD plot was �tted to a
line with a slope that corresponds to the di�usion coe�cient, and o�set proportional
to the 3D positional accuracy (Eq. 2.6).

using a minimal excursion criterion. Once traces were obtained, an MSD
analysis was performed. An illustration of the method is shown in Fig.
2.1, and details of the MSD analysis process are described in the next
section.

2.3 Theory

2.3.1 Localization accuracy

Figure 2.1a shows a typical 2D image of a number of GNRs, of which
peaks are convoluted with the Point Spread Functions (PSFs) of the
microscope. The localization uncertainty σ of a single particle in a 2D
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�uorescent image was described by Thompson as [8]:

σ =

√
s2

Np
+

a2

12Np
+

8πs2b2

a2N2
p

(2.1)

where s is the width of the PSF, Np is the number of photons, a is the
pixel size and b the number of photons in the background noise. The
uncertainty in position decreases with increasing number of photons, as is
characteristic for shot-noise. Mortensen [22] later modi�ed this equation
into:

σ =

√
s2a
Np

(16

9
+

8πs2ab
2

Npa2

)
(2.2)

where s2a = s2 + a2/12. To the best of our knowledge, a description
of the positional uncertainty in the case of 3D images has never been
reported. Previously, we observed an experimental increase in x and y
accuracy in 3D data that originated from the additional photons recorded
in all frames above and below focus that contribute to a 3D peak ([19]).
These measurements were made using �xed, immobile GNRs. In the
results section we will quantify this e�ect. However, changes in positions
between slices in a stack will a�ect the positional accuracy.

2.3.2 Accuracy of mean square displacement analysis

For now we will ignore the movement between slices in the stack and
analyze single traces (Fig. 2.1b) by calculation of the mean squared
displacement. The MSD of a trajectory is the average of all the squared
displacements r2 occurring within time steps of di�erent duration τ :

MSD(τ) =
1

nτ

nτ∑
i=1

(
ri+τ − ri

)2
(2.3)

where nτ is the number of steps, equal to (T -τ)/τ : T is the total
length of the trace and τ is the time lag between displacements. The
di�usion of a particle is quanti�ed by the coe�cient D, described by the
Stokes-Einstein equation:

D =
kT

6πηR
(2.4)
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where k is the Boltzmann constant, T the temperature, R the radius
of the particle and η the viscosity of the medium. In the case of a rod,
an `equivalent radius', the radius of a sphere with equivalent volume, is
used. It is de�ned as:

Req = (ab2)1/3 (2.5)

where a and b are the longer and shorter axis of the rod. For free di�usion
in an isotropic medium the MSD has a linear dependence on τ [4], and
in 3D it results in:

MSD(τ) = 6Dτ + 6σ2 (2.6)

Fitting Eq. 2.6, one can obtain the di�usion coe�cient D, as well as
the 3D localization accuracy σ. Fig. 2.1c shows an example of an MSD
plot and its �t with Eq. 2.6. A parameter that has a large in�uence on
the accuracy of the �t is the number of MSD points that are included
in the �t. In the example in Fig. 2.1c, the GNR trace is about 100
points long, and we �tted the �rst 10 MSD points to obtain D. When
dealing with shorter traces though, the points in the MSD plot at larger
time delays become increasingly random, due to the stochastic nature
of di�usion and the fewer measurements that contribute to the mean.
Including these points in the �t may yield an erroneous D. Due to this
inherent statistical variance in the MSD, the error on the obtained D can
be signi�cant and will depend on the number of points that are included
in the �t. The relative error in D is de�ned as:

ρ =
∣∣∣D−Dmeasured

D

∣∣∣ (2.7)

Qian et al. [12] showed that ρ depends on the total length of the
trajectory N and on the number of �tting points n, and it approximates
to:

ρ =

√
2n

3K
(2.8)

where K=N -n. Weighting MSD points according to the sample size
could yield a better accuracy, but Thompson [8] showed that the e�ect
of this correction is negligible. Michalet [13] extended Quian's analysis
to conditions with a �nite localization uncertainty to determine the best
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number of �tting points for the analysis. He calculates the relative error
to be:

ρ =
{ n

6K2
(4Kn2 + 2K + n− n3) +

1

K

[
2nx+ x2

(
1 +

1− n
K

2

)]}1/2

(2.9)
where x is the reduced positional uncertainty and is de�ned as:

x =
σ2
D∆t

(2.10)

and ∆t is the sample time. Eq. 2.9 converges to Eq. 2.8 for x = 0, large
N (N ≈ 1000) and K �n [13]. In our work we use Michalet's formula for
ρ as we have a non-zero positional uncertainty and traces shorter than
1000 points. Michalet showed that choosing a non-optimal number of
�tting points results in a di�usion coe�cient noticeably larger than the
actual one. He calculated the best number of �tting points to be:

n = 2 + 2.3x0.52 (2.11)

Therefore, the optimal number of �tting points to use depends on
positional uncertainty, di�usion coe�cient and sampling time. In a real
experiments the expected D is typically not known, so n is not easy to
evaluate. An estimate of the order of magnitude of the D to expect is
a �rst good step. A higher sampling rate or a lower precision increases
the value of the optimal n to use. We tested Michalet's results with 3D
simulations using di�erent positional uncertainties and di�usion coe�-
cients. Then we validated these results with experiments using GNRs
with known D, compared D to the value measured with SPT and calcu-
lated the relative error ρ.

2.3.3 Detection of changes in the di�usion coe�cient

Having a well-de�ned, constant D, is however highly simplistic when
doing SPT in cells: over time a molecule will undergo transitions in
the di�usion behavior. We simulated and analyzed traces containing
a transition in di�usion, in particular a period with a lower di�usion
coe�cient (Fig. 2.2a), mimicking for example the binding of a particle
to a �xed structure in the cell. To analyze these traces, we needed to
detect the transition points. From a rolling window MSD analysis, a
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plot of the variations of D within the trace was obtained (Fig. 2.2b).
This D(t) plot was then analyzed with a Student's T-test, evaluating
the probability that two populations belong to the same distribution. In
our case we used a modi�ed version of Student's T-test, the Welch's test
[23], optimized for populations with di�erent variances. It calculates the
T-statistic as:

T =
X1 −X2√
s21
N2

1
+

s22
N2

2

(2.12)

where X1, X2 are the means of the two samples, s1, s2 their variances
and N1, N2 the samples sizes. The probability that the two samples are
described by the same distribution is calculated using the T-distribution
probability density function [23]:

p(T, ν) =
Γ(ν+1

2 )
√
πνΓ(ν2 )

(
1 +

T 2

ν

)− ν+1
2

(2.13)

in which Γ is the gamma function.
The degrees of freedom ν are approximated by theWelch-Satterthwaite

equation as:

ν ≈
s21
N2

1
+

s22
N2

2

2

s41
N1(N1−1) +

s42
N2(N2−1)

(2.14)

A p-value is calculated for each point in the D plot, considering two
windows of the same size around the point. The minima in the prob-
ability plot (Fig. 2.2c) correspond to the points in the trace where a
di�usion transition is most likely to happen. Rolling windows with dif-
ferent sizes (N1 and N2 in Eq. 2.12 and 2.14) did not show noticeable
di�erences. We chose a rolling window size of 15 steps, and a Welch test
sample size of 15 or 10, when the gap was shorter than 15 steps. Tran-
sition points were assigned using a threshold for P and the initial trace
was divided in subtraces. We tested di�erent values for the threshold,
and we obtained the best compromise between false negative and false
positive results with a value of 10-10.

As shown in Fig. 2.2c, not all the detected transition points cor-
responded to real transitions: some were misassigned due to stochastic
�uctuations in D. We performed a second Welch test on these subtraces
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Figure 2.2
Detection of di�usion transitions. a) A simulated trajectory, which contains a brief
period of reduced mobility. In this gap D was 0,0001 µm2/s , while the D in the rest of
the trace was 0,05 µm2/s. The gap is highlighted with a green circle. b) The di�usion
coe�cient along the trajectory D(t) was calculated using a 15 points rolling-window
method. c) A Welch test yielded minima in the P-value plot, that indicate possible
transition points used to divide the trajectory in subtraces. d) D values obtained
from the MSD of each subtrace.

using window sizes corresponding to the entire subtraces length. The
transitions con�rmed by the second test were accepted as real transition
points. Despite this second statistical test, it was not always possible to
assign each transition point correctly. For example in Fig. 2.2c at t =
25 s a change in D was wrongfully detected. A new MSD analysis was
�nally done on the �nal subtraces to obtain the mean D, which is plotted
in Fig. 2.2d.



44

2.4 Results and discussion

2.4.1 Spatial and temporal resolution

We �rst performed simulations to obtain the positional accuracy for 3D
images with �xed peak positions. We tested cases with di�erent num-
bers of photons N at �xed background noise b. We simulated static
GNRs: the uncertainty was calculated from the di�erence between the
input coordinates and the coordinates obtained from the Gaussian �t
and plotted in Fig. 2.3a. For 2D data only the central frame in each 3D
stack was used. In this case, the positional uncertainty was consistently
higher than expected based on Thompson's formula (Eq. 2.1). A similar
discrepancy between theory and simulations was reported previously [8].
Mortensen's formula (Eq. 2.2) results in a 30% increase in positional
uncertainty, that follows closely our 2D data. However, in the case of 3D
data, the underestimate positional uncertainty obtained using Thomp-
son's formula compensates for the larger number of photons collected
for a peak in a 3D stack. Therefore, in this work we used Eq. 2.1 to
calculate the positional uncertainty of 3D peaks.

In the analysis of dynamic data, the temporal resolution plays an impor-
tant role: the �nite time between acquisitions can obscure fast dynamic
processes. Moreover, in real experiments, the movement of the particle
occurs also between slices within a 3D stack: we simulated this move-
ment within a stack for a range of di�usion coe�cients: as shown in Fig.
2.3b, the e�ect of the movement within stacks can be dramatic for large
di�usion coe�cients. The positional uncertainty in the x-y plane for the
lowest di�usion constant (D = 0.01 µm2/s) is about 9.5 ± 0.6 nm, for
the highest (D = 0.5 µm2/s) σ is 143.0 ± 8.4 nm. In the z direction,
the uncertainty follows the same trend but is even more pronounced.
In the experiments on GNRs performed with our setup, the number of
photons collected was very high, due to the high brightness of the two-
photon signal of GNRs and low background. From Eq. 2.1 we calculate
a positional accuracy of 4 nm (see Figure S2) for an average Np of 4000
photons. However, due to the GNR movement between slices, the posi-
tional uncertainty is increased: considering the di�usion coe�cient range
expected for our experiments (between 0.02 and 0.07 µm2/s), we expect
the e�ective positional uncertainty in x,y to be around 20 nm, and in
z around 40 nm. The uncertainty values obtained from the MSD �t is
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Figure 2.3
The positional uncertainty in 2D and 3D simulations depends on the brightness and
the temporal resolution. a) The localization uncertainty improves with increasing
number of photons emitted from the GNR. The black line represents the theoretical
value obtained from Thompson's Eq. 2.1, the blue line represents the theoretical
value obtained using Mortensen's Eq. 2.2. The images obtained from simulations
were analyzed in 2D (�tting only one slice per 3D stack, blue dots) and in 3D (�tting
the whole 3D stack, black squares). Each point in the graph is an average of 10 sets
of 200 simulated images. The background noise was kept constant at b = 0.5. b) The
e�ect of the movement of the particle between frames for an acquisition time of 10
fr/s.

around 40 nm: this value includes the x-y and the z components, and is
comparable to the σ value in z obtained from simulations.

2.4.2 Factors that determine the uncertainty in the de-

tection of the di�usion coe�cient

The stochastic nature of di�usion is another source of uncertainty in the
determination of the di�usion coe�cient D. Following Eq. 2.8, the length
of the trace and the number of MSD �tting points have a large in�uence
on the error in D. In Fig. 2.4a, results from simulations show that the
best number of �tting points for data with low positional uncertainty is
2, for di�erent values of D, in accordance with Michalet's results. When
the positional uncertainty increases (Fig. 2.4b), it has a large in�uence
on the �rst MSD points, so more MSD points are required for an accurate
determination of D. The length of the traces also a�ects the precision of
the obtained D (Fig. 2.5): longer traces allows for better statistics in
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the calculation of the MSD. The positional uncertainty can be calculated
from the measurement independently using the number of photons (Eq.
2.1). Fig. 2.5 shows that �xing the positional uncertainty σ in the MSD
�t slightly improves the �nal result.

In summary, these precautions can reduce the error on the obtained
D : using long traces, �xing the positional uncertainty of the MSD �t,
and limiting the �t to the �rst two MSD points. Nevertheless, even with
high positional accuracy, one will obtain relatively large errors in D when
measuring for �nite times due to the stochastic nature of di�usion.

Figure 2.4
Stochastic variations in di�usion limit the accuracy of D measurements. a) In case
of low positional uncertainty (σ= 10 nm), the best number of �tting points is 2, for
di�erent values of D. b) In case of higher positional uncertainty (σ = 200 nm), errors
in position detection dominate the error in D for small displacements, and the best
number of MSD points increases (see inset). Each point in the plot is the average ρ
obtained from 100 simulations of 200 points traces.

2.4.3 Experimental validation of the di�usion coe�cient

accuracy using gold nanorods in glycerol

We next tested our results on experimental traces of GNRs di�using in
glycerol with a well-known di�usion coe�cient, rather than in a cellu-
lar environment, which is not homogeneous and therefore the di�usion
coe�cient would not be well-de�ned. We compared the statistical varia-
tions in D to the variations predicted based on the size dispersion of our
GNR samples. Experiments were performed with two GNRs sizes and
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Figure 2.5
Optimizing the accuracy of D measurements for single trajectories. Using longer
traces improves the estimate of D, lowering ρ. Fixing the positional uncertainty
σ (dashed line) in the MSD �t reduces in the relative error compared to �tting it
(continuous line). Each point is the average ρ obtained from 100 simulated traces
with length as indicated in the legend and D = 1 µm2/s.

two glycerol concentrations. The expected values of D, calculated using
Eq. 2.4, are listed in Table S1. The values of D are at least two orders
of magnitude smaller than the typical di�usion coe�cients of proteins,
due to the large size of the GNRs. Smaller GNRs may be used, but this
would imply a weaker luminescence and a faster di�usion, which make
it more di�cult to accurately quantify the mobility. What follows are
the results obtained from the �rst sample (52 nm x 16 nm GNRs in 95%
glycerol), while the results from the other samples are summarized in
Table S1. In Fig.2.6a, the relative errors ρ obtained experimentally are
compared to the theoretical errors (Eq. 2.9). Fixing σ lowers the error
in the estimate of D, especially when a smaller number of MSD points is
used. The collected traces had a large variation in length: as the GNRs
were free to move, the trace length was limited to the time the GNRs
stayed in the volume of view. Consistent with Eq. 2.8 and 2.9 and the
simulations, longer traces feature a more accurate D. In Fig. 2.6b only
the traces longer than 80 points were used for analysis: this decreased
the relative error from 40% to less than 20%. Curiously, while the the-
oretical value of the relative error increases with the number of MSD
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�tting points, in the experimental values it had little or no in�uence.
Using only the long traces, the precision slightly decreased with a num-
ber of MSD points larger than 5. In all cases the errors on D obtained
experimentally were smaller than the ones calculated theoretically: this
is not surprising, as the theoretical errors correspond to the standard
deviation of the MSD curve, hence to the maximum value of the error
[12, 13]).

In Fig. 2.6c we compare the experimental values (obtained �xing the
positional uncertainty) for all the traces, traces longer than 40 points
(about 1 minute) and 80 points (about 2 minutes). The �rst thing to
notice is the dramatic decrease in the D error when using longer traces.
For the longest traces, the smallest number of MSD �tting points yields
the smallest error. Therefore, the minimum error in the calculation of D
is obtained using only traces longer than 2 minutes, �xing the positional
uncertainty and using only 2 �tting points: in these conditions we got a
relative error as low as 10%.

In Fig. 2.7a the measured values ofD are compared with the expected
ones, calculated with Eq. 2.4. The variation in D based on the size
dispersion of the GNRs, measured in TEM images, is depicted in the
histograms using a blue shade around the expected value. As seen before,
longer trace lengths improve the accuracy of D : when we limited the
analysis to traces longer than 40 points (about 1 minute, Fig. 2.7b) and
80 points (about 2 minutes, Fig. 2.7c) the measured D increases from
0.020 µm2/s to 0.022 µm2/s and 0.026 µm2/s, where the expected D was
0.028 µm2/s. The relative errors in D obtained for this GNR sample and
other samples are reported in Table S1. In the experiments with shorter
GNRs, the relative errors were higher, due to their faster di�usion which
results in shorter traces. The variation in the measured D was always
larger than the variation predicted based on the size dispersion (reported
in the same table), because of the stochastic variations in D that increase
its variability.

2.4.4 Detection of changes in di�usion in single particle

trajectories

One of the unique possibilities of SPT is to follow a single molecule over
a long time, and to directly detect changes in its behavior. The pre-
vious discussion on the di�culties to obtain a correct D implies, how-
ever, major challenges. In this paragraph we tested how accurately a
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Figure 2.6
Optimal number of MSD points. The squares represent experimental values of ρ,
calculated using Eq. 2.7. The data were obtained from traces of 53 nm x 16 nm
GNRs in 95% glycerol. The triangles represent the theoretical values of ρ, obtained
with Eq. 2.9. In a), traces of all lengths were considered (between 10 and 100 points),
while in b) only traces longer than 80 points (about 2 minutes) were considered. In
c) we compare the values of ρ(D) obtained from traces of all lengths (from 10 to
about 100 points, black squares) with the ones obtained from only traces longer than
40 points (blue squares) and 80 points (cyan); in all three cases the analysis was
performed �xing the positional uncertainty.
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Figure 2.7
The di�usion coe�cient measured using single particle trajectories is underestimated
when using short traces. The distribution of the measured D is obtained using a) all
traces or only traces longer than b) 40 points or c) 80 points for 53 nm x 16 nm GNRs
in 95% glycerol. The center of the blue bar represents the expected value (calculated
from Eq. 2.4); its width follows from the size dispersion measured from TEM images.

temporary reduction in di�usion constant of a particle (a `gap') can be
detected. Following the approach above, MSD analysis was performed
with 2 points and �xed positional accuracy calculated from the intensity
of the peak. The di�usion coe�cient used for the initial and �nal phases
was 0.05 µm2/s, the largest value we typically measure for GNRs inside
cells, both in nucleus and cytoplasm (see Chapter 3, Section 3.3.2). We
varied the D in the gap within a range of typical values we obtained
in cells, from 0.0001 µm2/s to 0.035 µm2/s. The residual mobility of a
protein bound to DNA has been reported to be in this range [24, 25].
The initial and �nal phases were 100 s, while we tested di�erent lengths
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of the gap phase. We evaluated the e�ectiveness of the detection in the
obtained di�usion coe�cient and gap duration (Dgap and tgap) in every
set of 100 simulations. We considered Dgap correct when it was within
± 20% of the set D, and we considered tgap correct when it was within ±
10% of the set length. An example of a trace simulated using a Dgap of
0.0001 µm2/s is shown in Fig. 2.2a. In this �gure, the gap is not clearly
seen in the trajectory (as the time points are very close to each other),
but it is easily distinguishable in the D plot. In real experiments the
di�erence in mobility can be smaller.

First, we simulated traces with di�erent Dgap, keeping the gap length
constant to 100 s. In Fig. 2.8 the Dgap was set to 0.0001, to 0.01 and
to 0.035 µm2/s. The scatter plots show the resulting Dgap and tgap for
100 di�erent simulations. In the �rst case (Dgap = 0.0001 µm2/s, Fig.
2.8a,b) the transition is obvious. The Welch analysis yields reasonable
results: in about 65% of the cases a gap with the right length is detected.
The average tgap is always overestimated, and therefore also the average
Dgap. The positional uncertainty also contributes to the overestimate of
Dgap, especially for low Dgap (see Figure S3a, b for Dgap = 0 and 0,001
µm2/s). For this reason, only 10% of the cases yield Dgap within 20% of
the input value.

In the second case, where Dgap = 0.01 µm2/s (Fig. 2.8c,d), the
transition is also clearly detectable. Both the correct tgap and Dgap are
detected in about 60% of the cases. In Fig. 2.8d, it is clear that most
incorrect values originate from a missed transition, which results in a
double duration of the gap phase, and an increased Dgap.

In the last case (Fig. 2.8e,f), Dgap = 0.035 µm2/s, only 30% lower
than the D outside the gap. Given an uncertainty of at least 10% in
the detection of the single di�usion coe�cient (see previous paragraph),
we expect this di�erence to be hard to detect. Indeed, looking at D(t)
(Fig. 2.8e) we can still distinguish a change in D in the common trend,
but the �uctuations in each single curve obscure transitions in D. In less
than 10% of the traces a gap with the correct length is detected, but the
correct Dgap is detected in 60% of the cases. This is due to the small
di�erence between D inside and outside the gap: in the cases where the
transition is detected at a di�erent point in time, the obtained D will
still be good enough, being an average between D and Dgap. In about
40% of the simulations no transition is detected (Fig. 2.8f). In Fig. S3
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Figure 2.8
Limits to the detection of changes in di�usion. a,c,e) D(t) plots obtained from the
rolling-window analysis. b,d,f) Scatter plots of Dgap vs the length of the gap. The
simulated D(t) is plotted in black line. The D outside the gap was set to 0,05 µm2/s.
Dgap = 0.0001 µm2/s for a,b, Dgap = 0,01 µm2/s for c,d and Dgap = 0,035 µm2/s
for e,f. For every case, 100 traces were simulated and analyzed: a,c,e) D(t) plot for 8
example traces. b,d,f) D(t) from all 100 traces. The ranges of correct Dgap and tgap
are highlighted with blue lines in the scatter plot. The traces were analyzed using a
rolling window and a Welch sample of 15 points.

more cases with di�erent values of Dgap are reported.
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Thus, changes in D smaller than 30% can easily be distinguished
from averaged data, but in single trajectories a reduction of about 80%
is required to detect 60% of such changes.

Figure 2.9
Limits to the detection of short-lived changes in di�usion. a,c) D(t) plots obtained
from rolling-window analysis. c,d) Scatter plots showing the results of the MSD
analysis. The simulated D(t) is plotted in black line. The Dgap was 0.01 µm2/s and
the D outside the gap was 0,05 µm2/s. tgap = 25 s in a,b and tgap = 10 s in c,d. The
results can be compared to Fig. 2.8c and d, where the same Ds were set with a gap
length of 100 s. For every case 100 traces were simulated and analyzed. a,c) D(t) for
10 example traces. b,d) D(t) from all the traces. The ranges of correct Dgap and tgap
are highlighted with blue lines in the scatter plot. The traces were analyzed using a
rolling window size of 15 points, and a Welch sample of b) 15 points and d) 10 points.

We expected transient changes to become more obscured as their
duration shortens. We performed a similar analysis as function of the
length of the gap tgap, keeping Dgap constant at 0.01µm2/s. In Fig. 2.9
the results obtained using a gap length of 25 s and 10 s are plotted. In
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the case of tgap = 100 s, (Fig. 2.8c,d), both the correct tgap and Dgap are
detected in about 60% of the cases. Reducing tgap to 25 s (Fig. 2.9a,b),
in only 35% of the simulations the correct tgap is detected, and the cor-
rect Dgap in 20% of the cases. A gap of only 10 s (Fig. 2.9c,d) is very
hard to detect: in none of the cases the correct tgap or Dgap was detected.
More results are reported in Fig. S4.

It is di�cult to give an absolute limit of gap detectability in terms of
Dgap or tgap. A summary of the dependence of the detectability of the gap
is plotted in Fig. 2.10. If the gap is long (100 s) and the ratio between D

and Dgap is more than 50, at least 60% of the gaps are correctly assigned.
If the length of the gap is reduced to 25 s we can still detect 50% of the
gaps, but for gaps shorter than 20 s the detection rate drops to 0. We
still detected a transition in 60% of the cases if D/Dgap = 5. But for
D/Dgap = 2, the gap was detected in only 20% of the cases, even for long
traces (100 s). In conclusion, a transient decrease in D can be detected
easily when the D in the gap is very low, and the length of the gap is
not too short. A similar conclusion is obtained for the detectability of
the correct Dgap, with a di�erence: a small Dgap won't be �t correctly
due to the noise introduced by the positional uncertainty (Fig. S5).

Figure 2.10
Percentage of accurate Dgap detections for di�erent values of Dgap and tgap. The
percentage of the gaps detected with a length within 10%of the input is shown, for
di�erent values of a) Dgap and b) tgap. Every point was obtained from 100 simulations
of a trajectory containing a gap. The D outside the gap is 0,05 µm2/s, tgap = 100 s
and Dgap = 0,01 µm2/s, if not stated otherwise. Lines are a guide to the eye.
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To improve the precision of the results, a more complex measurement
and analysis scheme could be used, that makes use of more parameters
to detect subsections; for example, one could simultaneously measure the
polarization of the signal. When applicable, other mobility parameters
such as direction of the motion, velocity or con�nement could be �t to
the MSD curves. When such parameters are di�erent during the bind-
ing of GNRs to cellular structure, Welch analysis can be performed [26,
27]. The �nal p-value, obtained by multiplying the p-values of di�erent
parameters, will give a more correct assignement of the transition points
and consequently more precise estimates of tgap and Dgap.

In practice, measuring D and Dgap of a protein will depend on the size
of the protein and on the local viscosity of the environment. The smaller
the molecules, the larger the di�erence in the di�usion coe�cient when
it binds to its substrate and the easier to detect the event accurately.
The size of the GNR will set an upper limit to the di�usion coe�cient
that will be measured. The a�nity of the protein is directly re�ected
in the ratio of the time between binding events and the lifetime of the
bound complex (tgap). The �rst may be a�ected by the presence of a
GNR. A wide range of binding times have been reported for example for
DNA binding proteins in vivo, ranging from sub-seconds [24] to several
minutes [28]. The ability to track a single protein bound to a GNR will
give a more detailed insight in the reaction kinetics and how the complex
cellular environment a�ects this reaction. Here we have shown that us-
ing GNRs as labels can, in many conditions, resolve single binding events
with nanometer and second accuracy.

2.5 Conclusion

Quanti�cation of di�usion is challenging, especially under experimental
conditions with limited accuracy, time resolution and �nite length of the
measurement. By performing simulations and experiments in controlled
conditions, we established few guidelines to minimize the error on the
MSD and consequently on D :

1. Use long trajectories: the larger the number of time points in the
trace the better the MSD is. In our case, doubling the trace length
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from 1 minute to 2 minutes yielded a two-fold improvement of the
precision in the detected D.

2. In case of small positional uncertainties, theory and results from
simulations suggest to use only the �rst two points for �tting the
MSD.

3. Fixing the positional uncertainty during the MSD �t improves the
evaluation of D.

These �ndings reinforce previous theoretical reports [8, 12]. In our
case we tracked GNRs in 3D with an uncertainty of 4 nm based on shot-
noise limitations, which increased to about 40 nm due to the movement
of particles between each acquisition. With these conditions, the best
approximation of D was within 10% of the expected value of D. Such
a high precision could not be achieved using �uorophores as GFP or
synthetic dyes as quantum dots, because their low signal provides a low
spatial resolution, and their bleaching or blinking behavior make it im-
possible to collect long trajectories.

Given the challenges to extract a precise value of the di�usion coe�-
cient, the analysis of changes in mobility needs extra care. We simulated
traces with `gaps' in the di�usion, as it can occur when a particle is
temporarily immobilized, for example by speci�c binding to a cellular
structure. The detectability of such gaps depends critically on the dif-
ference in the di�usion before and during the binding, determined mainly
by the size of the ligands, and the length of the binding event. In our
conditions and optimizing the MSD analysis as described, the detection
of the gap was possible with a probability equal or higher than 50% only
when the gap was longer than 20 s and the D in the gap was less than
5 times smaller than the D in the rest of the trace. These �ndings are
applicable for all types of SPT methods in which individual traces are an-
alyzed without averaging. We expect that many events characterized by
a short duration or inducing a limited change in di�usion are overlooked
in such experiments because of the stochastic character of di�usion. In
any case, using large particles may produce brighter and more stable
signals, but reduces the di�usion coe�cient, making the di�erence in D

between free and immobile particles smaller.
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2.6 Supplementary �gures

Figure S1
Fluorescence correlation spectroscopy on a solution of 47 nm x 14 nm GNRs in water.
The �t gave τD = 3,85x10-3s. From τD a D = 7.5x10-2 µm2/s is calculated. The
hydrodynamic radius, calculated using Eq. 2.4, is 29,1 nm. The equivalent radius
of our GNRs is 21 nm. Subtracting this value from the hydrodynamic radius,we
obtained a PEG layer radius of 8.1 nm. The FCS experiment was performed on the
setup described in [29].

Figure S2
The distribution of a) the number of collected photons Np and b) the positional
accuracies σ obtained in our setup. GNRs of 47 nm x 14 nm and 53 nm x 16 nm in
95% glycerol were used. σ was obtained from Np using Eq. 2.1.
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Figure S3
Detectability of changes in mobility in simulated traces with di�erent Dgap. a,c,e,g,i,k)
D(t) plots obtained from the rolling-window analysis. b,d,f,h,j,l) Scatter plots con-
taining tgap vs Dgap. The simulated D(t) (black line) is overlapped to the detected
D plots (color lines). The D outside the gap was 0.05 µm2/s; while Dgap = 0 µm2/s
in a,b, Dgap = 0,001 µm2/s in c,d, Dgap = 0,005 in e,f, Dgap = 0,015 µm2/s in g,h,
Dgap = 0,020 µm2/s in i,j, and Dgap = 0,025 µm2/s in k,l. The ranges of correct Dgap

and tgap are highlighted with blue lines in the scatter plot. The traces were analyzed
using a rolling window size of 15 s and a Welch sample of 15 points.
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Figure S4
Detectability of changes in mobility in simulated traces for di�erent durations of the
gap. a,c,e,g,i) D(t) plots obtained from the rolling-window analysis. b,d,f,h,l) Plots
of D in function of the length of the detected gaps are shown for more Ds tested.
The simulated D(t) (black line) is overlapped to the detected D plots (color lines).
The D outside the gap was 0.05 µm2/s and Dgap is 0,01 µm2/s. tgap = 75 s in a,b,
tgap = 50 s in c,d, tgap = 40 s in e,f, t gap = 25 in g,h and tgap = 20 s in i,l. The
ranges of correct Dgap and tgap are highlighted with blue lines in the scatter plot.
The traces were analyzed using a rolling window size of 15 s in all three cases, and a
Welch sample of 15 points for the �rst four cases, and 10 points for the last case.

Figure S5
Percentage of detections of accurate Dgap detection for di�erent values of Dgap and
tgap. The percentage of Dgap within 20% of the input is shown, for di�erent values
of a) Dgapand b) tgap. Every point is obtained from 100 simulations of the trajectory
containing a gap. The D outside the gap is 0,05 µm2/s, tgap = 100 s and Dgap = 0,01
µm2/s, if not stated otherwise. Lines are a guide to the eye.
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GNR sample D (µm2/s)
measured D (µm2/s)

all traces traces >
40 points

traces >
80 points

47 nm x 14 nm,
90% glycerol

0.065 ±
0.003

0.04 ±
0.02

0.043 ±
0.02

0.05 ±
0.01

47 nm x 14 nm,
95% glycerol

0.03 ±
0.001

0.02 ±
0.01

0.022 ±
0.005

0.025 ±
0.003

53 nm x 16 nm,
95% glycerol

0.028 ±
0.003

0.02 ±
0.01

0.022 ±
0.006

0.026 ±
0.005

Table S1
Comparison of the di�usion coe�cients calculated using the Stokes-Einstein relation
with experimental data. The expected values were calculated assuming a temperature
of 25 degrees and using the equivalent radius (Eq. 2.5). The expected variations in D
were calculated according to the size dispersion within the sample. The table reports
values of experimental D obtained using all the traces, or only traces longer than 40
points and 80 points.
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