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Chapter 5

Surface plasmon dispersion in hexagonal, honeycomb and
kagome plasmonic crystals

We present a systematic experimental study on the optical properties
of plasmonic crystals (PlC) with hexagonal symmetry. We compare the
dispersion and avoided crossings of surface plasmon modes around the Γ -
point of Au-metal hole arrays with a hexagonal, honeycomb and kagome
lattice. Symmetry arguments and group theory are used to label the six
modes and understand their radiative and dispersive properties. Plasmon-
plasmon interaction are accurately described by a coupled mode model, that
contains effective scattering amplitudes of surface plasmons on a lattice
of air holes under 60◦, 120◦, and 180◦. We determine these rates in the
experiment and find that they are dominated by the hole-density and not
on the complexity of the unit-cell. Our analysis shows that the observed
angle-dependent scattering can be explained by a single-hole model based
on electric and magnetic dipoles.

This chapter was previously published as:
V. T. Tenner, M. J. A. de Dood, and M. P. van Exter, Surface plasmon dispersion
in hexagonal, honeycomb and kagome plasmonic crystals, Optics Express 24,
29624 (2016)
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5. Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals

5.1 Introduction
The interaction between surface plasmons (SPs) and nano-structures is an

active field of research [3, 6, 8, 77, 96, 97]. For instance, lattices of such nano-
structures form optical meta-materials [5, 6]. Such materials can be designed
and engineered despite the fact that the interaction with a single sub-wavelength
circular nanohole in a gold film cannot be described accurately using simple theory.
Near-field experiments on a single isolated hole provided more insight in such SP-
hole scattering process [50], but leafs questions about the interaction between holes
and the size variations that occur in arrays unaddressed. In this chapter we study
104 holes simultaneously and retrieve more accurate information on the scattering
process of individual holes than what is possible with single hole experiments.

The sub-wavelength holes are placed in a periodic crystal and a built-in light
source is used to excite SPs directly. We study hexagonal, honeycomb, kagome
and square lattices with similar holes. Metal-hole arrays with a square lattice
and an active layer show SP-laser action [20]. The question arises how lattices
with hexagonal symmetry affect such laser action. While the square lattice is two-
dimensional, the observed intensity and phase of the laser beam can be described by
a one-dimensional model [65]. Hexagonal lattices are intrinsically two-dimensional;
their lattice vectors are not orthogonal and a two-dimensional model is necessary.
A first step in this process is to determine the SP-bandstructure of such hexagonal
based lattices, where the scattering properties of a single hole form a key ingredient.

In photonic crystals, the relation between bandstructure and unit cell can be
described as a function of hole size and refractive index contrast. For plasmonic
crystals based on nano-holes, no such relation is known, although it would greatly
simplify the design process. We demonstrate that such relation also exists for metal
hole arrays.

In this chapter, we present accurate information about the scattering proper-
ties of individual sub-wavelength holes obtained from lattices of nano-holes. We
compare plasmon scattering in square and hexagonal-based lattices, and hexagonal-
based lattices with different unit cells. In the experiments, the hole size and the
symmetry of the lattice and unit-cell are kept constant, while the complexity in the
unit cell is increased. We show measurements of the dispersion relations around the
Γ -point, present a didactic interpretation in terms of traveling waves, symmetries
and group theory, and show that the observed bands are accurately described by a
coupled-mode model. This model yields effective amplitudes for surface plasmons
scattering on a lattice of air holes under angles of 60◦, 120◦, and 180◦. These
scattering rates can be explained by a microscopic model for SP-scattering on a
single hole.

5.2 Methods
The samples that we study consist of metal hole arrays with three different

unit-cells. All 50× 50 µm arrays consists of holes with diameters of 160 nm and a
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5.3. Theoretical background

Figure 5.1: Three different real space lattices and their unit cells: (a) hexagonal,
(b) honeycomb, and (c) kagome. First order lattice planes are indicated with
dashed lines. (a) Six traveling waves perpendicular to the lattice planes are
indicated with black arrows. The rotation axis for the dispersion measurement is
indicated by the dashed-dotted lines.

hole-to-hole spacing of a0 = 535 nm. The devices are layered as follows: a 20 nm
chromium film on top of a 100 nm thick Au layer, which is deposited on a dielectric
substrate that comprises of a thin SiN passivation layer, an InP spacer, and 127 nm
InxGa1−xAs (x = 0.536) gain layer on top of an InP substrate. The layer-stack is
designed such that it only supports the TM-like SP-mode. Square hole arrays with a
similar layer-stack are described in more detail in refs [20, 37, 52].

The SP-dispersion is measured by scanning a fiber-coupled grating-spectrometer
through the back-focal-plane of a microscope objective with NA = 0.4. A thin-film
polarizer in front of the fiber is used to obtain polarization sensitivity. The fiber is
mounted on a motorized x-y stage and is scanned in both the Γ-M and Γ-K direction.
The light is collected on the metal-air side of the sample. The SP are excited by
spontaneous emission from the optically pumped InGaAs gain layer. The same
setup was used in refs [20, 37, 52].

5.3 Theoretical background
This section presents the geometry of the studied lattices and a model to

describe their SP-dispersion relations: It covers a traveling wave model, were
coupling between these waves results in stop gaps, and it elucidates the connection
between symmetry and radiative properties of the coupled modes.

Figure 5.1 shows three different lattices: hexagonal (left), honeycomb (middle)
and kagome (right). These lattices share the same C6v symmetry, but have different
unit cells and hole densities. The typical hole spacing a0 is kept constant, while the
size a of the unit-cell changes so that the number of holes in the unit-cell increases
respectively from 1 to 2 and 3. The hole density changes between the three lattices
with a ratio of 1:2/3:3/4.

The dispersion relation is observed via photons that are radiated when the SP
scatter on the lattice of holes. Photons emitted at a certain angle (θx ,θy) have an in-
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5. Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals

Figure 5.2: Influence of SP-hole amplitude scattering on the SP-dispersion
relation. (a) Reciprocal unit cell with the six resonant lattice vectors ~Gi (grey)
and ~ksp (colored) for k‖(black) in the M-direction. (b) The scattering rates in
three different directions. (c,d) Theoretical dispersion relation obtained from
coupled mode model. The arrows indicate the influence of the scattering rates γ,
κ, µ (black arrows) and energy dependent refractive index n0, n1 (grey arrows).

plane momentum ~k‖ ≡ (kx , ky), with kx = (2π/λ0) sin(θx), ky = (2π/λ0) sin(θy).
These photons are associated with SPs with 6 different momenta ~ksp = ~G j + ~k‖,
where ~G j are the lattice vectors with length | ~G j |= 2π/(

p
3a0/2) belonging to one

of the relevant gratings [37]. These lattice vectors are indicated in Fig. 5.2(a).
In real space, these are SP waves traveling perpendicular to the lattices planes
as indicated in Fig. 5.1(a). The dispersion of these traveling waves is given by
ω j = c |~ksp|/nsp, where nsp is the effective refractive index of the SP-mode.

This uncoupled traveling wave approach already yields the main features of
the dispersion relation. The dashed curves in Figs. 5.2(c,d) show the dispersion
of uncoupled traveling waves. In the absence of SP-SP scattering, the resonance
frequency at the Γ-point is given by ω0 = c

�

� ~G j

�

�/nsp. The dashed curves have
different slopes around θ = 0. This slope 1

ω
dω
dθ ÷

1
nsp,group

cos(φ) depends on the

group index nsp,group of the SP and the projection between the observed ~k‖ and
~G j . Figure 5.2(a) depicts ~G j , ~k‖ and ~ksp for a tilt in the M direction. In the M

direction, two traveling waves (k1 and k2) are parallel to ~k‖, which generate two non-
degenerate resonances with a steep slope with cos(φ) = ±1. Furthermore, there
are two frequency degenerate traveling waves k3, k5 with a slope corresponding
to cos(φ) = 1/2 and two traveling waves k4, k6 with a slope corresponding to
cos(φ) = −1/2. In total, the six traveling waves thus create four resonances. This
is indicated with four dashed lines in Fig. 5.2(d). The dispersion relation in the Γ-K
direction as depicted in Fig. 5.2(c) shows three double-degenerate modes as three
dashed lines with slopes corresponding to cos(φ) = ±

p
3/2, 0.

In order to describe the SP-dispersion relation more accurately [37, 98], we
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5.3. Theoretical background

consider the surface charge Ψ(~r, t), which is proportional to the out of plane ~E-field.
This surface charge ρ(~r, t) is then decomposed in periodic Bloch waves:

ρ(~r, t) =
∑

j

ρ j(t)exp
�

i
�

~G j + ~k‖
�

· ~r
�

, (5.3.1)

where ρ j(t) is the time dependent amplitude and exp
�

i
�

~G j + ~k‖
�

· ~r
�

is the spatial
distribution of each plane-wave component. These plane-waves are associated with
the lattice vectors ~G j . For the hexagonal lattices, the lowest three resonances at the
Γ-point are all six-fold degenerate and a coupled-mode model with six Bloch waves
suffices.

Scattering of SP on the holes causes coupling between the traveling waves,
which lifts the degeneracy of the modes and creates stop gaps at the Γ-point [48, 99].
This behavior can be described by a coupled mode model for the time evolution
of the Bloch waves. A similar model was used previously [37, 52] for plasmonic
crystals with a square lattice. Here we extend it to hexagonal lattices. The time
evolution of the surface charge can be expressed as dψ(t)/d t = −iHψ(t), where
H(k‖) is a 6x6 matrix and ψ(t) a vector with the time dependent parts ψi(t). The
eigenvalues of this matrix are the resonance frequencies at k‖. The C6v symmetry
of the lattices allows us to describe the coupling with three amplitude scattering
rates as depicted in Fig. 5.2(b): We define the 180◦-scattering rate γ, the 120◦-
scattering rate κ, and the 60◦-scattering rate µ. Analogous to ref [37], this leads to
the following coupling matrix in traveling wave basis:

H =















ω1 γ µ κ κ µ
γ ω2 κ µ µ κ
µ κ ω3 γ µ κ
κ µ γ ω4 κ µ
κ µ µ κ ω5 γ
µ κ κ µ γ ω6















(5.3.2)

The diagonal elements are the resonance frequencies ωi = c | ~Gi + ~k‖|/nsp of the
uncoupled traveling waves. The off diagonal elements qualify the coupling between
these waves: γ for the 180◦ scattering within the three groups of counterpropagating
waves (1,2), (3,4), (5,6), and κ and µ for the 120◦ and 60◦ scattering between
waves from different groups.

Figures 5.2(c,d) show the influence of the three scattering rates on the dispersion
relation. While their influence is mixed near the Γ-point, it is discernible at higher
angles. In the Γ-K direction, the effect of the back scattering rate γ is a coupling
between the degenerate traveling waves k5 and k6, which results in an even and odd
combination with a different field distribution and a different frequency. The energy
splitting induced by the 120◦-scattering rate κ is visible in the Γ-M direction where
it couples the degenerate waves k3 and k5, and k4 and k6. The role of 60◦-scattering
rate µ is mainly visible at the center of the Brillouin-zone, where all uncoupled

61



5. Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals

waves are degenerate; this rate slightly alters the shape of the dispersion relation
at small angles.

The highly symmetric matrix H exhibits the same C6v symmetry as the lattice.
We will take full advantage of this symmetry when labeling the modes and describing
the number of modes and their radiative nature [34]. The symmetry determines
the charge distribution of the modes (irreducible representations of the C6v point
group) around the holes at the Γ-point, which resembles either a monopole, dipole,
quadrupole, or hexapole depending on the number of local maxima around the
hole. These modes are labeled with respectively A1, E1x , E2x , and B1, as indicated
in Figs. 5.2(c,d). Both the E1x and E2x modes are double degenerate. A graphical
representation of these distributions can be found in ref [98].

The radiative character of the modes can be deduced from symmetry arguments.
The modes at the Γ-point have different responses on the symmetry operations of
C6v which is expressed by their character. These different characters dictate the
radiative nature of the different modes at the Γ-point. The symmetry of the mode
and the symmetry of free space radiation are either the same or different. Only the
dipolar E1x mode is radiative perpendicular to the surface (bright), while the other
three modes are non-radiative (dark).

Also the polarization of the radiated light can be deduced from symmetry
arguments. For k-vectors between the Γ -point and the M- and K- point (small
angles), the symmetry is reduced to C1h and all modes are allowed to radiate. The
modes are symmetric or antisymmetric modes under reflection in the emission
plane, which is spanned by the emission direction and the surface normal. The
symmetric modes couple to radiation with p-polarization (radiated ~E field parallel
to the symmetry plane), while antisymmetric modes couple to s-polarized radiation.
Compatibility relations link the modes at the Γ -point to these odd and even modes:
there are three s- and three p- polarized modes in the Γ -K direction, while there are
four s- and two p- polarized modes in the Γ -K direction. This difference is caused
by the fact that the B1 mode has a different character for the mirror operation over
the Γ -M or Γ -K-axis.

5.4 Experimental results
Figure 5.3 shows a false color plot of the observed SP-dispersion along the

Γ-K and Γ-M directions for three different lattices: hexagonal (left), honeycomb
(middle), and kagome (right). The polarization of the radiation is either perpen-
dicular (s-) or parallel (p-) to the plane spanned by ~k‖ and the surface normal.
The polarization is indicated with respectively blue and yellow colors. The dashed
lines in Figs. 5.3(a,d) show the theoretical curves from the traveling wave model.
The solid lines in Figs. 5.3(a-f) show the theoretical curves from the coupled mode
model. These fits yields crucial information on the SP-dynamics (see below). The
dispersion shows 6 resonances, following the 6-fold symmetry. At normal incidence
only 4 bands remain, of which only the degenerate bands E1x radiate perpendicular
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5.4. Experimental results

K M K

M K M

Figure 5.3: Dispersion relations of (a,d) hexagonal, (b,e) honeycomb and (c,f)
kagome plasmonic crystals. s- and p- polarized light is indicated with respectively
blue and yellow colors. The solid lines indicate theoretical resonance frequencies.
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ba

Table 5.1: (a) Scattering rates for hexagonal, honeycomb and kagome lattices
for scattering under 180◦ (γ), 120◦ (κ), and 60◦ (µ). (b) Scattering rates scaled
by the relative hole-density.

to the surface (θ = 0), while the other three bands are dark. There are clear
frequency splittings between the A1 and E2x , B1 and E1x modes at the Γ-point. The
B1 mode almost overlaps with both E2x modes. In the Γ-K direction, there are three
modes (B1, E11 and E22) of which the out-coupled light is s-polarized and the other
three modes (A1, E12 and E21) are a p-polarization as expected from the symmetry
of the lattice. In the Γ-M direction there are two modes (E12 and E22) radiating
s-polarized light, and 4 modes (A1, B1, E11 and E21) p-polarized light, as expected
from the symmetry.

The honeycomb and kagome lattices exhibit some additional features: extra
modes appear at higher and lower frequencies. The honeycomb and kagome lattices
have larger unit cells than the hexagonal lattice, while the center of the observed
dispersion relations is at the same frequency. Hence, the observed mode-crossings
occur at higher order Γ -points. The honeycomb lattice is operating at the 2nd
Γ -point and exhibits addition modes that intersect at higher energies, which we
associate to the 3rd Γ -point. The kagome lattice is operating at the 3rd Γ -point
and has extra modes on both higher and lower energies. The lower energy modes
are attributed to the 2nd Γ -point. The higher order mode cannot be attributed to
a Γ -point of the kagome lattice. However, inhomogeneity with a period of twice
the lattice period will induce the 4th Γ -point at the wavelength of the crossing of
the high energy modes. Note that at the 2nd Γ -point, relevant for the honeycomb
lattice, the reciprocal space is rotated 30◦ compared to the 1st and 3th Γ -point and
hence the M- and K-direction are interchanged.

The effective amplitudes for surface plasmons scattering on a lattice of air holes
are retrieved by comparing the experimental data with our model. As discussed
before, different parts of the dispersion relation contain information on different
scattering rates. These features are easily identified by eye; the model’s resonance
wavelengths are overlayed graphically [100] with the measurements and the scat-
tering rates are adjusted by hand. The errors are estimated by adjusting a parameter
until the overlap was clearly reduced. Hence the reported errors are interpreted
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as 2σ deviations. This procedure was performed independently by each of us and
the resulting parameters were in accordance with each other within the errors
estimated by each researcher. These values are presented in Table 5.1a (discussion
follows below).

In order to retrieve a good fit of the modes at high and low energies, the
dispersion of the refractive index should be taken into account. The effective
refractive index shows dispersion due to the electronic structure of the media.
This is included as a perturbation n1 on the refractive index: nsp(λ) = n0 + n1

λ/λ0,
which mainly influences the shape of the modes at high and low energies. The
fitted refractive index n0 is 3.28 ± 0.005 and n1 is 0.35 ± 0.15 for all lattices, a
straightforward calculation shows that this dispersion n1 is created by both the gain
layer [101] and gold layer.

The fitted scattering rates of the three different lattices parameters are shown
in Table 5.1a. The backscatter rate γ is clearly larger than the 120◦-scattering rate
κ which is again larger than the 60◦-scattering rate µ. The main uncertainty in the
determination of the 60◦-scattering rate µ arises from the dark nature of the A1, B1,
and E2x modes, limiting the visibility at the location of the dispersion relation that
is most sensitive to µ. The scattering rates of the triangular lattice are larger than
these of the kagome lattice which are larger than these of the honeycomb lattice.
We attribute these differences to changes in the hole density in these three lattices
(see below).

5.5 Discussion
All three scattering rates originate from the same physical effect: SP-scattering

on subwavelength holes, and hence they are expected to depend on both the hole-
density and the scattering cross-section of the holes. Table 5.1b shows the scattering
rates scaled to the hole density of the hexagonal lattice, which corresponds to a
multiplication by a factor 3/2 for the honeycomb and 4/3 for the kagome lattice.
The good overlap between the scaled scattering rates demonstrates the proposed
hole-density dependence. Hence, the scattering rates are mainly set by the hole-
density, and less by the complexity of the unit-cell.

Figure 5.4 shows the scattering rates dependence on the scattering angle φ.
The angle dependence of the scattering rates can be described by the equation
a − b cos(φ), indicated in Fig. 5.4 with the dashed line as guide to the eye. This
line predicts that the forward scattering is zero. A physical interpretation follows
below.

We first compare our results with earlier work on SP scattering in square [37]
and hexagonal lattices [98, 102]. The reported scattering rates for square lattices
[37] with a similar layer stack and hole size are γ/ω0 = 0.016 ± 0.02 for 180◦-
scattering and 0.008± 0.003 for 90◦-scattering. After scaling these results with the
relative hole density (ρ/ρ0 = 1.03), they are added to Fig. 5.4; the 180◦-scattering
overlaps very well with our results for hexagonal-based lattices, and also the extra
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Figure 5.4: Scattering rates scaled to the hole-density of the hexagonal lattice
as function of scattering angle φ for scattering under 180◦ (γ), 120◦ (κ), and
60◦ (µ). The scattering rates for 180◦ and 90◦ are taken from ref [52]. The
dashed line indicates a− b cos(φ) for a/b = 1.

datapoint at 90◦-scattering neatly follows the cos(φ)-relation.
For completeness, we will also compare our results with the scarce previous

efforts[98, 102]. Scattering rates of hexagonal plasmonic crystals were not reported
yet, but these can be extracted from the dispersion relations in refs. [98, 102]
using the procedure explained above. We take the results for hole sizes (d/a =
0.34) that are comparable to our sample. From the simulations in ref [102], we
extract scattering rates γ/ω0 = 0.0040± 0.0010, κ/ω0 = 0.0028± 0.0003 and
µ/ω0 = 0.0004± 0.0003. In the measurements of ref [98] the A-band of sample
with the relevant hole sizes is outside the observed wavelength range. Instead, we
extrapolate this band with a spline and extract scattering rates γ/ω0 = 0.050±0.010,
κ/ω0 = 0.010± 0.010, and µ/ω0 = 0.002± 0.010. Even though these scattering
rates were observed at shorter wavelengths in the visible (λ∼ 600 nm), they are
comparable in magnitude to our results. Furthermore, also the sequence of the
scattering rates is the same: backscatter rate γ is larger than the 120◦-scattering
rate κ, which in turn is larger than the 60◦-scattering rate µ.

The proposed a− b cos(φ) dependence of the scattering rate is based on the SP-
scattering of a single small cylindrical hole. This scattering process can be described
by an effective electric ~p and magnetic ~m dipole [50]. In this model the incident
SP-wave excites with these dipoles, which then radiate partially to SP-waves again.
SP-waves are mainly TM polarized, and hence the out-of-plane component pz of the
electric dipole and the in-plane component my of the magnetic dipole dominate
the scattering process. Both dipoles have a distinct in-plane scattering profile;
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the electric dipole pz radiates isotropically, while the magnetic dipole my radiates
dominantly in the forward and backwards directions. The scattered field consists of
a combination of these dipole responses, and yield a combined scattering amplitude
a− b cos(φ) with

b
a
=

√

√ε+ 1
ε

my

pz
=
�

ε+ 1
ε

� −αm

αp
, (5.5.1)

where α is the polarizability of a single hole. The factor
q

ε+1
ε accounts for the small

difference in the ratio H/E for confined SPs compared to free space electro-magnetic
waves [50]. The ratio between the permitivities ε = εmetal/εdielec t r ic = −10 for
our system, and hence this factor is close to 1. Figure 5.1b shows the scattering
rates as function of cos(φ). The scattering rates overlap with a line that crosses
the cos(φ)-axis at cos(φ) = 1, which indicates that the forward scattering is zero,
suggesting that |~p| ' | ~m|. This corresponds to the second Kerker condition [103], in
which a hole acts as a Huygens-reflector. The supplemental information of ref. [50]
calculates the polarizabilites αm and αp for holes in perfectly conducting metal
film on a glass substrate, where a surface plasmons are traveling on the metal-air
interface. For our relative hole radius d/λ = 0.18 this theory predicts that the
polarizabilities have an opposite sign and a ratio −αm/αp ≈ 3.5. For a smaller hole
radius this ratio increases to 1.7 for zero radius. However, our experimental data
indicate that the ratio is ' 1 for our geometry. This quantitative discrepancy might
result from the following: Our SP scattering process is more complicated than
captured in the calculations of the dipole model, because our SPs are scattering on
holes filled with air, while they are traveling on the metal-semiconductor interface
and the metal-air interface contains a chromium layer to damp the SP. The current
calculations on the dipole model, assume the same index for both medium and hole
as well as a perfectly conducting metal, where no field penetrates in. For a realistic
gold film the optical penetration-depth at telecom-frequencies is typically ≈ 20 nm,
resulting in a slightly higher effective hole diameter.

We find a qualitative agreement between the dipole model and our measure-
ments. This is surprising, because there are two reasons why a description based
on single-hole SP-scattering might be too simple. First of all, this dipole model does
not take quasi cylindrical (or creeping) waves into account, while they carry more
than 40% of the field at short (< 2.5 µm) distances [50] and they are typically
responsible for half of the extra-ordinary transmission through metal hole arrays
[44, 104]. However, there is no influence of quasi-cylindrical waves visible in our
measurements, because the dispersion relation is formed by interference between
scattered waves from many holes. The propagation distance of SP is much larger
than for quasi-cylindrical waves and hence SPs dominate the dispersion [105, 106].
Finally, the dipole model describes the response of a single hole, while we observe
the response of a lattice of holes. Hence, one might expect that lattice effects and
multi-hole phenomena, such as coherent addition of the scattering of all holes
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and hole-hole (dipole-dipole) interaction, will become important. The current
experiments do not yet have sufficient control to distinguish these effects, and
detailed theory is absent: even for a lattice of only electric dipoles this is already
a non-trivial exercise [107], where the magnetic dipoles are ignored due to their
complexity. Hence, this remains a future challenge.

5.6 Conclusions
We experimentally studied the scattering properties of three different metal-

hole-array plasmonic crystals with hexagonal lattices, but different unit-cells. The
unit cells have the same symmetry, but an increasing number of holes and complexity.
We compare the observed dispersion relations with a coupled mode model, which
yields the amplitude scattering rate of surface plasmons on a lattice of metal holes
under three different angles: 60◦, 120◦, and 180◦. We find that the influence of the
three different lattices on the scattering rates is dominated by the hole-density. The
symmetry of the lattice only selects the allowed scattering angles by constructive
interference, but does not influence the individual scattering rates. Furthermore,
we find that the angle dependence of the scattering rates shows a qualitative, but
no quantitative, agreement with a single-hole dipole approximation that takes only
the SP-mode into account. Hence, we conclude that lattice effects and hole-hole
(dipole-dipole) interaction are less important than the single hole response.

Acknowledgments
The authors thank Philippe Lalanne and Haitio Liu for the discussions about

quasi-cylindrical waves, and Peter J van Veldhoven and Erik Jan Geluk for their
help in fabricating the samples at the COBRA Research Institute of the Technische
Universiteit Eindhoven, The Netherlands. This work is part of the research program
of the Foundation for Fundamental Research on Matter (FOM), which is part of the
Netherlands Organization for Scientific Research (NWO).

68


