
Surface plasmon lasers
Tenner, V.T.

Citation
Tenner, V. T. (2017, June 22). Surface plasmon lasers. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/49932
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/49932
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/49932


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/49932 holds various files of this Leiden University 
dissertation. 
 
Author: Tenner, V.T. 
Title: Surface plasmon lasers 
Issue Date: 2017-06-22 
 
 



Chapter 4

Measurement of the phase and intensity profile of surface
plasmon laser emission

We study the near and far field radiation patterns of surface plasmon
(SP) lasers in metal hole arrays and observe radially polarized vortex-vector
laser beams in both near and far field. Besides the intensity profile, also
the complementary phase profile is obtained with a beam block experiment,
where we block part of the beam in the near field, measure the resulting
changes in the far field, and retrieve the phase using an iterative algorithm.
This phase profile provides valuable information on the feedback mechanisms
and coherence of the laser and shows that our SP laser operates in a phase-slip
mode instead of a pure dark mode. To explain our observations, we extend
the standard model for distributed feedback (DFB) lasers by introducing a
position dependence in the optical gain and refractive index.
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This chapter was previously published as:
V. T. Tenner, M. J. A. de Dood, and M. P. van Exter, Measurement of the
Phase and Intensity Profile of Surface Plasmon Laser Emission, ACS Photonics
3, 942 (2016)

43



4. Measurement of the phase and intensity profile of surface plasmon laser emission

4.1 Introduction
Optically coherent laser radiation can be generated if both gain and optical

feedback are present in a medium. Our physical understanding of these phenomena
originates from comparisons between measured intensity distributions and models
of both the amplitude and the phase of the radiation. The optical phase is typically
discarded because it evolves too fast to resolve directly with an optical detector or
a camera. The inability to measure both amplitude and phase of the emitted laser
radiation presents a recurring challenge in optics and limits progress in the field.

More ingenious schemes are needed to observe the phase using slow detec-
tors. One of the simplest schemes uses the mixing of the amplitude and phase
information of the light field upon propagation. At the laser exit the amplitude
contains information where the light is emitted, while the phase profile contains
information about the propagation direction. Recording the intensity distribution
on different positions allows retrieval of the phase information by an iterative
algorithm [66–68].

The ability to resolve both amplitude and phase is particularly relevant for lasers
that emit non-standard beam profiles that are not yet fully understood. Examples
of such lasers are surface-emitting distributed feedback lasers, such as photonic and
plasmonic crystal lasers. Two-dimensional surface-emitting photonic-crystal-lasers
often emit donut beams with azimuthal polarization [69], while surface plasmon
lasers create radially polarized vector-vortex beams [20]. Devices can be tailored
to emit other beam shapes [70], but information about the phase- and amplitude
profile is scarce and has either low resolution [71] or an electrical contact blocks
the view [72].

A better understanding of gain and feedback in plasmonic systems is important
for improving photonics applications that use the strong confinement and light-
matter interaction provided by plasmons. These applications include ultra sensitive
molecule sensors (SERS) [3], anti-counterfeiting measures [73], perfect absorbers
[74], ultra-fast optical modulators [75], as well as future metal-dielectric meta-
materials consisting of arrays of plasmonic sub-wavelength elements [5, 6]. The
strong plasmonic response of passive media is accompanied by Ohmic loss due to
scattering of the free electrons in the material. Adding media with active gain can
resolve this issue [19, 76, 77] and over-compensation typically leads to laser action,
as has been demonstrated in two-dimensional metal particle arrays [28], and metal
hole arrays [20].

In this chapter, we present the first experimental observation of the phase- and
amplitude profile of a two-dimensional surface plasmon laser retrieved via the
combination of a beam-block experiment and an iterative algorithm. The metal
hole array in our study acts as a second order Bragg grating, which provides a
natural output channel and enables easy observation of the intracavity field. Our
observations go beyond the standard description of distributed feedback lasers.
We extend the standard approach by including a position dependent gain and
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4.2. Device

y

x

polarizer

 λ = 1064 nm

Image plane

Near field

Fourier plane

Far field

beam blocksample

Figure 4.1: Schematic of the experimental setup to measure the amplitude and
phase profile of the laser emission.

refractive index, which are both induced by the optical pump beam, and obtain
good agreement between experiment and theory.

4.2 Device
The semiconductor-gold samples that we study contain metal hole arrays with

a square lattice, with hole diameters of 160 nm and a lattice spacing of 470 nm
(see Fig. 4.2a for a SEM image). The device dimensions studied here are 50x50 and
100x100 µm. The Au film is 100 nm thick and is deposited on a 127 nm InxGa1−xAs
(x = 0.536) gain layer on an InP substrate (see Fig. 4.2e for a schematic side cut).
Between the gold and the InGaAs, a thin InP spacer layer and a SiN passivation layer
were incorporated. The gain layer is sufficiently thin such that the only supported
optical mode is the surface plasmon (SP) mode. Similar samples are described in
more detail in ref [20].

4.3 Experiment
Our experimental geometry is as shown in Fig. 4.1. The sample is mounted in

a cryostat with optical access on both sides and cooled down to 80 K. We pump
the active layer of the sample using a continuous wave laser with a wavelength of
1064 nm through the transparent InP substrate. The pump beam has a Gaussian
profile that can be varied in size between 20 and 50µm full width at half maximum.
The light emitted by the SP laser is collected in transmission on the metal side of
the device with a 20x microscope objective (NA = 0.4) combined with a tube lens
(f = 200 mm) to create a 4-f imaging system. Hence, the optical field in the image
plane is a scaled version of the radiative field at the sample; in this thesis, we call
this the near field.

In some of the experiments we position a razor blade in the near field to block
part of the beam. To inspect the near field, we image it with a lens (f = 100 mm)
on a CCD camera. Subsequently, this lens is replaced by a lens with a longer focal
distance (f = 200 mm) such that the far field is retrieved in the back-focal plane. A
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4. Measurement of the phase and intensity profile of surface plasmon laser emission

bandpass filter (λ= 1490± 6 nm) that transmits the laser light is used to reduce
the broadband spontaneous emission in the measurements.

4.4 Results
Figure 4.2 show the measured near field (top) and far field (bottom) of the

SP laser. Images are shown for the unpolarized light (b,f), with a linear polarizer
transmitting y-polarized light (c,g) and with half of the near field blocked (d,h).
The near field is donut shaped, i.e. it is circular with a dark center. The laser area
is comparable to the size of the pump, being 40µm in this case. The dark central
spot is remarkable and raises questions about the apparent lack of energy in the
center of the device. Figure 4.2c shows a polarization resolved measurement. Since
this image rotates along when rotating the polarized axis, we conclude that the
near field donut is radially polarized. The observation of a clear donut in the near
field is only apparent when the pump beam is small enough. In our experiments,
we observe that larger pump beams (up to 100µm) result in a larger laser areas
and spatial inhomogeneity. Nonetheless, there is always a dark spot somewhere, as
expected for a topological defect. Under some experimental conditions the laser
hops between several spatial modes with different locations of the dark spot, and
hence the central dark spot becomes less visible after averaging.

Figures 4.2f-h show the observed far field intensity profiles and display that
the far field is also a radially polarized donut beam. This similarity is not trivial
and warrants further investigation. In order to observe the associated phase profile,
we perform an experiment in which we block half of the near field with a razor
blade and observe the far field. The resulting near field, shown in Fig. 4.2d, is
trivial and presented mainly for didactic reasons. The resulting far field, shown in
Figure 4.2h, depicts that the two lobed far field is now reduced to a single lobe,
while the angle of the maximum emission is hardly changed. This observation
provides valuable information about the phase profile of the near field, because it
indicates the existence of a phase gradient in the near field.

To quantify the full two-dimensional phase profile of the optical field, we
retrieve the phase profile with an iterative Gerchberg-Saxton-based algorithm [66],
see Methods. We find that the retrieved near field phase exhibits a π-phase jump in
the dark center of the device and exhibits a phase gradient in the radial direction,
with a slope that increases towards the edge of the device. A cross section of this
phase profile is depicted in Fig. 4.3c,g. These figures also show cross sections of
the near and far field intensity profiles presented earlier in Fig. 4.2. The far field of
the full beam has no light in the center, whereas there is emission along the surface
normal in the beam block experiments. Because the far field of the full beam should
be equal to the coherent sum of the two halves, the dark center in the far field must
be formed by interference of emission from the two halves of the sample. This in
turn indicates the existence of long range coherence across the sample. In the rest
of this chapter we will discuss the implications of our observations and compare
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4. Measurement of the phase and intensity profile of surface plasmon laser emission

them with theory.

4.5 Discussion
We first compare our results with the standard DFB theory [35] for one dimen-

sional systems with a finite size. In this theory, the field in the device is decomposed
in two traveling waves, which are coupled by scattering at the holes. The relevant
parameters are the length L of the device and the coupling rate κ. The product κL
determines the behavior of the laser. This theory yields the threshold condition of
the laser: wavelength, gain and the field profiles of the traveling waves.

The solutions are either symmetric or anti-symmetric around the center of the
device. In an infinitely large index coupled system these are dark (non-radiating)
and bright (radiating) modes, which are located at the exact center of the Brillouin-
zone (k = 0) [37, 51, 78]. However, in a “real” laser, the coherence length `coh is
limited by the finite sample size and the scattering [35], which breaks the description
of a continuous band structure into discrete modes with a detuning from the Bragg
wavelength. The relevant modes are at ∆k = π/`coh and there is no mode at the
center of the Brillouin-zone.

Scattering in the out-of-plane direction induces radiative loss, which increases
the threshold of the radiative solution [79]. Our device operates in a transverse-
magnetic (TM) mode and hence the coupled mode with the symmetric out-of-plane
E-field distribution is the non-radiating mode with the lowest threshold, as explained
in Appendix 4.A.

Figure 4.3a,b displays the calculated symmetric coupled mode solution of the
standard DFB theory for our measured backscatter rate κ/β0 = 0.012 [37], device
length L = 50µm, and refractive index n0 = 3.268 [52], corresponding to κL = 8.
The calculated near field shown in Fig. 4.3a contains the essential features of
Fig. 4.3c: it has two lobes with opposite sign, indicated by a π-phase-jump in center
of the device. However, in contrast to the experiment the calculated phase in each
of the lobes is almost constant. As a consequence, the far field profiles depicted
in Fig. 4.3e are very different from the observations depicted in Fig. 4.3g: the
calculated profile is too narrow and is oscillatory at larger angles. Furthermore, the
emission by half of the device is incorrectly predicted to be a single lobe located
close to the surface normal.

To explain our observations we extend the standard DFB theory by introducing
a position dependence of the gain and refractive index (see Appendix 4.A for
derivation). Both are mainly set by the carrier density, which is position dependent
due to inhomogeneous pumping and diffusion, and to a lesser extent by the local
temperature associated with heating of the device. We model the local gain and
index as the Gaussian profile of the pump beam, and note that deviations from an
exact Gaussian shape are unimportant. In the center of the pumped area there is
an effective gain, as discussed below, while outside the pumped area there is an
effective loss (negative gain), which is mainly caused by absorption in the gain
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4. Measurement of the phase and intensity profile of surface plasmon laser emission

layer. We solve the coupled mode equations by an active mirror approach [63],
which is relatively simple and powerful, as explained in Appendix 4.A. The resulting
fields at the threshold are shown in Fig. 4.3b,f. The phase in the near field now
increases towards the edge of the samples, very comparable to our measurements.
Hence, also the far field profiles of the beam block experiment are very similar to
our observations: the maxima are now at the same angle as the lobes of the full
beam.

Figure 4.3d,h illustrates the predicted effect of index guiding and anti-guiding
on the laser, with a Gaussian gain and index profile, with ∆n = 0, ∆n = +0.13,
and ∆n = −0.13 between the pumped center and the unpumped edges. The
differences are best visible in a beam block experiment (see Fig. 4.3h), where the
angle of the maxima of the lobe moves inwards for ∆n > 0 and outwards for
∆n< 0. The near fields depicted in Fig. 4.3d show index guiding for ∆n> 0, and
index anti-guiding for ∆n< 0. This guiding can also be interpreted as a plasmonic
bandgap with spatial dependence [80, 81]. Our experimental data can be best fitted
with ∆n= −0.05, which is consistent with the typical refractive index changes of
pumped bulk material [82].

The gain profile, in contrast to the index profile, leads to guiding, because the
effective gain in the center of the pumped area is higher than its surroundings. The
gain and loss used in the model have realistic values: The unpumped areas have
an effective intensity loss of [52] ≈ 3000cm−1. At the threshold, the net gain in
the center is ≈ 340cm−1. The required material intensity gain is the sum of the
net gain and the Ohmic loss of our device with transparent InP [52] (270cm−1),
divided by the confinement factor in the gain layer [19] (0.32) and it is around
2000cm−1, which is a reasonable number for a semiconductor operated at high
carrier densities [38, 83].

For completeness we note that we have used a one-dimensional model to
describe a two- (or even three)-dimensional system. Hence the derived numbers
may differ somewhat from reality. From literature on DFB theory in two dimensions
[84, 85], we expect that the influence of such 2D coupling on the derived numbers is
rather low in our system, because it already operates in the overcoupled regime and
the 2D coupling is small compared to the 1D coupling. In earlier work [37, 52] we
measured k2/k3 ≈ 0.3, where k2 and k3 = κ are the scattering rates of respectively
90◦ and 180◦ scattering [84]. This extra coupling will only marginally change
the detuning [85] and threshold [84]. Other authors have extended the standard
DFB theory to two dimensions to answer the question under which conditions the
symmetric mode can lase [86]. These analyses confirm that 2D DFB lasers are
expected to emit donut shaped beams.

4.6 Conclusion
This chapter reports the first measurement and reconstruction of the phase and

the amplitude of surface plasmon laser emission. Our two-dimensional plasmonic-
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4.7. Methods

crystal emits donut-shaped and radially-polarized light, both in the near field and
in the far field. By blocking half of the laser emission we retrieve the phase of the
emission and demonstrate the existence of long range coherence and lasing in a
symmetric non-radiative mode. Our observations cannot be explained with the
standard DFB theory, which assumes a device with uniform properties. We extend
this theory by introducing position dependence of the gain and refractive index and
find good agreement with our measurements on surface-emitting DFB lasers. This
provides the following three insights: First, due to the round trip phase condition,
the laser is in a phase-slip mode and not in a dark mode and hence the laser can
radiate. Second, we attribute the lack of emission in the center of the near field
interference between in-plane counter-propagating waves. Third, the central zero
in the far field also results from the symmetry of the lasing mode and demonstrates
the existence of long range coherence over the full sample.

Our results demonstrate a powerful method to analyze surface-emiting lasers.
This method can also be deployed on surface plasmon lasers with other lattice
symmetries or on photonic-crystal lasers in order to understand and improve their
characteristics. Furthermore, our results indicate that much of the current knowl-
edge about one- and two-dimensional photonic-crystal lasers can be applied to
understand and improve surface plasmon lasers.

4.7 Methods
The phase of the fields is retrieved with an iterative Gerchberg-Saxton-based

algorithm [66–68]. The near and far field measurements are used as support for the
algorithm. The phase is retrieved for 3 sets of conjugate measurements in parallel:
(i) the full polarization resolved measurements shown in Fig. 4.2c,g and measure-
ments with either a blocked (ii) bottom (Fig. 4.2d,h) or (iii) top (measurements
not shown). Every 5th iteration, the reconstructed phase of alternately the bottom
or top part is applied on the full near field reconstruction. After 30 iterations, we
end with 10 iterations on the full fields. The algorithm convergences and is stable
to noise.
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4. Measurement of the phase and intensity profile of surface plasmon laser emission

Appendices
4.A Distributed feedback theory with a position depen-

dence of the gain and refractive index
In this supplement, we derive a coupled mode theory that extends the standard

DFB theory with a position dependence of the gain and refractive index. We explain
how the equations can be solved both in the time domain and the spatial domain
and compare them with previous efforts. We solve the equations with an active
mirror approach and demonstrate that this method is very flexible and fast.

The temporal and spatial evolution of the optical field in a one-dimensional
distributed feedback (DFB) structure can be derived from the optical wave equation
by using the slowly-varying approximation. This derivation can be found in many
text books [35, 82] and only the main results for a device with a second-order Bragg
grating and TM polarized mode are stated here. We express the optical field as the
sum of a rightward R and leftward S traveling wave and write each of them as a
slowly-varying envelope multiplied by a reference wave [35]:

E(x; t) = [R (x , t) eiβ0 x + S (x , t) e−iβ0 x]e−iω0 t , (4.A.1)

where ω0 is the reference frequency. The reference wave vector β0 ≡ 2π/Λ =
n0ω0/c is fixed by the lattice spacing Λ, and is linked to the reference frequency via
the reference index n0. The dielectric constant is expanded in Fourier components
and the resulting terms are sorted. The resulting dimensionless coupled-mode
equation that describe the temporal and spatial evolution of the envelope functions
R and S is:

1
ω0

∂

∂ t
R +

1
β0

∂

∂ x
R =

�

i
∆n(x)− iα(x)

n0
−
κout

β0

�

R +
�

iκback + κout

β0

�

S (4.A.2)

1
ω0

∂

∂ t
S −

1
β0

∂

∂ x
S =

�

i
∆n(x)− iα(x)

n0
−
κout

β0

�

S +
�

iκback +κout

β0

�

R (4.A.3)

The slow changes in the complex index n̂ = n0 +∆n(x) + iα(x) are parameterized
by the dimensionless gain α(x) and refractive index difference ∆n(x), which both
have a gradual position dependence. The gain is related to the material intensity
gain g [cm−1] via α(x) = g(x)n0Λ/4π. Fast changes in the complex index are
governed by higher-order Fourier components, as discussed below. Dispersive
effects are neglected (ω ∂ n

∂ω � n). The two counter propagating waves are coupled
by scattering at the periodic corrugations with backscatter coupling parameter κback.
This scattering also induces dissipative out of plane coupling κout.

The coupling κback and κout are related to Fourier components of the corrugation
[82, 84, 87]. For a 2nd order DFB, the backscatter is relatively simple and is given
by the second order (2β0) Fourier component. The output coupling is related to
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4.A. Distributed feedback theory with a position dependence of the gain and refractive index

the first (β0) component in a more complicated way; it induces radiative loss of the
energy of the R and S modes and κout depends approximately on the square of the
first Fourier component.

The radiative loss and coupling induced by the out-of-plane scattering is most
easily understood in the standing wave basis with the symmetric R+ S mode and
the anti-symmetric R− S mode. For a transverse-magnetic (TM) polarized mode,
R and S denote the out-of-plane component of the E-field. The emission from the
device depends on the in-plane fields, which are out-of-phase with the out-of-plane
E-field[37]. Hence, the symmetric R+ S mode is a dark mode without loss, with
anti-nodes in the out-of-plane E-field at the holes, while the anti-symmetric R− S
mode is radiative and experiences double radiative losses [37, 79, 84, 87]. This
is mathematically described by the four coupling terms κout in Eqs. (4.A.2) and
(4.A.3).

There are two different approaches to solve Eqs. (4.A.2)-(4.A.3): either in
the time domain or in the space domain. In chapters 2, 3, and 5 we considered
the time dynamics of the Bloch modes of an infinitely large system and labeled these
modes by the angle θ at which they emit to free space, i.e. we set ∂

∂ x R = k0θR
and ∂

∂ x S = k0θS , where k0 = ω0/c is the wave vector in air. This yields the
bandstructure of the crystal [37, 52] and was used to determine the dimensionless
coupling rates κback/β0 = γ/ω0 and κout/β0 = Γrad/ω0.

Equations (4.A.2)-(4.A.3) can also be solved in the spatial domain, by looking
for the stationary eigenmodes of a finite-size system at the laser threshold, i.e. the
modes that vary in time as exp(−iωt), whereω≡ω0+δω such that ∂

∂ t R = −iδωR
and ∂

∂ t S = −iδωS. The change of the fields over one unit cell can now be described
by:
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(4.A.4)

We solve Eq. (4.A.4) by launching a traveling wave in the center of the device
and calculating its reflection amplitude on one half of the device [63]. In order to
find the envelope of the field, we discretize the device on a grid with spacing Λ. In
this active mirror approach, the propagation over one lattice spacing is given by

�

R(x i +Λ)
S(x i +Λ)

�
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I +Λ ∂
∂ x
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�

R(x i)
S(x i)

�

=Mx i

�

R(x i)
S(x i)

�

(4.A.5)

and the transfer matrix of one half of the device is:

Mhalf =
∏x i=0

x i=L/2
Mx i

=
�

M00 M01
M10 M11

�

(4.A.6)
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where L is the length of the device. As there is no input from outside the device
�

R(x = L
2 )

S(x = L
2 )

�

=
�

t
0

�

Mhalf⇒
�

R(x = 0)
S(x = 0)

�

=Mhalf

�

1
r

�

(4.A.7)

where r is the reflection and t is the transmission of half of the device. At the
laser threshold, the round trip through the device is stable, hence |r|=

�

�

�−M10
M11

�

�

�= 1.

The sign of r gives the symmetry of the mode.
We search for the detuning δω and gain α(x) for the threshold condition of

the symmetric mode by minimizing 1− r with a Powell hybrid method. Both the
refractive index change ∆n(x) and gain α(x) are taken to have a Gaussian profile
with the size of the pump beam. The gain α(x) = αabsorption +αpump(x) consists of
a negative baseline, due to absorption in the unpumped areas, and is more positive
in the pumped center. This amplitude of the gain due to pumping is varied to find
the threshold condition. For the best fit we take ∆n(x) negative in the center of
the pump beam and zero in the unpumped areas. A discussion about the exact
amplitude of the index and gain profiles is included in the main text. Note that the
radiated field is proportional to the asymmetric combination R− S, as discussed
before.

The described transfer matrix method proved to be very powerful; it is not
only useful to find the threshold conditions [88], but it can also be extended to
calculate the mode spectrum below threshold, to provide insight in noise in the
system [63, 89], and to study the occurence of spatial hole burning [90].
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4.B Retrieval of the phase of light
Measuring the phase of light is a non-trivial task, because electronic detect-

ors, such as photo diodes and CCDs, are to slow to operate at optical frequencies
(∼ 400 THz). The phase of the light encodes the direction in which the light
travels [91]. When both the phase and the intensity of monochromatic light are
known, also its trajectory in the forward and backward directions are known.
When propagating, the information in the phase and intensity mixes. This can
be scrutinized to obtain the phase: after measuring the intensity at different dis-
tances, the phase information can be retrieved by Gerchberg-Saxton-like iterative
algorithms [66].

Figure 4.4 schematically depicts a Gerchberg-Saxton-like iterative algorithm
which we used to retrieve the phase information from intensity measurements at
different distances [92, 93]. In our case, these locations are at an image plane of the
near and the far-field of the sample. The propagation of the light between these two
planes can be described by a Fourier transform. The phase is retrieved by numerically
propagating between both planes and applying the measured information. This
goes in successive steps: the measured intensity of the near field is combined with
the best known near-field phase and propagated to the far field. Now, the intensity
information is mixed with the phase, and a better phase estimation is obtained,
while the propagated intensity contains less information. The propagated intensity
is replaced by the measured intensity in the far field, and is propagated back to
the near field plane. Again, the intensity and phase are mixed and a better phase

A P

A PA P

A P

Fa
r-
fi
e
ld

N
e
a
r-
fi
e
ld

Figure 4.4: Schematic overview of iterative phase retrieval algorithm.
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estimation is obtained. A good estimate of the phase is retrieved after several of
such iterations [94].

This algorithm convergences after typically 50 iterations for our measurements.
The first iteration is bootstrapped with a random phase pattern. In order to avoid
local minima in this optimization procedure, the algorithm is run for 100 initial
random phases and these results are averaged.

Faster and more reliable convergence can be obtained when more information
about the sample is employed. In our case, we use the beam-block measurements to
obtain a better first phase estimation as input for the final algorithm. This first phase
estimation is obtained by running the algorithm with different intensity inputs in
successive iterations. The near- and far-field measurements with the beam-block
selecting in following places are used as inport: center, top, left, bottom, and
right. This is sequence is repeated five times, and finalized with 10 iterations of
the center measurements only. This reduces both the required number of iterations
and increases the output stability.
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