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Chapter 1

Introduction

1.1 Wave confinement and surface plasmons
Confining a wave of wavelength λ to a limited volume of space with

typical dimension L is quite an easy task provided that the dimension L is
larger than the wavelength λ. Musical instruments and lasers provide prime
examples of this idea. In both cases the confinement gives rise to resonant
enhancement of the wave-field amplitude. In contrast, when the volume
is much smaller than the wavelength, the wave cannot be confined in this
resonator-like fashion and resonant enhancement is non-existent.

Nature, however, does provide a totally different system of wave con-
finement, namely on an interface between two materials. There, surface
waves can exist and the name betrays the nature of the wave phenomenon:
it is confined to the interface. Ocean waves and coastal edge waves [1, 2]
are prime examples of this particular wave phenomenon, and so are surface
plasmons (SPs). The latter are electromagnetic-like waves that hug the
interface between good metals, such as silver and gold, and a dielectric.

Surface plasmons consist of light coupled to free electrons on a metal-
dielectric surface and hence are strongly confined to this surface. The
electromagnetic field induces a temporal charge redistribution in the metal
and it oscillates the electrons at optical frequencies. The strong confine-
ment leads to a large enhancement of the wave amplitude, opening up the
possibility of strong light-matter interaction.

During the last 20 years the study of surface plasmons has experienced
an enormous revival, mostly as a consequence of novel and advanced nano-
fabrication techniques. It has led to a large variety of applications of surface
plasmons, such as sensors based on surface-enhanced raman-spectroscopy
of molecules [3]. Here, SPs are employed to increase the light-matter inter-
action and drastically enhance the single-molecule signal up to 10-orders of
magnitude [4]. Closer related to the work in this thesis are optical metamate-
rials [5, 6], where artificial building blocks are used to create materials with
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1. Introduction

unprecedented optical properties such as a negative refractive index [7–9].
These metamaterials have been used to create ultra-thin lenses [10–13],
waveplates [14–16], and rudimentary invisibility cloaks [17]. A particular
example of a simple metamaterial in which SPs play an important role is a
metal hole array. It consists of a metal film perforated by a lattice of sub-
wavelength nano-holes. Metal hole arrays form two-dimensional crystals
for SPs. They exhibit extraordinary transmission [18], meaning that more
light is transmitted than is expected from the surface area of the holes. This
extraordinary transmission is mediated by SPs.

Absorption in the metal poses a limitation on the application of SPs.
This absorption is caused by electron scattering (Ohmic loss) and hence
unavoidable. To mitigate this absorption, an optical gain material next to
the metal surface can be employed for loss compensation [19]. Due to the
strong confinement of the light, only a thin (∼ 120 nm) gain layer is needed:
SPs with an energy equivalent to photons with a free space wavelength of
1500 nm are confined within 200 nm from the gold-semiconductor interface.
Figure 1.1 shows a schematic of the layer stack of our samples, consisting
of a 100 nm thick gold layer on a semiconductor (InGaAs) gain layer top
of a InP substrate. It also illustrates the confinement of the SP field at the
Au-semiconductor surface. As soon as the Ohmic loss and all other losses of
the SP mode are compensated, SP-laser action can occur [20].

Lasers are known to emit coherent, monochromatic, and strongly direc-
tional beams. There are two essential components to a laser: a (pumped)
gain medium and a resonator. The resonator confines the laser mode and
supplies the feedback needed to obtain coherence. The aim of this thesis
is to understand SP lasers and to investigate to which extent they can be
described by traditional laser theory. We focus primarily on the resonators
which, in our case, are formed by metal hole arrays.

1.2 Surface plasmon lasers
SP lasing has been observed in several resonator geometries, from nano

particles to metal hole arrays. The first claim of SP-laser action was based
on observations of isolated 14 nm-large nano particles [21]. However, these
results are disputed on theoretical and experimental grounds and have not
been reproduced by other groups to date. Next, Hill et al. [22] demonstrated
SP lasing in metal-coated semiconductor nano pillars, in which a localized
resonance in such a pillar forms a zero-dimensional resonator. SP-laser action
also has been observed in nano-wire systems, in which the gap between a

2



1.2. Surface plasmon lasers
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Figure 1.1: A side-view of our devices, consisting of an Au metal hole array on
top of a semiconductor (InGaAs) gain layer on a InP substrate. The red curve
shows the intensity of the H y component of the SP-field. The SP field decays
away from the metal-dielectric interface. Details are given in Fig. 2.1.

semiconductor nano wire and a silver surface serves as a one-dimensional
resonator [23]. These experiments were later extended to two-dimensional
geometries, where the feedback is provided by total internal reflection of
the SPs in the semiconductor gain medium [24].

Two-dimensional resonators can also be based on distributed feedback,
where the optical feedback is not provided by a Fabry-Pérot cavity com-
prising two highly reflective mirrors but by scattering on a periodic array,
either in the form of holes in a metal [20, 25] or metal particles on a
substrate [26–30]. Both periodic arrays support SPs and SP lasing, and
they form two-dimensional crystals for SPs. For metal hole array SP lasers,
the resonator is formed by the reflection of traveling SPs on the holes, as
discussed below. In contrast, for particle-array SP lasers, the interplay of
localized particle-resonances and non-localized lattice resonances typically
plays an important role and the feedback can be described by coupled lo-
calized harmonic oscillators. Research on particle arrays has demonstrated,
among others, lasing in the strong-coupling regime [30] and the influence
of randomness [29].

SP lasing in metal hole arrays has been demonstrated at wavelengths
ranging from the visible regime (∼ 0.6 µm) to the THz regime (∼ 100 µm).
The first demonstration originates from our group in Leiden, for SP lasers op-
erating at telecom wavelengths (∼ 1.5 µm) using a solid-state semiconductor
gain medium [20]. Later, others used molecular dyes as gain medium in the
visible regime [25]. Metal hole arrays are also used as resonator for lasers

3



1. Introduction

Figure 1.2: Schematic images of the 4 different two-dimensional crystal lattices
studied in this thesis: (a) square, (b) hexagonal, (c) honeycomb and (d) kagome.
Their unit cells are indicated by red parallelograms.

at much longer wavelengths, corresponding to THz frequencies [31, 32].
However, at these frequencies the confinement of SPs above the surface is
weak and the confinement can only exist due to the specific structure on the
surface; hence, these SP are called spoof-surface plasmons [33] to indicate
that they differ considerably from ordinary SPs.

1.3 Crystals and band structures in two dimensions
Crystals are periodic structures that can be described by their unit cell

and by their Bravais lattice or associated reciprocal lattice vectors ~Gi . Besides
a translation symmetry, most crystals exhibit additional mirror and rotation
symmetries, which can be described by point groups. In this thesis we will
consider two-dimensional crystals for SPs, consisting of lattices of metal
holes in a gold film. Figure 1.2 displays a schematic overview of the studied
crystals, which are square lattices (C4v-point group) and three hexagonal-
based lattices (C6v-point group): hexagonal, honeycomb and kagome. The
spacing between the holes is comparable to the wavelength of the SPs. The
hexagonal-based lattices have the same symmetry, but increasingly more
complex unit cells.

The dispersion relation describes the relation between the wavelength
λ = 2π/k (or wavevector ~k) of a wave and its energy (or frequency ω).
It plays a central role in solid-state physics, where it forms, among others,
electronic conduction and valence bands, and determines the performance
of diodes, LEDs and transistors. It also plays a central role in the description
of optics and plasmonics in crystals. In both cases, crystals severely alter the
dispersion relation.

Periodic structures and crystals scatter waves and create standing waves
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1.3. Crystals and band structures in two dimensions

[       ] [       ] [       ]

Figure 1.3: (a) One-dimensional crystal lattice with lattice spacing a. Dispersion
of (b) free waves, (c) waves in a periodic lattice, and (d) waves in a scattering
periodic lattice.

that can completely stop the wave propagation in specific crystal directions.
The formation of such bands in the dispersion relation is due to the combi-
nation of scattering on the unit cell and their periodic nature. This is most
easily explained for a one-dimensional infinitely-large crystal. Figure 1.3(a)
shows several unit cells of a one-dimensional crystal with lattice spacing a
and lattice vector G = 2π/a. Figure 1.3(b) shows the linear dispersion of a
free wave. The slope is linked to the effective refractive (group) index via
the relation dω/dk = c/neff . Figure 1.3(c) shows the dispersion of a wave in
a one-dimensional crystal. The periodicity of the crystal induces a periodic
repetition in the dispersion relation; wave vectors spaced with a lattice vec-
tor ~k1 − ~k2 = ~Gi are equivalent such that all information is contained in the
first Brillouin zone

�

− ~Gi/2 ~, Gi/2
�

. At higher order Γ-points (k = 0, ω> 0)
left- and right-traveling waves cross and their wavelength fits on the lattice.
Figure 1.3(d) shows the influence of scattering on the holes in the unit cell.
The scattering couples part of the left-traveling wave to the right-traveling
wave (and vice-versa); standing waves are formed and avoided crossings
appear. The anti-symmetric (sine-type) standing wave has nodes on the
holes, while the symmetric (cosine-type) standing wave has anti-nodes on
the holes, as shown in Fig. 1.3(a). Hence, these two standing waves have
different energies ω± = ω0 ± γ, where γ is the amplitude scattering rate,
and a stop-gap is formed, i.e. an energy range in which no waves can travel
in a certain direction.

In two dimensions, the band structure is more complex than in one
dimension as waves and scattering in additional directions have to be in-
cluded [34]. We study the formation of SP bands in two-dimensional crystals
with square symmetry in chapters 2 and 3, and with hexagonal symmetry in

5



1. Introduction

Figure 1.4: Fields inside an one-dimensional distributed feedback laser. The
dashed curves show field profiles when no coupling is present, the solid curves
show the profiles in the presence of coupling.

chapter 5. We also study the influence of the shape of the unit cell on the
scattering rates and its link to the scattering by a single hole.

1.4 Lasing in finite size crystals
The analysis of the dispersion relation of two-dimensional crystals pre-

sented in the previous section works fine for very large crystals, but is
insufficient for the description of SP-laser action in crystals of finite size.
This finite size alters the band structure; it breaks apart the continuous band
structure of infinite-large crystals into discrete modes. Suited for lasing
in finite size crystals is distributed-feedback laser theory [35]. This theory
describes the laser field as traveling waves in real space that are, again,
coupled via scattering. Figure 1.4 shows how this scattering confines the
field to the center of a one-dimensional device.

In two-dimensional crystals traveling waves in additional directions
should be included in this distributed-feedback laser theory; it becomes more
complicated and no analytical solutions are known. Numerical modeling
of the combination of strongly-confined SPs and gain is challenging and
hence experiments are invaluable in order to understand the behavior of
such systems. The first realizations of lasing in two-dimensional crystals was
in photonic crystals. Since then the field blossomed and produced, among
others, Watt-class surface-emitting photonic-crystal lasers [36]. Utilization of
this knowledge can accelerate the development of SP lasers and SP sensors.
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1.5. Outline of this thesis

1.5 Outline of this thesis
In this thesis, we study SP-laser action in metal hole arrays. We try

to understand these systems and connect this understanding to existing
knowledge about lasers. The figure below schematically displays the contents
of this thesis. The two columns indicate that we have studied SP-lasers in
metal hole arrays with different geometries: square lattices (left column) and
hexagonal-based lattices (right column). The two rows indicate that we have
studies these structures both below lasing threshold (top row) and above
lasing threshold (bottom row). Below threshold we measured the dispersion
of the SPs and extracted information on their loss and scattering rates. Above
threshold, we observed SP-laser operation and retrieved information about
intensity and phase profiles, polarization, optical feedback and spatial non-
uniformities. All these experiments have contributed to our understanding
of SP physics in metal hole arrays.
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Chapter 2

Surface plasmon dispersion in metal hole array lasers

We experimentally study surface plasmon lasing in a series of metal hole
arrays on a gold-semiconductor interface. The sub-wavelength holes are
arranged in square arrays of which we systematically vary the lattice constant
and hole size. The semiconductor medium is optically pumped and operates
at telecom wavelengths (λ∼ 1.5 µm). For all 9 studied arrays, we observe
surface plasmon (SP) lasing close to normal incidence, where different lasers
operate in different plasmonic bands and at different wavelengths. Angle-
and frequency-resolved measurements of the spontaneous emission visual-
izes these bands over the relevant (ω, k‖) range. The observed bands are
accurately described by a simple coupled-wave model, which enables us to
quantify the backwards and right-angle scattering of SPs at the holes in the
metal film.

This chapter was previously published as:
M. P. van Exter, V. T. Tenner, F. van Beijnum, M. J. A. de Dood, P. J. van
Veldhoven, E. J. Geluk, and G. W. ’t Hooft, Surface plasmon dispersion in metal
hole array lasers, Optics Express 21, 27422 (2013)
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2. Surface plasmon dispersion in metal hole array lasers

2.1 Introduction
Surface plasmons are intrinsically lossy due to the ohmic losses of the metals at

which these optical excitations occur. To better harvest the unique properties of
surface plasmons, in particular their compact (sub-wavelength) size, it would be
great if we could compensate their losses with a nearby gain medium. Successful
loss compensation enables lossless plasmonics and surface plasmon lasing [38].
This feat has been accomplished in various geometries, ranging from metal-coated
nanopillars [22], to metal-coated nanorings [39] and nanowires on a silver film
[23]. The common denominator in these experiments is the use of semiconductor
gain media, as these media can provide huge gain. This gain is typically provided at
infrared and telecom wavelengths, where surface plasmons are less confined, more
photonic, and thus less lossy than in the visible range. Alternative laser medium
like dyes can supply enough gain to compensate the losses of special SP excitations,
like long-range surface plasmons [40] and resonances in plasmonic nanoparticle
arrays [28].

Surface plasmons play a dominant role in the optical excitation and transmission
of metal films perforated with a regular lattice of sub-wavelength holes, the so-
called metal hole arrays. In 1998, the optical transmission of these arrays was
found to be extra-ordinary large [18] on account of the resonant excitation of
surface plasmons (SP). Many experiments have followed since, aimed to unravel
the intriguing properties of SPs propagating and scattering on these arrays [41–44].

The periodic nature of a metal hole array, which provides distributed feed-
back through scattering, is ideally suited for the construction of a plasmonic laser.
Plasmonic crystal lasing was first demonstrated at mid-infrared wavelengths in
quantum cascade lasers [45]. Very recently, it was also demonstrated at telecom
wavelength (1.5 µm) in loss-compensated hole arrays in a gold-semiconductor
structure [20]. Surface plasmon lasing was observed and three experimental proofs
were reported to demonstrate the surface plasmon character of the lasing mode
[20]. These experiments were performed on square arrays with a lattice spacing
comparable to the SP wavelength, i.e. in so-called second-order Bragg structures.

In this chapter, we expand on the results reported in [20] by presenting a system-
atic study of surface plasmon lasing in a series of 9 square hole arrays with different
lattice spacings and hole sizes. We compare their laser characteristics, such as
emission wavelengths, lasing thresholds, and the remarkable donut-shaped modes
in which these lasers emit. We focus on the angular and wavelength dependence of
the luminescence that they emit, both below and above their lasing threshold. This
luminescence is shown to be concentrated in four plasmonic bands, similar to the
photonic bands that exist in photonic crystals. The observed shape/dispersion of
these plasmonic bands can be well described with a simple coupled-mode model
of four traveling SP waves that are coupled by SP-SP scattering and emit into a
fifth free-space (= photonic) mode by SP-photon scattering. By analyzing these
plasmonics bands for a series of devices, we present the first performance overview

10



2.2. Experimental setup

of surface plasmon lasing in metal hole arrays.

2.2 Experimental setup
Figure 2.1(b) shows the layer package of all studied devices. This package

comprises a 105 nm thick In0.53Ga0.47As (gain) layer grown lattice-matched on a
300 µm thick double-polished InP wafer and capped with a 100 nm gold layer
on top. A thin (15-20 nm) spacer layer, comprising SiNx and InP and a very thin
sticking layer (∼ 0.5 nm chromium), in between the gold and the In0.53Ga0.47As
layer prevents quenching of the excited carriers [46]. A 20 nm thick chromium layer
on top of the gold damps SPs at the gold-(chromium)-air interface. The red curve
in Fig. 2.1(b) shows the square of the magnetic field profile associated with the
surface plasmons at the gold-(spacer layer)-semiconductor interface. The presence
of the spacer layer, with its lower refractive index, widens this profile somewhat
and decreases the effective index of the SP mode, compared to that of SPs on a
gold-semiconductor interface without spacer layer.

A square lattice of circular holes is patterned into the gold by a standard lift-off
process that uses an array of pillars defined by e-beam lithography in a 400 nm
thick layer of HPR504 resist capped with a 80 nm layer of HSQ resist. The relevant
lattice spacings in our square arrays are a0 = 450 nm, 460 nm, and 470 nm. For
each lattice spacing we produced arrays with different hole size, by fine-tuning the
e-beam dose in steps of 10%, which we denote as d1, d2, and d3 for increased dose
and hole diameter. Each of these 3×3 = 9 arrays was produced as a 50µm×50µm
pattern.

Figure 2.1(a) shows our experimental geometry. The In0.53Ga0.47As active/gain
layer is optically excited through the InP substrate, using a continuous-wave Nd:YAG
laser (wavelength 1064 nm) that is spatially filtered with a pinhole and imaged
into a circular top-hat shape with a diameter of ∼ 49 µm. This beam diameter is
larger than the ∼ 30 µm reported in [13] because we now use a f = 75 mm lens
instead of a f = 50 mm lens to focus the pump light. The fluorescence and laser
radiation produced by the sample is observed on the gold side, using a far-field
imaging system that enables us to measure the emitted intensity I(θx ,θy ;λ) as
a function of emission angle θ ≡ (θx ,θy) and vacuum emission wavelength λ.
More specifically, the light emitted through the cryostat window is first collimated
by a 20x microscope objective with a numerical aperture of 0.4, is then focused
by an f = 20 cm (tube)lens to produce a 20x direct image of the source, and is
finally reconverted into a far-field image by an f = 5 cm lens. We measure the
far-field intensity I(θx ,θy ;λ) by scanning a single-mode fiber in the focal plane of
the final lens and analyzing the collected spectrum with a grating spectrometer.
The cryostat window (0.5 mm AR-coated BK7) is thin enough to limit spherical and
other optical aberrations in the imaging system. The full imaging system has an
angular resolution of ∼ 4 mrad and a wavelength resolution of ∼ 1 nm.

The sample is operated at cryogenic temperatures in a Helium flow cryostat. The
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2. Surface plasmon dispersion in metal hole array lasers
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Figure 2.1: (a) Sketch of experimental geometry. We optically excite the gain
layer through the substrate, using a continuous-wave pump laser, and observe its
fluorescence and laser emission on the metal size, as a function of emission angle
and wavelength. (b) The layer package of all samples consists of InP substrate,
an In0.53Ga0.47As gain layer, a thin spacer layer, and gold on top (see text for
details). The red curve shows the calculated (square of the) magnetic field |H y |2
of the surface plasmon polaritons, which are excited by fluorescence, amplified
by stimulated emission, and scattered by the holes.

base temperature of the cryostat is 8 K. Based on a simple model of pump-induced
heating we estimate the temperature difference between the pumped region and
the rest of the wafer to be limited to 5 K at 125 mW pump power. This value is
small, primarily because the heat conductivity of InP is extremely large at cryogenic
temperatures, with a local maximum around 20 K and heat conductivities exceeding
103 W/Km between 8 and 45 K [47]. The thermal contact between the InP wafer
and the rest of the cryostat might be limiting though. An indication that this is
indeed the case is that the SP laser power decreases in the first few second after
switch-on.

2.3 Angle-dependent spectra
The optical characteristic of one of our structures, with lattice spacing a0 =

470nm and hole size d2, has already been reported in [20]. This device exhibits a
clear lasing threshold with intense directional emission in a narrow spectral band
above the lasing threshold. Below the lasing threshold, the wavelength-dependent
far-field emission pattern I(θx ,θy ;λ) provides insight on the nature of the optical
excitation. Three experimental proofs were presented to substantiate the claim
that lasing occurs in the surface plasmon mode: (i) all emission patterns can be
modeled with a single effective index neff with a value comparable to that expected
for the only guided wave, being the SP, (ii) laser emission occurs in a remarkable
donut-shaped beam with the radial polarization expected for SPs, being TM waves,
and (iii) the coupling between the traveling waves, observable as avoided crossings
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2.3. Angle-dependent spectra

in the (ω, k‖) dispersion, is as large as expected for SPs. In this chapter we will
apply similar analysis tools to our full set of 3× 3 structures.

1560 nm 1530 nm 1500 nm 1470 nm

1459 nm 1455 nm 1440 nm 1420 nm

A

C

BB

B

B
B

CC

BB

Figure 2.2: Far-field emission pattern of (a0 = 450 nm, d2) laser observed
within the NA=0.4 of our microscope objective at detection wavelengths ranging
from 1560 to 1420 nm. The emission features can be divided in three groups: a
low-frequency (C), mid-frequency (B), and high-frequency (A).

Figure 2.2 shows the far-field emission patterns I(θx ,θy ;λ) of one of our lasers
(a0 = 450 nm, d2) at eight selected emission wavelengths, observed under our
“standard excitation condition” (P = 125 mW in a 49 µm diameter disk). The
wavelength decreases, i.e. the optical frequency increases, from left to right and
top to bottom. All patterns exhibit the 4-fold rotation and (x , y) mirror symmetry
expected for square arrays. For decreasing wavelength, the observed structures
first move inwards and then move outwards again. The false-color scale varies
from picture to picture, being normalized at the individual peak intensities, which
increase from 2 at λ= 1560 nm to 10 at λ= 1500 nm, peaks at a saturated value
� 60 at the lasing wavelength of λ = 1459 nm, and decreases to 9 at λ = 1455 nm
and to 0.9 at λ= 1420 nm (all in arbitrary units).

The emitted structures depicted in Fig. 2.2 can be directly interpreted as equifre-
quency contours of the plasmonic bandstructure. The observed structures can be
divided into three groups, each of which can be assigned to a specific plasmonic
band. We have labeled these bands as A, B, and C from high to low frequency.
The C band starts as a large square with rounded corners at λ = 1560 nm and
shrinks to disappear between 1500 and 1470 nm. The wavelength dependence
of the B band is more complicated. The B band is visible in the four corners at
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2. Surface plasmon dispersion in metal hole array lasers

λ = 1530 nm, transforms into a full cross at 1470 nm, then turns into a small
circle at λ= 1459 nm, and grows into a larger circle at 1455 nm that transforms
into a star at 1440 nm and a larger open star at 1420 nm. The A band starts as a
small square at λ = 1420 nm and increases in size towards lower wavelengths (not
shown). Our (a0 = 450 nm, d2) device lases in the B band at a lasing wavelength
of λ= 1459 nm, where the false-color image is a saturated white. In contrast, the
(a0 = 470 nm, d2) array studied in [20] lased in the A band at λ= 1479 nm.

It is instructive to compare the patterns in Fig. 2.2 with a similar set of patterns
obtained for the (a0 = 470 nm, d2) laser and displayed as Fig. 3 in [20]. The
two sets are comparable, but the wavelengths at which similar features appear are
red-shifted by approximately 4.5 % in the a0 = 470 nm laser on account of the
larger lattice spacing. Hence, the patterns displayed in [20] show more of the A
band. A closer comparison between our Fig. 2 and Fig. 3 in [20] also shows subtle
differences. For instance, (i) our 4-lobed star at λ = 1440 nm has intensity maxima
at its tips, whereas the 4-lobed star at 1500 nm for the a0 = 470 nm device has
intensity minima at its tips, and (ii) the compact structure of the A band that we
observe at λ= 1420 nm looks like a square, whereas a similar structure observed
at 1480 nm for the a0 = 470 nm device resembles a circle. Figure 2.2 thus presents
a wealth of information that provides insight on the influence of SP-SP scattering
on the plasmonic bandstructure.

2.4 Comparison of nine surface-plasmon lasers
In the rest of this chapter we will limit the discussion of the angle dependent

fluorescence spectrum I(θx ,θy ;λ) to its θy dependence, i.e. we fix θx = 0. For this
purpose, we combine the angular and spectral profile I(θx = 0,θy ;λ) in a single
false-color dispersion plot. In the experiment, this plot is recorded by taking only a
one-dimensional angular scan at fixed θx = 0.

The intensity profile I(0,θy ;λ) enables us to visualize the plasmonic bands
of the SPs on the hole array. By choosing the angle θy as horizontal axis and the
wavelength λ in inverted order as vertical axis, the resulting figure closely resembles
the standard (ω, k‖) dispersion diagram, where ω = 2πc/λ is the optical frequency
and k‖ = ky = (2π/λ) sin (θy) is the photon momentum parallel to the interface.

Figure 2.3 shows the measured intensities I(0,θy ;λ) for each of our 3× 3= 9
samples, under identical pump conditions (P = 125 mW in a 49 µm disk). A
polarizer was inserted to single out the vertical (= p = TM) polarization and
thereby limit the number of photonic bands from 4 to 3 (see Sec. 2.5). The data
in Fig. 2.3 is arranged in a rectangular grid. The hole size increases from left to
right (d1− d3) and the lattice spacing increases from top to bottom (a0 = 450, 460,
and 470 nm). All figures have the same scale, θy = −0.4 to 0.4 rad and λ = 1400
to 1600 nm, indicated only in the top-left figure. Each figure contains all three
photonic bands (A, B, and C), albeit at different wavelengths and with different
intensities.
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Figure 2.3: False-color images of the measured far-field intensities I(0,θy ;λ)
of our devices, which vary in lattice spacing (top to bottom; indicated in nm),
and hole size (left to right; indicated as d1-d3). Lasing is visible as a saturated
white, which often turns into a saturated stripe. The scale in all figures runs
from θy = −0.4 to 0.4 mrad and from λ = 1400 to 1600 nm and is indicated
only in the top left figure. The inverted vertical axis helps to compare these
figures with the standard (ω, k‖) dispersion diagrams. The righthand side of
each figure contains information on the wavelengths of the A, B, and C bands
close to normal incidence and the pump threshold of lasing modes. Note the
color coding of the three bands. 15



2. Surface plasmon dispersion in metal hole array lasers

The wavelengths around the θy = 0 center of each band (θx = 0 in all scans) is
added on the righthand side of each figure, and denoted for instance as B = 1457 nm
when lasing occurs in the B band and as A∼ 1424 nm when the A band only contains
fluorescent emission in a somewhat wider spectral band.

When comparing the 9 pictures in Fig. 2.3, the first thing we notice is their
similarity. Moving from lattice spacing a0 = 450 down to 460 and 470 nm (top to
bottom), all features shift downwards, such that the ratio λ/a0 remains approxi-
mately constant. This certainly applies to the A band at hole size d1, where the
ratio λA/a0 = 3.16, 3.16, and 3.15 for a0 = 450, 460, and 470 nm, respectively. It
is less valid for the C band in this series, for which λC/a0 = 3.30, 3.28, and 3.26,
respectively.

The next thing we notice is that the frequency splitting between the resonances
increases when the hole size increases (from left to right). More specifically, for the
a0 = 450 nm device we find λA−λC = 60 nm for hole size d1, 67 nm for d2, and
80 nm for d3, making the relative splitting ∆λAC/λAC ≡ 2(λA−λC)/(λA+λC) =
0.041, 0.046, and 0.055, respectively. Similar numbers apply to the lattice with
a0 = 460 nm, where we find ∆λAC/λAC = 0.037, 0.039, and 0.052, and to the
470 nm devices, where we find ∆λAC/λAC = 0.034, 0.042, and 0.048, respectively.
All numbers are accurate to ±0.001. The increased splitting between the A and C
bands is accompanied by a downwards shift of the B band towards the C band,
as if the A and B bands repel each other. The coupled-mode model introduced in
Sec. 2.5 explains both effects as an avoided crossing of photonic bands, induced by
SP-SP scattering at the holes. The observed splittings are consistent with a picture
where the radiative splitting increases monotonously with the ratio d/λ probed in
the experiment.

Another thing to note is the different appearance of the three photonic bands.
While the low-frequency C band has the more or less standard form of two straight
lines, connected and capped by a smooth top, the B and the A band have a more
intriguing angle dependence. Both bands are visible only away from the surface
normal at θ 6= 0. The B band starts off with an almost linear dispersion that quickly
levels off, while the A band resembles two straight lines that loose their intensity
before they meet.

All 9 studied devices exhibit laser action at the investigated pump power of
125 mW in a 49 µm disk, corresponding to a pump density P/Area = 6.6 kW/cm2,
but the lasing thresholds, at which an intense sharp spectral feature appears, differ.
These threshold powers are indicated by PA and PB for laser action in the A and B
band, respectively. The (a0 = 460 nm, d2) device lases in both bands, seemingly si-
multaneously but probably in an alternating way. Under slightly different alignment,
this behavior was also observed for the (a0 = 450 nm, d1) and (a0 = 450 nm, d2)
devices, but not indicated here. The (a0 = 470 nm) devices have the lowest thresh-
olds, which starts at 53 mW for the d1 laser, decreases to 45 mW for the d2 laser,
and increases to 71 mW for the d3 laser. This variation indicates that there is an

16



2.5. Coupled-mode model

optimum hole size for surface plasmon lasing.
The accuracy of the threshold measurements is limited to ±20%, as the lasing

threshold depends on the location of the 49 µm round pump spot within the
50 µm square array. For all devices, laser action typically occurred over the full
pumped area, but the emission was seldom spatially uniform over this area and for
some devices it was clearly concentrated at the edges of the array. These spatial
observations were made with an infrared CCD illuminated with a magnified direct
image of the devices.

Lasing in either the A or B band occurs at comparable threshold powers. None
of the studied devices lased in the C band, nor did this laser action occur in a similar
set of devices with lattice spacing a0 = 440 nm, where the C band was shifted
upwards in the figures to a resonance wavelength of λC ≈ 1462 nm, more in line
with the lasing wavelengths of the other devices.

Each lasing device emits its light in a remarkable beam profile that is approxi-
mately donut-shaped, radially polarized, and centered around the surface normal
[20]. Although this statement applies to all lasers, the angular widths of the emitted
donut beams are noticeably different. The beams emitted in the A band typically
have an angular diameter of ∆θ ≈ 65± 6 rad. The beams emitted in the B band
are less collimated, with typical diameters of ∆θ ≈ 85± 8 rad. This diameter is
comparable to the diameter of ∆θ ≈ 90± 10 rad (FWHM 120 rad [20]) measured
for the same laser under excitation with a 2/3× smaller pump spot. There is,
apparently, no simple (Fourier) relation between these opening angles ∆θ and the
size of the pump spot. Furthermore, the product of opening angle times pump size
is considerably larger than the value expected from Fourier relations.

After the optical inspection presented above, we took the sample out of the
cryostat and placed it in a scanning electron microscope (SEM) for inspection and
an experimental estimate of the hole diameters. This inspection showed that the
holes were nicely circular and uniform (standard deviation in hole size 1-2%).
The measured hole diameters d are: (180, 179, and 175 nm) for d1, (189, 187,
and 183 nm) for d2, and (221, 206, and 202 nm) for d3, where the numbers in
parentheses refer to the samples with lattice spacings a0 = (450, 460, 470 nm). As
expected, the hole diameter increases with e-beam dose and increases slightly with
decreasing a0 due to proximity effects.

2.5 Coupled-mode model
This theoretical section presents a relatively simple coupled-mode model for the

observed angular emission spectrum I(0,θy ;λ) and the associated plasmonic bands.
Before doing so, we first note that the highly directional nature of the observed
spectrum is not as straightforward as one might think. On the contrary: we expect
the direct fluorescent photon emission through the holes to be spread out over
all angles, because each sub-wavelength hole radiates like a dipole and because
radiation from neighboring holes should hardly be correlated, as the fluorescent
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2. Surface plasmon dispersion in metal hole array lasers

medium is thin in relation to the hole spacing. The observed directionality of
the emission, on the other hand, proofs the existence of long-range coherence
between the emitting holes. This coherence must be created by traveling-wave
surface plasmons that are excited by fluorescence and later converted into photons
by coherent scattering on the holes in the lattice. More specifically, most photons
emitted at an angle (θx ,θy), with an associated photon momentum k‖ ≡ (kx , ky)
with kx = (2π/λ) sinθx and ky = (2π/λ) sinθy , originate from coherent scattering
of traveling-wave SPs with momenta ksp = Gi + k‖, where Gi is a lattice vector.
For our device, which has modest scattering and operates close to the 2nd-order
Bragg condition ksp ≡ |ksp| ≈ 2(π/a0) only four SP traveling waves are important.
These corresponds to the four fundamental lattice vectors with |Gi | ≡ G = (2π/a0),
pointing in the four lattice directions {ex ,e−x ,ey ,e−y}. We will thus denote them as
the+x ,−x ,+y , and−y traveling waves, although strictly speaking their wavevector
might deviate slightly from these directions when k‖ 6= 0 (k‖� G).

A first-order approximation of the dispersion of the SP bands neglects the
influence of scattering and simply uses the dispersion relation ω = |ksp|c/neff of
traveling-wave SPs on a smooth metal-dielectric interface, where neff is the SP
effective index. We only consider angle-tuning in the yz-plane, where k‖ = k‖ey ,
and use the paraxial (= small-angle) approximation to write k‖ ≈ (2π/λ)θy . In the
equations presented below, we will abbreviate θy as θ and often use the approxima-
tion (2π/λ)≈ (2π/λ0) for the mentioned prefactor, where λ0 = 2πc/ω0 ≡ neffa0
is a fixed reference wavelength, as wavelength variations within the SP bands are
small (λ≈ λ0). Under these conditions, it is easy to show that the eigenfrequencies
of the two±y modes areω(θ ) = ksp(θ )c/neff = (G±k‖)c/neff ≈ω0±c1θ , with c1 ≡
ω0/neff. The uncoupled±y modes thus exhibit a linear dispersion, which can also be
written as λ(θ )/a0 = neff±θ if we stick the original form k‖ = (2π/λ)θ . The eigen-
frequencies of the two ±x modes are both ω(θ )≈ω0+ c2θ

2, with c2 ≡ω0/(2n2
eff),

as the SP wavevector of these modes ksp(θ) =
Ç

G2 + k2
‖ ≈ (2π/λ0)

q

n2
eff + θ

2,

with
q

n2
eff + θ

2
y ≈ neff+θ 2/(2neff). The dispersion relations of these four uncoupled

traveling SP waves are depicted in Fig. 2.4(a).
In our system, the uncoupled traveling-wave model is accurate enough only at

angles sufficiently far away from the surface normal, where it produces the piece-
wise circular dispersion contours depicted in Fig. 2 of [20]. At smaller momenta k‖,
the scattering-induced interaction between the (now almost frequency-degenerate)
SP waves needs to be included. We do so with a coupled-mode model that decom-
poses the SP field at any position r≡ (x , y) in its traveling-wave components

E(r, t) =
�

Ex(t)ux eiGx + E−x(t)u−x e−iGx + Ey(t)uy eiG y + E−y(t)u−y e−iG y
�

eik‖ y ,
(2.5.1)

where {Ex , E−x , Ey , E−y} are the modal amplitudes of the four traveling waves and
ui , with i = {x ,−x , y,−y}, are unit vectors that describe the four associated optical
polarizations. We choose these eigenvectors to be rotationally-imaged copies of each
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Figure 2.4: Dispersion curves of the four SP bands, depicted as frequency
difference (ω −ω0) versus angle θ , for three different models of increasing
complexity: (a) uncoupled traveling waves, (b) backscattering only, and (c)
right-angle and backscattering. Fig. (a) shows the linear dispersion of the ±y
modes at slope ±c1 = 1/neff, for neff = 3 and the almost flat-band dispersion
for the ±x modes. Fig. (b) shows the case γ/ω0 = 0.015, where the ±y bands
exhibit an avoided crossing at θ = 0 and where the ±x bands have a fixed
splitting 2γ. The three solid bands A, B, and C couple to p-polarized light,
whereas the single dashed S band couples to s polarization. Fig. (c) shows how
only the cosine-type modes exhibit a second avoided crossing around θ = 0 when
right-angle scattering at a rate κ/ω0 = 0.006 is added.

other, such that the perpendicular component E⊥ of their electric fields are in phase
if the modal amplitudes are. Equation (2.5.1) is the Bloch-mode representation of
the relevant SP field, in first-order Fourier components only. When the four modal
amplitudes are combined into a single vector E, the time evolution of this SP field
can be expressed as dE/d t = −iHE, where H is a 4 × 4 matrix. If scattering is
neglected, H reduces to a diagonal matrix with the elements/eigenvalues mentioned
above, being {ω0 + c2θ

2,ω0 + c2θ
2,ω0 + c1θ ,ω0 − c1θ}.

The effects of SP scattering can be easily incorporated in the matrix description.
The 4-fold rotation and (x , y) mirror symmetry of the square lattice enables us
to divide the SP-SP scattering in three fundamental processes: forward scattering
under 0◦, right-angle scattering under ±90◦, and backwards scattering under 180◦.
Forward scattering at a rate γ0 merely changes the eigenfrequencies of all traveling
waves, but does not couple these waves. It can thus be easily incorporated in our
model by redefining the combinationω0+γ0 as the newω0, which simply indicates
that the effective index neff of SPs on a surface with holes can be different than
that of SPs on a smooth surface. Backwards scattering couples the x ↔−x and
y↔−y waves at an amplitude scattering rate γ. Right-angle scattering leads to
coupling between the ±x ↔±y traveling waves at an amplitude scattering rate κ.
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2. Surface plasmon dispersion in metal hole array lasers

Inclusion of all coupling rates into our dE/d t = −iHE matrix description yields

H =







ω0 + c2θ
2 γ κ κ

γ ω0 + c2θ
2 κ κ

κ κ ω0 + c1θ γ
κ κ γ ω0 − c1θ






(2.5.2)

Although the presented model is very general and can be applied to plasmonic
as well as photonic crystals [48] it contains one central assumption that needs
to be discussed. For simplicity, we have chosen the coupling rates γ and κ to be
real-valued, making the coupling conservative and H Hermitian. However, being
amplitude scattering rates, γ and κ do not need to be real-valued [49]. They could
in principle contain imaginary parts, which would then result in dissipative coupling
and (mode-selective) energy loss. Although a future and more detailed analysis
will probably show that these imaginary parts are not strictly zero, we prefer the
simplicity for now. We can also justify this simplification with two arguments.
First of all, theory predicts that small (� λ) holes scatter light in an off-resonant
way, such that both the polarizability and the related scattering rates γ and κ are
real-valued [50]. Secondly, previous experiments on SPs on an air-metal interface
with a grid of 50 nm wide slits measured conservative coupling to dominate over
dissipative coupling at a normalized rate of γ/ω0 = 0.022 versus 0.008 for the
mentioned geometry [51].

The plasmonic bands of our system are associated with the eigenvalues of the
H matrix. As these are quite complicated, we will first consider a simpler system
without right-angle scattering, i.e. with κ = 0, where the H matrix separates in two
2× 2 blocks. The lower (y) block describes the prototype avoided crossing with
eigenvalues ω(θ) = ω0 ±

p

γ2 + (c1θ )2. The associated eigenmodes are (1,±1),
with corresponding field profiles E(r)∝ cos G y and E(r)∝ sin G y , at θ = 0, and
an unbalanced superposition of traveling waves at θ 6= 0. The upper (x) block has
eigenvalues ω(θ ) =ω0 + c2θ

2 ± γ. Its eigenmodes are (1,±1), with corresponding
field profiles E(r) ∝ cos Gx · exp iky y and E(r) ∝ sin Gx · exp iky y, at any θ .
These results are depicted in the four dispersion curves in Fig. 2.4(b).

The general case also contains right-angle scattering (κ 6= 0), which couples the
±x ↔±y traveling waves and thereby complicates the model. Before we resort
to numerics, we like to point out that our 4 mode model is actually a 3+1 mode
problem. The (1,−1, 0, 0) eigenmode, with eigenvalueω0+ c2θ

2−γ, is special as it
doesn’t change with angle and is not affected by right-angle scattering. The physical
reason for this is that the E0(r)∝ sin Gx · exp iky y profile of this mode doesn’t
scatter, because it has intensity minima at the holes, or - phrased in a different
way - because the scattering contributions from the two counter-propagating waves
interfere destructively. Below, we will argue that this special SP eigenmode is the
only mode that emits s-polarized light.

The three remaining SP waves form a coupled set, of which the solution is only
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simple at θ = 0, where the (0,0,1,−1) eigenmode, with E1(r)∝ sin G y profile,
then has the same eigenvalue ω0 − γ as the (1,−1,0,0) mode. At θ = 0, the two
cosine-type standing waves cos Gx and cos G y couple into two eigenmodes of the
form E2,3(r)∝ cos Gx ± cos G y , with eigenvalues ω0 + γ± 2κ. At θ 6= 0, they also
couple to the E1(r) mode and the eigenvalue problem now corresponds to finding
the roots of a third-order polynomial. Figure 2.4(c) shows the numerically obtained
results for the realistic case κ/γ= 0.4.

2.6 SP-photon coupling and vector aspects
It is good to know the SP eigenmodes, but this is not yet the complete story.

As the observed fluorescence originates from coherent scattering of the four SP
traveling waves, its intensity depends crucially on the (far-field) interference be-
tween these scattering contributions. Constructive interference can make some SP
modes bright (= radiative), whereas destructive interference can make other SP
modes practically invisible (= non-radiative). This phenomenon is clearly visible in
Fig. 2.3, where the A and B bands loose their intensity around θ = 0, whereas the
C band still radiates.

We also need to consider the vector character of the electro-magnetic fields,
which is hidden in the eigenvectors ui of the SP waves. By solving Maxwell’s
equations at a metal-dielectric interface, one quickly finds that each SP traveling
wave contains three field components, just like any TM-mode in a planar medium:
an in-plane magnetic field H‖, perpendicular to the propagation direction, an out-
of-plane electric field E⊥, and an in-plane electric field E‖ in the direction of ksp,
which for the SP is much weaker than E⊥ and approximately 90◦ out of phase with
the other two field components. The interference between two counter propagating
SP waves depends on the field component that we consider. When the out-of-
plane electric field components E⊥ interfere constructively, to produce a cosine-type
pattern, the two in-plane field components E‖ and H‖ interfere destructively, into
a sine-type pattern, and vice versa. This difference will play a crucial role in the
comparison between theory and experiment.

The vector character of the SP field determines the polarization of the emitted
light. Instead of discussing the vectorial aspects of the SP-photon scattering, this
can also be understood from symmetry, which, for emission at θx = 0 is the mirror
symmetry in the yz (emission) plane. For TM-polarized waves, the four eigenmodes
naturally divide in three vectorial modes that are even under mirror action and
therefore only couple to p-polarized light and one mode that is odd and only emits
s-polarization [48]. To understand why, let’s consider the symmetry of the H field
of the four standing waves. The two linear combinations of the ±y SPs, with
magnetic fields H(r)∝ sin G y · exp ik‖ y ex and cos G y · exp ik‖ y ex , are both even
under mirror action, as their field profiles are even and the magnetic field is a
pseudovector, and therefore emit p (TM) polarized light in the yz plane. The
two linear combinations of the ±x SPs combine SPs with ksp = ±Gex + k‖ey and
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2. Surface plasmon dispersion in metal hole array lasers

therefore have H components in both the ex and ey direction. The combination with
dominant magnetic field H y(r)∝ sin Gx · exp ik‖ y is even under mirror action and
thus emits p-polarized light, albeit only through coupling with the other even SP
modes. The combination with magnetic field profile H(r)∝ exp ik‖ y[cos Gx ey −
i(k‖/G) sin Gx ex] is the only combination that is odd and radiates s-polarized light.

The symmetry argument presented above ended with the statement that the SP
standing wave with dominant magnetic field profile H y(r)∝ cos Gx · exp iky yey
is a ‘special’ eigenmode. At first sight this statement seems to be in conflict with our
3+1 coupled-mode model, where we concluded that the ‘special’ eigenmode has
a mode profile E0(r)∝ sin Gx · exp iky y . This paradox is solved when we realize
that the cosine profiles of the in-plane H fields corresponds to a sine profiles of the
out-of-plane E field, and vice verse. The former determines the SP-photon coupling,
whereas the latter apparently dominates the SP-SP scattering. The special mode
was removed in the experiment with a polarizer set for p (TM) transmission.

The next step in theory could be the development of a microscopic model that
explains the origin of scattering rates γ, κ, and γ0. For small holes, this scattering
is typically modeled by considering each hole as a polarizable object that scatters
through dipole radiation. Under TM-polarized excitation, the induced electric dipole
has both an out-plane component p⊥ and an in-plane component p‖. The induced
magnetic dipole, which is unique in metals, only has an in-plane component m‖. The
orientation of these dipoles derive three general rules for the relative magnitudes of
the mentioned scattering rates: (i) right-angle SP-SP scattering is only supported by
the electric dipole p⊥, (ii) forwards and backwards SP-SP scattering are supported
by both p⊥ and m‖, albeit in different combinations (p⊥ +m‖ versus p⊥ −m‖), and
(iii) the SP-photon scattering observed close to the surface normal is insensitive to
p⊥ and dominated by m‖, as p‖ is typically weak.

Whether the hole is small enough to validate the dipole approximation men-
tioned above depends on the ratio of hole radius r over SP wavelength λsp.
The observed hole diameters in all our sample, apart from (a0 = 450 nm, d3),
span a range d = 2r = 175-206 nm, which corresponds to dimensionless ratio’s
r/λsp = 0.19− 0.22. Figure 2 in the supplementary material of [50] indicates that
these ratio’s are at the edge of validity range of the dipole approximation: the elec-
trical polarizability is still dominantly real-valued, but the magnetic polarizability
already has a sizeable imaginary component. Hence we expect κ to be dominantly
real-valued, whereas γ might already have a sizeable imaginary component.

2.7 Comparison experiment and theory
After having presented the experimental dispersion curves in Fig. 2.3 and the

theoretical curves in Fig. 2.4(c), we are finally able to compare the two. We start by
noting that Figure 2.3 displays only the three p (TM) polarized bands. The fourth
s-polarized band exhibits hardly any dispersion and has a (very wide) extremum
with a central wavelength that practically coincides with that of the C band, as
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demonstrated in Fig. 2.5 below for one of the lasers. This s-polarized band is
without any doubt the special E0(r)∝ sin Gx · exp iky y band.

A qualitative comparison between the nine experimental pictures in Fig. 2.3
and the theoretical prediction in Fig. 2.4 leaves no doubt about the labeling of
the p-polarized bands. The high-frequency band A and the low-frequency band C
are the ±y traveling waves, with eigenvalues ω0 ∓ c1θ and field profiles E(r)∝
exp i(k‖ ± G)y at large θ , whereas the mid-frequency band is the B band. This
labeling is supported by two arguments. First of all, the observation that the
center of the C band practically coincidence with the center of the s-polarized
band is as expected: at θ = 0 these modes have the same eigenvalue ω0 − γ and
comparable mode profiles (E0(r)∝ sin Gx versus E1(r)∝ sin G y. The A and B
modes, on the other hand, have different eigenvalues ω0 + γ± 2κ and eigenmodes
E2,3(r)∝ cos (Gx)± cos (G y) at θ = 0.

The proposed labeling is also consistent with the radiative or non-radiative
character of the eigenmodes around θ = 0. The C and s-polarized modes have a
sine-type profile in E⊥ and a corresponding cosine-type profile in E‖ and H‖, which
makes them radiative modes. The A and B modes, on the other hand, have cosine-
type profiles in E⊥ and sine-type profiles in E‖ and H‖, and therefore do not radiate
at θ = 0. The A and B band indeed becomes extremely faint and disappears close
to the surface normal. The overall labeling is also supported by optical transmission
spectra, recorded with white light incident along the surface normal, which only
show the resonance of the (radiative) C band but not those of the (non-radiative)
B and A bands [19].

We have fitted all 9 dispersion curves in Fig. 2.3, by looking in particular at
the fit quality around θ = 0. The frequency difference between the upper bands
(ωA−ωB) = 4κ at θ = 0 yields the rate of right-angle scattering rate, although we
do not know its sign. The frequency difference between the average of the upper
two bands and the lower band (ωA+ωB − 2ωC)/2= 2γ at θ = 0 yields the back
scattering rate. In this case we do know the sign. The observation that the split
bands lie above the degenerate bands shows that γ > 0, such that modes with a
cosine-type E⊥-profile have a higher resonance frequency and a larger effective
index than the modes with a sine-type profile. The numbers obtained from these fits
correspond to right-angle scattering rates κ/ω0 = 0.005−0.011 for increasing hole
size. The backwards scattering rate γ/ω0 = 0.013− 0.017 is considerable larger
and increases less rapidly with hole size. Our observation that γ > κ is consistent
with the notion that the induced magnetic dipole m‖, which contributes only to
γ, is a stronger scatterer than the induced electric dipole p⊥, which scatters in all
directions. For comparison, we note that in holes in dielectric slabs, which scatter
only through electric dipoles, typically yield a scattering rate γ that is (somewhat)
larger that κ, such that the special s-polarized band for coupled TM modes now
coincides with the B band instead of the C band [48].

Figure 2.5 shows a detailed comparison of the measurements and fits for one of
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Figure 2.5: Dispersion curves of four SP bands of the (a0 = 470 nm, d2) laser
for (a) p-polarized and (b) s-polarized emission. The three solid and single
dashed curve show the p-polarized (A, B, C) bands and the s-polarized S band
and are calculated based on three fit parameters: γ, κ and neff (see text).
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our lasers. Figure 2.5(a) and 2.5(b) show the p-polarized and s-polarized emission,
respectively, of the (a0 = 470 nm, d2) laser (see also supplement of [20]). The
combined fit, depicted as three solid curves and one dashed curve, is based on
γ/ω= 0.0140, κ/ω= 0.0056, and neff = 3.235, and optimized by eye. The high
quality of this combined fit is typical for all studied lasers.

The most intriguing aspect of surface plasmon lasers is undoubtedly their ap-
proximately donut-shaped and radially-polarized emission. In the above discussion,
we have linked the central hole in the donut to the non-radiative character of the
A and B modes that these lasers operate on. An obvious question to ask, then,
is whether the SP field in the laser simply avoids the fundamental wave vectors
ksp = Gi or whether the SP field in the laser is far more intense then we actually
observe, because laser action also occurs at ksp = Gi , but is simply invisible as SPs in
non-radiative bands barely couple to the outside world. The latter scenario is quite
plausible, in particular because non-radiative modes are bound to be the first ones
to lase, precise because they hardly suffer from radiation loss. Hence we expect
that our SP lasers might be (much) brighter than they seem to be.

In future research, we would like to study the optical coherence within the
emitted donut-like beams. We will also try to make the C mode lase in at least one
of our devices, in order to check whether the characteristics of this radiative band
are really as different as we expect them to be.

2.8 Conclusion
In conclusion, we have presented a systematic study of the performance of a

series of semiconductor metal hole array lasers with different lattice spacings and
hole sizes. Angle- and wavelength-resolved measurements of the luminescence of
the In0.53Ga0.47As gain medium provides important insight in the nature of the lasing
modes and the dispersion of all surface plasmon (SP) resonances on the hole arrays.
The hole arrays act as a second-order Bragg reflector that provides distributed
feedback to the laser close to normal incidence. We observe four plasmonics bands,
which correspond to four linear superpositions of SP traveling waves, and could
identify all bands. Three bands couple to p-polarized light, of which only one
radiates along the surface normal. One band couples to s polarized light and also
radiates along the surface normal. A relatively simple coupled-wave model enables
us to extract the amplitude rates for SP-SP scattering, both under 90◦ (κ) and in the
backwards direction (γ). For the lasers studied in this chapter, with a hole diameter
to lattice constant of d/a ≈ 0.4, the observed plasmonic bandstructures correspond
to amplitude scattering rates κ/ω0 = 0.005− 0.011 and γ/ω0 = 0.013− 0.017 for
right-hand and backwards scattering, respectively.
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Chapter 3

Loss and scattering of surface plasmon polaritons on
optically pumped hole arrays

We study surface plasmons on 2-dimensional square arrays of sub-
wavelength holes in a gold film deposited on an optically-excited semicon-
ductor. We observe four resonances of which we measure the resonance
frequencies, the spectral widths, and the relative intensities. The spectral
widths allow us to quantify various loss processes, including ohmic loss,
optical absorption/gain and radiative scattering loss. Prominent kinks in the
plasmon dispersion relation occur around the Rayleigh anomaly. A coupled
mode model that includes a frequency dependent gain of the semiconductor
reproduces the main features in the experimental data.

This chapter was previously published as:
V. T. Tenner, A. N. van Delft, M. J. A. de Dood, and M. P. van Exter, Loss
and scattering of surface plasmon polaritons on optically-pumped hole arrays,
Journal of Optics 16, 114019 (2014)
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3.1 Introduction
Surface plasmons polaritons or surface plasmons (SPs) are a combined optical

and electronic solution to Maxwell equations bound to an interface. These surface
plasmons can be localized on a nano particle, or they can be traveling along an
extended interface. One remarkable property of SPs is the strong confinement
normal to the interface, with exponentially decaying fields in both media. Several
applications benefit from the strong confinement of the field that can be used to
enhance the light-matter interaction, for example in molecular sensors [53, 54].
The strong confinement can also be used to guide SP and build plasmonic circuits,
including beam splitters [55]and phase manipulators [56]. Similarly, meta-materials
often consist of sub-wavelength metal structures where the plasmon modes are
responsible for many of their extraordinary properties, such as the ability to create
negative refractive index materials [7, 8].

Although SP-based systems are highly succesfull, the main limiting factor is loss,
which can be divided in (ohmic) absorption loss and scattering loss. For instance,
SPs traveling on smooth Ag or Au interfaces are typically absorbed after 2-100 µm
[57] for wavelengths between 0.5 and 1.5 µm. Gain can be introduced to overcome
this limitation and several demonstrations of complete loss compensation have
been shown, using a semiconductor [19] or dye [40] as gain material. SP-lasing
action is possible when complete loss compensation is combined with a mechanism
for optical feedback. This feedback has been demonstrated in several structures
[58], including metal-coated nano-pillars [22], gold nano-spheres [21], and metal
hole arrays [20].

In this chapter, we study the modes of metal hole arrays with gain. These
structures are comparable to the structures that we have studied before [20, 37]. To
gain insight in the lasing mechanism it is essential to identify the modes responsible
for lasing. This can be done by measuring the dispersion of plasmonic bands and
quantifying the spectral width of these modes. This analysis is best performed below
the lasing threshold, where optical saturation and other nonlinear optical processes
are not yet relevant. In our earlier work we reported avoided crossings of the mode
frequencies and compared this to a coupled mode model [37]. In this chapter, we
extend this analysis and extract the frequency, width and total intensity of each
mode, by fitting the angle dependent emission spectra. The measured width allows
to quantify the effective ohmic loss as well as the scattering loss rate. We augment
the coupled mode model to include frequency dependent gain. This extended
coupled mode model captures all the main features without introducing a large
number of unknown parameters. This allows to identify the physical mechanisms
that are most relevant to lasing action of SPs in metal hole arrays. This simplified
model necessarily misses some of the details that are visible in the experimental
data. Most notably, we identify abrupt changes in the dispersion of the plasmonic
bands and the associated width of the resonances that coincide with a Rayleigh
anomaly.
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a b

Figure 3.1: a) Sketch of setup. Samples are optically pumped through the
substrate and fluorescence is collected through the hole array. A fiber on a
translation stage placed in the far field allows to measure spectra as a function
of angle. b) Spectrum of p-polarized light emitted at (θx = 0, θy = 0.10) rad.
The fit (red curve) is based on a sum of three Lorentzian resonances. The half
widths of these peaks are indicated in the graph. The grey symbols show the
measured fluorescence on a piece of the wafer without a gold layer. The line
through this data is a model that describes the frequency dependent gain (see
text).

3.2 Methods
3.2.1 Sample

The semiconductor-gold samples that we studied are identical to the ones
described in refs [20, 37]. Their layer structure, depicted in Fig. 3.2, comprise a
100 nm thick gold film on a 105 nm thick InxGa1−xAs semiconductor layer that is
lattice matched (x ' 0.53) to a 300 µm thick, double polished, InP substrate. A 15-
20 nm thick SiNx/InP spacer-layer between the InxGa1−xAs and the gold prevents
quenching of the optically excited semiconductor. A 20 nm thick chromium layer
on top of the gold damps the SP resonance on the gold-air interface, leaving only
the gold-semiconductor resonances. The gold layer is perforated with holes with
a diameter of 180 nm. The holes are arranged in a 50x50 µm square grid with a
spacing a0 = 470 nm between the holes.

3.2.2 Experimental geometry
Fig. 3.1a shows the experimental geometry. We optically excite the InGaAs

active/gain layer through the InP substrate with a continuous-wave pump laser
with a wavelength of 1064 nm. The resonances of the system are all visible below
the laser threshold, and hence the incident power (120 mW) was kept below laser
threshold of the device at a temperature of 120 K. The pump spot on the sample had
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a square shape with a size of 45x45 µm2. This pump beam creates electron-hole
pairs in the active layer of InGaAs material. These carriers radiatively recombine
and couple light into the plasmon modes of the metal hole array living on the
gold-semiconductor interface. The grey curve in Fig. 3.1b shows the measured
spectrum of this radiative recombination for a part of the sample without gold.

The collection part of our setup was the same as in [20, 37]. The fluorescence
light was collected in the far field at the gold side of the sample as a function of angle
(θx ,θy). More precisely, the light was collected using a 20x microscope objective
with a numerical aperture of 0.4. Sequentially the array structure was magnified
20x by a lens with a 20 cm focal length. Finally, the far field of the sample was
reached in the back-focal plane of a lens (focal length 5 cm), where the fluorescence
light was collected on a spectrometer using a single mode optical fiber (w≈ 10µm
@λ = 1500 nm). This fiber was scanned in the far field by a 2-dimensional
translation stage. In this chapter we keep the fiber at θx = 0 and scan the fiber only
in the θy direction, from θy = −0.44 rad to θy = 0.44 rad in 110 steps, but we
limit all figures to the most relevant part −0.3≤ θy ≤ 0.3. The angle θy is related
to the in-plane momenta in the y-direction (Γ -M) by k‖ = (ω/c) sinθy[37]. A thin
film polarizer was used to discriminate between vertical (p=TM) and horizontal
(s=TE) polarized light.

Figure 3.1b shows a typical p-polarized emission spectrum, obtained at an
angle θy = 0.10. This spectrum contains three peaks, labeled by A, B and C. A
curve consisting of three Lorentzians fits the data very well. We repeated these
measurements at other angles θy and for both polarizations, where similar high
quality fits yielded the position, the spectral width (half height half maximum,
HWHM), and the integrated intensity of each of the three peaks. The observed
angle dependence of the frequencies, spectral widths, and integrated intensities of
these resonances are discussed below.

3.3 Theory
We analyze all our data with a model based on four coupled surface plasmon

modes. This model, which is discussed in the Appendix, extends the work of [37].
It includes the SP-to-SP scattering that dominantly determines the SP dispersion
relation [37]. As an extension it also includes SP losses due to SP-to-photon scat-
tering, ohmic losses, and optical gain. These loss/gain channels determine the
spectral widths of the resonances. We describe these losses as imaginary rates in
the coupled mode model and thus obtain a complex plasmonic bandstructure.

Our model contains the following parameters: SP-to-SP coupling is parame-
terized by scattering rates γ and κ, which refer to back-scattering and right-angle-
scattering, respectively[37]. The ohmic loss and optical gain are combined into
a reduced ohmic loss rate ΓR = Γr − g(ω), where the ohmic loss Γr rate includes
surface-roughness related effects. Finally, SP-to-photon coupling occurs at a radia-
tive loss rate Γrad for the traveling waves, and at loss rates 2Γrad or 0 for the standing
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Figure 3.2: Loss channels of SP. The reduced ohmic loss, denoted by the loss
rate ΓR, is spatial uniform and includes the effective optical gain. The radiative
loss, denoted by the loss rate Γrad, occurs only at the holes and originates from
scattering of SPs to photons. At large angle, the SP-to-photon scattering is
distributed over three diffraction orders: 1st order diffraction into the air, and 1st

and 2nd order diffraction into the semiconductor. We only observe the emission
into air and analyze it as a function of frequency and emission angle.

waves (depending on the positions of their nodes).
The various loss channels are depicted in Fig. 3.2. The radiative loss origi-

nates from scattering of surface plasmons to photons in air and to photons in the
semiconductor. At sufficiently large angles a Rayleigh anomaly becomes visible
in the data. This anomaly opens a second scattering channel and is expected to
lead to an increase in the radiative loss [59] and may affect the SP dispersion via a
Kramer-Krönig-type relation. This second scattering channel is denoted as photon
2nd in Fig. 3.2, where the other channels are denoted as photon 1st.

By combining the (complex) amplitudes of the four coupled SP modes in a
four-vector |E(t)〉, the time evolution of the SP field can be described by a single
equation

d
d t
|E(t)〉= −iH|E(t)〉+ |S (t)〉 , (3.3.1)

where the evolution matrix H contains all scattering and loss/gain processes. The
vector |S(t)〉 describes the spontaneous emission that continuously feeds the SP
field (see Appendix for details). We use two versions of this equation to model our
experimental results. In our basic model we keep all parameters in the evolution
matrix constant and neglect the frequency dependence of the spontaneous emission.
This model is most easy to implement and already demonstrates various key features
of the system, such as the separation of the four coupled modes into three p-polarized
modes and one s-polarized mode. The symmetry of the square lattice also force
the modes to be radiative and non-radiative modes. In our advanced model we
include the most prominent frequency dependences, being that of the spontaneous
emission S(ω) and the optical gain g(ω). For simplicity, and to keep the number of
fit parameters limited, we will not include the milder frequency dependences of
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the various scattering rates and the appearance of the additional scattering channel
depicted in Fig. 3.2.

The spontaneous and stimulated emission in the semiconductor originate from
radiative recombination of electron-hole pairs. These emission rate, and the asso-
ciated optical gain, depends on the density of states of electrons and holes in the
conduction and valence bands and their fractional occupations 0< fc/v < 1. For the
usual parabolic bands, the electronic density of states has a

p

E − Eg dependence
above the bandgap Eg , while the fractional occupations are Fermi-Dirac functions of
the form fc/v = 1/[1+ exp (E − EF,c/v)/kB T]. The optical transitions are direct, i.e.
∆k ≈ 0, and the heavy hole mass of lattice-matched InGaAs is much larger than the
effective electron mass (mh/me ≈ 5) [60]. As a result, the frequency dependence
of the emission rate is well approximated by the occupation in the conduction band.
We model the emission rate and frequency dependent gain as [61]

S(ω)∝
q

ħhω− Eg fc(1− fv)

≈
q

ħhω− Eg
1

1+ exp (ħhω− EF,c)/kB T
(1− fv,0),

(3.3.2)

g(ω)∝
q

ħhω− Eg( fc − fv)

≈
q

ħhω− Eg

�

1
1+ exp (ħhω− EF,c)/kB T

− fv,0

�

,
(3.3.3)

where (1− fv) is the hole occupation and fv,0 is the electron occupation at the top
of the valence band. Note that the optical gain originates from the balance between
stimulated emission and absorption, where the absorption generates the minus
sign in front of fv,0. Our extended model includes four additional fit parameters.
The bandgap energy Eg , the Fermi energy EF,c , and the effective temperature T can
be determined experimentally by comparing the measured spontaneous emission
spectrum of the bare sample, depicted in Fig. 3.1b, with the above equation. This
leaves only one adjustable parameter, being the valence band occupation fv,0 which
controls the amount of absorption. We note that the outcome of the model is not
very sensitive to the exact value of this parameter and use fv,0 ∼ 0.5 to obtain
reasonably good agreement with the experimental data.

3.4 Results
In this section we present measurements of the resonance frequencies of the

four SP modes, their widths and total intensities. These measurements are in
essence contained in the false-color plots of the measured (angle- and polarization-
dependent) spontaneous emission spectra shown in Fig. 3.3a and b. In Fig. 3.3a
three p-polarized resonances are visible, labeled with A, B and C. Fig. 3.3b shows
one intense s-polarized resonance, labeled S. We analyzed these measurements
with two different versions of a coupled-mode model to obtain physical relevant
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a b c

Figure 3.3: False color plots of the measured fluorescence intensity I(θy ,λ)
of a) p-polarization and b) s-polarization. The y-axis depicts energy, in units
of vacuum wavelength of the collected photons. The white dashed line in a)
at θy = 0.10 indicates the cross section shown in Fig. 3.1. c) The resonance
frequencies of the bands deduced from the measurements. The dashed lines
show the light line of the semiconductor. The arrows mark clear kinks in the
dispersion relation.

phenomena and parameters. The two models predict similar dispersion curves, but
differ in their predictions of modal linewidths and intensities. Most of the extra
parameters required for the advanced model can be obtained for the fluorescence
spectrum measured in the absence of gold: the fit curve depicted in Fig. 1b) yields
an effective temperature (190K), band filling (down to 1494 nm), and band gap
(1653 nm) sample. To remove the unphysical abrupt change at E = EF,c in eq. (3.3.2)
and (3.3.3) a convolution with a 17 THz wide Hann window function was used to
obtain the spontaneous emission and gain functions used in the advanced model.
The subsections below describe the analysis of the resonance frequencies, the widths
and the total intensities, respectively.

3.4.1 Resonance frequencies
Figure 3.3c shows the resonance frequencies of all bands. The dispersion of

the p-polarized A, B, and C bands shows an avoided crossing. This crossing is
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modified by the presence of the (intermediate) B band, which exhibits a remarkable
dispersion.

To describe the data we use a coupled mode model, which is described in detail
in the appendix. Our measured dispersion curves can be well fitted with amplitude
scattering rates γ/ω0 = +0.012 and κ/ω0 = ±0.004 and an effective refractive
index ne f f = 3.268 as shown with the solid lines in Fig. 3.3. These values are
comparable to values found in ref. [37], where SP dispersion curves measured
for nine similar arrays could be well fitted with rates γ/ω0 = +0.013 to +0.017
and κ/ω0 = ±0.005 to ±0.011 [37]. We observe that the model deviates from the
measured resonance frequencies of the A and C band for larger angles.

Abrupt changes in the dispersion curves of the A and S band are located at
θ = ±0.06 and θ = ±0.17, respectively, and these kinks are marked with arrows in
Fig. 3.3c. The A and S band are more flat between the kinks. We do not observe
clear kinks in the B and C band. Our relatively simple model does not predict the
kinks and flat region of the A and S band. We note that the kinks in the dispersion
curves coincide with the positions where they cross the light line of the substrate.
This suggests that there is a connection between these kinks and the occurrence of
a Rayleigh anomaly, i.e., at the point where an additional diffraction order becomes
visible in the substrate. This suggestion is further supported by the observation
of a relatively sudden increase in the SP loss rate beyond this point (see below).
The dashed light lines in Fig. 3.3c correspond to n ' 3.12, which is close to the
value of n = 3.10 of the InP wafer. The thin InGaAs layer and the even thinner
SiNx/InP layer are too thin (� λ) to support a guided (optical) mode and modify
this anomaly. We do not yet understand why these kinks are only visible in the S
and A band, but not in the B band, which also crosses the light line.

3.4.2 Linewidths
Figure 3.4 shows the observed linewidths of the four SP bands. The C and S

band have a large linewidth of ∆ω/ω ' 0.0045 near θ = 0, while the A and B
band have a small linewidth of∆ω/ω' 0.001. The C band is the only band with a
linewidth that does not depend on angle. Also the linewidth of the S band is almost
constant, except from the sudden increase at θ = ±0.17, marked with arrows in
Fig. 3.4b. The linewidth of the B band is M shaped, with a minimum at θ = 0.

The basic coupled mode theory, without frequency dependent gain and emission,
already explains most of the features that we observe as shown with the dashed lines
in Fig. 3.4. For instance, it explains why the SPs in the C and S band are more lossy
than the SPs in the A and B band. The reason is that the former scatter efficiently to
photons, whereas the latter do not scatter to photons at small angles. At θ = 0 the
spectral width of the radiative modes ΓC ,S = 2Γrad + ΓR is set by the radiative and
reduced ohmic losses, whereas the spectral width of the dark modes ΓA,B = ΓR is
only determined by the reduced ohmic losses. The experimental results presented
in Fig. 3.4 correspond to ΓR/ω ≤ 0.001 and 2Γrad/ω ' 0.004. This SP-to-photon

34



3.4. Results

a b

Figure 3.4: Linewidths of the a) p-polarized b) s-polarized bands. The points
indicate the experimental values, whereas the curves indicate the predictions of
the basic (dashed) and advanced (solid) model. The angle for the observed kink
in the A and S band is marked by the arrows.

scattering rate is approximately six times lower than the backscattering rate, but
two times higher than the reduced ohmic losses for the applied pump power and
temperature.

Extending the model with a frequency dependent gain improves the fits to the
A and C band, as shown with the solid lines in Fig. 3.4. Due to the band gap and
finite band filling the gain is lower for the A and C band at higher angles. This leads
to a larger linewidth at larger angles. The observed linewidth of the A band is still
larger than our model predicts. This discrepancy might possibly be explained by
both the exact shape of the electron bands in the semiconductor as by a physical
description of the Rayleigh anomaly. A good quantitative picture of the Rayleigh
anomaly, and in particular the intensity that is carried away by this anomaly is
lacking without extensive numerical calculations.

3.4.3 Total intensity
Figure 3.5 shows the integrated intensity, A = πImax∆λ, of the individual

resonances, where Imax is the maximal intensity of the band and ∆λ is its spectral
width (half width half maximum). The C and S band have a large integrated
intensity with a maximum at θ = 0, whereas the A and B band are much fainter
and have a minimum near θ = 0. We call the C and S mode bright/radiative and
the A and B mode dark/non-radiative [37].

The first thing to note in Fig. 3.4b is the distinction between the bright C and S
bands and the dark A and B bands, in particular around θ ≈ 0. This observation is
easily understood from the theoretical observation that the bright bands have field
maxima at the holes, while the dark bands have field minima at the holes around
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a b

Figure 3.5: Integrated intensity of a) p-polarized and b) s-polarized bands.
The points indicate the experimental values, whereas the curves indicate the
predictions of the basic (dashed) and advanced (solid) model. Note the large
integrated intensity of the bright C and S mode and the small integrated intensity
of the dark A and B mode, in particular at θ = 0.

θ = 0. The field we are referring to is the parallel magnetic field, which is the field
that scatters SPs to photons [37].

The model without a frequency dependent gain and fluorescence signal repro-
duces only the main features close to normal incidence, as shown by the dashed
lines in Fig. 3.5. It predicts two bright and dark modes, and a M-shaped B band.
The fit of the A and C band is improved considerably by including the spectral
dependence of the gain and spontaneous emission, as shown with solid lines in
Fig. 3.5. In this advanced model, the weak spontaneous emission and gain at short
and long wavelengths limit the amount of light in the A and C band at large θ .

3.4.4 Different samples
We repeated these measurements and analyses on different metal hole arrays

on the same wafer, with different hole sizes and spacings (a0 = 450...470 nm). All
arrays showed similar results, to be more precise: (i) the resonance frequency of
the S band showed kinks that occur at the Rayleigh anomaly again, (ii) the spectral
width of the two bright modes C and S was larger than that of the two dark modes
A and B, and the spectral width of the S band suddenly increased between θy = 0.1
and 0.25, and the spectral width of the B band was M-shaped, and (iii) the C and S
bands were bright, while the A and B bands were dark at θy = 0. There were also
differences, one of them was in the width of the A band, which is now constant at
small angles, before it increases towards larger angles. The onset of this increase
is at the same angle as the kink in the resonance frequency of the A band and
coincides with the Rayleigh anomaly.

36



3.5. Discussion

Furthermore, we studied metal hole arrays with a similar spacing on a different
wafer with a thicker (150 nm) active layer. These metal hole arrays did not have a
perfect square lattice, but a slightly skewed (2◦) parallelogram lattice. The most
striking difference with the data presented in Figs 3.3-3.5 was a small bump in the
angle dependence of the linewidth of the S band; the measured width of the S is
identical to that of the C band at normal incidences, but decreases at θy = 0.05. In
addition, the resonance frequency of the S band was 4 nm blue-shifted compared
to the C band.

3.5 Discussion
To verify that the loss rates and refractive index that are obtained from our

model are reasonable, we compared them with theoretical values. The complex
refractive index of surface plasmons on a smooth metal-semiconductor interface is

ne f f + ini =
√

√ ε1ε2

ε1 + ε2
(3.5.1)

where ε1, ε2 are the dielectric constant of the dielectric and the metal respectively.
The ohmic loss rate is given by Γr/ω = ni/ne f f . For transparent InGaAs and InP
as dielectric this leads to an expected ohmic loss rate Γr/ω= 0.0053 and 0.0043
respectively1. The very thin SiNx/InP layer next to the gold interface lowers this
value to 0.0033 [20, 62]. Our reduced ohmic loss rate ΓR/ω = 0.001 is lower, which
indicates that the InGaAs layer reduces the total loss and hence there is a net gain
in the InGaAs layer. However, due to the ohmic losses and SP-to-photon scattering
the SP-modes do not have net gain.

In ref. [19], Van Beijnum et al. determined the loss rate of the radiative SP
mode around normal incidence, using Fano fits of measured transmission spectra
which contained only the radiate modes S and/or C. Their analysis yield a half-width
(HWHM) of 12 nm for the resonance around λ = 1562 nm at low pump power,
which narrows to 4 nm at high pump power. The corresponding loss rates are
Γs/ω= 0.0077 and 0.0026, respectively. The loss rate of the unpumped system is
considerably larger than our loss rates, while the loss rate of the pumped system is
somewhat smaller, which can be explained by the lower temperature used in Ref.
[19]. We expect an ohmic loss rate of ΓR/ω≈ 0.036 for the most absorptive case of
unpumped bulk InGaAs.

Comparing the basic and advanced model with the data allows us to identify
the frequency dependent gain and spontaneous emission as a dominant factor
in the system. This frequency dependence depends on the exact shape of the
electronic bands in the semiconductor, which might be more complex than our

1The following dielectric constants were used for the calculations of the expected loss
rates: Gold: ε = −116+ 11.1i. Transparent InGaAs: ε = 11.6 (n = 3.407). InGaAs with
absorption (gain):ε= 11.6± 0.65i. InP: ε≈ 9.61 (n≈ 3.10). SiN: ε≈ 4 (n≈ 2).
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simple assumption made in eq. (3.3.2) and (3.3.3). Adding this to the model
will increase the complexity and the number of fit parameters, and obscure the
relevance of physical phenomena in the model.

3.6 Conclusion
We studied the complex dispersion relation of surface plasmons on a square

metal hole array. We observed the frequencies, linewidths, and integrated intensities
of the four resonances and compare our data to a simple model designed to identify
the key ingredients. This model gives a quantitative prediction for both linewidths
and intensities and captures all main features without introducing a large number
of unknown parameters. The model necessarily misses some of the observed details.
The most notable detail in the experiment are abrupt changes in the resonance
frequencies and line widths which coincide with a Rayleigh anomaly.

The basic model is used to deduce the SP-to-photon scattering rate and the
reduced ohmic losses. The SP-to-photon scattering rate is found to be approximately
six times smaller than the backscattering rate, but is two times higher than the
reduces ohmic losses for the applied pump power and temperature. We made a
distinction between bright (radiative) and dark (non-radiative) modes. Furthermore
we identified the frequency dependent gain as a dominant factor in our model,
which should be included in any model of laser action. We augmented the model
to include this dominant factor and retrieved improved predictions for both the
intensity as the widths of the modes.
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Appendix
3.A Coupled mode model for SPs in square metal-hole-

arrays
3.A.1 SP field in traveling-wave basis

In this appendix we describe a simple coupled-mode model for the surface
plasmons (SP) that exist at the metal-dielectric interface of a square hole array.
This model is an extension of an earlier model described in ref. [37]. It is based
on the notion that photons emitted with parallel momentum k‖ ≡ (kx , ky) only
couple to traveling-wave SPs with (in-plane) momenta kSP = k‖ + Gi, where Gi
is a lattice vector of the hole array. Our model only considers the four dominant
Fourier components (modes), with magnitude |Gi | ≡ G = (2π/a0) pointing in either
of the four lattice directions {ex ,e−x ,ey ,e−y}, and neglects higher-order Fourier
components of the SP. These components are not resonant and hardly excited. The
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non-resonant contributions from all Fourier components are included in a change
in the effective refractive index ne f f , which is different from the effective index of
SPs on a smooth interface.

In this chapter, we only consider emission at θx = 0 and write the parallel
momentum ky = (ω/c) sinθy at emission angles θy � 1. We express the associated
out-of-plane components of the SP field at position r≡ (x , y) as

E(r, t) =
�

Ex(t)ux eiGx + E−x(t)u−x e−iGx

+Ey(t)uy eiG y + E−y(t)u−y e−iG y
�

eik‖ y
, (3.A.1)

where {Ex , E−x , Ey , E−y} are the modal amplitudes of the four traveling waves. The
eigenvectors ui , which describe the four associated optical polarizations, are chosen
to be rotationally-imaged copies of each other. When the four modal amplitudes in
Eq. (3.A.1) are combined into a single vector |E〉, the time evolution of this SP field
can be expressed as d|E〉/d t = −iH|E〉, where H is a 4× 4 matrix. If scattering
is neglected, H reduces to a diagonal matrix with elements {ω+x ,ω−x ,ω+y ,ω−y}.
At θx = 0 and θy ≡ θ , the dispersion relation ω = |k‖|c/ne f f for traveling-wave
SPs on a metal-dielectric interface yields ω±y(θ) ≈ (G ± k‖)c/ne f f ≈ ω0 ± c1θ ,
and ωx(θ) =ω−x(θ) ≈ω0 + c2θ

2, with ω0 ≡ (2π/a0)c/ne f f , c1 ≡ω0/ne f f , and
c2 ≡ω0/(2n2

e f f ), where ne f f is the SP effective index.
Reference [37] also described the SP-to-SP scattering processes. This scattering

was divided into three fundamental processes: forward scattering under 0◦ (at a rate
γ0), right-angle scattering under ±90◦ (at a rate κ), and backwards scattering under
180◦ (at a rate Γ ). Inclusion of these scattering processes into the d|E〉/d t = −iH|E〉
matrix description yields the result presented in ref. [37]:

H =







ω0 + c2θ
2 γ κ κ

γ ω0 + c2θ
2 κ κ

κ κ ω0 + c1θ γ
κ κ γ ω0 − c1θ






(3.A.2)

The scattering rates γ and κ are assumed to be real-valued, such that the associated
coupling is conservative (= energy conserving) and the matrix H is Hermitian. The
reference frequency is again ω0 = (2π/a0)c/ne f f , but ne f f now contains a small
contribution from forward scattering at a rate γ0.

3.A.2 SP field in standing-wave basis
Next, we transform the evolution matrix H from the traveling-wave to the

standing-wave basis. For this purpose, we combine the waves traveling in the ±x
direction into two standing waves with out-of-plane E⊥(r) = Ecx(r)∝ cos Gx ·
exp iky y and Esx (r)∝ sin Gx ·exp iky y , where the labels cx and sx denote a cosine-
or sine-pattern in the x direction. Likewise, we combine the ±y traveling waves
into two standing waves with out-of-plane E-fields Ec y(r)∝ cos G y · exp iky y and
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Es y(r)∝ sin G y · exp iky y. The transition from the {+x ,−x ,+y,−y} traveling-
wave basis to the {−i sin Gx , cos Gx ,−i sin G y, cos G y, } or {sx , cx , s y, c y} standing-
wave basis transforms the H matrix into

H =







ω0 + c2θ
2 − γ 0 0 0

0 ω0 + c2θ
2 + γ 0 2κ

0 0 ω0 − γ δ
0 2κ δ ω0 + γ






, (3.A.3)

where δ ≡ −c1θ = −(ω0/ne f f )θ .
Note how the 4× 4 matrix separates in an uncoupled element, associated with

the sx standing wave, and a 3× 3 matrix. This separation results from the mirror
symmetry in the xz-plane (θx = 0). The Esx (r)∝ sin Gx · exp iky y field is the only
standing wave that is odd under mirror inversion, while the other three standing
waves are even. The former couples only to s-polarized emission, which has an odd
symmetry, while the latter three mix and couple to p-polarized emission, which
also has an even symmetry. Also note how the coupling rate κ, associated with
SP-SP scattering under 90◦, only couples the cos Gx and cos G y waves, which have
intensity maxima at the holes, while the detuning δ only couples the c y and s y
standing waves.

3.A.3 Losses and gain
Next, we include losses and gain in our model. First of all, we include ohmic

losses at an ohmic damping rate Γr = (ni/ne f f )ω, where ni and ne f f are the
imaginary and real part of the SP effective index ne f f + ini =

p

ε1ε2/(ε1 + ε2)
at the interface between medium 1 and 2. Second, we include optical gain at
a gain rate g0 per second. As both ohmic loss and optical gain are distributed
approximately uniformly, they can be combined into an effective ohmic loss rate
ΓR ≡ Γr − g0 and are easily incorporated in our matrix description by replacing
the evolution matrix iH → iH − ΓR. Finally, we include radiative losses through
scattering from SPs to photons, either in the air or in the semiconductor. This
radiative loss rate Γrad = Γair + Γsemi is equal for all traveling waves, but mode
selective for the standing waves. As radiative scattering only occurs at the holes and
as the SP-to-photon coupling proceeds dominantly via the in-plane magnetic field
(at θ � 1), we expect that only the standing waves with a sinusoidal E⊥- pattern
couple radiatively, at a decay rate 2Γrad, while the cosine-type modes don’t couple.
By combining the above loss and gain rate into our matrix description we arrive at
our final expression

H =







ω̃sx 0 0 0
0 ω̃cx 0 2κ
0 0 ω̃s y δ
0 2κ δ ω̃c y






, (3.A.4)
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where ω̃i =ωi−iΓi are four complex frequencies, with real partsωsx =ω0+c2θ
2−γ

, ωcx = ω0 + c2θ
2 + γ , ωs y = ω0 − γ , and ωc y = ω0 + γ , and imaginary parts

Γsx = Γs y = ΓR + 2Γrad and Γcx = Γc y = ΓR.

3.A.4 Spontaneous emission spectra
The fluorescence spectrum of the optically-pumped systems can be calculated

in two steps, once the evolution matrix of the SP-field is known. In the first step,
the spontaneous emission into the surface plasmon manifold is calculated from the
expression

d
d t
|E(t)〉= −iH|E(t)〉+ |S (t)〉 ⇒ |E (ω)〉= −i(H −ω)−1|S (ω)〉 ,

where the 4-element vector |S〉 describes the original spontaneous emission, divided
over the four standing-wave SP modes, and |E〉 describes the generated SP field. The
multiplication by (H −ω)−1 describes how the original emission source is modified
by the gain and loss in the system into the resulting SP field, which therefore peaks
around optical frequencies ω close to the complex poles of the matrix H. In the
first step of the calculation, we assume that the original emission at each optical
frequency is equally distributed over the four standing waves and that the four
emitted fields are uncorrelated. This assumption is the Fourier equivalent of the
statement that the original emission at different spatial positions is homogeneous,
isotropic, and uncorrelated. The emitters are thus treated as classical noise sources
with a strength that depends only on their excited-state and ground-state population,
as was done in the analysis of spontaneous emission noise in semiconductor lasers
[63]. In the second (and final) step, the generated surface plasmons are scattered
into photons and detected. The sx standing SP wave scatters into s-polarized
photons and only the s y standing SP wave is assumed to scatter into p-polarized
photons.

The emission in the (odd) s-polarized mode is easily calculated. As only one
of the four SP standing waves is odd, the SP field follows from the scalar relation
E (ω) = iS (ω)/(ω− ω̃sx) and its absolute square

Is−polarization (ω)∝
Is (ω)

(ω−ωsx)
2 + Γ 2

sx

, (3.A.5)

where Is (ω)↔ |S (ω) |2. We recognize the standard Lorentzian form, with its
resonance frequencyωsx ≡ω0+cδ2−γ and its (HWHM) half-width Γsx ≡ ΓR+2Γrad.
The excited sx mode emits efficiently from SP-to-photon, as this Esx(r)∝ sin Gx ·
exp iky y mode has a magnetic field Hsx(r)∝ cos Gx · exp iky yey with anti-nodes
at the holes.

A calculation of the (even) p-polarized emission is more complicated, as this
emission originates from three coupled SP modes. After some straightforward
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mathematics, which involves the inversion of a 3× 3 matrix and a projection onto
the s y mode, which is the only one of the three mode that couples to photons, we
obtain

Ip−polarization (ω)∝
3
∑

i=1

Is (ω) |〈s y|ui〉|2

(ω−ωi)
2 + Γ 2

i

(3.A.6)

where 〈ui | are the three left eigenvectors of the 3× 3 lower-right submatrix H̃ of
H, ω̃i ≡ωi + iΓi are the associated eigenvalues, such that 〈ui |H̃ = ω̃i〈ui |, and |s y〉
denotes the field of the s y mode. The explicit solution of this problem reads

Ip−polarization (ω)∝

|
�

ω̃c y −ω
�

(ω̃cx −ω)− 4κ2|2 +δ2
�

|ω̃cx −ω|2 + 4κ2
�

|
�

ω̃s y −ω
� ��

ω̃c y −ω
�

(ω̃cx −ω)− 4κ2
�

−δ2 (ω̃cx −ω) |2
Is (ω) , (3.A.7)

At δ = 0 and κ = 0, we recover the expected result Ip−polarization (ω) =
Is−polarization (ω)∝ Is (ω)/|ω̃s y −ω|2.

The above expressions for the emitted spectrum contain subtleties that might
go unnoticed in their present form, as they are related to the frequency dependence
of some of its parameters. The spontaneous emission spectrum Is(ω) and the
associated stimulated emission or optical gain g(ω) will for instance depend on
frequency. These effects are included in the advanced model used in the main
text. To keep the description simple, and limited the number of fit parameters,
we have not yet included the following two effects: (i) The SP-to-SP scattering
rates γ and κ and the SP-to-photon scattering rate Γrad are expected to show a
wavelength dependence, with Rayleigh-type scattering rates scaling as ωn with
n ≥ 6, depending on the type of scattering [64], (ii) the appearance of a new
diffraction order (Rayleigh anomaly) is expected to lead to a sudden increase in
radiative loss at large angle.
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Chapter 4

Measurement of the phase and intensity profile of surface
plasmon laser emission

We study the near and far field radiation patterns of surface plasmon
(SP) lasers in metal hole arrays and observe radially polarized vortex-vector
laser beams in both near and far field. Besides the intensity profile, also
the complementary phase profile is obtained with a beam block experiment,
where we block part of the beam in the near field, measure the resulting
changes in the far field, and retrieve the phase using an iterative algorithm.
This phase profile provides valuable information on the feedback mechanisms
and coherence of the laser and shows that our SP laser operates in a phase-slip
mode instead of a pure dark mode. To explain our observations, we extend
the standard model for distributed feedback (DFB) lasers by introducing a
position dependence in the optical gain and refractive index.

Fourier

SP

A exp(iφ)

This chapter was previously published as:
V. T. Tenner, M. J. A. de Dood, and M. P. van Exter, Measurement of the
Phase and Intensity Profile of Surface Plasmon Laser Emission, ACS Photonics
3, 942 (2016)
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4.1 Introduction
Optically coherent laser radiation can be generated if both gain and optical

feedback are present in a medium. Our physical understanding of these phenomena
originates from comparisons between measured intensity distributions and models
of both the amplitude and the phase of the radiation. The optical phase is typically
discarded because it evolves too fast to resolve directly with an optical detector or
a camera. The inability to measure both amplitude and phase of the emitted laser
radiation presents a recurring challenge in optics and limits progress in the field.

More ingenious schemes are needed to observe the phase using slow detec-
tors. One of the simplest schemes uses the mixing of the amplitude and phase
information of the light field upon propagation. At the laser exit the amplitude
contains information where the light is emitted, while the phase profile contains
information about the propagation direction. Recording the intensity distribution
on different positions allows retrieval of the phase information by an iterative
algorithm [66–68].

The ability to resolve both amplitude and phase is particularly relevant for lasers
that emit non-standard beam profiles that are not yet fully understood. Examples
of such lasers are surface-emitting distributed feedback lasers, such as photonic and
plasmonic crystal lasers. Two-dimensional surface-emitting photonic-crystal-lasers
often emit donut beams with azimuthal polarization [69], while surface plasmon
lasers create radially polarized vector-vortex beams [20]. Devices can be tailored
to emit other beam shapes [70], but information about the phase- and amplitude
profile is scarce and has either low resolution [71] or an electrical contact blocks
the view [72].

A better understanding of gain and feedback in plasmonic systems is important
for improving photonics applications that use the strong confinement and light-
matter interaction provided by plasmons. These applications include ultra sensitive
molecule sensors (SERS) [3], anti-counterfeiting measures [73], perfect absorbers
[74], ultra-fast optical modulators [75], as well as future metal-dielectric meta-
materials consisting of arrays of plasmonic sub-wavelength elements [5, 6]. The
strong plasmonic response of passive media is accompanied by Ohmic loss due to
scattering of the free electrons in the material. Adding media with active gain can
resolve this issue [19, 76, 77] and over-compensation typically leads to laser action,
as has been demonstrated in two-dimensional metal particle arrays [28], and metal
hole arrays [20].

In this chapter, we present the first experimental observation of the phase- and
amplitude profile of a two-dimensional surface plasmon laser retrieved via the
combination of a beam-block experiment and an iterative algorithm. The metal
hole array in our study acts as a second order Bragg grating, which provides a
natural output channel and enables easy observation of the intracavity field. Our
observations go beyond the standard description of distributed feedback lasers.
We extend the standard approach by including a position dependent gain and
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4.2. Device

y

x

polarizer

 λ = 1064 nm

Image plane

Near field

Fourier plane

Far field

beam blocksample

Figure 4.1: Schematic of the experimental setup to measure the amplitude and
phase profile of the laser emission.

refractive index, which are both induced by the optical pump beam, and obtain
good agreement between experiment and theory.

4.2 Device
The semiconductor-gold samples that we study contain metal hole arrays with

a square lattice, with hole diameters of 160 nm and a lattice spacing of 470 nm
(see Fig. 4.2a for a SEM image). The device dimensions studied here are 50x50 and
100x100 µm. The Au film is 100 nm thick and is deposited on a 127 nm InxGa1−xAs
(x = 0.536) gain layer on an InP substrate (see Fig. 4.2e for a schematic side cut).
Between the gold and the InGaAs, a thin InP spacer layer and a SiN passivation layer
were incorporated. The gain layer is sufficiently thin such that the only supported
optical mode is the surface plasmon (SP) mode. Similar samples are described in
more detail in ref [20].

4.3 Experiment
Our experimental geometry is as shown in Fig. 4.1. The sample is mounted in

a cryostat with optical access on both sides and cooled down to 80 K. We pump
the active layer of the sample using a continuous wave laser with a wavelength of
1064 nm through the transparent InP substrate. The pump beam has a Gaussian
profile that can be varied in size between 20 and 50µm full width at half maximum.
The light emitted by the SP laser is collected in transmission on the metal side of
the device with a 20x microscope objective (NA = 0.4) combined with a tube lens
(f = 200 mm) to create a 4-f imaging system. Hence, the optical field in the image
plane is a scaled version of the radiative field at the sample; in this thesis, we call
this the near field.

In some of the experiments we position a razor blade in the near field to block
part of the beam. To inspect the near field, we image it with a lens (f = 100 mm)
on a CCD camera. Subsequently, this lens is replaced by a lens with a longer focal
distance (f = 200 mm) such that the far field is retrieved in the back-focal plane. A
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bandpass filter (λ= 1490± 6 nm) that transmits the laser light is used to reduce
the broadband spontaneous emission in the measurements.

4.4 Results
Figure 4.2 show the measured near field (top) and far field (bottom) of the

SP laser. Images are shown for the unpolarized light (b,f), with a linear polarizer
transmitting y-polarized light (c,g) and with half of the near field blocked (d,h).
The near field is donut shaped, i.e. it is circular with a dark center. The laser area
is comparable to the size of the pump, being 40µm in this case. The dark central
spot is remarkable and raises questions about the apparent lack of energy in the
center of the device. Figure 4.2c shows a polarization resolved measurement. Since
this image rotates along when rotating the polarized axis, we conclude that the
near field donut is radially polarized. The observation of a clear donut in the near
field is only apparent when the pump beam is small enough. In our experiments,
we observe that larger pump beams (up to 100µm) result in a larger laser areas
and spatial inhomogeneity. Nonetheless, there is always a dark spot somewhere, as
expected for a topological defect. Under some experimental conditions the laser
hops between several spatial modes with different locations of the dark spot, and
hence the central dark spot becomes less visible after averaging.

Figures 4.2f-h show the observed far field intensity profiles and display that
the far field is also a radially polarized donut beam. This similarity is not trivial
and warrants further investigation. In order to observe the associated phase profile,
we perform an experiment in which we block half of the near field with a razor
blade and observe the far field. The resulting near field, shown in Fig. 4.2d, is
trivial and presented mainly for didactic reasons. The resulting far field, shown in
Figure 4.2h, depicts that the two lobed far field is now reduced to a single lobe,
while the angle of the maximum emission is hardly changed. This observation
provides valuable information about the phase profile of the near field, because it
indicates the existence of a phase gradient in the near field.

To quantify the full two-dimensional phase profile of the optical field, we
retrieve the phase profile with an iterative Gerchberg-Saxton-based algorithm [66],
see Methods. We find that the retrieved near field phase exhibits a π-phase jump in
the dark center of the device and exhibits a phase gradient in the radial direction,
with a slope that increases towards the edge of the device. A cross section of this
phase profile is depicted in Fig. 4.3c,g. These figures also show cross sections of
the near and far field intensity profiles presented earlier in Fig. 4.2. The far field of
the full beam has no light in the center, whereas there is emission along the surface
normal in the beam block experiments. Because the far field of the full beam should
be equal to the coherent sum of the two halves, the dark center in the far field must
be formed by interference of emission from the two halves of the sample. This in
turn indicates the existence of long range coherence across the sample. In the rest
of this chapter we will discuss the implications of our observations and compare
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them with theory.

4.5 Discussion
We first compare our results with the standard DFB theory [35] for one dimen-

sional systems with a finite size. In this theory, the field in the device is decomposed
in two traveling waves, which are coupled by scattering at the holes. The relevant
parameters are the length L of the device and the coupling rate κ. The product κL
determines the behavior of the laser. This theory yields the threshold condition of
the laser: wavelength, gain and the field profiles of the traveling waves.

The solutions are either symmetric or anti-symmetric around the center of the
device. In an infinitely large index coupled system these are dark (non-radiating)
and bright (radiating) modes, which are located at the exact center of the Brillouin-
zone (k = 0) [37, 51, 78]. However, in a “real” laser, the coherence length `coh is
limited by the finite sample size and the scattering [35], which breaks the description
of a continuous band structure into discrete modes with a detuning from the Bragg
wavelength. The relevant modes are at ∆k = π/`coh and there is no mode at the
center of the Brillouin-zone.

Scattering in the out-of-plane direction induces radiative loss, which increases
the threshold of the radiative solution [79]. Our device operates in a transverse-
magnetic (TM) mode and hence the coupled mode with the symmetric out-of-plane
E-field distribution is the non-radiating mode with the lowest threshold, as explained
in Appendix 4.A.

Figure 4.3a,b displays the calculated symmetric coupled mode solution of the
standard DFB theory for our measured backscatter rate κ/β0 = 0.012 [37], device
length L = 50µm, and refractive index n0 = 3.268 [52], corresponding to κL = 8.
The calculated near field shown in Fig. 4.3a contains the essential features of
Fig. 4.3c: it has two lobes with opposite sign, indicated by a π-phase-jump in center
of the device. However, in contrast to the experiment the calculated phase in each
of the lobes is almost constant. As a consequence, the far field profiles depicted
in Fig. 4.3e are very different from the observations depicted in Fig. 4.3g: the
calculated profile is too narrow and is oscillatory at larger angles. Furthermore, the
emission by half of the device is incorrectly predicted to be a single lobe located
close to the surface normal.

To explain our observations we extend the standard DFB theory by introducing
a position dependence of the gain and refractive index (see Appendix 4.A for
derivation). Both are mainly set by the carrier density, which is position dependent
due to inhomogeneous pumping and diffusion, and to a lesser extent by the local
temperature associated with heating of the device. We model the local gain and
index as the Gaussian profile of the pump beam, and note that deviations from an
exact Gaussian shape are unimportant. In the center of the pumped area there is
an effective gain, as discussed below, while outside the pumped area there is an
effective loss (negative gain), which is mainly caused by absorption in the gain
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4. Measurement of the phase and intensity profile of surface plasmon laser emission

layer. We solve the coupled mode equations by an active mirror approach [63],
which is relatively simple and powerful, as explained in Appendix 4.A. The resulting
fields at the threshold are shown in Fig. 4.3b,f. The phase in the near field now
increases towards the edge of the samples, very comparable to our measurements.
Hence, also the far field profiles of the beam block experiment are very similar to
our observations: the maxima are now at the same angle as the lobes of the full
beam.

Figure 4.3d,h illustrates the predicted effect of index guiding and anti-guiding
on the laser, with a Gaussian gain and index profile, with ∆n = 0, ∆n = +0.13,
and ∆n = −0.13 between the pumped center and the unpumped edges. The
differences are best visible in a beam block experiment (see Fig. 4.3h), where the
angle of the maxima of the lobe moves inwards for ∆n > 0 and outwards for
∆n< 0. The near fields depicted in Fig. 4.3d show index guiding for ∆n> 0, and
index anti-guiding for ∆n< 0. This guiding can also be interpreted as a plasmonic
bandgap with spatial dependence [80, 81]. Our experimental data can be best fitted
with ∆n= −0.05, which is consistent with the typical refractive index changes of
pumped bulk material [82].

The gain profile, in contrast to the index profile, leads to guiding, because the
effective gain in the center of the pumped area is higher than its surroundings. The
gain and loss used in the model have realistic values: The unpumped areas have
an effective intensity loss of [52] ≈ 3000cm−1. At the threshold, the net gain in
the center is ≈ 340cm−1. The required material intensity gain is the sum of the
net gain and the Ohmic loss of our device with transparent InP [52] (270cm−1),
divided by the confinement factor in the gain layer [19] (0.32) and it is around
2000cm−1, which is a reasonable number for a semiconductor operated at high
carrier densities [38, 83].

For completeness we note that we have used a one-dimensional model to
describe a two- (or even three)-dimensional system. Hence the derived numbers
may differ somewhat from reality. From literature on DFB theory in two dimensions
[84, 85], we expect that the influence of such 2D coupling on the derived numbers is
rather low in our system, because it already operates in the overcoupled regime and
the 2D coupling is small compared to the 1D coupling. In earlier work [37, 52] we
measured k2/k3 ≈ 0.3, where k2 and k3 = κ are the scattering rates of respectively
90◦ and 180◦ scattering [84]. This extra coupling will only marginally change
the detuning [85] and threshold [84]. Other authors have extended the standard
DFB theory to two dimensions to answer the question under which conditions the
symmetric mode can lase [86]. These analyses confirm that 2D DFB lasers are
expected to emit donut shaped beams.

4.6 Conclusion
This chapter reports the first measurement and reconstruction of the phase and

the amplitude of surface plasmon laser emission. Our two-dimensional plasmonic-
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4.7. Methods

crystal emits donut-shaped and radially-polarized light, both in the near field and
in the far field. By blocking half of the laser emission we retrieve the phase of the
emission and demonstrate the existence of long range coherence and lasing in a
symmetric non-radiative mode. Our observations cannot be explained with the
standard DFB theory, which assumes a device with uniform properties. We extend
this theory by introducing position dependence of the gain and refractive index and
find good agreement with our measurements on surface-emitting DFB lasers. This
provides the following three insights: First, due to the round trip phase condition,
the laser is in a phase-slip mode and not in a dark mode and hence the laser can
radiate. Second, we attribute the lack of emission in the center of the near field
interference between in-plane counter-propagating waves. Third, the central zero
in the far field also results from the symmetry of the lasing mode and demonstrates
the existence of long range coherence over the full sample.

Our results demonstrate a powerful method to analyze surface-emiting lasers.
This method can also be deployed on surface plasmon lasers with other lattice
symmetries or on photonic-crystal lasers in order to understand and improve their
characteristics. Furthermore, our results indicate that much of the current knowl-
edge about one- and two-dimensional photonic-crystal lasers can be applied to
understand and improve surface plasmon lasers.

4.7 Methods
The phase of the fields is retrieved with an iterative Gerchberg-Saxton-based

algorithm [66–68]. The near and far field measurements are used as support for the
algorithm. The phase is retrieved for 3 sets of conjugate measurements in parallel:
(i) the full polarization resolved measurements shown in Fig. 4.2c,g and measure-
ments with either a blocked (ii) bottom (Fig. 4.2d,h) or (iii) top (measurements
not shown). Every 5th iteration, the reconstructed phase of alternately the bottom
or top part is applied on the full near field reconstruction. After 30 iterations, we
end with 10 iterations on the full fields. The algorithm convergences and is stable
to noise.
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4. Measurement of the phase and intensity profile of surface plasmon laser emission

Appendices
4.A Distributed feedback theory with a position depen-

dence of the gain and refractive index
In this supplement, we derive a coupled mode theory that extends the standard

DFB theory with a position dependence of the gain and refractive index. We explain
how the equations can be solved both in the time domain and the spatial domain
and compare them with previous efforts. We solve the equations with an active
mirror approach and demonstrate that this method is very flexible and fast.

The temporal and spatial evolution of the optical field in a one-dimensional
distributed feedback (DFB) structure can be derived from the optical wave equation
by using the slowly-varying approximation. This derivation can be found in many
text books [35, 82] and only the main results for a device with a second-order Bragg
grating and TM polarized mode are stated here. We express the optical field as the
sum of a rightward R and leftward S traveling wave and write each of them as a
slowly-varying envelope multiplied by a reference wave [35]:

E(x; t) = [R (x , t) eiβ0 x + S (x , t) e−iβ0 x]e−iω0 t , (4.A.1)

where ω0 is the reference frequency. The reference wave vector β0 ≡ 2π/Λ =
n0ω0/c is fixed by the lattice spacing Λ, and is linked to the reference frequency via
the reference index n0. The dielectric constant is expanded in Fourier components
and the resulting terms are sorted. The resulting dimensionless coupled-mode
equation that describe the temporal and spatial evolution of the envelope functions
R and S is:

1
ω0

∂

∂ t
R +

1
β0

∂
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−
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S +
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iκback +κout

β0

�

R (4.A.3)

The slow changes in the complex index n̂ = n0 +∆n(x) + iα(x) are parameterized
by the dimensionless gain α(x) and refractive index difference ∆n(x), which both
have a gradual position dependence. The gain is related to the material intensity
gain g [cm−1] via α(x) = g(x)n0Λ/4π. Fast changes in the complex index are
governed by higher-order Fourier components, as discussed below. Dispersive
effects are neglected (ω ∂ n

∂ω � n). The two counter propagating waves are coupled
by scattering at the periodic corrugations with backscatter coupling parameter κback.
This scattering also induces dissipative out of plane coupling κout.

The coupling κback and κout are related to Fourier components of the corrugation
[82, 84, 87]. For a 2nd order DFB, the backscatter is relatively simple and is given
by the second order (2β0) Fourier component. The output coupling is related to
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4.A. Distributed feedback theory with a position dependence of the gain and refractive index

the first (β0) component in a more complicated way; it induces radiative loss of the
energy of the R and S modes and κout depends approximately on the square of the
first Fourier component.

The radiative loss and coupling induced by the out-of-plane scattering is most
easily understood in the standing wave basis with the symmetric R+ S mode and
the anti-symmetric R− S mode. For a transverse-magnetic (TM) polarized mode,
R and S denote the out-of-plane component of the E-field. The emission from the
device depends on the in-plane fields, which are out-of-phase with the out-of-plane
E-field[37]. Hence, the symmetric R+ S mode is a dark mode without loss, with
anti-nodes in the out-of-plane E-field at the holes, while the anti-symmetric R− S
mode is radiative and experiences double radiative losses [37, 79, 84, 87]. This
is mathematically described by the four coupling terms κout in Eqs. (4.A.2) and
(4.A.3).

There are two different approaches to solve Eqs. (4.A.2)-(4.A.3): either in
the time domain or in the space domain. In chapters 2, 3, and 5 we considered
the time dynamics of the Bloch modes of an infinitely large system and labeled these
modes by the angle θ at which they emit to free space, i.e. we set ∂

∂ x R = k0θR
and ∂

∂ x S = k0θS , where k0 = ω0/c is the wave vector in air. This yields the
bandstructure of the crystal [37, 52] and was used to determine the dimensionless
coupling rates κback/β0 = γ/ω0 and κout/β0 = Γrad/ω0.

Equations (4.A.2)-(4.A.3) can also be solved in the spatial domain, by looking
for the stationary eigenmodes of a finite-size system at the laser threshold, i.e. the
modes that vary in time as exp(−iωt), whereω≡ω0+δω such that ∂

∂ t R = −iδωR
and ∂

∂ t S = −iδωS. The change of the fields over one unit cell can now be described
by:
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We solve Eq. (4.A.4) by launching a traveling wave in the center of the device
and calculating its reflection amplitude on one half of the device [63]. In order to
find the envelope of the field, we discretize the device on a grid with spacing Λ. In
this active mirror approach, the propagation over one lattice spacing is given by

�
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�
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(4.A.5)

and the transfer matrix of one half of the device is:

Mhalf =
∏x i=0

x i=L/2
Mx i

=
�

M00 M01
M10 M11

�

(4.A.6)
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4. Measurement of the phase and intensity profile of surface plasmon laser emission

where L is the length of the device. As there is no input from outside the device
�

R(x = L
2 )

S(x = L
2 )

�

=
�

t
0

�

Mhalf⇒
�

R(x = 0)
S(x = 0)

�

=Mhalf

�

1
r

�

(4.A.7)

where r is the reflection and t is the transmission of half of the device. At the
laser threshold, the round trip through the device is stable, hence |r|=

�

�

�−M10
M11

�

�

�= 1.

The sign of r gives the symmetry of the mode.
We search for the detuning δω and gain α(x) for the threshold condition of

the symmetric mode by minimizing 1− r with a Powell hybrid method. Both the
refractive index change ∆n(x) and gain α(x) are taken to have a Gaussian profile
with the size of the pump beam. The gain α(x) = αabsorption +αpump(x) consists of
a negative baseline, due to absorption in the unpumped areas, and is more positive
in the pumped center. This amplitude of the gain due to pumping is varied to find
the threshold condition. For the best fit we take ∆n(x) negative in the center of
the pump beam and zero in the unpumped areas. A discussion about the exact
amplitude of the index and gain profiles is included in the main text. Note that the
radiated field is proportional to the asymmetric combination R− S, as discussed
before.

The described transfer matrix method proved to be very powerful; it is not
only useful to find the threshold conditions [88], but it can also be extended to
calculate the mode spectrum below threshold, to provide insight in noise in the
system [63, 89], and to study the occurence of spatial hole burning [90].
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4.B. Retrieval of the phase of light

4.B Retrieval of the phase of light
Measuring the phase of light is a non-trivial task, because electronic detect-

ors, such as photo diodes and CCDs, are to slow to operate at optical frequencies
(∼ 400 THz). The phase of the light encodes the direction in which the light
travels [91]. When both the phase and the intensity of monochromatic light are
known, also its trajectory in the forward and backward directions are known.
When propagating, the information in the phase and intensity mixes. This can
be scrutinized to obtain the phase: after measuring the intensity at different dis-
tances, the phase information can be retrieved by Gerchberg-Saxton-like iterative
algorithms [66].

Figure 4.4 schematically depicts a Gerchberg-Saxton-like iterative algorithm
which we used to retrieve the phase information from intensity measurements at
different distances [92, 93]. In our case, these locations are at an image plane of the
near and the far-field of the sample. The propagation of the light between these two
planes can be described by a Fourier transform. The phase is retrieved by numerically
propagating between both planes and applying the measured information. This
goes in successive steps: the measured intensity of the near field is combined with
the best known near-field phase and propagated to the far field. Now, the intensity
information is mixed with the phase, and a better phase estimation is obtained,
while the propagated intensity contains less information. The propagated intensity
is replaced by the measured intensity in the far field, and is propagated back to
the near field plane. Again, the intensity and phase are mixed and a better phase
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Figure 4.4: Schematic overview of iterative phase retrieval algorithm.
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4. Measurement of the phase and intensity profile of surface plasmon laser emission

estimation is obtained. A good estimate of the phase is retrieved after several of
such iterations [94].

This algorithm convergences after typically 50 iterations for our measurements.
The first iteration is bootstrapped with a random phase pattern. In order to avoid
local minima in this optimization procedure, the algorithm is run for 100 initial
random phases and these results are averaged.

Faster and more reliable convergence can be obtained when more information
about the sample is employed. In our case, we use the beam-block measurements to
obtain a better first phase estimation as input for the final algorithm. This first phase
estimation is obtained by running the algorithm with different intensity inputs in
successive iterations. The near- and far-field measurements with the beam-block
selecting in following places are used as inport: center, top, left, bottom, and
right. This is sequence is repeated five times, and finalized with 10 iterations of
the center measurements only. This reduces both the required number of iterations
and increases the output stability.
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Chapter 5

Surface plasmon dispersion in hexagonal, honeycomb and
kagome plasmonic crystals

We present a systematic experimental study on the optical properties
of plasmonic crystals (PlC) with hexagonal symmetry. We compare the
dispersion and avoided crossings of surface plasmon modes around the Γ -
point of Au-metal hole arrays with a hexagonal, honeycomb and kagome
lattice. Symmetry arguments and group theory are used to label the six
modes and understand their radiative and dispersive properties. Plasmon-
plasmon interaction are accurately described by a coupled mode model, that
contains effective scattering amplitudes of surface plasmons on a lattice
of air holes under 60◦, 120◦, and 180◦. We determine these rates in the
experiment and find that they are dominated by the hole-density and not
on the complexity of the unit-cell. Our analysis shows that the observed
angle-dependent scattering can be explained by a single-hole model based
on electric and magnetic dipoles.

This chapter was previously published as:
V. T. Tenner, M. J. A. de Dood, and M. P. van Exter, Surface plasmon dispersion
in hexagonal, honeycomb and kagome plasmonic crystals, Optics Express 24,
29624 (2016)
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5. Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals

5.1 Introduction
The interaction between surface plasmons (SPs) and nano-structures is an

active field of research [3, 6, 8, 77, 96, 97]. For instance, lattices of such nano-
structures form optical meta-materials [5, 6]. Such materials can be designed
and engineered despite the fact that the interaction with a single sub-wavelength
circular nanohole in a gold film cannot be described accurately using simple theory.
Near-field experiments on a single isolated hole provided more insight in such SP-
hole scattering process [50], but leafs questions about the interaction between holes
and the size variations that occur in arrays unaddressed. In this chapter we study
104 holes simultaneously and retrieve more accurate information on the scattering
process of individual holes than what is possible with single hole experiments.

The sub-wavelength holes are placed in a periodic crystal and a built-in light
source is used to excite SPs directly. We study hexagonal, honeycomb, kagome
and square lattices with similar holes. Metal-hole arrays with a square lattice
and an active layer show SP-laser action [20]. The question arises how lattices
with hexagonal symmetry affect such laser action. While the square lattice is two-
dimensional, the observed intensity and phase of the laser beam can be described by
a one-dimensional model [65]. Hexagonal lattices are intrinsically two-dimensional;
their lattice vectors are not orthogonal and a two-dimensional model is necessary.
A first step in this process is to determine the SP-bandstructure of such hexagonal
based lattices, where the scattering properties of a single hole form a key ingredient.

In photonic crystals, the relation between bandstructure and unit cell can be
described as a function of hole size and refractive index contrast. For plasmonic
crystals based on nano-holes, no such relation is known, although it would greatly
simplify the design process. We demonstrate that such relation also exists for metal
hole arrays.

In this chapter, we present accurate information about the scattering proper-
ties of individual sub-wavelength holes obtained from lattices of nano-holes. We
compare plasmon scattering in square and hexagonal-based lattices, and hexagonal-
based lattices with different unit cells. In the experiments, the hole size and the
symmetry of the lattice and unit-cell are kept constant, while the complexity in the
unit cell is increased. We show measurements of the dispersion relations around the
Γ -point, present a didactic interpretation in terms of traveling waves, symmetries
and group theory, and show that the observed bands are accurately described by a
coupled-mode model. This model yields effective amplitudes for surface plasmons
scattering on a lattice of air holes under angles of 60◦, 120◦, and 180◦. These
scattering rates can be explained by a microscopic model for SP-scattering on a
single hole.

5.2 Methods
The samples that we study consist of metal hole arrays with three different

unit-cells. All 50× 50 µm arrays consists of holes with diameters of 160 nm and a
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5.3. Theoretical background

Figure 5.1: Three different real space lattices and their unit cells: (a) hexagonal,
(b) honeycomb, and (c) kagome. First order lattice planes are indicated with
dashed lines. (a) Six traveling waves perpendicular to the lattice planes are
indicated with black arrows. The rotation axis for the dispersion measurement is
indicated by the dashed-dotted lines.

hole-to-hole spacing of a0 = 535 nm. The devices are layered as follows: a 20 nm
chromium film on top of a 100 nm thick Au layer, which is deposited on a dielectric
substrate that comprises of a thin SiN passivation layer, an InP spacer, and 127 nm
InxGa1−xAs (x = 0.536) gain layer on top of an InP substrate. The layer-stack is
designed such that it only supports the TM-like SP-mode. Square hole arrays with a
similar layer-stack are described in more detail in refs [20, 37, 52].

The SP-dispersion is measured by scanning a fiber-coupled grating-spectrometer
through the back-focal-plane of a microscope objective with NA = 0.4. A thin-film
polarizer in front of the fiber is used to obtain polarization sensitivity. The fiber is
mounted on a motorized x-y stage and is scanned in both the Γ-M and Γ-K direction.
The light is collected on the metal-air side of the sample. The SP are excited by
spontaneous emission from the optically pumped InGaAs gain layer. The same
setup was used in refs [20, 37, 52].

5.3 Theoretical background
This section presents the geometry of the studied lattices and a model to

describe their SP-dispersion relations: It covers a traveling wave model, were
coupling between these waves results in stop gaps, and it elucidates the connection
between symmetry and radiative properties of the coupled modes.

Figure 5.1 shows three different lattices: hexagonal (left), honeycomb (middle)
and kagome (right). These lattices share the same C6v symmetry, but have different
unit cells and hole densities. The typical hole spacing a0 is kept constant, while the
size a of the unit-cell changes so that the number of holes in the unit-cell increases
respectively from 1 to 2 and 3. The hole density changes between the three lattices
with a ratio of 1:2/3:3/4.

The dispersion relation is observed via photons that are radiated when the SP
scatter on the lattice of holes. Photons emitted at a certain angle (θx ,θy) have an in-
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5. Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals

Figure 5.2: Influence of SP-hole amplitude scattering on the SP-dispersion
relation. (a) Reciprocal unit cell with the six resonant lattice vectors ~Gi (grey)
and ~ksp (colored) for k‖(black) in the M-direction. (b) The scattering rates in
three different directions. (c,d) Theoretical dispersion relation obtained from
coupled mode model. The arrows indicate the influence of the scattering rates γ,
κ, µ (black arrows) and energy dependent refractive index n0, n1 (grey arrows).

plane momentum ~k‖ ≡ (kx , ky), with kx = (2π/λ0) sin(θx), ky = (2π/λ0) sin(θy).
These photons are associated with SPs with 6 different momenta ~ksp = ~G j + ~k‖,
where ~G j are the lattice vectors with length | ~G j |= 2π/(

p
3a0/2) belonging to one

of the relevant gratings [37]. These lattice vectors are indicated in Fig. 5.2(a).
In real space, these are SP waves traveling perpendicular to the lattices planes
as indicated in Fig. 5.1(a). The dispersion of these traveling waves is given by
ω j = c |~ksp|/nsp, where nsp is the effective refractive index of the SP-mode.

This uncoupled traveling wave approach already yields the main features of
the dispersion relation. The dashed curves in Figs. 5.2(c,d) show the dispersion
of uncoupled traveling waves. In the absence of SP-SP scattering, the resonance
frequency at the Γ-point is given by ω0 = c

�

� ~G j

�

�/nsp. The dashed curves have
different slopes around θ = 0. This slope 1

ω
dω
dθ ÷

1
nsp,group

cos(φ) depends on the

group index nsp,group of the SP and the projection between the observed ~k‖ and
~G j . Figure 5.2(a) depicts ~G j , ~k‖ and ~ksp for a tilt in the M direction. In the M

direction, two traveling waves (k1 and k2) are parallel to ~k‖, which generate two non-
degenerate resonances with a steep slope with cos(φ) = ±1. Furthermore, there
are two frequency degenerate traveling waves k3, k5 with a slope corresponding
to cos(φ) = 1/2 and two traveling waves k4, k6 with a slope corresponding to
cos(φ) = −1/2. In total, the six traveling waves thus create four resonances. This
is indicated with four dashed lines in Fig. 5.2(d). The dispersion relation in the Γ-K
direction as depicted in Fig. 5.2(c) shows three double-degenerate modes as three
dashed lines with slopes corresponding to cos(φ) = ±

p
3/2, 0.

In order to describe the SP-dispersion relation more accurately [37, 98], we
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5.3. Theoretical background

consider the surface charge Ψ(~r, t), which is proportional to the out of plane ~E-field.
This surface charge ρ(~r, t) is then decomposed in periodic Bloch waves:

ρ(~r, t) =
∑

j

ρ j(t)exp
�

i
�

~G j + ~k‖
�

· ~r
�

, (5.3.1)

where ρ j(t) is the time dependent amplitude and exp
�

i
�

~G j + ~k‖
�

· ~r
�

is the spatial
distribution of each plane-wave component. These plane-waves are associated with
the lattice vectors ~G j . For the hexagonal lattices, the lowest three resonances at the
Γ-point are all six-fold degenerate and a coupled-mode model with six Bloch waves
suffices.

Scattering of SP on the holes causes coupling between the traveling waves,
which lifts the degeneracy of the modes and creates stop gaps at the Γ-point [48, 99].
This behavior can be described by a coupled mode model for the time evolution
of the Bloch waves. A similar model was used previously [37, 52] for plasmonic
crystals with a square lattice. Here we extend it to hexagonal lattices. The time
evolution of the surface charge can be expressed as dψ(t)/d t = −iHψ(t), where
H(k‖) is a 6x6 matrix and ψ(t) a vector with the time dependent parts ψi(t). The
eigenvalues of this matrix are the resonance frequencies at k‖. The C6v symmetry
of the lattices allows us to describe the coupling with three amplitude scattering
rates as depicted in Fig. 5.2(b): We define the 180◦-scattering rate γ, the 120◦-
scattering rate κ, and the 60◦-scattering rate µ. Analogous to ref [37], this leads to
the following coupling matrix in traveling wave basis:

H =















ω1 γ µ κ κ µ
γ ω2 κ µ µ κ
µ κ ω3 γ µ κ
κ µ γ ω4 κ µ
κ µ µ κ ω5 γ
µ κ κ µ γ ω6















(5.3.2)

The diagonal elements are the resonance frequencies ωi = c | ~Gi + ~k‖|/nsp of the
uncoupled traveling waves. The off diagonal elements qualify the coupling between
these waves: γ for the 180◦ scattering within the three groups of counterpropagating
waves (1,2), (3,4), (5,6), and κ and µ for the 120◦ and 60◦ scattering between
waves from different groups.

Figures 5.2(c,d) show the influence of the three scattering rates on the dispersion
relation. While their influence is mixed near the Γ-point, it is discernible at higher
angles. In the Γ-K direction, the effect of the back scattering rate γ is a coupling
between the degenerate traveling waves k5 and k6, which results in an even and odd
combination with a different field distribution and a different frequency. The energy
splitting induced by the 120◦-scattering rate κ is visible in the Γ-M direction where
it couples the degenerate waves k3 and k5, and k4 and k6. The role of 60◦-scattering
rate µ is mainly visible at the center of the Brillouin-zone, where all uncoupled

61



5. Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals

waves are degenerate; this rate slightly alters the shape of the dispersion relation
at small angles.

The highly symmetric matrix H exhibits the same C6v symmetry as the lattice.
We will take full advantage of this symmetry when labeling the modes and describing
the number of modes and their radiative nature [34]. The symmetry determines
the charge distribution of the modes (irreducible representations of the C6v point
group) around the holes at the Γ-point, which resembles either a monopole, dipole,
quadrupole, or hexapole depending on the number of local maxima around the
hole. These modes are labeled with respectively A1, E1x , E2x , and B1, as indicated
in Figs. 5.2(c,d). Both the E1x and E2x modes are double degenerate. A graphical
representation of these distributions can be found in ref [98].

The radiative character of the modes can be deduced from symmetry arguments.
The modes at the Γ-point have different responses on the symmetry operations of
C6v which is expressed by their character. These different characters dictate the
radiative nature of the different modes at the Γ-point. The symmetry of the mode
and the symmetry of free space radiation are either the same or different. Only the
dipolar E1x mode is radiative perpendicular to the surface (bright), while the other
three modes are non-radiative (dark).

Also the polarization of the radiated light can be deduced from symmetry
arguments. For k-vectors between the Γ -point and the M- and K- point (small
angles), the symmetry is reduced to C1h and all modes are allowed to radiate. The
modes are symmetric or antisymmetric modes under reflection in the emission
plane, which is spanned by the emission direction and the surface normal. The
symmetric modes couple to radiation with p-polarization (radiated ~E field parallel
to the symmetry plane), while antisymmetric modes couple to s-polarized radiation.
Compatibility relations link the modes at the Γ -point to these odd and even modes:
there are three s- and three p- polarized modes in the Γ -K direction, while there are
four s- and two p- polarized modes in the Γ -K direction. This difference is caused
by the fact that the B1 mode has a different character for the mirror operation over
the Γ -M or Γ -K-axis.

5.4 Experimental results
Figure 5.3 shows a false color plot of the observed SP-dispersion along the

Γ-K and Γ-M directions for three different lattices: hexagonal (left), honeycomb
(middle), and kagome (right). The polarization of the radiation is either perpen-
dicular (s-) or parallel (p-) to the plane spanned by ~k‖ and the surface normal.
The polarization is indicated with respectively blue and yellow colors. The dashed
lines in Figs. 5.3(a,d) show the theoretical curves from the traveling wave model.
The solid lines in Figs. 5.3(a-f) show the theoretical curves from the coupled mode
model. These fits yields crucial information on the SP-dynamics (see below). The
dispersion shows 6 resonances, following the 6-fold symmetry. At normal incidence
only 4 bands remain, of which only the degenerate bands E1x radiate perpendicular
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K M K

M K M

Figure 5.3: Dispersion relations of (a,d) hexagonal, (b,e) honeycomb and (c,f)
kagome plasmonic crystals. s- and p- polarized light is indicated with respectively
blue and yellow colors. The solid lines indicate theoretical resonance frequencies.
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ba

Table 5.1: (a) Scattering rates for hexagonal, honeycomb and kagome lattices
for scattering under 180◦ (γ), 120◦ (κ), and 60◦ (µ). (b) Scattering rates scaled
by the relative hole-density.

to the surface (θ = 0), while the other three bands are dark. There are clear
frequency splittings between the A1 and E2x , B1 and E1x modes at the Γ-point. The
B1 mode almost overlaps with both E2x modes. In the Γ-K direction, there are three
modes (B1, E11 and E22) of which the out-coupled light is s-polarized and the other
three modes (A1, E12 and E21) are a p-polarization as expected from the symmetry
of the lattice. In the Γ-M direction there are two modes (E12 and E22) radiating
s-polarized light, and 4 modes (A1, B1, E11 and E21) p-polarized light, as expected
from the symmetry.

The honeycomb and kagome lattices exhibit some additional features: extra
modes appear at higher and lower frequencies. The honeycomb and kagome lattices
have larger unit cells than the hexagonal lattice, while the center of the observed
dispersion relations is at the same frequency. Hence, the observed mode-crossings
occur at higher order Γ -points. The honeycomb lattice is operating at the 2nd
Γ -point and exhibits addition modes that intersect at higher energies, which we
associate to the 3rd Γ -point. The kagome lattice is operating at the 3rd Γ -point
and has extra modes on both higher and lower energies. The lower energy modes
are attributed to the 2nd Γ -point. The higher order mode cannot be attributed to
a Γ -point of the kagome lattice. However, inhomogeneity with a period of twice
the lattice period will induce the 4th Γ -point at the wavelength of the crossing of
the high energy modes. Note that at the 2nd Γ -point, relevant for the honeycomb
lattice, the reciprocal space is rotated 30◦ compared to the 1st and 3th Γ -point and
hence the M- and K-direction are interchanged.

The effective amplitudes for surface plasmons scattering on a lattice of air holes
are retrieved by comparing the experimental data with our model. As discussed
before, different parts of the dispersion relation contain information on different
scattering rates. These features are easily identified by eye; the model’s resonance
wavelengths are overlayed graphically [100] with the measurements and the scat-
tering rates are adjusted by hand. The errors are estimated by adjusting a parameter
until the overlap was clearly reduced. Hence the reported errors are interpreted
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as 2σ deviations. This procedure was performed independently by each of us and
the resulting parameters were in accordance with each other within the errors
estimated by each researcher. These values are presented in Table 5.1a (discussion
follows below).

In order to retrieve a good fit of the modes at high and low energies, the
dispersion of the refractive index should be taken into account. The effective
refractive index shows dispersion due to the electronic structure of the media.
This is included as a perturbation n1 on the refractive index: nsp(λ) = n0 + n1

λ/λ0,
which mainly influences the shape of the modes at high and low energies. The
fitted refractive index n0 is 3.28 ± 0.005 and n1 is 0.35 ± 0.15 for all lattices, a
straightforward calculation shows that this dispersion n1 is created by both the gain
layer [101] and gold layer.

The fitted scattering rates of the three different lattices parameters are shown
in Table 5.1a. The backscatter rate γ is clearly larger than the 120◦-scattering rate
κ which is again larger than the 60◦-scattering rate µ. The main uncertainty in the
determination of the 60◦-scattering rate µ arises from the dark nature of the A1, B1,
and E2x modes, limiting the visibility at the location of the dispersion relation that
is most sensitive to µ. The scattering rates of the triangular lattice are larger than
these of the kagome lattice which are larger than these of the honeycomb lattice.
We attribute these differences to changes in the hole density in these three lattices
(see below).

5.5 Discussion
All three scattering rates originate from the same physical effect: SP-scattering

on subwavelength holes, and hence they are expected to depend on both the hole-
density and the scattering cross-section of the holes. Table 5.1b shows the scattering
rates scaled to the hole density of the hexagonal lattice, which corresponds to a
multiplication by a factor 3/2 for the honeycomb and 4/3 for the kagome lattice.
The good overlap between the scaled scattering rates demonstrates the proposed
hole-density dependence. Hence, the scattering rates are mainly set by the hole-
density, and less by the complexity of the unit-cell.

Figure 5.4 shows the scattering rates dependence on the scattering angle φ.
The angle dependence of the scattering rates can be described by the equation
a − b cos(φ), indicated in Fig. 5.4 with the dashed line as guide to the eye. This
line predicts that the forward scattering is zero. A physical interpretation follows
below.

We first compare our results with earlier work on SP scattering in square [37]
and hexagonal lattices [98, 102]. The reported scattering rates for square lattices
[37] with a similar layer stack and hole size are γ/ω0 = 0.016 ± 0.02 for 180◦-
scattering and 0.008± 0.003 for 90◦-scattering. After scaling these results with the
relative hole density (ρ/ρ0 = 1.03), they are added to Fig. 5.4; the 180◦-scattering
overlaps very well with our results for hexagonal-based lattices, and also the extra
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Figure 5.4: Scattering rates scaled to the hole-density of the hexagonal lattice
as function of scattering angle φ for scattering under 180◦ (γ), 120◦ (κ), and
60◦ (µ). The scattering rates for 180◦ and 90◦ are taken from ref [52]. The
dashed line indicates a− b cos(φ) for a/b = 1.

datapoint at 90◦-scattering neatly follows the cos(φ)-relation.
For completeness, we will also compare our results with the scarce previous

efforts[98, 102]. Scattering rates of hexagonal plasmonic crystals were not reported
yet, but these can be extracted from the dispersion relations in refs. [98, 102]
using the procedure explained above. We take the results for hole sizes (d/a =
0.34) that are comparable to our sample. From the simulations in ref [102], we
extract scattering rates γ/ω0 = 0.0040± 0.0010, κ/ω0 = 0.0028± 0.0003 and
µ/ω0 = 0.0004± 0.0003. In the measurements of ref [98] the A-band of sample
with the relevant hole sizes is outside the observed wavelength range. Instead, we
extrapolate this band with a spline and extract scattering rates γ/ω0 = 0.050±0.010,
κ/ω0 = 0.010± 0.010, and µ/ω0 = 0.002± 0.010. Even though these scattering
rates were observed at shorter wavelengths in the visible (λ∼ 600 nm), they are
comparable in magnitude to our results. Furthermore, also the sequence of the
scattering rates is the same: backscatter rate γ is larger than the 120◦-scattering
rate κ, which in turn is larger than the 60◦-scattering rate µ.

The proposed a− b cos(φ) dependence of the scattering rate is based on the SP-
scattering of a single small cylindrical hole. This scattering process can be described
by an effective electric ~p and magnetic ~m dipole [50]. In this model the incident
SP-wave excites with these dipoles, which then radiate partially to SP-waves again.
SP-waves are mainly TM polarized, and hence the out-of-plane component pz of the
electric dipole and the in-plane component my of the magnetic dipole dominate
the scattering process. Both dipoles have a distinct in-plane scattering profile;
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the electric dipole pz radiates isotropically, while the magnetic dipole my radiates
dominantly in the forward and backwards directions. The scattered field consists of
a combination of these dipole responses, and yield a combined scattering amplitude
a− b cos(φ) with

b
a
=

√

√ε+ 1
ε

my

pz
=
�

ε+ 1
ε

� −αm

αp
, (5.5.1)

where α is the polarizability of a single hole. The factor
q

ε+1
ε accounts for the small

difference in the ratio H/E for confined SPs compared to free space electro-magnetic
waves [50]. The ratio between the permitivities ε = εmetal/εdielec t r ic = −10 for
our system, and hence this factor is close to 1. Figure 5.1b shows the scattering
rates as function of cos(φ). The scattering rates overlap with a line that crosses
the cos(φ)-axis at cos(φ) = 1, which indicates that the forward scattering is zero,
suggesting that |~p| ' | ~m|. This corresponds to the second Kerker condition [103], in
which a hole acts as a Huygens-reflector. The supplemental information of ref. [50]
calculates the polarizabilites αm and αp for holes in perfectly conducting metal
film on a glass substrate, where a surface plasmons are traveling on the metal-air
interface. For our relative hole radius d/λ = 0.18 this theory predicts that the
polarizabilities have an opposite sign and a ratio −αm/αp ≈ 3.5. For a smaller hole
radius this ratio increases to 1.7 for zero radius. However, our experimental data
indicate that the ratio is ' 1 for our geometry. This quantitative discrepancy might
result from the following: Our SP scattering process is more complicated than
captured in the calculations of the dipole model, because our SPs are scattering on
holes filled with air, while they are traveling on the metal-semiconductor interface
and the metal-air interface contains a chromium layer to damp the SP. The current
calculations on the dipole model, assume the same index for both medium and hole
as well as a perfectly conducting metal, where no field penetrates in. For a realistic
gold film the optical penetration-depth at telecom-frequencies is typically ≈ 20 nm,
resulting in a slightly higher effective hole diameter.

We find a qualitative agreement between the dipole model and our measure-
ments. This is surprising, because there are two reasons why a description based
on single-hole SP-scattering might be too simple. First of all, this dipole model does
not take quasi cylindrical (or creeping) waves into account, while they carry more
than 40% of the field at short (< 2.5 µm) distances [50] and they are typically
responsible for half of the extra-ordinary transmission through metal hole arrays
[44, 104]. However, there is no influence of quasi-cylindrical waves visible in our
measurements, because the dispersion relation is formed by interference between
scattered waves from many holes. The propagation distance of SP is much larger
than for quasi-cylindrical waves and hence SPs dominate the dispersion [105, 106].
Finally, the dipole model describes the response of a single hole, while we observe
the response of a lattice of holes. Hence, one might expect that lattice effects and
multi-hole phenomena, such as coherent addition of the scattering of all holes
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and hole-hole (dipole-dipole) interaction, will become important. The current
experiments do not yet have sufficient control to distinguish these effects, and
detailed theory is absent: even for a lattice of only electric dipoles this is already
a non-trivial exercise [107], where the magnetic dipoles are ignored due to their
complexity. Hence, this remains a future challenge.

5.6 Conclusions
We experimentally studied the scattering properties of three different metal-

hole-array plasmonic crystals with hexagonal lattices, but different unit-cells. The
unit cells have the same symmetry, but an increasing number of holes and complexity.
We compare the observed dispersion relations with a coupled mode model, which
yields the amplitude scattering rate of surface plasmons on a lattice of metal holes
under three different angles: 60◦, 120◦, and 180◦. We find that the influence of the
three different lattices on the scattering rates is dominated by the hole-density. The
symmetry of the lattice only selects the allowed scattering angles by constructive
interference, but does not influence the individual scattering rates. Furthermore,
we find that the angle dependence of the scattering rates shows a qualitative, but
no quantitative, agreement with a single-hole dipole approximation that takes only
the SP-mode into account. Hence, we conclude that lattice effects and hole-hole
(dipole-dipole) interaction are less important than the single hole response.
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Chapter 6

Two-mode surface plasmon lasing in hexagonal arrays

We demonstrate surface-plasmon lasing in hexagonal metal hole arrays
with a semiconductor gain medium. The device can be tuned between two
laser modes, with distinct wavelengths, spatial distributions and polarization
patterns by changing the size of the optically pumped area. One of the modes
exhibits a six-fold polarization pattern, while the mode observed for larger
pump spots has a rotationally symmetric polarization pattern. We explain
the mode tuning by the differences of in-plane and radiative out-of-plane
losses of the modes. The spatial and polarization properties of the modes
are conveniently described by a sum of vectorial OAM beams with orbital,
spin and total angular momentum j = `+ s.
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6.1 Introduction
Periodic structures and crystals scatter waves and create standing waves that

can completely stop the wave propagation in specific crystal directions. The absence
of propagating modes has important consequences. Atoms arranged in a crystalline
structure give rise to electronic bandgaps and have opened the wide field of electron-
ics. Analogously, periodic dielectric structures [78] have stimulated developments
in photonics and have enabled, among others, planar photonic crystal reflectors
[108–110], compact etalon filters [111, 112], and high-performance photonic crys-
tal lasers emitting at wavelengths ranging from the visible regime [36, 113, 114]
to the THz regime [31, 32]. The revival of the field of surface plasmons (SPs) was
triggered by the observation of extraordinary transmission in crystals in the form of
metal hole arrays. We combine similar plasmonic crystals with gain, to compensate
the intrinsic SP losses and create a SP laser.

Plasmonic crystals have different optical properties compared to photonic crys-
tals at visible and telecom wavelengths. In plasmonic crystals, the avoided crossings
in the band structure are small, often hardly resolvable and no complete band gaps
are possible. This implies that the feedback needed for laser operation is low, while
the losses of surface plasmons are high due to electron scattering (Ohmic loss)
and hence high gain is needed in order to reach the laser threshold. The mode
volume of SP lasers can be much smaller than their photonic counterpart [22] and
thus the power needed to reach threshold may be lower nevertheless. We address
the question to what extent the theory for photonics systems can be applied to
plasmonic.

In this chapter, we demonstrate SP lasing in hexagonal plasmonic crystals.
To our surprise, we find lasing in two modes with different polarization profiles.
Tuning between these modes is achieved by changing the size of the pump spot.
We link this observation to previous experimental and theoretical work on photonic
crystals. Furthermore, we explain the mode and polarization profiles from symmetry
arguments and show that a compact description of the mode profiles can be given
in terms of a sum of orbital angular momentum (OAM) beams.

6.2 Setup and Methods
Our devices consist of a hole array in a 100 nm thick gold film on an InP

semiconductor substrate containing a 127 nm thick InxGa1−xAs (x = 0.536) gain
layer. Holes with a diameter of 160 nm are placed in a hexagonal lattice with hole
spacing a = 525 nm. This sample is manufactured using the same procedure on
the same wafer as the samples in ref. [95].

Our experimental geometry is as follows: the sample is optically pumped
at normal incidence on the semiconductor side with a Gaussian beam from a
continuous-wave laser with a wavelength of 1064 nm. Light is collected on the
other side of the sample and analyzed with a CCD camera. The SP-laser light is
selected with a 12 nm wide band-pass filter centered around the wavelength of
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the lasing SP-mode. Polarization-resolved (stokes parameters) and phase-resolved
measurements of the optical field are performed in the far- and near- field of
the laser beam. The dispersion of the SP modes on the hole array are measured
by recording the emission spectrum I(ω,θ ) as function of angle θ = (θx ,θy) to
find the relation ω(ksp), where ksp = k‖,photon (modulo the lattice vectors) and
�

�k‖,photon

�

� = (ω/c) sin |θ | [37, 95]. This experimental geometry is described in
more detail in ref. [37, 65].

6.3 Results
We observe SP lasing in two distinct modes, which emit at wavelengthsλ≈ 1470

nm and λ ≈ 1500 nm. We attribute the high-energy mode to the A-band of the
dispersion relation [95] and the low-energy mode to the B-mode. The A-band
is known to have a monopole-like charge distribution [98, 115] and is expected
to radiate radially polarized light [115]. The B-mode has a hexapole-like charge
distribution and therefore is expected to have a more complex polarization pattern.

Figures 6.1(a) and (b) show images of the sample plane, i.e. they show the
radiative part of the near-field of the SP-laser mode. The A-mode is donut shaped; it
has a dark center with a bright ring around it. The B-mode has a different profile; it
has six bright lobes placed in a hexagonal shape. Another striking difference is the
size of the modes. The A-beam shown in Fig. 6.1 has a max-max diameter of 22.4(5)
µm and the B-mode has a diameter of 10.2(4) µm. The images in Fig. 6.1 are
obtained with a slightly elliptical Gaussian pump spot with an average full-width-
half-max (FWHM) diameter of 15.9± 0.7 µm and 7.2± 0.7 µm for respectively the
A- and B-mode. The ±0.7 µm indicates the difference between the long (short)
axis and the average diameter. The diameter of the laser area changes when we
change the size of the pump spot. The A-mode is always larger than the B-mode in
our device.

Figure 6.1 also shows the polarization state of the light. The measured Stokes
parameters are visualized as white ellipses. The A-mode is mainly radially polarized;
only the areas with high intensity show some elliptically polarized light (Stokes
parameter s3 < 0.7). The polarization of the monopole A-mode resembles the sum
of two orbital-angular-momentum (OAM) beams with total angular momentum
j = `+s = 0 (` = ∓1, s = ±1) [116–120], as illustrated in the inset of Fig. 6.1(a) and
discussed below. The polarization of the hexapole B-mode has a mixed radial and
azimuthal character. The polarization changes six times from radial to azimuthal
over the full 2π angular range, i.e. it resembles a j = ±3 (`= ±2, s = ±1) beam.
The OAM description also includes the relative phase of different parts of the beam,
which is indicated by the direction of the arrows in the insets of Fig. 6.1. This
information cannot be derived from the Stokes parameters. It was obtained in
a phase-resolving experiment with the technique described in ref. [65], which
yields the local field polarization and phase as shown in Appendix 6.A. We thus
confirmed that the polarization-arrows are in the directions indicated in the insets
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(a) (b)

(c) (d)

Figure 6.1: Intensity and polarization profiles of a surface plasmon laser in a
hexagonal lattice under excitation with a pump spot of (a, c) ∼16 µm diameter
or (b, d) ∼7 µm diameter. The monopole A-mode has (a) a large lasing area, and
(c) a compact far-field. The hexapole B-mode has (b) a small lasing area, and
(d) a wide far-field. The white ellipses indicate the local polarization direction
and state of the light. Insets: Polarization pattern of a sum of OAM modes with
(a) j = 0 for the A-mode, and (b) j = ±3 for the B-mode.
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of Fig. 6.1(a,c).

The measured local phase of the beams also contains additional information: it
shows that the A-mode has a positive radial phase-gradient. A similar gradient is
observed for the A-mode in square-lattices [65]. The B-mode has a negative radial
phase-gradient. These signs are as expected: the sign of the phase gradient depends
on the operation wavelength compared to the lattice spacing, and a wavelength
λ >
p

3ne f f a/2 will induce a negative phase-gradient, as is the case for the low-
energy B-mode

Figures 6.1(c, d) show the far-field beam profiles. They are comparable to the
near-field beam profiles described above: the A-mode is again donut-shaped, while
the B-mode is hexagonal shaped. The difference is the opening angle; the large
area of the A-mode generates a compact far-field with a max-max openings angle
2∆θ = 56(4) mrad, while the small area of the B-mode generates a wide far-field
with opening angle 2∆θ = 162(10) mrad. The etendue G = (π∆r∆θ )2 is 1.0 µm2

for the A-mode and 1.7 µm2 for the B-mode. Furthermore, the six-lobed far-field
intensity distribution of the B-mode is rotated by 90◦ compared to its near-field,
while the polarization profile is not rotated.

The laser threshold and input-output characteristics of both modes are different.
The A-mode has a threshold of 150(10) mW and an input-output slope dPout/dPin =
5.2(5) µW/mW, while the B mode has a higher threshold of 200(3) mW and a
steeper slope of 15(1) µW/mW for the pump sizes mentioned above. The larger
slope indicates that the B-mode radiates more efficiently. The threshold and slope
depend on the location on the sample and on the pump spot size. The observed
thresholds are typically within 50 mW of the thresholds mentioned above. The
laser threshold of the A-mode is typically higher than that of the B-mode. More
details are shown in Appendix 6.B.

The A- and B-mode lase under distinct conditions. The A-mode lases when
a large area is pumped, while the B-mode lases when a smaller area is pumped.
The pump spot diameter at which the laser switches is typically 15± 1 µm for a
pump power of 250 mW. Hence we can select a laser mode by tuning the size of
the pumped area.

We studied the existence of the A- and B- laser mode in samples similar to the
one described above and observed laser action in monopole and hexapole modes in
samples with minimum hole spacing of a = 515, 525, and 535 nm. Besides samples
with a hexagonal lattice, we also studied metal hole array lasers with honeycomb
and kagome lattices. All observed laser beams are similar to the results reported
here. Also in these lattices the desired laser mode can be selected by tuning the size
of the pumped area. From this we conclude that lasing in two modes is a universal
property of hexagonal-based (C6v point group) lattices.
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6. Two-mode surface plasmon lasing in hexagonal arrays

(a)

(b)

Figure 6.2: Model to understand radiation and polarization of a mode near
the Γ-point, applied to the B-mode. (a) The charge distribution ρ of 9× 9 unit
cells. The grey rhombus indicates a single unit cell. The grey circles indicate
the position of the holes when the lattice- and wave-vector are identical. The
black circles indicate the (exaggerated) position of the holes for a wave-vector
that is slightly shorter than the lattice-vector. (b) The black holes have been
folded back on the unit cell. The polarization and intensity of the in-plane field
E‖ is indicated with respectively white arrows and the colored background.
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6.4 Discussion
The distinct profiles and polarizations of the A- and B-mode follow from sym-

metry by a two-step argument. First, the symmetry of the unit cell and lattice
together dictate the charge distribution ρ [34, 98], and thereby the out-of-plane
field E⊥ ∼ ρ [98] and the in-plane field E‖ ∼ ∇E⊥. For modes at the Γ-point
(k = 0), the charge distribution can be described by an irreducible representation
of the C6v point group. Radiation to free space is governed by the in-plane H-field
H‖ [37, 115], associated with the in-plane E-field E‖. Second, the radiation profile
of the full device resembles the field distribution inside a single unit cell. This
argument applies because the laser operates close to the Γ-point (k 6= 0) and is
based on translation symmetry (Bloch theorem) and “spatial sampling” as explained
below.

To elucidate the second step, we focus on the hexapole B-mode. Figure 6.2(a)
shows the charge distribution of the hexapole B-mode [98]. The grey circles indicate
the position of the holes when the lattice and wave vector are identical (k = 0),
i.e. the lattice spacing is a = 2λsp/

p
3. Because SP lasers do not operate exactly

at the Γ-point, but close to it [35, 65], the wave vectors are slightly longer or
shorter than the lattice vector (k 6= 0). In our perturbative approach we neglect the
influence of the holes on the fields. In this approach the mismatch k 6= 0 merely
results in an elongation or contraction of the full field pattern relative to the lattice
and therefore the nodes of the fields do not align with the position of the holes.
This is illustrated in Fig 6.2(a), where the black circles indicate the (exaggerated)
position of the holes for a wave vector that is slightly shorter than the lattice vector.
Translation symmetry of the field pattern and the lattice now allows one to fold back
the position of the (shifted) holes on the unit-cell [121, 122]. Every hole thereby
samples the field at a different location in the unit cell as is indicated in Fig. 6.2(b).
Hence, with this second, “spatial sampling”, step we have mapped the radiated
near-field of the whole lattice to the field inside a single unit cell. Figure 6.2(b)
shows the predicted intensity and polarization of the radiating field for the B-mode;
these patterns indeed resemble the experimentally observed polarization.

More quantitative results can be derived by Taylor-expanding the radiating
field around the central hole in the unit cell. We performed this Taylor expansion
for the radiating field derived from the charge distribution presented in ref. [98].
The resulting expression can be written as the sum of two ± j-OAM beams; for the
A-mode j = 0 (`= ∓1, s = ±1) and for the B-mode j = ±3 (`= ±2, s = ±1). This
is consistent with the observed polarization patterns in Fig. 6.1.

The experimentally observed polarization patterns can be described by the sum
of two orbital angular momentum (OAM) beams with opposite circular polarization
[116–120]:

E`(r,φ) = u(r) [exp [−i (`φ +ϕ)]e+ + exp [i (`φ −ϕ)]e−] (6.4.1)

75
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where (r,φ) are the radial and azimuthal coordinate of the beam. This function
is the superposition of two components with helicity s = ±1 and orbital angular
momentum ∓`. Equation (6.4.1) describes a field that has uniform intensity around
the ring (azimuthal direction) and has a linear polarization everywhere. The phase
difference 2ϕ between both polarizations determines the local orientation of the
polarization. For example, ` = ∓1 describes a radial polarization when ϕ = 0,
while it describes an azimuthal polarization when ϕ = π/2.

The radial part of the beams can be described with a p = 0 Laguerre-Gauss
amplitude function u(r)∝ r |`| exp

�

−r2/r2
0

�

. The etendue of such Laguerre-Gauss

OAM modes scales as G∝ (2p+|`|+1)2 [120, 123], making GA/GB =
�

|`=∓1|+1
|`=±2|+1

�2
=

0.44. This is in reasonable agreement with the experimental observed etendue
GA/GB = 0.56. OAM beams are an effective description of the observed modes.
They describe both the polarization pattern and the etendue.

There are two experimental observations that require us to go beyond the
description presented in Eq. (6.4.1) and consider more than two OAM beams. First,
the six bright lobes in the intensity profile of the B-mode indicate that this is not a
pure ± j mode; these lobes can be explained by a mixture of 90% j = ±3 (`= ±2,
s = ±1) and 10% of a j = ∓3 (`= ∓4, s = ±1) mode. Second, the A- and B-mode
have distinct azimuthal profiles, while their radial profiles have approximately
the same shape u(r) ∼ rβ exp

�

−r2/r2
0

�

with β ' 1 (see Appendix 6.A). This
profile is expected for the A-mode (|`|= 1), but strange for the B-mode (|`|= 2).
Phenomenologically, we can explain the strange radial profile by admixing modes
with a p 6= 0 component. However, the underlying physics is not yet understood.
It might be related to the unbalance between the traveling waves that builds up
outside the center of the device by the combined action of gain and feedback [35].
This unbalance removes the field nodes, enables radiation [87], and modifies the
emitted intensity profile [72].

We can tune which mode lases by changing the pump spot size. To explain this
behavior, we will discuss the total loss of both modes, and distinguish between in
out-of-plane and in-plane loss.

The out-of-plane loss is radiative loss; it depends on the laser area, the spatial
distribution of the modes, the scattering properties of the holes [52], the wave
vector detuning [87], and the refractive index profile [65]. The radiative loss of the
hexapole B-mode is higher than the monopole A-mode, as indicated by the higher
slope of the threshold measurements. This is consistent with the field distribution
picture presented above: the hexapole has more structure and its field increases
more rapidly around the central hole in the unit cell than the monopole field. Hence
the hexapole mode will radiate more efficiently at holes outside the center of the
device.

The in-plane loss results from SPs that leave the pumped area due to insufficient
feedback. The magnitude of the total in-plane loss depends on the length of the
boundary of the pumped area. The feedback depends on the product of the effective
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in-plane coupling κ and the device length L [35]. The effective in-plane coupling
coefficient κ contains contributions from scattering of all traveling waves and can
thus be different for both modes [124]. We speculate that the effective in-plane
coupling constant κA of the A-mode is smaller than κB of the B-mode, such that the
A-mode requires a larger pump spot to obtain the same κL product.

We can tune the ratio between in-plane (circumference) and out-of-plane
(surface) loss by changing the size of the pumped area; when the pumped area is
small the ratio between circumference and surface is large. Hence lasing is favored
in the B-mode with a low in-plane loss (high feedback), while a higher surface loss
can be tolerated. When the pumped area is large, the device prefers to operate in a
mode with less surface loss, while a high in-plane loss (limited feedback) can be
tolerated and hence the device lasers in the A-mode.

Finally, we compare our observation of monopole and hexapole laser modes to
previous results on photonic crystals. Imada et al. [72] reported on the hexapole
mode in photonic crystals, for modes with a transverse electric (TE) polarization. In
those electrically pumped experiments, an electrode was obscuring the view on the
radiated light. The observed polarization is rotated 90◦ compared to our TM-modes.
Liang et al. [124] demonstrated tuning between the monopole and hexapole mode
by changing the size of the holes in a dielectric slab and hence changing the in-plane
losses. The monopole and hexapole modes are also observed in the THz regime for
modes with TM-polarization [115]; the polarization of the far field is observed, and
selection between the modes is obtained by tuning a narrow-band gain spectrum to
the resonance frequencies of the modes. From this we conclude that lasing in two
modes is a universal property of hexagonal-based (C6v point group) lattices.

6.5 Conclusion
In conclusion, we have observed SP-lasing in hexagonal metal hole arrays, both

in a monopole and in a hexapole mode. The modes have different spatial and
angular profiles which all resemble a superposition of circularly polarized OAM
beams: a monopole mode with total angular momentum j = 0 (`= ∓1, s = ±1),
and a hexapole mode with j = ±3 (` = ±2, s = ±1). The observed intensity and
polarization profile can be explained by symmetry arguments. Mode selection can
be achieved by tuning the size of the pump spot, which affects the ratio between
in-plane and out-of plane loss. These observations in TM-polarized plasmonic lasers
are consistent with previous work on TE-polarized photonic crystals.
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feedback, and Peter J. van Veldhoven and Erik Jan Geluk for their help in fabri-
cating the samples at the COBRA Research Institute of the Technische Universiteit
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Appendices
In these appendices, we present the vectorial E-field of SP lasers in hexagonal

arrays. The polarization of the field is explicitly presented as Stokes parameters,
while it is implicit in the combined intensity and phase plots. Furthermore, we
show the peculiar behavior of the SP lasers around laser threshold.

6.A Polarization, intensity and phase
We first give a Stokes representation of the polarization state of the emitted

laser light. The s0 parameter indicates the intensity of the light, the s1 and s2
parameters indicate the linear polarized state of light in two different polarization
bases, and the s3 parameter indicates the circular polarization state. The Stokes
parametes s1 and s2 are measured by projecting the laser on a linear polarizer at
four different orientations (−45◦, 0◦, 45◦, 90◦) and the circular Stokes parameter s3
is measured with an additional quarter-wave plate.

Figure 6.3 shows the measured Stokes parameters of the far-field beam profiles
of the A- and B- mode. Measurements of s1 and s2 on the A-mode yield two-fold
symmetric patterns as expected for a `= ∓1 beam. The A-mode is predominantly
radially polarized. The light is in a linearly polarized state along the θ x = 0 and
θ y = 0 axis, while it is slightly elliptically polarized, with circular Stokes parameter
|s3| < 0.7, in the 45◦ direction. While symmetry prohibits emission of elliptically
polarized light along mirror planes of the lattice, it does not prohibit emission
of elliptically polarized light in other directions. The s1 and s2 parameters of the
B-mode show a four-fold symmetric pattern, as expected for a `= ±2 beam. The
B-mode polarization is six-fold azimuthally and radially polarized; it is azimuthally
polarized in the Γ-K directions of the lattice and radially polarized in the Γ-M
directions.

We have measured intensity and retrieved phase with a technique described
in chapter 4. Figure 6.4 shows the measured intensity and retrieved phase of the
A- and B-mode measured behind a horizontal (top row) or vertical (bottom row)
polarizer. The polarization-resolved intensity measurements in Figs. 6.4(a, b) and
Figs. 6.4(e, f) contain equivalent information as the Stokes s1 parameter, which
is already discussed above. Now we will discuss the phase profiles of the beams,
which contain additional information. Figures 6.4(c, d) show the retrieved phase
profile of the A-mode. The sharp transition in the dark center indicates a π-phase
jump. This show that the electric fields on opposite sides of the beam are pointing
in opposite directions, as expected for radially polarized light. Furthermore, the
phase has a positive radial gradient; the phase increases by 0.5(2) rad from the
center to the edge of the laser area. Figures 6.4(g, h) shows that the phase of the
B-mode has a more complex profile; in both polarizations it is four-lobed. The
phase of neighboring lobes is shifted by π-phase jump. The phase gradient of this
mode is negative; the phase decreases by 0.7(3) rad from the center to the edge of
the laser area.
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6. Two-mode surface plasmon lasing in hexagonal arrays

(c
)

(d
)

(a
)

(b
)

(e
)

(f)
(h
)

(g
)

Figure
6.4:

Polarization
resolved

intensity
and

phase
of

the
(a-d)

A
-
and

(e-h)
B
-m

ode.
(a,b,e,f)

N
ear

field
intensity

and
(c,

d,
g,

h)
phase

distribution,
m
easured

behind
a
horizontal(top

row
)
or

vertical(bottom
row

)
polarizer.

N
ote

that
the

phase
is
only

show
n
from

areas
w
ith

suffi
cient

intensity,i.e.
m
ore

than
3%

of
the

m
axim

um
intensity.

80



6.B. Laser threshold

=

=

Figure 6.5: Radial intensity profile of the A- and B-modes. The curves indicate
fits with Laguerre-Gauss modes with different `.

The reported phase gradients originates from the mismatch between the wave-
vector and the lattice-vector: a negative phase gradient is obtained when the SP
wave-vector is shorter than the lattice-vector, such that the field at holes more
outwards from the center lags behind the field at the center (see Fig. 6.2 for an
illustration), and vice versa. The magnitude of the phase gradient can be modified
by a non-uniform refractive index profile [65].

Figure 6.5 shows the measured radial intensity-profile of the A- and B-mode.
The rotationally-averaged intensity is normalized by its maximum value. The radial
intensity profiles of both modes are surprisingly similar. These profiles are fitted
with I(r) = |u(r)|2 where u(r) ∼ rβ exp

�

−r2/r2
0

�

; the resulting curves for β = 1
and β = 2 are displayed in Fig. 6.5 with respectively a solid and a dashed curve.
The best overlap is found for β = 1 and the obtained beam widths are reported in
section 6.3. An analysis of the beam profiles in the far-field shows that the radial
profiles of the beams have the same shape and can also be best described by β = 1
(data not shown).

6.B Laser threshold
Figure 6.6 shows the power of the SP laser as a function of the pump power

for lasing in the A- and B-mode. The output of the B-mode exhibits a clear
threshold around 200 mW and increases linearly above threshold with slope
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6. Two-mode surface plasmon lasing in hexagonal arrays

Figure 6.6: The output power of the SP lasers as a function of the pump power
for lasing in the A- and B-mode.

dPout/dPin = 15(1)µW/mW and does not show hysteresis. The A-mode has a
more complicated input-output behavior. When scanning the input power from
100 mW up to 260 mW, the mode suddenly starts to laser in a step-wise fashion
at threshold power Pup = 160(2)mW and increases in power with a smaller slope
dPout/dPin = 5.2(2)µW/mW. The A-mode shows hysteresis: when decreasing the
power below Pup, the laser stays active till the threshold Pdown = 140(2)mW. Even
more surprising is that the output power increases just above the threshold Pdown
upon reduction of the pump power. We attribute this hysteresis to heating of the
sample.
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Summary
Surface plasmons (SPs) are surface waves at the interface between a dielectric

and a good metal, such as silver and gold, and are formed by the interaction
between light and the free electrons at the metal-dielectric interface. They provide
strong field confinement for optical fields, opening new possibilities for enhanced
light-matter interaction. Surface plasmons can be efficiently coupled to free-space
photons by scattering on a periodic lattice of nanometer-size holes, i.e., a metal
hole array.

Lasers are known to emit coherent, monochromatic, and strongly directional
beams. There are two essential components to a laser: a (pumped) gain medium
and a resonator. The gain medium amplifies the field and the resonator confines
the laser mode and supplies the feedback needed to obtain coherence.

In this thesis, we describe experiments on SP propagation and SP lasing in active
two-dimensional metal hole arrays operating at telecom wavelengths (λ∼ 1500 nm)
and cryogenic temperatures. The gain is provided by an optically pumped InGaAs
semiconductor layer closely spaced to a metallic gold film. A resonator for SPs is
created by scattering on an array of holes in the gold film. As the feedback in metal
hole arrays is distributed over the whole device, we are dealing with a distributed
feedback laser instead of a Fabry-Pérot laser. Distributed feedback lasers provide a
strong laser mode selection and stable operating wavelength.

We have studied such active hole arrays with square and hexagonal lattice
symmetries both below and above their lasing threshold. We have investigated the
role of the symmetry of the lattice on the SP propagation and SP lasing. We have
explored the laser frequencies and the feedback mechanism of these SP lasers, and
observed the spatial profile and direction of the emitted laser beams. The structure
of this thesis is depicted schematically in the table below. The following paragraphs
will give an overview of the contents of each chapter.

Chapter 2
SP dispersion & SP scattering 
Chapter 3
Loss & SP-photon scattering

Chapter 4
Intensity, phase & feedback

Chapter 6
Tuning between lasing in 
    two modes

Chapter 5
SP-SP scattering & 
    link to single hole scatteringB
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Summary

In order to understand SP lasing in metal hole arrays, we first need to understand
SP propagation in metal hole arrays which can be studied by operating the SP lasers
below their laser threshold. In chapter 2 we study metal hole arrays with a square
lattice. We obtain the resonance frequencies from angle-dependent spectra and
identify four SP bands. These four bands emit light with distinct polarizations.
Three bands emit p-polarized light and one band emits s-polarized light. We develop
a theoretical framework that quantitatively predicts these bands. This coupled-
mode model is a central component in the thesis. Its main constituents are traveling
SP waves in four directions and scattering of these traveling waves by the holes.
This scattering couples the traveling waves, and thereby produces standing-wave
components and induces energy splittings between the bands. We link the observed
splitting between bands to scattering of SPs on the holes.

Which laser mode is active depends on the gain and loss of the available modes.
In chapter 3, we identify and quantify the loss mechanisms of SPs in metal hole
arrays by measuring the linewidths and intensity of the SP modes below laser
threshold. The main loss channels are radiative loss and ohmic loss.

SP lasers in metal hole arrays emit donut shaped beams, i.e. the emission is
limited to a small ring with a dark center. In chapter 4 we unravel mechanisms that
are responsible for this feature. In order to understand what is happening inside
the device, we measure the field profile of the laser beam, i.e., we observe both the
intensity and the phase of the emitted light. The phase was retrieved with a novel
beam-block method and an iterative algorithm. SP lasers in square arrays emit
donut shaped beams that have a radial polarization profile. The observed fields do
not agree with standard one-dimensional distributed feedback theory. We identify
position dependent gain as the missing element, extend the distributed feedback
theory with it, and find good agreement between theory and experiment. This is a
prime example in which the observation of the phase of a wave phenomenon gives
vital information about the studied problem.

In contrast to lattices with a square symmetry, lattices with a hexagonal symme-
try have principal directions that are not perpendicular. In chapter 5 we study the
influence of the lattice symmetry on the SP propagation by measuring the optical
dispersion of three hexagonal based lattices with increasing complexity in the unit
cell: hexagonal, honeycomb and Kagome. We retrieve angle-dependent scattering
rates of these lattices and find that these rates are dominated by the hole density
and not by the complexity of the unit cell. The observed angle-dependent scattering
can be explained by a single-hole model based on electric and magnetic dipoles.

In chapter 6, we demonstrate SP lasing in hexagonal plasmonic crystals. We
observe lasing in two modes with different polarization and intensity profiles.
Tuning between these modes is achieved by changing the size of the pump spot.
We link this observation to previous experimental and theoretical work on photonic
crystals. Furthermore, we explain the mode and polarization profiles from symmetry
arguments and show that a compact description of the mode profiles can be given
in terms of a sum of orbital angular momentum (OAM) beams.
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Samenvatting

Oppervlakteplasmonen zijn elektromagnetische oppervlaktegolven op het grens-
vlak tussen een isolator en een goed metaal, zoals zilver of goud. Ze bestaan door
de interactie tussen licht en de vrije elektronen op het metaaloppervlak. Ze kunnen
het optische veld sterk opsluiten waardoor er nieuwe mogelijkheden ontstaan voor
verbeterde licht-materiaal wisselwerking. Oppervlakteplasmonen kunnen efficiënt
worden omgezet naar fotonen in de vrije ruimte door verstrooiing aan een periodiek
rooster met nanometerschaal gaatjes, een zogenaamd metalen gatenrooster.

Van lasers is bekend dat ze coherente, monochromatische en sterk gerichte
lichtbundels uitzenden. Voor een laser zijn twee bestanddelen nodig: een (gepompt)
lasermedium en een trilholte. Het lasermedium versterkt het veld. De trilholte sluit
het veld op en voorziet de laser van de benodigde terugkoppeling om coherentie te
verkrijgen.

In dit proefschrift beschrijven we proeven aan oppervlakteplasmonvoortplanting
en oppervlakteplasmonlasers in actieve tweedimensionale gatenroosters. Deze roos-
ters worden gekoeld tot cryogene temperaturen en stralen bij telecom golflengtes
(λ∼ 1500 nm). De versterking van de oppervlakteplasmonen wordt geleverd door
een optisch-gepompte InGaAs halfgeleiderlaag die vlakbij de goudfilm staat waar-
aan de de plasmonen gebonden zijn. Door verstrooiing in het gatenrooster ontstaat
er een trilholte voor de oppervlakteplasmonen. Deze terugkoppeling vindt plaats
op het hele rooster en daarom hebben we te maken met verspreide-terugkoppeling-
lasers in plaats van Fabry-Pérot lasers. In verspreide-terugkoppeling-lasers is er een
duidelijke keuze van de laser mode en daardoor een stabiele golflengte.

We bestuderen actieve gatenroosters met vierkante en zeshoekige roostersym-
metrieën. We bestuderen de roosters zowel onder als boven hun laserdrempels. We
onderzoeken de invloed van de roostersymmetrie op oppervlakteplasmonvoortplan-
ting en oppervlakteplasmonlasers. We verkennen de frequenties en het terugkop-
pelmechanisme van deze oppervlakteplasmonlasers. We observeren het ruimtelijke
profiel en richting van de uitgezonden laserbundel. De structuur van dit proefschrift
is schematisch uitgebeeld in de hierop volgende tabel. De volgende paragrafen
geven voor ieder hoofdstuk een samenvatting.
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Hoofdstuk 2
Oppervlakteplasmondispersie & 
oppervlakteplasmonverstrooiing
Hoofdstuk 3
Verliezen & oppervlakteplasmon-
foton verstrooiing

Hoofdstuk4
Intensiteit, fase & terugkoppeling

Hoofdstuk 6
Schakelen tussen oppervlakte-
plasmonlasers in twee toestanden

Hoofdstuk 5
Oppervlakteplasmon-
oppervlakteplasmon verstrooiing
& verbinding met enkel-gat modelO
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Om te begrijpen hoe oppervlakteplasmonlasers in gatenroosters werken, moe-
ten we eerst weten hoe oppervlakteplasmonen zich voortplanten door zulke roos-
ters. In hoofdstuk 2 bestuderen we oppervlakteplasmonvoortplanting onder de
laserdrempel in gatenroosters met een vierkante symmetrie. We verkrijgen de
resonantiefrequentie uit hoekopgeloste spectra en herkennen vier SP-banden. Deze
vier oppervlakteplasmonbanden zenden licht uit met verschillende polarisatie. Drie
van deze banden stralen p-gepolariseerd licht uit en één band straalt s-gepolariseerd
licht uit. We ontwikkelen een theoretisch raamwerk dat een centrale rol speelt in
het gehele proefschrift. De belangrijkste ingrediënten zijn lopende oppervlakte-
plasmongolven die in vier richtingen reizen en de verstrooiing van deze golven
op de gaatjes. Deze verstrooiing koppelt de lopende golven en daardoor ontstaan
staande-golf componenten en energieverschillen tussen de banden. Wij verbinden
de gemeten splitsingen tussen de banden aan de sterkte van de verstrooiing van
oppervlakteplasmonen op de gaatjes.

Welke lasertoestand actief is hangt af van de versterking en verliezen van de
beschikbare optische toestanden. In hoofdstuk 3 stellen we de verliesmechanismes
van de oppervlakteplasmonen vast en bepalen we hun grootte. We doen dit door de
lijnbreedtes en de intensiteit van de oppervlakteplasmonbanden te meten onder de
laserdrempel. De voornaamste verlieskanalen zijn stralings- en Ohmse verliezen.

Oppervlakteplasmonlasers in gatenroosters zenden donutvormige laserbun-
dels uit, met andere woorden het licht zit alleen in een smalle ring en in het
midden is het donker. In hoofdstuk 4 ontrafelen we het verantwoordelijke mecha-
nisme. Om te begrijpen wat er binnen in de laser gebeurt meten we het gehele
veld van de laserbundel, dat wil zeggen dat we zowel het intensiteits- als het
faseprofiel meten. Het faseprofiel verkrijgen we met behulp van een nieuwe bundel-
blokkeermethode en een iteratief algoritme. Oppervlakteplasmonlasers in roosters
met een vierkante symmetrie zenden donutvormige laserbundels uit met een radiaal
polarisatiepatroon. De waargenomen velden komen niet overeen met de standaard
verspreide-terugkoppeling-lasertheorie. Wij identificeren positieafhankelijke ver-
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sterking als ontbrekend element, breiden de verspreide-terugkoppeling-lasertheorie
ermee uit en verkrijgen een goede overeenkomst tussen waarneming en theorie.
Dit is een voorbeeld van een probleem waarbij de waarneming van de fase van een
golfverschijnsel essentiële informatie verschaft.

In tegenstelling tot roosters met een vierkante symmetrie staan bij zeshoekige
roosters de hoofdrichtingen niet loodrecht op elkaar. In hoofdstuk 5 bestuderen we
de invloed van de roostersymmetrie op de voortplanting van oppervlakteplasmo-
nen. Daarvoor meten we de optische dispersie van drie verschillende hexagonale
roosters met steeds complexere eenheidscellen. We bestuderen preparaten met een
hexagonaal, een honingraat en een Kagome rooster. We verkrijgen de hoekafhan-
kelijke verstrooiing van deze roosters en ontdekken dat die wordt gedomineerd
door de dichtheid van gaatjes en niet door de complexiteit van de eenheidscel. De
waargenomen hoekafhankelijke verstrooiing kan worden uitgelegd aan de hand
van een enkel-gat-model dat gebaseerd is op elektrische en magnetische dipolen.

In hoofdstuk 6 demonstreren we oppervlakteplasmonlasers in hexagonale plas-
monische kristallen. Deze laser kan in twee toestanden werken met verschillende
polarisatie- en intensiteitsprofielen. We kunnen schakelen tussen deze toestanden
door de grootte van de pompbundel aan te passen. We verbinden deze waarneming
aan bestaande experimenten en theorie over fotonische kristallen. Verder leggen
we de intensiteits- en polarisatieprofielen uit met symmetrie argumenten en laten
we zien dat er een bondige beschrijving van de profielen kan worden gegeven in
termen van sommen van lichtbundels met een baanimpulsmoment.

103



Samenvatting

104



Dankwoord

Door samen te werken gebeurt er meer. Dat geldt ook voor mijn onderzoek. Ik
ben dankbaar voor de samenwerking en discussies die ik met mijn collega’s heb
kunnen voeren. Een aantal mensen wil ik extra bedanken.

In het bijzonder bedank ik mijn promotor en dagelijks begeleider Martin van
Exter. Ik kreeg van hem alle ruimte en vrijheid om het onderzoek te ontwikkelen.
Specifiek bedank ik Martin voor zijn eindeloze enthousiasme voor licht, voor zijn
ideeën over plasmonen en natuurkunde, voor zijn hulp bij het opzetten van mathe-
matische modellen, voor zijn steun bij tegenslagen en voor zijn grote geduld bij het
corrigeren van dit manuscript.

Met veel plezier heb ik met Michiel vele zinvolle en ook vele zinloze discussies
gevoerd over een breed scala aan onderwerpen, variërend tussen plasmonische
bandenstructuren tot de wilde beesten in Canada, zowel op de universiteit, als op
de fiets naar huis en tijdens een conferentie in San Jose.

Verder bedank ik Eric Eliel als promotor voor de scherpe en constructieve
feedback op de tekst van dit proefschrift. Dirk Boonzajer Flaes heeft bijgedragen
met aanwijzingen voor iteratieve phase retrieval algorithms en het beschikaar
stellen van de computercode gebruikt voor de omslag van mijn proefschrift. I thank
Philippe Lalanne and Liu Haitao for the useful discussions about quasi-cylindrical
waves and Matthias Saba for the discussions about surface plasmon lasers. I also
thank the authors of the Holoviews python package for their fast response on
questions and bug reports.

Tijdens mijn promotie hebben drie studenten mijn onderzoek vooruit geholpen
met hun projecten. André van Delft heeft metingen gedaan aan de dispersie van
vierkante roosters zoals beschreven in hoofdstuk 3, Johan Bosman heeft record-
lage lijnbreedtes van SP lasers waargenomen en Michel Hubert heeft samples met
elliptische gaatjes bestudeerd. De samenwerking met jullie heb ik als een verrijking
van mijn promotie ervaren.

De preparaten die ik heb bestudeerd zijn gemaakt in de cleanroom van de
Technische Universiteit Eindhoven. Frerik van Beijnum maakte de eerste preparaten.
De preparaten die ik later heb gemaakt zouden niet werken zonder de hulp van Erik
Jan Geluk, Barry Smalbrugge, Tjibbe de Vries en René van Veldhoven. Furthermore,
I thank Rosalinda Gaudio and Michele Cotrufo for their tips and company in the
clean room.

Ik heb veel plezier gehad van de goede technische ondersteuning van de fijn-
mechanische dienst, de elektronische dienst en de cryogene afdeling en bedank in
het bijzonder Harmen van der Meer, Emiel Wiegers, Peter van Veldhuizen, Arno

105



Dankwoord

van Amersfoort, Hans Kuyk, Wilfred van der Geest en Ruud Kuyvenhoven. Ik ben
dank verschuldigd aan Henriette van Leeuwen voor haar snelle administratieve
ondersteuning.

Een gezellige en respectvolle sociale omgeving was voor mij belangrijk voor
het succesvol afronden van mijn promotie. Ik wil graag de hele vakgroep bedanken
voor het scheppen hiervan.

Mijn hele familie heeft me altijd gestimuleerd om te studeren en te onderzoeken
en is altijd enthousiast en nieuwsgierig geweest naar mijn onderzoek. Verder bedank
ik Anne Rietmeijer voor het proeflezen van de Nederlandse teksten in dit proefschrift.

Tot slot, dank ik Rosalie, die mijn leven zo veel leuker maakt.

106


	1 Introduction
	1.1 Wave confinement and surface plasmons
	1.2 Surface plasmon lasers
	1.3 Crystals and band structures in two dimensions
	1.4 Lasing in finite size crystals
	1.5 Outline of this thesis

	2 Surface plasmon dispersion in metal hole array lasers
	2.1 Introduction
	2.2 Experimental setup
	2.3 Angle-dependent spectra
	2.4 Comparison of nine surface-plasmon lasers
	2.5 Coupled-mode model
	2.6 SP-photon coupling and vector aspects
	2.7 Comparison experiment and theory
	2.8 Conclusion

	3 Loss and scattering of surface plasmon polaritons on optically pumped hole arrays 
	3.1 Introduction
	3.2 Methods
	3.2.1 Sample
	3.2.2 Experimental geometry

	3.3 Theory
	3.4 Results
	3.4.1 Resonance frequencies
	3.4.2 Linewidths
	3.4.3 Total intensity
	3.4.4 Different samples

	3.5 Discussion
	3.6 Conclusion
	3.A Coupled mode model for SPs in square metal-hole-arrays
	3.A.1 SP field in traveling-wave basis
	3.A.2 SP field in standing-wave basis
	3.A.3 Losses and gain 
	3.A.4 Spontaneous emission spectra


	4 Measurement of the phase and intensity profile of surface plasmon laser emission
	4.1 Introduction
	4.2 Device
	4.3 Experiment
	4.4 Results
	4.5 Discussion
	4.6 Conclusion
	4.7 Methods
	4.A Distributed feedback theory with a position dependence of the gain and refractive index
	4.B Retrieval of the phase of light

	5 Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals
	5.1 Introduction
	5.2 Methods
	5.3 Theoretical background
	5.4 Experimental results
	5.5 Discussion
	5.6 Conclusions

	6 Two-mode surface plasmon lasing in hexagonal arrays
	6.1 Introduction
	6.2 Setup and Methods
	6.3 Results
	6.4 Discussion
	6.5 Conclusion
	6.A Polarization, intensity and phase
	6.B Laser threshold

	Bibliography
	Curriculum Vitae
	List of publications
	Summary
	Samenvatting
	Dankwoord

