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Abstract

Immune escape strategies aimed to avoid T-cell recognition, including the loss of tumor 
MHC class I expression, are commonly found in malignant cells. Tumor immune escape has 
proven to have a negative effect on the clinical outcome of cancer immunotherapy, includ-
ing treatment with antibodies blocking immune checkpoint molecules. Hence, there is an 
urgent need to develop novel approaches to overcome tumor immune evasion.  MHC class 
I antigen presentation is often affected in human cancers and the capacity to induce upreg-
ulation of MHC class I cell surface expression is a critical step in the induction of tumor re-
jection. This review focuses on characterization of rejection, escape, and dormant profiles 
of tumors and its microenvironment with a special emphasis on the tumor MHC class I ex-
pression. We also discuss possible approaches to recover MHC class I expression on tumor 
cells harboring reversible/”soft” or irreversible/”hard” genetic lesions. Such MHC class I 
recovery approaches might well synergize with complementary forms of immunotherapy.
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Introduction

Cancer immunotherapy in humans has historically used a variety of products that boost 
T lymphocyte responses, such as IL-2 and IFN-α in melanoma and renal cell carcinoma 
and bacterial products as BCG in bladder cancer therapy (1−3). More recently, antigen-
ic tumor peptides or dendritic cells loaded with shared peptides have been introduced 
to the clinic (4,5). These therapies created great expectations among clinical oncologist 
because they could activate specific anti-tumor T-cell immunity. However, the observed 
tumor regressions were below expectations (6). The absence or downregulation of tu-
mor MHC class I (MHC-I) molecules could be one of possible explanations for these 
disappointing results, since MHC-I expression on cancer cells is required for detection 
and destruction by T-cells (7,8).  MHC-I loss or dowregulation is a major tumor escape 
mechanism from T lymphocytes described in human tumors of different origin (9−12). 
The HLA evaluation in human tumor tissues needs a complex approach since HLA class 
I (HLA-I) heavy chains are highly polymorphic and requires analysis of the expression 
of six HLA-I alleles on tumor cell surface which differ among cancer patients (13). It is 
obvious that the information about tumor HLA expression mostly comes from the anal-
ysis of progressing tumors, which have already developed escape strategies. In contrast, 
the tumor rejection profile is difficult to study since such regressing lesions either dis-
appear in a short period of time or progress while acquiring the immunoedited escape 
phenotype (14). There are also evidences that some tumor cells can survive in the host 
in a “dormant state” for long periods of time without being detected. These dormant 
tumor cells “awake” in immune-compromised environments, especially when CD4+ 
and CD8+ lymphocytes are not present or their numbers are heavily reduced (15,16).

The intimate interaction of MHC class I expression by tumors and the T-cell 
immune pressure 
One of the major problems facing any type of cancer treatment is the extensive hetero-
geneity of primary tumors, which arises as a result of genetic and epigenetic alterations 
at a clonal level (17,18). In a mouse model of 3-methyl-cholantrene-induced fibrosar-
coma we observed that primary tumor clone diversity is characterized by different ex-
pression patterns of MHC-I genes and molecules (19). This explosion of diversity can 
be described as a “big bang” because of the large variety of different tumor cells with 
different genotypes and phenotypes, and because it can be detected few weeks after 
the injection of the chemical carcinogen. Genetic alterations in any particular mark-
er creating this heterogeneity is probably a random process, but the interaction with 
the host immune system determines the capacity of a given tumor cell clone to sur-
vive and disseminate. Therefore, a process of “selection”, especially due to T-cell im-
mune pressure on MHC-I deficient tumor variants, might represent a natural process.
 We and other groups have evidence that this strong selection process mediated 
by the interaction of MHC-I and CD8+ T-cells in primary tumors is taking place during 
the early stages of tumor development leading to either tumor rejection or immune escape 
via immunoediting (19,20). Tumors are predominantly MHC-I positive at early stages. 
The specific antitumor CD8+ T-cells attack is progressively killing MHC-I positive cells 
and selecting MHC negative ones (Figure 1). The MHC-I heterogeneity can be observed 
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in many tumors at these early stages. Finally, the T cell immunoediting leaves tumors 
homogeneously deficient or completely negative for MHC-I expression (20,21). A clin-
ical example of T-cell mediated immunoselection of MHC -I negative tumor cells came 
from the study of melanoma lesions derived from a single patient during the course of 
cancer progression. A point mutation present in the codon 67 of the beta 2-microglob-
ulin gene in HLA-I negative melanoma cells from the heterogeneous primary tumor 
was found 10 months later in an uniformly HLA-I-negative metastatic lesion, strongly 
suggesting an active T-cell immunoselection of MHC-I negative melanoma cells (21). 

Figure 1.  Schematic rep-
resentation of the evolution 
of different tumor phenotypes 
during cancer progression. (a)
 Tumor rejection phenotype - tu-
mor cells expressing MHC class 
I molecules (green) surrounded 
by CD3+, CD4+ and CD8+ tumor 
infiltrating lymphocytes  (TILs) 
inside the tumor. The tumor is 
rejected and is there is no clin-
ical evidence of the tumor in 
the majority of cases. (b) Tumor 
escape phenotype - MHC class 
I negative tumor cell variants 
appear. Tumor is heterogeneous 
containing cells both positive 
and negative for MHC class I 
expression. There are infiltrat-
ing CD4+ and CD8+ T-lympho-
cytes at early stages. MHC class 
I negative cells (red) escape 
from anti-tumor CD8+ T-cells, 
and tumor is now composed of 
only MHC class I negative cells 
(red). Tumor-specific T-cells 
remains now at the peritumoral 
area (stroma) and do not infil-
trate tumor mass. (c) Tumor 
dormant phenotype - MHC 
class I negative cells within the 
primary tumor develop unno-
ticed micrometastases, which 
maintain an immunological 
equilibrium. They can survive in 

a dormant stage for long periods of time. Depletion of CD8, CD4 and asialo GM1 positive cells awakes these cells to pro-
gression producing detectable macrometastasis. Interestingly, awaken dormant cells are now positive for MHC class I.
 
In a mouse cancer model, a very clear example of T cell mediated immunoselection came 
from the assessment of H-2 expression in metastatic lung colonies obtained from an H-2 
negative tumor cell clone growing in immunocompetent and in immunodeficient mice 
(22,23). Lung metastatic colonies growing in immunocompetent syngeneic mice were 
H-2 negative. In contrast, colonies growing in immunodeficient mice lacking T-cells 
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were H-2 positive. The mechanism responsible for the H-2 downregulation in this tu-
mor clone was reversible (“soft”) since the expression of H-2 antigens could be recov-
ered by IFN−γ (22,23). We also observed that MHC-I positive tumor clones are highly 
immunogenic, while MHC-I negative variants have low immunogenicity. Nevertheless, 
when the number of locally injected tumor cells from MHC-I positive clone is consid-
erably large, they generate local tumors and develop a high number of distant metasta-
ses, because are able to overcome T-cell responses and induce immunosuppression (22). 
Importantly, MHC-I positive lung metastases in this model could be completely eradi-
cated by immunotherapy (24). In contrast, MHC-I negative tumor clones have none or 
low metastatic capacity. They generate dormant micrometastases with increased MHC-I 
expression, which are capable of inducing T-cell immune response (Figure 1) (15). 

Tumor rejection profile
There are only few reports describing the MHC-I expression patterns in tumors un-
dergoing rejection in humans. This rejection can sometimes be induced using different 
protocols of immunotherapy, including treatment with IL-2, BCG, IFN-α, autologous 
tumor vaccine, peptide vaccination or transfer of autologous anti-tumor CD8+ T-cells, 
and is associated with the expression of high levels of HLA-I molecules in tumor cells 
(20). It is difficult to obtain regressing malignant lesions, since there are no clinical in-
dications for surgical removal or biopsy. In this situation, we rely only on the evaluation 
of systemic CD8+ T-cell responses and intratumoral infiltration (25). Nevertheless, we 
had an opportunity to carefully analyze regressing and progressing subcutaneous mel-
anoma lesions in two “mixed responder” patients after autologous vaccination (14,20). 
We observed a massive intratumoral infiltration of CD4+ and CD8+ lymphocytes (TILs) 
within the regressing melanoma lesions with a positive correlation of high MHC-I levels. 
In contrast, the lack of tumor HLA-I expression in progressing lesions correlated with 
absence of TILs with mostly peritumoral infiltration patterns (14,20). These two opposite 
patterns in distinct lesions of the same patient reflect different phenotypes of tumor mi-
croenvironment, namely tumor rejection and tumor escape (Figure 1). Tumor regression 
was also associated with increased transcriptional upregulation of HLA and interferon 
stimulation pathway genes pointing to an enhanced antigen presentation capability of tu-
mor cells (14).  This histological and molecular signature of tumor rejection mediated 
by CD8+ T-cells seems to be similar to that found in allograft rejection and graft ver-
sus host disease suggesting an existence of an immunological circuitry of rejection (26).
 High degree of tumor infiltration with T-cells is considered to be a good prog-
nostic factor (27) and has been included into a new tumor immunological grading sys-
tem called “immunoscore” (28). We have previously observed in various types of can-
cers that the HLA-I negative tumors lack TILs. In contrast, HLA-I positive tumors are 
characterized by high degree of intratumoral infiltration with CD8+ T cells (14,20). The 
status of intratumoral infiltration, perhaps, reflects the stage of cancer immune escape 
during natural cancer progression. At early stages there are more HLA-positive tumor 
cells and many TILs, while at more advanced stages tumor contains more HLA-nega-
tive escape variants and T-cells are restrained in the peritumoral area (Figure 1). 
 Tumor HLA-I expression patterns have been discussed at the 12th Internation-
al Histocompatibility Workshop (Paris, France, June 9-12, 1996). Tumors sections were 
classified as HLA-I negative (< 25% tumor cells stained), heterogeneous (between 25% 
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to 75% tumor cells labeled) and positive (>75% tumor cells stained) (13,29). It would be 
interesting to determine whether the lack of HLA-I is the cause of poor T-cell recruit-
ment into the tumor or, the other way around, the local infiltrating T cells mediate high 
HLA-I expression by producing IFN-γ. A recent report indicated that the latter option 
could be valid, at least in sarcomas (30). In this context, the broadened melanoma-re-
active CD8+ T cell responses reported after anti-CTLA-4 therapy in melanoma (31−33) 
could be associated with the upregulation of MHC expression and could lead to the pres-
entation of a variety of previously hidden tumor specific peptides, which subsequently 
activate a pre-existing T-cell pool. Similar events were previously reported in clinical tri-
als using peptide-based immunotherapy and were defined as “epitope spreading” (25,34).

Tumor escape profile
It is well established that tumor immune escape is associated with MHC-I downregula-
tion, as seen in different human and experimental tumors and reviewed in many previous 
reports (8,10,12,35). Tumors with this profile can be derived from established progressed 
tumors after they had escaped T-cell mediated immunosurveillance (11). A tumor derived 
from an HLA-I positive epithelium can lose totally or partially the expression of class I mol-
ecules (9). The total percentage of various types of HLA-I loss, including total loss, haplo-
type loss, or allelic loss, ranges from 65 to 90%, depending on the type of cancer (9,35,36).
 Another evidence of tumor escape and the resistance to T cell immunity caused 
by MHC-I down-regulation has been corroborated by a cancer in a small mammal, 
the Tasmanian Devil. A facial tumor in the Tasmanian Devil silenced the genes for an-
tigen presentation at the epigenetic level and thereby created an infectious cancer that 
is transmissible to histo-incompatible companions (37,38,39). This curious case of a 
transmissible tumor clearly emphasizes the relevance of MHC loss for immune escape 
of tumors. The clear impression in the field is that most MHC-I defects in human can-
cers belong to the category of “soft”-wired lesions (40−43). Consequently, this type of 
immuno-editing can be counteracted by clever therapeutic targeting, such as activation 
of the interferon signaling pathway in cancers or intervention with HDAC inhibitors (44). 

Tumor dormancy profile
Clinical and experimental evidence indicate that the immune system can maintain cancer 
cells in a dormant state (15,16). Metastatic tumor cells can remain in a state of equilibri-
um with the immune system for long periods of time during which metastatic colonies 
do not progress and the cellular immune response does not reject the tumor. It resembles 
the symbiotic co-existence we see in different species when each partner benefits from 
another in a particular “status quo” of no aggression. Despite clinical reports suggesting 
that immunosuppression is associated in humans with clinical appearance of metastat-
ic colonies (45), the profile of the dormant microenvironment is not precisely known. 
We have developed a mouse tumor model (GR9) in which several metastatic tumor 
nodules were kept in a permanent state of immune-mediated dormancy in an immu-
nocompetent host (15). Interestingly, when the mice were depleted of CD8-T lympho-
cytes the colonies started to growth resulting in overt metastases. Moreover, the same 
tumor clone produced overt pulmonary metastases in nude mice. Tumor cells capable of 
generating these dormant metastatic colonies are very exceptional; they were completely 
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negative for MHC-I, but the dormant micrometastases recovered MHC-I surface expres-
sion (Figure 1) (15). These results suggested that MHC-I surface expression and CD8+ 
T lymphocytes play an important role in immune-mediated dormancy (46) (Figure 1).
 Antitumor strategies could be directed to harness the immune response to main-
tain cancer cells in a permanent dormant state or to favor a complete tumor rejection. In 
the GR9 mouse tumor model, immunotherapy turned a highly metastatic tumor clone into 
dormant micrometastases (24 and Garcia Lora et al, unpublished observations).  Upregu-
lating MHC-I expression on tumor cells by cytokines, by increasing FHIT gene expression 
(47), by blockade of the immune-checkpoint inhibitors, by suppression of T regulatory cells 
or myeloid suppressor cells could lead to activation of anti-tumor T lymphocyte responses 
(44). An attractive strategy for the restoration of MHC-I expression is by epigenetic mod-
ifiers, like inhibitors of DNA methyltransferase (DNMT) or histone deacetylase (HDAC). 
In several recent papers, such regulation at the epigenetic level was shown to be able to 
synergize with immunotherapy for the eradication of mouse tumor models (48−50). In-
terestingly, IFN-γ-induced restoration of “soft” lesions of MHC-I, one of the most power-
ful inducers of this gene, was shown to partly mediate its effect by inducing demethylation 
of antigen-processing machinery related genes, including the TAP genes and LMP-2 (51).

How to deal with ‘hard’ lesions? Gene therapy and alternative lymphocytes
Targeting the tumor escape phenotype is one of the major tasks of the present and fu-
ture cancer therapies (44). In the examples referred to above, the molecular mechanism 
responsible for the HLA-I downregulation is reversible or “soft” (40,52). In contrast, 
when the genes of HLA or beta 2-microglobulin are corrupted due to mutations or de-
letions resulting in loss of heterozygosity (LOH) at chromosomes 6 or 15, the HLA-I 
loss is irreversible due to these  “hard” lesions  (53−55). In this case, tumor cells can-
not recover the antigen presentation capacity and the tumor microenvironment retains 
tumor escape phenotype favoring cancer progression. “Hard” HLA-I aberrations in tu-
mors (LOH in chromosomes 6 or 15 and beta 2-microglobulin mutations) are in the 
range of 30 to 40% of human cancers (55,56). In order to restore HLA-I expression in 
human tumors with “hard” lesions we have made a recombinant adenovirus carrying 
beta 2-microglobulin gene and demonstrated a recovery of HLA-I expression on tumor 
cells deficient in beta 2-microglobulin. This HLA reconstitution also recovered tumor 
cell destruction by peptide specific CD8+ T-cells in HLA-restricted manner (57−59). 
Natural killer (NK) cells provide a natural barrier against MHC-I negative tumors and are, 
therefore, interesting immune effectors to exploit in the treatment of immune-escaped 
tumors with ‘hard’ lesions. However, there is no clear evidence suggesting that NK cells 
selectively infiltrate MHC-I negative tumor tissues. Tumor-infiltrating NK cells might 
harbor an anergic phenotype in MHC-I low tumors, in contrast to MHC-I-positive tum-
ors (60). This anergic state was reversed with IL-12/IL-18 treatment and was even further 
enhanced by an improved form of IL-2, leading to NK-dependent tumor control. Another 
group showed that transfer of in vitro pre-activated NK cells, in combination with body 
irradiation, was effective in eradication of tumors with “hard” genetic lesion in the MHC-I 
pathway (61). Interestingly, addition of HDAC inhibitors can increase the susceptibility of 
cancer cells for NK cells by upregulation of the NKG2D-activating ligand MICA (62,63). 
In addition to upregulation of its ligands, the NKG2D receptor was also upregulated, 
which led to a further enhanced cytotoxicity of tumor cells (62). However, caution is need-
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ed, as tumor cells treated with HDAC inhibitors might reduce their levels of other activat-
ing ligands, as shown for B7-H6, which stimulates NK cells via the NKp30 receptor (64). 
 Some years ago, our group identified a novel group of CD8+ T cells which spe-
cifically recognize cells with low MHC-I expression due to a defect in the peptide trans-
porter TAP (65,66). These T cells recognize an alternative peptide repertoire on immu-
noescaped tumor cells. We named these peptides TEIPP, for “T cell epitopes associated 
with impaired peptide processing” and they emerge in the residual MHC-I molecules as 
a result of alternative antigen processing pathways (67,68). We showed that the proto-
typic TEIPP epitope, derived from the housekeeping protein Trh4, is processed by sig-
nal peptide peptidase and is, therefore, processed independently of TAP or the protea-
some (69). In a novel TCR transgenic mouse model based on the Trh4-specific CD8+

 T 
cell clone, we observed an efficient thymic selection of these T cells, indicating that the 
TEIPP T cell repertoire is not affected by central tolerance (70). In addition, the TEIPP 
T cells were effective in tumor control of the TAP-deficient RMA-S tumor. We anticipate 
that this CD8+ T cell subset can be exploited for treatment of immune-escaped tumors. 

Conclusions

We have defined the following three major tumor phenotypes relevant for tumor-host 
interactions and anti-tumor immunity: rejection, escape and dormancy. We highlight-
ed the key role of tumor MHC expression that influences the degree and composition 
the immune cellular infiltration. This type of cellular immune response markedly de-
termines the prognosis and clinical outcome in different types of malignancies. There 
is accumulating evidence suggesting that the efficacy of traditional (IL2, BCG, peptides, 
etc.) and newly developed immunotherapy (“immune checkpoint” blocking antibodies) 
depends on the expression levels of MHC-I on tumors cells (49). “Soft” MHC-I molec-
ular lesions can be recovered by a variety of interventions that modify tumor microen-
vironment in such a way that Th1 type cytokines are released. “Hard” MHC molecular 
lesions can only be corrected by transferring the appropriate wild type MHC-I or beta 
2-microglobulin gene, or by the application of natural killer cells and TEIPP-specific T 
cells. Hence, identification of molecular aberrations responsible for altered tumor MHC-I 
expression, as well as monitoring the evolution of this expression during the course of 
treatment becomes essential for the success of T-cell mediated cancer immunothera-
py and for the development of novel complementary approaches for MHC-I upregula-
tion. We are undoubtedly oversimplifying the enormous complexity of the tumor mi-
croenvironment but future findings of key molecules and/or cells capable of overriding 
the immune escape routes used by tumor cells will certainly help in inducing durable 
tumor rejection. Among them, MHC re-expression is a major target for future studies.
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