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 12 

Abstract 13 

 14 

Proteorhodopsin is a light-driven proton pumping membrane protein related to bacteriorhodopsin. 15 

It contains an all-trans retinal A1 chromophore covalently bound to a lysine residue via a protonated 16 

Schiff base. In this study we exploited density functional theory (DFT) calculations to investigate the 17 

retinal binding pocket in the dark state and after mimicking photoisomerization. The model of the 18 

binding pocket is constructed incrementally by adding the residues near the retinal that are 19 

necessary to ensure a stable protonated Schiff base. The presence of a few water molecules near the 20 

Schiff base turns out to be an essential feature of the model. The absorption properties are then 21 

studied using time-dependent DFT (TDDFT) and compared to experimental data to further validate 22 

the structural model and to assess the accuracy of the computational setting. It is shown that TDDFT 23 

is able to reproduce the main absorption peak accurately and to quantitatively determine the 24 

spectral shift induced by substituting the native all-trans retinal A1 chromophore with different 25 

retinal analogues.  Moreover, ab-initio molecular dynamics simulations are performed to investigate 26 

the vibrational spectra of our models before and after isomerization. Specific differences in the 27 

vibrational spectra are identified that provide further insight in experimental FTIR difference spectra.   28 
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Introduction 29 

Proteorhodopsin (PR) is a member of an abundant family of photoactive transmembrane proteins 30 

with a retinal chromophore bound to a conserved lysine.1  First discovered in marine bacteria of the 31 

SAR86 group, it acts as a proton pump similar to the well-studied bacteriorhodopsin (BR).2  Since 32 

their discovery, many different variants have been found and characterized.3 For PR two variants 33 

have been discovered, a green absorbing one (denoted GPR, λmax ~ 520 nm) and a blue absorbing 34 

one (denoted BPR,  λmax ~ 490 nm).1  It is well known that the spectral features of the retinylidene 35 

chromophore are strongly affected by the protein environment and considerable tuning of the 36 

absorption maximum can be obtained by mutagenesis.4,5 Spectral modulation can also be achieved 37 

by changing the electronic and conformational properties of the retinal itself. Recently, Ganapathy 38 

et al. used a combination of retinal analogues with directed mutations in the retinal binding pocket 39 

to modulate the absorbance properties and proton pump activity of PR.6,7  40 

GPR presents a photocycle very similar to BR, with a first intermediate after photoisomerization, 41 

named K, which contains the 13-cis configuration of the chromophore. This first step occurs within a 42 

time scale of a few ps and is followed by much slower structural changes in the protein leading to a 43 

deprotonation of the Schiff base in a μs time scale (state M).  Since no crystallographic structure is 44 

currently available for GPR, homology models have been generated based on the structure of 45 

xanthorhodopsin (XR) and BPR.6,8,9 A characteristic feature of the protonated Schiff base (PSB) 46 

binding pocket is the complex counterion formed by the residues Asp97 and Asp227. Moreover, the 47 

presence of water molecules in the vicinity of the PSB has also been indicated by previous 48 

investigations, although the exact number and position is difficult to establish. 10,11 49 

In this study we build and investigate a model of the retinal binding pocket in GPR using Density 50 

Functional Theory (DFT) calculations and ab-initio molecular dynamics simulations. This model is first 51 

validated on the basis  of the PSB stability in the dark state. It is found that an essential feature of 52 

the binding pocket is the presence of a hydrogen bonding network involving three water molecules 53 

in the near proximity of the PSB. These water molecules stabilize the counterion and provide a 54 

channel for proton rearrangement during the photocycle. The model is further validated by 55 

comparing the computed absorption spectrum with available experimental data. This study is 56 

extended to include retinal analogues that have been shown to strongly modulate the spectral 57 

properties and proton pump activity of GPR (Figure 1).7 Models for the early K intermediates are also 58 

studied and vibrational properties are compared with available FTIR difference spectra. The overall 59 

very good agreement with experimental data and the ability to closely reproduce spectral trends 60 

underline the predictive power of DFT-based simulations and their role as a complementary tool to 61 

experimental studies.  62 
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 63 

Figure 1. Chemical structure of the all-trans isomers of retinal A1 and the analogues investigated in 64 

this work. (a) Retinal A1, the chromophore present in the native PR. (b) Retinal A2, containing an 65 

additional double bond between C3 and C4. (c) 3-methoxy retinal A2 (called 3MA2 in the text). (d) 66 

3-methylamino-16-nor-1,2,3,4,-didehydroretinal (called MMA in the text), containing an additional 67 

double bond between C1 and C2. 68 

 69 

70 
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Computational methods and details 71 

All geometry optimizations and time-dependent density functional theory (TDDFT) calculations are 72 

performed using the Amsterdam Density Functional (ADF) software package.12–14 For the geometry 73 

optimizations, the PBE generalized gradient approximation (GGA) for the exchange-correlation 74 

functional is used.15 Van der Waals (vdW) interactions are accounted for by using the Grimme3 75 

BJDAMP dispersion correction.16 The Slater type orbitals basis set TZP (triple zeta with one 76 

polarization function) with a small frozen core approximation is used for all the calculations. Linear 77 

response TDDFT excited state calculations are performed with the hybrid B3LYP functional17 78 

combined with the same TZP basis set and vdW corrections. Additional TDDFT calculations are 79 

performed with the long-range corrected functional CAM-B3LYP using the same basis set and no 80 

frozen core.18,19  81 

Ab-initio molecular dynamics (AIMD) simulations are performed using the Car-Parrinello Molecular 82 

Dynamics (CPMD) package.20,21 The same PBE functional is employed also for the AIMD simulations. 83 

The Kohn-Sham orbitals are expanded in a plane wave basis set with a cut-off energy of 70 Ry. 84 

Dispersion-corrected atom-centered pseudopotentials (DCACP) are used for all atomic species.22 The 85 

time-step is set to 4 a.u. The optimized geometries obtained with the ADF calculations are used as 86 

initial coordinates for the AIMD. Starting with zero velocities, the ions are smoothly thermally 87 

equilibrated at 300 K using a Nosé-Hoover thermostat, 23,24 and the system is then evolved for about 88 

2 ps. The MD box has an orthorhombic symmetry with lattice parameters of 18.5 Å, 17.5 Å, 24.5 Å, 89 

respectively and is treated as an isolated system where the Poisson equation is solved using the 90 

Hockney method.25  91 

The vibrational density of states (VDOS) is obtained from the AIMD trajectories by taking the Fourier 92 

transform of the velocity autocorrelation functions. This can be done considering all the atoms in the 93 

system, or by selecting specific atoms or geometrical parameters. In this way, specific vibrational 94 

modes can be easily identified and compared with experimental infrared absorption bands. In 95 

particular, by examining the difference between the spectra obtained for the all-trans and 13-cis 96 

conformation of the chromophore, we provide evidence of changes in vibrational modes for relevant 97 

parts of the system after photo-isomerization. 98 

 99 

 100 

 101 
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Results and Discussion 102 

Models investigated: Characterization and validation 103 

The initial Cartesian coordinates for all the models considered in this study are extracted from the 104 

homology structure of GPR derived in previous work.6 This homology structure shows excellent 105 

conformity with a recently published crystal structure for BPR (PDB code 4KNF).9 First we consider a 106 

model for the GPR active site with the native retinal A1 chromophore in the all-trans conformation 107 

(see Figure 1a).  The model is built in an incremental way starting from a minimal model and by 108 

progressively adding residues in close proximity of the retinal PSB: in this way we can establish the 109 

essential elements in the binding pocket that contribute to the structural stability and optical 110 

absorption properties of the system.  111 

The retinal is covalently bound through a protonated Schiff base to a lysine residue (Lys231) that is 112 

included in our model up to the γ-C position. This carbon is replaced by a methyl group (see Figure 113 

2). To mimic the mechanical constraints imposed by the protein environment, the coordinates of the 114 

carbon atom of the methyl group used to terminate the chain of this residue is fixed during the 115 

geometry optimization and the AIMD simulations. A similar strategy and constraint is used to 116 

terminate all the other residues included in the model. Moreover, the carbon atoms of the methyl 117 

groups on the β-ionone ring of the retinal are also kept fixed, in view of evidence that their mobility 118 

is strongly constrained by the protein binding pocket.26–29  119 

The counterion is of course an important element of the model, especially if we want to accurately 120 

describe the optical response of the system. It is well known that the PSB-retinal is highly polarizable 121 

and that its structural and electronic properties are strongly sensitive to the type and position of the 122 

counterion.30,31 In GPR, the main counterion is Asp97 (see Figure 2), which is found in close proximity 123 

to the PSB and acts as the primary proton acceptor in the formation of the M state.1  124 

A geometry optimization with the above-mentioned constraints of a minimal model, including the 125 

retinal in the presence of only this counterion (PSB-Ret-A1 + Lys231 + Asp97) leads to a proton 126 

transfer from the Schiff base to the counterion. Clearly, this deprotonated Schiff-base does not 127 

correspond to the expected result for the initial GPR dark state. To check if this result is due to the 128 

inaccuracy in the GGA description of the proton transfer reaction,32 we have performed an 129 

additional test with the more accurate B3LYP functional. This further test results again in the same 130 

proton transfer with very small differences between the two geometries optimized at the PBE and 131 

B3LYP level of theory. Therefore, we can conclude that this minimal model is still missing crucial 132 

elements of the binding pocket.  133 
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It has been shown in the literature that the pKa value of Asp97 is lowered because of the nearby 134 

residue His75.33 This histidine residue is protonated in the dark-state, thus adding a net positive 135 

charge in the binding pocket. Another important residue that contributes to the complex counterion 136 

in GPR is the negatively charged Asp227, which plays a critical role in the photocycle, as it facilitates 137 

the reprotonation reaction.34 By including Asp227 and His75 in the model (see Figure 2), we obtain 138 

an overall neutral system. However, geometry optimization of the model including the Asp227, 139 

Asp97, and His75 residues results again in an unrealistic proton transfer, in this case from His75 to 140 

Asp97. 141 

The next step in generating a more realistic model requires the formation of a hydrogen bonding 142 

network that can play the double role of stabilizing the initial (dark) protonation state and facilitating 143 

the proton transport mechanism during the photocycle. Several experimental and computational 144 

studies have recently pointed out the importance of water molecules in retinal binding pockets that 145 

appear to be strongly bound, and contribute to the overall stability of the protein structure and to 146 

the spectral tuning.10,11,35–37 Moreover, MD simulations in aqueous environment show that water is 147 

able to solvate a large portion of the interior of PR all the way to the active site.38 Therefore, we 148 

have incrementally added three water molecules in the active site and optimized their position while 149 

keeping the other residues in the model fixed. Also a tyrosine residue Tyr200, which is hydrogen 150 

bonded to Asp227, is included in the model: in BPR its alcohol group is in close proximity to the 151 

Asp227 and enhances the hydrogen-bonding network.9 To minimize the additional atoms and 152 

consequent computational costs in the model, the hydrogen-bonding properties of the phenol are 153 

recreated by substituting the entire conjugated system by just the hydroxy-carbon element, 154 

effectively introducing a methanol molecule in its place. The geometry optimization of the whole 155 

system leads to the structure shown in Figure 2, where the hydrogen bond network can be 156 

visualized. The PSB is now stable and no unnatural structural rearrangement is observed. This model 157 

of the binding pocket now includes 111 atoms and constitutes a quantum-mechanical model that 158 

can be confidently used for future QM/MM embedding studies.  159 

 160 
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 161 

Figure 2. Optimized geometry of the model of the binding pocket of native GPR investigated in this 162 

work. The chromophore all-trans retinal A1 (light blue) is covalently bound to Lys231 via a 163 

protonated Schiff base (PSB-Ret-A1). The complex counterion of the PSB includes the negatively 164 

charged Asp97 and Asp227. The net charge in the close proximity of the chromophore is equal to 165 

zero because of the presence of the protonated histidine His75. The protonation state in the dark 166 

state is stabilized by the presence of a hydrogen bonding network including Tyr200 (hydrogen 167 

bonded to Asp227) and three water molecules (W1, W2, and W3). Dotted lines indicate hydrogen 168 

bonding interactions.  169 
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The binding pocket model constructed for the native all-trans A1 chromophore also serves as a basis 170 

to construct the 13-cis photoproduct. In this study we are not aiming to simulate the 171 

photoisomerization process. This is projected for future research. Instead, here we take a more 172 

pragmatic approach: the isomerized state is generated by starting from the optimized all-trans 173 

chromophore and just rearranging the atoms near the C13=C14 isomerizable bond into a 13-cis 174 

conformation by a “bicycle-pedal” type of motion:39 this rearrangement is done while keeping fixed 175 

the C atoms of all the methyl groups in the model and all the atoms in the residues included in the 176 

binding pocket. The modified structure, now in the 13-cis conformation, is again optimized except 177 

for the position of the C atoms of all the methyl groups as described for the all-trans geometry. This 178 

procedure is justified considering that the protein structure is unlikely to vary considerably in the 179 

very short sub-picosecond time scale in which the photoisomerization takes place. The overlay of the 180 

optimized all-trans and 13-cis models shows that the atomic displacements are overall small (see 181 

Figure S1 in the Supporting Information).  182 

 183 

Table 1. Comparison of relevant hydrogen bonding distances (Å) before (all-trans) and after (13-184 

cis) isomerization in the GPR model with the native PSB-Ret-A1 chromophore. The labels in 185 

brackets denote the water molecule or the residue number considered (see also Figure 2).  186 

 All-trans 13-cis 

N(PSB)-O(97) 2.72 2.68 

O (W1)-O (W2) 3.66 3.76 

O (W1)-O (W3) 5.49 5.87 

O (W2)-O (W3) 3.00 3.98 

O (W1)-O(97) 2.81 2.87 

O (W3)-O(97) 2.74 2.64 

O (W1)-O(227) 2.66 2.61 

O (W2)-O(227) 2.69 2.76 

N(His)-O (W3) 2.76 2.68 

 187 
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The total energy of the optimized 13-cis model is about 10 kcal mol-1 higher than the all-trans, which 188 

is quite realistic considering the about 12 kcal mol-1 stored in the first photoproduct of 189 

bacteriorhodopsin.40 The main structural modifications due to this arranged isomerization are visible 190 

in the hydrogen bonding distances collected in Table 1. It can be noticed that the hydrogen bond 191 

between the PSB nitrogen and the oxygen of Asp97 becomes stronger in the 13-cis conformation, 192 

possibly facilitating the proton transfer step. Also, the water molecules respond to the isomerization 193 

by slightly modifying their hydrogen bonding distances. In particular, the distance between the 194 

water W2 and the water W3 increases considerably upon photoisomerization, thus weakening their 195 

hydrogen bond interaction. At the same time the water W3 strengthens the hydrogen bond 196 

interaction with the Asp97 and His75 residues. 197 

This binding pocket model was further used to build the models with the retinal analogues 198 

considered in this work (Figure 1). The β-ionone ring of the retinal is modified accordingly and the 199 

geometry re-optimized by fixing only the carbon atoms of the methyl groups on the β-ionone ring, of 200 

the methyl groups on C9 and C13, and of the methyl groups terminating Lys231, Asp227, Tyr200, 201 

His75, and Asp97. Only in the case of the MMA analogue, the position of the single methyl group on 202 

the C1 position is optimized as well, due to absence of data on this steric environment. The final 203 

structures are highly similar to the native system, in the sense that the Schiff-base, the residues and 204 

the water molecules do not show significant rearrangements. Only the bonding pattern in the ring 205 

element is of course changed in the retinal analogues. Moreover, the bond length alternation (BLA) 206 

is also affected by the extended conjugation due to the ring modifications. The Cartesian coordinates 207 

of the optimized geometries for all the investigated models are available in the Supporting 208 

Information. 209 

Absorption spectra of native and analogue pigments 210 

The optimized structures of the different models, both in the all-trans and 13-cis configuration are 211 

used to calculate the absorption spectrum with TDDFT. The first 30 singlet excitations are calculated 212 

for all the models. The computed spectra together with the experimental ones are shown in the 213 

Supporting Information (Figure S2). The results for the first excitation energies are collected in Table 214 

2 and compared with available experimental data for the first absorption maximum (λmax).7  TDDFT at 215 

the B3LYP/TZP level of theory is clearly able to correctly reproduce the trend of the experimental 216 

data. Moreover, the agreement between the predicted excitation energy and the experimental data 217 

is remarkable. For the native all-trans A1 case, the deviation from the experimental λmax is only about 218 

10 nm (0.04 eV), well within the typical accuracy expected using the B3LYP functional. This result 219 
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constitutes a further strong validation of the structural model for the binding pocket discussed 220 

above (Figure 2).  221 

 222 

Table 2. TDDFT excitation energies and corresponding oscillator strength computed at the 223 

B3LYP/TZP level of theory. Only the first dominant excitations are here presented. The 224 

experimental data are from ref. 7 H stands for HOMO, L for LUMO. The computed average BLA is 225 

shown in the last column. 226 

Retinal analogue 

(configuration) 

Excitation energy (eV) 

(oscillator strength) (orbital 

transitions) 

Excitation 

energy (nm) 

Experiment          

λmax (nm) 

Average BLA 

(pm) 

GPR+A1 (all-trans) 2.43 (0.86) (HL & H-1 L) 

2.48 (0.75) (H-1 L  & H L) 

510.7 

499.2 

520 6.82 

GPR+A1 (13-cis) 2.30 (0.71) (HL & H-1 L) 

2.53 (0.90) (H-2L & HL & 

H-1 L) 

539.0 

489.9 

  

GPR+A2 (all-trans) 2.24 (1.63) (HL) 553.5 552 6.04 

GPR+A2 (13-cis) 2.24 (1.49) (HL) 552.5   

GPR+MMA (all-trans) 2.18 (1.64) (HL) 567.6 567 5.94 

GPR+MMA (13-cis) 2.19 (1.61) (HL) 566.1   

GPR+3MA2 (all-trans) 2.16 (1.81) (HL) 573.3 585 5.30 

GPR+3MA2 (13-cis) 2.16 (1.74) (HL) 573.5   

 227 

The predicted excitation energies for the models with the A2 and MMA retinal analogues even more 228 

accurately reproduce the experimental spectral data. The deviation between theory and experiment 229 

for the 3MA2 analogue is about 0.04 eV, similarly to the A1 case.  230 

Because of the partial charge transfer character of the excitation, it has been shown that the long-231 

range corrected CAM-B3LYP functional is more accurate than B3LYP when considering the potential 232 
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energy curve along the photo-isomerization torsional angle.41 In this work, we only consider the 233 

excitation energies at the stable intermediates, for which the B3LYP functional should, and herein 234 

does, provide reliable results. Nevertheless, calculations have also been performed with the CAM-235 

B3LYP functional for all the analogues in the all-trans conformation for comparison. The results are 236 

reported in the Supporting Information, Table S1. The outcome is that CAM-B3LYP also yields the 237 

correct trend in comparison with experimental data. The absolute value of the first excitation energy 238 

is however blue-shifted by about 0.2 ─ 0.3 eV with respect to the B3LYP results and to the 239 

experimental data. 240 

A strong linear correlation (correlation coefficient R2=0.97) is found between the first excitation 241 

energy and the average BLA in different analogues (see last column in Table 2). The average BLA is 242 

computed by considering the average bond length difference between single and double bonds from 243 

C6-C7 up to C15-N.42,43 244 

In Table 2, one can also notice that the major absorption peak is associated in most cases with a 245 

HOMO to LUMO transition. However, in the all-trans A1 model, there are two closely spaced 246 

excitations with comparable oscillator strength originating from HOMO-1 to LUMO and HOMO to 247 

LUMO transitions. In the 13-cis model, the first excitation is red-shifted from 510 to 539 nm, while 248 

the second is slightly blue-shifted from 499 to 490 nm. These spectral features computed for the 13-249 

cis A1 retinal model correlate well with experimental data obtained by Lenz et al using ultrafast 250 

transient absorption spectroscopy in the time scale of 150 – 280 fs (see Figure 3).44 Our computed 251 

spectrum is indeed based upon a binding pocket that has been optimized only in the near proximity 252 

of the retinal. It does not include any subsequent relaxation of the protein environment that takes 253 

place on a longer time scale of 10-30 ps, in which the absorption band around 580 nm of the K-state 254 

fully develops.44,45 Thus, we can conclude that our 13-cis model is more representative of an early 255 

intermediate formed in the sub-picosecond time scale, rather than of the fully relaxed K-state 256 

intermediate. This result is a further confirmation of the strength of our computational approach. 257 

  258 



13 
 

  

  

Figure 3. Right panel: Transient absorption data, represented with permission from ref. 44 Left 259 

panel: TDDFT computed absorption spectrum for the 13-cis GPR+A1 model. 260 

 261 

 262 

Ab initio molecular dynamics and vibrational spectra 263 

AIMD simulations have been performed for the GPR model with the native retinal A1 both in the all-264 

trans and in the 13-cis conformations. The analysis of the 2 ps trajectories provides information on 265 

characteristic changes in the vibrational spectrum induced by the photoisomerization. These results 266 

can be compared to experimental FTIR difference spectra. In Figure 4, we report the difference 267 

between the computed VDOS for the all-trans and the 13-cis models obtained by including only the 268 

trajectory of the four carbon atoms C12, C13, C14, and C15 around the isomerizable bond. The most 269 

intense features are observed in the region between 1050 cm-1 and 1250 cm-1 corresponding to the 270 

complex retinal fingerprint region. These changes correlate quite well with experimental FTIR data. 271 
46,47 For instance, the peak at 854 cm-1, present in the all-trans model but hardly detectable in the 13-272 

cis case, probably corresponds to the C14-H wag vibration,48 which is downshifted and weaker in the 273 

13-cis isomer.49 274 
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 275 

Figure 4: VDOS difference spectrum calculated by subtracting the 13-cis configuration from the all-276 

trans configuration for our model of the native retinal A1 binding pocket. The spectra are obtained 277 

by selecting only the trajectory of the C12, C13, C14, and C15 carbon atoms. 278 

 279 

It is interesting to analyse the dynamics of the N-H bond in the PSB before and after isomerization. 280 

The vibrational analysis of the trajectory of these two atoms shows a clear shift in the position of the 281 

stretching band peak, which moves from 2720 cm-1 in the all-trans to 2550 cm-1 in the 13-cis 282 

configuration (Figure 5). This result is consistent with the observation that the hydrogen bond 283 

between the PSB and Asp97 becomes stronger after isomerization to the 13-cis state (see Table 1). 284 

A similar analysis has also been performed for the water molecules, which participate in the 285 

hydrogen bonding network between the PSB and the complex counterion (Figure 6). The water W1 286 

bridges Asp97 and Asp227 and interacts also with His75. The dynamical trajectory of 2 ps shows that 287 

these hydrogen bonds are quite stable. The VDOS computed for the water W1 in the all-trans state 288 

indeed shows a stretching band in the range 2300-2800 cm-1, indicative of a strongly hydrogen 289 

bonded water. In contrast, the water W3, which is seen to be more mobile, presents a stretching 290 

band located at much higher frequencies in the range 3200-3550 cm-1. The stretching band of W2 is 291 

somewhat in between those of W1 and W3, in the range 3000-3500 cm-1. These features observed in 292 

the vibrational spectrum of the all-trans state are overall conserved also in the 13-cis state. The main 293 
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difference is observed in the spectrum of the water W1, which develops a second band around 3500 294 

cm-1. The high frequency band of W3 becomes narrower and centred around 3500 cm-1, possibly 295 

reflecting the fact that this water in the 13-cis has a weaker hydrogen bonding interaction with the 296 

W2 (see also Table 1). 297 

 298 

Figure 5: VDOS difference spectrum calculated by subtracting the 13-cis configuration from the all-299 

trans configuration for our model of the native retinal A1 binding pocket. The spectra are obtained 300 

by selecting only the trajectory of the N and H atoms of the Schiff base. 301 

 302 

Another feature of the VDOS of water molecules, common to both states before and after 303 

isomerization, is a band in the range 1490-1660 cm-1 that can be associated to the bending mode. 304 

Overall W1 and W2 behave differently from W3. In the 13-cis configuration W1 and W2 go to more 305 

intermediate, partly weak strength H-bonding with strong OH bending, while W3 now shows a 306 

tendency to stronger H-bonding (somewhat stronger interaction with Asp97 and His75), with little 307 

OH bending. 308 

 309 
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 310 

Figure 6: VDOS computed for each of the three water molecules included in our model of the 311 

native retinal A1 binding pocket. Left panels: all-trans configuration; Middle panels: 13-cis 312 

configuration; Right panels: difference spectrum calculated by subtracting the 13-cis configuration 313 

from the all-trans configuration. 314 

Conclusions 315 

In this work, we have investigated the structural, optical and dynamical properties of the active site 316 

of green proteorhodopsin. A fully quantum-mechanical model of the binding pocket is constructed 317 

including the retinal A1 chromophore and nearby residues, which are expected to have an important 318 

role in defining the optical properties of the system. In line with previous experimental evidence, we 319 

have found that three water molecules located in the proximity of the complex counterion form a 320 

hydrogen-bonding network, which is crucially important for stabilizing the proton on the Schiff base. 321 

TDDFT calculations show that this model is able to accurately reproduce the absorption properties of 322 

the GPR system with the native retinal A1 and the spectral modulation induced by retinal analogues. 323 

These results further validate the structural model. Finally, AIMD simulations provide some insight 324 

into changes in the vibrational modes and the rearrangement of the hydrogen-bonding network 325 

induced by the photoisomerization. It is very encouraging that our minimal model can already quite 326 
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accurately reproduce main absorption peaks. This is probably related to the relatively neutral 327 

character of the rest of the binding pocket. Therefore this minimal model can be used as a reliable 328 

starting point for future QM/MM embedding studies. These studies would offer the challenging 329 

prospects, that upon expanding the binding pocket with additional residues, it should become 330 

possible to predict in silico which substitutions in such residues could substantially affect the spectral 331 

properties of the system, and eventually even how this would affect stability, photo-isomerization 332 

and proton-transfer. 333 
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