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Abstract 

The pharmacokinetics and pharmacodynamics of drugs are influenced by daily fluctuations in 

physiological processes. The aim of this study was to determine the effect of dosing time on the 

pharmacokinetics and brain distribution of morphine. To this end, 4 mg/kg morphine was administered 

intravenously to Wistar rats that were either pre-treated with vehicle or tariquidar and probenecid to 

inhibit processes involved in the active transport of morphine. Non-linear mixed effects modelling was 

used to describe the concentration-time profiles of morphine and its metabolite M3G in plasma and 

brain tissue. We found that the concentrations of morphine in the brain and of M3G in plasma 

depended on the time of day, which could be quantified by a 24-hour rhythm in the efflux of morphine 

from brain tissue back into the circulation, with the lowest efflux during the two light-dark phase 

transitions with a difference between peak and trough of 20%. The active processes involved in the 

clearance of morphine and its metabolite M3G from plasma also showed 24-hour variation with the 

highest value in the middle of the dark phase being 54% higher than the lowest value at the start of 

the light phase. Hence, time of day presents a considerable source of variation in the 

pharmacokinetics of morphine, which could be used to optimize the dosing strategy of morphine.  

 

Keywords: circadian rhythms, personalized medicine, chronopharmacology, morphine, 

pharmacokinetic modelling 
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1. Introduction 

Morphine is the most widely used opioid for the treatment of moderate to severe pain, despite the 

many side-effects associated with its use. Establishing a dosing regimen that results in adequate 

analgesia and minimal adverse side-effects is crucial, but this remains a challenge due to the high 

degree of intra- and interindividual variability associated with its pharmacokinetics and 

pharmacodynamics [1]. Time of day presents a considerable source of variation in the 

pharmacokinetics and pharmacodynamics of a wide variety of drugs due to daily rhythms in 

physiological processes [2].  

 

There are several indications that time of day influences morphine’s effect in both humans and animal 

models [3–14]. However, the physiological mechanisms that underlie these variations in morphine-

induced analgesia are unknown. To gain a more structured overview of the effect of time of drug 

administration on the therapeutic effect of morphine, it is essential to first determine 24-hour variation 

in both the plasma and brain pharmacokinetics of morphine. Although the effect of time of 

administration on the exposure to morphine has previously received some attention [15,16], these 

studies neither determined the 24-hour variation in the different pharmacokinetic parameters of 

morphine, nor did they address the 24-hour variation in its distribution to the brain, morphine’s main 

site of action.  

 

The concentration of morphine in blood and subsequently in the central nervous system depends on 

several processes, such as metabolism by UDP glucuronosyl transferase (UGT) 2B7 in the liver 

[17,18] and efflux transport by specialized transporters including P-glycoprotein and multi-drug 

resistance proteins (mrps) [1,19–21]. It has been shown that these physiological processes show 24-

hour variation [2,22,23].   

 

To determine 24-hour variation in the pharmacokinetic parameters of morphine, we used a study 

design in which morphine is intravenously administered to rats at six time-points during the 24-hour 

period combined with a pharmacokinetic modelling approach. Results from this study enhance our 

understanding of the processes that underlie the observed time-of-day dependent analgesic effect of 

morphine.  
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2. Methods & Materials 

2.1 Animals 

Male Wister WU rats (Charles River, the Netherlands) were housed in groups for at least twelve days 

under standard environmental conditions (humidity 60%, ambient temperature 21
o
C) with food 

(Laboratory chow, Hope Farms, Woerden, The Netherlands) and water ad libitum. After surgery, 

animals were kept individually until the end of the experiment under otherwise similar conditions. The 

animal procedures were performed in accordance with the Dutch law on animal experimentation and 

were approved by the Animal Ethics Committee of the Leiden University (protocol number 

DEC14041). 

 

2.2 Study design 

Cannulation of the femoral artery and vein was performed as described previously [24]. Anesthesia 

was induced and maintained by respectively 5% and 1-2% isoflurane throughout the surgical 

procedures. Experiments were conducted seven days after surgery and started at one of six different 

time points (t =0 at either Zeitgeber time (ZT) 0, 4, 8, 12, 16 or 20, with ZT12 defined as the moment 

that lights are turned off). Experiments that took place during the dark phase were conducted under 

dim red light. At t= -25 min, tariquidar (15mg/kg; XR9576 from Avant pharmaceuticals, London, UK, in 

5% glucose) or vehicle (5% glucose) was administered for 10 minutes, followed by administration of 

probenecid (150mg/kg; Sigma-Aldrich, Zwijndrecht, the Netherlands, in 5% NaHCO3) or vehicle (5% 

NaHCO3) for 10 minutes. Half of the animals received a combination of tariquidar and probenecid 

(inhibitor-treated group); the other half received the two vehicle solutions (vehicle-treated group). At 

t=0, morphine HCl (4mg/kg in saline; Pharmachemie BV, Haarlem, the Netherlands) was administered 

for 10 minutes. The selection of this dose was based on previous research in our laboratory [25]. All 

drugs were administered intravenously using a syringe pump (Pump 22 Multiple Syringe Pump, 

Harvard Apparatus, Holliston, MA, USA). Plasma samples (150 µL) were collected at t=-5, 10, 20, 30, 

45, 60, 90 and 120 min as well as at t = 180 and/or 240 min, depending on when the experiment was 

terminated and stored at   -20
o
C until further analysis. At either t=120, 180 or 240 min, animals were 

euthanized by an overdose of Nembutal, transcardially perfused and decapitated. Brain tissue was 

removed, immediately placed on ice and subsequently stored at -80
o
C until further analysis.  

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

5 
 

2.3 SPE-LC-MS/MS analysis 

Morphine and morphine-3-glucoronide (M3G) were measured in plasma and brain tissue using liquid 

chromatography tandem mass spectrometry (LC-MS/MS) (Methods S1).  

 

2.4 Data processing 

Samples below LLOQ (<1%) were marked in the data set but were retained, as described previously 

[26]. Concentrations (ng/mL) were converted to nanamol/mL using the molecular weight of 

morphine.HCl (321.8g/mol) and M3G (free base) (461.47g/mol). Based on protein binding values of 

morphine in rats that have been reported previously [27–31], an unbound fraction of 70% was used. 

The degree of plasma protein binding of M3G is very low (unbound fraction of 93% [27]) and was not 

taken into account in further analysis.  

 

2.5 Population pharmacokinetic model development 

A population pharmacokinetic model was developed to describe the concentration-time profiles of 

morphine and M3G in plasma and in morphine brain tissue using nonlinear mixed effects modelling 

(NONMEM 7.3 [32]) in combination with Pirana (v2.8.2), PsN (v3.7.6), Xpose (v4) and R (v3.1.2) [33].  

To compare the fit of nested models, the likelihood ratio test was used, under the assumption that the 

difference in -2 log-likelihood is χ
2
 distributed with degrees of freedom (d.f.) determined by the number 

of additional parameters in the more complex model. Hence, a decrease in Objective Function Value 

(OFV) of at least 3.84 points (p-value <0.05) with one additional parameter was considered to provide 

a significantly better fit of the data compared to its parent model. The fit of non-nested models were 

compared using the Akaike Information Criterion (AIC) [34].The first-order method with conditional 

estimation and interaction (FOCEI) and the ADVAN6 subroutine were used throughout model 

development. Model selection was based on OFV, precision and plausibility of parameter estimates, 

graphical evaluation of the goodness of fit and visual predictive checks (VPC). 

Interanimal variability was described using an exponential model. Additive, proportional and combined 

error models were considered to describe the residual variability [34]. Pre-treatment with probenecid 

and tariquidar was assumed to inhibit all active transport processes. Therefore, this effect was 

assessed on clearance parameters as follows:  
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𝑃 = 𝜃𝑝𝑎𝑠𝑠𝑖𝑣𝑒 + 𝜃𝑎𝑐𝑡𝑖𝑣𝑒 ∗ (1 − 𝑇𝑅𝑇)    Equation 1 

Where θpassive is the passive component of the clearance parameter, θactive is the active component of 

the clearance parameter and TRT is the treatment group (0 for vehicle-treated animals; 1 for inhibitor-

treated animals). The effect of the inhibitors on other (non-clearance) parameters was assessed as 

follows: 

𝑃 = 𝜃 ∗ 𝜃𝐼𝑁𝐻
𝑇𝑅𝑇     Equation 2 

Where θINH is the fractional change in parameter θ in the presence of inhibitor treatment.  

A sequential approach was used to develop the population PK model. Firstly, different structural 

models were considered (different number of peripheral compartments, linear or Michaelis-Menten 

clearance) to describe morphine and M3G concentrations in plasma. The volume of the M3G 

compartment was set equal to the volume of the central morphine compartment to yield a structurally 

identifiable model. In the second step, the morphine concentrations in brain tissue were added to the 

data set and the PK model was extended to describe the concentration profile in brain tissue. Lastly, 

the effect of time of day on the pharmacokinetic parameters was assessed. As an exploratory 

approach, the distribution of conditional weighted residuals with interaction (CWRESI) over time was 

investigated per treatment group. Subsequently, it was investigated whether the model fit could be 

improved by describing one or more parameters by a sinusoidal function with a principal period of 24-

hour and one or more harmonic terms (Equation 3). 

𝑃 = 𝜃𝑀𝑒𝑠𝑜𝑟 + ∑ [𝜃𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒,𝑛 ∗ cos (
2𝜋∗𝑛∗(𝑡−𝜃𝜑,𝑛)

24
)]𝑁

𝑛=1    Equation 3 

In this equation, θMesor represents the rhythm-adjusted mean value of the parameter, N is the total 

number of harmonics included in the model, θAmplitude,n is the amplitude of the n
th

 harmonic, θφ,n is the 

acrophase (time of peak in minutes after onset of light period) of the n
th
 harmonic and t is the time with 

t=0 defined as the onset of the light period.  

2.6 Simulations 

Two dosing regimens were simulated using the package deSolve (v1.11) in R: 1) a single 10min. 

intravenous infusion of 4 mg/kg morphine to a rat of 250g with dosing at 0, 4, 8, 12, 16 and 20 hours 
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after onset of the light period and 2) a continuous infusion of 0.5mg/kg/h to a rat of 250g for 24 hours 

starting at 4 and 16 hours after the onset of the light period. 

 

3. Results 

3.1 Morphine and M3G pharmacokinetics in plasma 

Data from three animals were missing due to complications during surgery and data from four animals 

were missing due to difficulties with the cannulas during the experiment, so data from 89 animals 

(mean weight ± standard deviation: 269 ± 29g) were available for pharmacometric analysis. Table 1 

shows the number of animals per treatment group. Morphine and M3G concentrations in plasma are 

shown in upper and middle panels of Figure 1.  

 

The concentration-time profiles of morphine were described by a model consisting of a central 

compartment, one peripheral compartment and linear clearance from the body. To account for the 

difference in morphine pharmacokinetics between vehicle-treated animals and inhibitor-treated 

animals, the clearance of morphine from the body (CL10) was split into an active and a passive 

component as described in Equation 1, resulting in a significant improvement of the model fit (ΔOFV -

208, p<0.01, 1 d.f.) and reducing the interanimal variability on CL10 from 123% to 23%.  

 

It was found that the conversion of morphine to M3G showed concentration-dependent saturation that 

could be described by Michaelis-Menten kinetics (ΔOFV -402, p<0.01, 1 d.f.). Subsequent 

incorporation of interanimal variability and the effect of inhibitor treatment resulted in a model with 

interanimal variability included on CL10, the clearance of M3G from plasma (CLM3G), 

intercompartmental clearance (Q2) and the maximum conversion rate of morphine to M3G (Vmax).  

 

3.2 Morphine pharmacokinetics in brain tissue 

Morphine concentrations in brain tissue in vehicle-treated animals and inhibitor-treated animals at 

each of the six dosing times are shown in the lower panels of Figure 1. The plasma model was 

extended to describe these concentration-time profiles. The base model, consisting of one brain 

compartment and inter-compartmental clearance (QBR) to describe the transport to and from plasma, 

described the brain concentrations poorly and showed high residual unexplained variability (128%). In 
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subsequent modelling steps, it was found that a model that described the brain concentrations as 

deep brain concentrations that was indirectly linked to the central plasma compartment by a transit 

compartment referred to as the extra-cellular fluid (ECF) compartment, known as an important 

compartment for morphine distribution into the brain [35], could best describe the brain concentrations 

data. In the final brain model, drug transport between the deep brain compartment and the ECF 

compartment were described by a single clearance parameter and the flow between the ECF 

compartment and the plasma compartment by an influx parameter (QPL-ECF) and an efflux parameter 

that was split into a passive (QECF-PL,passive) and an active (QECF-PL,active) component (Figure 2). 

 

The volumes of the ECF and deep brain compartment were fixed to 1, because these values could not 

be estimated with sufficient precision. This model described the central trend and the variability in the 

brain concentrations well (Figure 3) and the residual unexplained variability reduced to 13%.  

 

3.3 Twenty-four hour variation in morphine pharmacokinetics 

The distribution of CWRESI of the morphine concentrations in brain of both vehicle and inhibitor-

treated animals showed clear time-of-day dependent bias with peaks around the light-dark transitions 

(Figure 4A). Inclusion of a two-harmonic cosine function with a 24-hour and 12-hour component on the 

efflux of morphine from the ECF compartment to plasma (QECF-PL) significantly improved the fit of the 

model (ΔOFV -16, p<0.005, 4 d.f.). This cosine function adequately removed this bias (Figure 4B), 

provided a better fit compared to implementation of a two-harmonic cosine function on the influx 

parameter (QPL-ECF) (AIC = -2.7)  and reduced the residual unexplained variability from 13.1% to 

11.9%. The 24-hour and 12-hour components of this cosine function had a peak at 22.8 hours and 5.9 

hours after lights on and relative amplitudes of 4.1% and 6.3%, respectively (Figure 5A). 

 

The CWRESI of morphine and M3G in plasma did not reveal a time-of-day dependent bias (Figure 4C 

and E). Nevertheless, inclusion of the same two-harmonic cosine with a 24-hour and 12-hour 

component on CLM3G,active and CL10,active significantly improved the fit of the model (ΔOFV -28, p<0.005, 

4 d.f.) and minimally affected the distribution of CWRESI over time-of-day (Figure 4D and F). The 24-

hour and 12-hour components of this cosine function had a peak at 18 hours and 7.6 hours after lights 

on and relative amplitudes of 13% and 12.5%, respectively (Figure 5B and C).  
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In the final model (Run8202), the cosine function on QECF-PL was combined with the cosine functions 

on CLM3G,active and CL10,active. This model described the observed concentrations well (Figure 6). 

Parameter estimates from this model and from a bootstrap (500 runs) are shown in Table 2.  

 

3.4 Simulations 

The final model was used to perform simulations to show the impact of dosing time on the 

concentration profiles of morphine and M3G. Morphine concentrations in plasma after a single 

intravenous infusion are minimally affected by dosing time, while, morphine concentrations in brain 

tissue are influenced by dosing time with the highest concentrations attained 12 hours after the onset 

of the light period (Figure 7A). M3G concentrations were lowest and highest after administration at 4 

and 20 hours after the onset of the light period, respectively. During a continuous infusion at steady-

state, simulations indicate that morphine and M3G concentrations in plasma and morphine 

concentrations in brain fluctuate during the 24-hour period (Figure 7B). 

 

4. Discussion 

In this study, we have been able to characterize the effect of dosing time on processes that are 

involved in the distribution, metabolism and excretion of morphine through the development of a 

population pharmacokinetic model. By inhibiting P-gp and probenecid-sensitive transporters, the active 

and passive processes involved in the distribution and clearance of morphine could be investigated 

separately [20,21,25,29,36]. We find that the concentration profiles of morphine in brain tissue and of 

its metabolite M3G in plasma are affected by time of day. We show that the transport of morphine from 

brain tissue back into the circulation shows a characteristic 24-hour rhythm with the lowest efflux 

during the light-dark phase transitions. The active processes involved in the clearance of morphine 

and M3G from plasma also show 24-hour variation with the peak in the middle of the dark phase. 

These findings indicate that dosing time should be taken into account in the optimization of morphine’s 

dosing regimen. 

 

Our results show that inhibition of active transport processes by probenecid and tariquidar alters both 

the systemic pharmacokinetics and the brain distribution of morphine. With regard to systemic 
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pharmacokinetics, inhibition of active transport reduced the systemic clearance of morphine, increased 

its intercompartmental clearance and lowered the maximal conversion rate of morphine to M3G. 

Because it was previously found that P-gp inhibition does not influence morphine concentrations in 

plasma [21,25,29,37], while probenecid treatment has been reported to reduce systemic morphine 

clearance and the formation of M3G in rats [20], we hypothesize that the systemic effects we observed 

are due inhibition of  multiple multidrug resistance proteins (mrps) in the kidney and liver [38–41] . 

 

Active transport inhibition also altered the brain distribution of morphine. Brain concentrations could be 

best described by a model in which a “deep brain” compartment was linked to the central plasma 

compartment by an extra-cellular fluid (ECF) compartment. An additional transport component that 

was absent inhibitor-treated animals was identified on the transport of morphine from the ECF 

compartment to plasma. This supports previous findings that morphine is subject to active efflux 

transport mediated by P-gp and probenecid-sensitive transporters [20,21,25,29,36]. 

 

Our findings indicate that several processes involved in morphine pharmacokinetics show 24-hour 

variation. It was previously shown in cancer patients that the maximal concentration (Cmax) and the 

area under concentration-time profile (AUC) at steady state are higher at 18:00 than at 10:00 and 

14:00 after oral administration [15]. In the present study, we have been able to quantify the relative 

contribution of the processes involved in the distribution, metabolism and elimination of morphine more 

precisely through the use of six dosing times and the development of a population pharmacokinetic 

model. We find that the active component of the systemic clearance of morphine and M3G show 24-

hour variation with a difference of 54% between the lowest value and the highest value. A 

physiological explanation of these findings could be the observation that the expression of various 

probenecid-sensitive transporters show 24-hour variation in the kidney [42]. However, future research 

to elucidate the underlying mechanisms is warranted.  

 

Furthermore, we find that the transport of morphine from the brain to the blood shows a 12-hour 

rhythm with the lowest values at the transitions of the light/dark phase. This rhythm could be described 

by a 24-hour and 12-hour sinusoidal function on this parameter with a difference between the highest 

and lowest efflux of 20%. Importantly, the inclusion of this function in the model resolved a time-of-day 
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dependent bias observed in the conditionally weighted residuals. In a previous study we found that the 

efflux of the P-gp substrate quinidine from the brain to plasma is more than two-fold higher during the 

dark phase compared to the light phase in the presence of functional P-gp transport, but not when P-

gp transport is blocked [23]. In the present study, we do not find this P-gp dependent effect for 

morphine. While quinidine is a selective P-gp substrate, morphine has more complex transport 

mechanisms across the BBB, which is not only affected by P-gp but also by probenecid-sensitive 

transporters. The daily variation in P-gp activity may be (partly) counterbalanced by a differentially-

phased variation in probenecid-sensitive transporters. Hence, multiple mechanisms likely give rise to 

the 12-hour rhythm in the transport of morphine from the brain to blood.  

 

We performed simulations of a single intravenous dose and of a continuous infusion regimen to 

visualize the effect of the daily rhythmicity in morphine pharmacokinetics on the concentration-time 

profiles in plasma and brain tissue. Although morphine concentrations in plasma are minimally 

affected by dosing time, metabolite concentrations in plasma and morphine concentrations in brain 

tissue do depend on the time of day. This finding has several important implications: it indicates that 

time of day can be a substantial source of variation in the pharmacokinetics and, possibly, the 

pharmacodynamics of morphine when it is not properly accounted for, but also that these systematic 

variations could be exploited to optimize morphine’s dosing regimen.  
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Figure legends 

Figure 1 Concentration profiles of morphine (MOR) in plasma (upper panels), M3G in plasma (middle 

panels) and MOR in brain tissue (lower panels) in vehicle-treated (left) and inhibitor-treated animals 

(right) after different dosing times.  

 

Figure 2: Structure of the final combined plasma-brain model. Colored compartments indicated the 

site of sampling (red: morphine concentrations in plasma; green: M3G concentrations in plasma; blue: 

morphine concentrations in brain tissue).  

 

Figure 3 Visual predictive check (VPC) stratified by treatment group. Dots: observed data; solid line: 

median of the predicted concentrations; shaded areas enclosed by dashed lines: 90% prediction 

intervals of the simulated data. 

 

Figure 4 Distribution of CWRESI vs time of dose in vehicle-treated (dark symbols) and probenecid 

(PRB) – tariquidar (TQD) treated (light symbols) animals. A, C, E: CWRESI distribution in the model 

without cosine functions of morphine concentrations in brain (A) and in plasma (C) and of M3G 

concentrations in plasma (E). B: CWRESI distribution in the model with a 24+12-hour cosine included 

on QECF-PL of morphine concentrations in brain. D and F: CWRESI distribution in the model with a 

24+12-hour cosine function included on CL10,active and CLM3G, active of morphine concentrations in 

plasma (D) and of M3G concentrations in plasma (F).  

 

Figure 5 Shape of the cosine functions included on QECF-PL (left), CL10,active (middle) and CLM3G,active 

(right).  

 

Figure 6 Measured versus population predicted (PRED; upper panels) and individual predicted 

(IPRED; lower panels) concentrations of morphine (MOR) in plasma (left, red), M3G in plasma 

(middle, green) and MOR in brain tissue (right, blue) of the final model. Dark coloured symbols 

represent vehicle-treated animals; light coloured symbols represent inhibitor-treated animals. Dotted 

line: line of unity. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

18 
 

Figure 7 Simulations of morphine (MOR) concentration-time profiles in plasma (left), M3G 

concentrations in plasma (middle) and morphine concentrations in brain (right) after a 10 min. 

intravenous infusion of 4 mg/kg at six different dosing times (start of infusion at t=0, 4, 8, 12, 16, 20 

hours after light onset) (a) and during a continuous infusion of 1mg/kg/h started at 0 hours after light 

onset (b).  
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Table 1 Number of animals per treatment group 

Dosing time No. of vehicle-treated animals No. of inhibitor-treated animals 

0 7 5 

4 8 7 

8 8 8 

12 8 7 

16 8 7 

20 8 8 

TOTAL 47 42 
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Table 2 Parameter estimates of combined plasma and brain model (with 24-hour variation included on 

CL10,active, CLM3G,active and QECF-PL)  and results from bootstrap analysis (444/500 resamples successful) 

Parameter Units Equation θ Estimate  RSE 
Bootstrap median 

(90% P.I.) 

Morphine plasma 

 CL10  mL/min 
CL10=θCL10,passive+CL1

0,active *  (1-TRT) 
θCL10,passive 4.97  4.4% 4.98 (4.63 - 5.35) 

  With CL10,active = 

θmesor * (1+θamp,24 * 

cos(2π * (t - 

θphase,24)/1440) + 

θamp,12 * cos(2π * ( t- 

θphase,12)/720)) 

θmesor 8.24  16.7% 8.19 (6.12 – 10.7) 

  θamp,24 (%) 12.3  46.3% 14.5 (5.61 – 25) 

  θphase,24 (min) 1070  11.8% 1053 (839 - 1240) 

  θamp,12 (%) 12.6%  42% 13.3 (5.17 – 22.6) 

  θphase,12 (min) 461  8.6% 463 (384 – 547) 

 V1  mL V1=θV1 θV1 109  16.3% 109 (80.6 - 144) 

 Q2  mL/min Q2 = θQ2 * θQ2,INH
TRT 

θQ2 11.0  8.9% 11.0 (9.25 – 12.4) 

θQ2,INH 1.52  5% 1.52 (1.40 – 1.67) 

 V2 mL V2=θV2 θV2 508  4.9% 505 (454 – 537) 

M3G plasma 

 Vm,MET  mL/min 
Vm,MET = θVM * 

θVM,INH
TRT

 

θVM 15.4  7.9% 15.5 (13.7 – 17.7) 

θVM,INH 0.443  11.7% 0.440 (0.358 – 0.539) 

 Km,MET  nmol/mL Km,MET=θKM θKM 0.325  18.4% 0.327 (0.250 – 0.490) 

 CLM3G mL/min 

CLM3G = 

θCLM3G,passive+CLM3G,act

ive * (1-TRT) 

θCLM3G,passive 2.8  15.4% 2.76 (2.14 – 3.51) 

    

  With CLM3G,active = 

θmesor * (1+θamp,24 * 

cos(2π * (t - 

θphase,24)/1440) + 

θamp,12 * cos(2π * ( t- 

θphase,12)/720)) 

θMesor 6.85 11.3% 6.83 (5.39 – 8.04) 

  θamp,24 (%) See CL10,active  

  θphase,24 (min) See CL10,active  

  θamp,12 (%) See CL10,active  

  θphase,12 (min) See CL10,active  

Morphine brain 

 VDBR  mL VDBR = θVDBR θVDBR 1 FIX   

 QDBR  mL/min QDBR = θQDBR θQDBR 0.0184  6.0% 0.0185 (0.0167 – 0.0209) 
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 VECF  mL VECF = θVECF θVECF 1 FIX   

 QECF-PL  mL/min 

QECF-PL = 

(θQECFPL,passive + 

QECFPL,active * (1-TRT)) 

* (1+θamp,24 * cos(2π * 

(t - θphase,24)/1440) + 

θamp,12 * cos(2π * ( t- 

θphase,12)/720)) 

θQECFPL,passive 0.0256  9.5% 0.0251 (0.0211 - 0.0301) 

θQECFPL,active 0.0834  12.4% 0.0824 (0.0659 – 0.103) 

  θamp,24 (%) 3.76%  42% 4.33 (1.75 – 6.82) 

  θphase,24 (min) 1390  7.4% 1390 (1150 – 1600) 

  θamp,12 (%) 6.33%  32.2% 6.76 (3.79 – 10.5) 

  θphase,12 (min) 1060  3.3% 1060 (990 – 1120) 

 QPL-ECF mL/min QPL-ECF = θQPLECF θQPLECF 0.0322  10.5% 0.0316 (0.260 – 0.0386) 

Inter-animal variability (CV%) 

 ω
2
 CL10  17.3 16.8 

 ω
2 

Vm,MET 22.2 21.9 

 ω
2 

CLMG 43.5 42.6 

 ω
2
 Q2 18.7 18.4 

 ω
2
 Vm,MET ~ ω

2 
CLMG (untransformed) 0.0761 0.0742 

Residual unexplained variability (%)  

 σPL 17.0 16.8 

 σM3G 14.5 14.4 

 σDBR 11.8 11.3 
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