
On the random-matrix theory of Majorana fermions in topological
superconductors
Marciani, M.

Citation
Marciani, M. (2017, June 21). On the random-matrix theory of Majorana fermions in
topological superconductors. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/49722
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/49722
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/49722


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/49722 holds various files of this Leiden University 
dissertation 
 
Author: Marciani, Marco 
Title: On the random-matrix theory of Majorana fermions in topological 
superconductors 
Issue Date: 2017-06-21 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/49722


5 General scheme for stable
single and multiatom
nanomagnets according to
symmetry selection rules

5.1 Introduction

In recent years, great effort has been made to scale down the dimension
of spintronic devices able to store classical bits of information. For
this purpose, current research is devoted to understand the physics of
single atoms and small clusters absorbed on non-magnetic metallic1–4

or insulating5–9 surfaces. The theoretical description of the dynamics of
such systems is challenging as it lies at the intersection of classical10–12

and quantum13 mechanics.

The low temperature dynamics of suitable adatoms, without applied
magnetic field, may be described by two degenerate low-energy states with
opposite magnetization. These states can be naturally regarded as the
bit constituents. Unfortunately, not all adatoms present this feature as it
relies on specific environmental conditions like the hybridization mech-
anism with the surface and the symmetry of the crystal field produced
by the substrate14,15. In particular, some systems exhibit no degenerate
groundstate and the two lowest-energy states have no magnetization at
all. This feature is referred to as groundstate splitting (GSS) and is due
to the coupling of the orbital degree of freedom of the adatom with the
crystal field.

To be suitable as memory storage16, an engineered bit is required to
retain its state over an extended time period17. Hyperfine interactions
inside the adatom18 and the contact with the substrate induce the atomic
state to have an incoherent dynamics. In particular, the scattering of
electrons and phonons off the adatom may be such that the stability of
its state is affected drastically due to frequent switching between the
groundstates.

With time the scientific community has started to recognize the role
played by the symmetries of the system3,17,19. Their implications are
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5 General scheme for stable single and multiatom nanomagnets

Figure 5.1: (a)-(d) Atoms deposited on different surfaces with Cχv symmetry. χ =
2, 3, 4, 6, respectively for the adatoms (a),(b),(c),(d). (bottom right) Sketch of a scanning
tunneling microscope current measurement to infer the total momentum of the adatom.
The tip of the microscope (in grey) exchanges electrons with the surface through the
adatom.

extremely relevant not only in determining whether the two low-energy
atomic states are magnetized but also in constraining their stochastic
dynamics. In particular, first order processes mediated by the substrate
electrons that make the adatom in one low-energy state to jump to
another one - usually called single-electron (SE) switching processes -
may be inhibited by symmetry selection rules20. However, symmetry
information alone is not always sufficient. According to models currently
in use13,21, it must be contrasted with the magnitude of the effective
total angular momentum of the adatom.

In this paper we present a general scheme to explain and predict excep-
tional long lifetimes of spin orientation in single and multi atomic systems.
Hereby we provide a complete and rigorous map of such combinations
of symmetries and total angular momentum magnitude, valid for small
transversal crystal field. The symmetries we consider are the spatial point
group Cχv of the surface (see Fig. 5.1) and time-reversal. We consider
the possibility that the time-reversal symmetry could be broken by a
finite magnetic field perpendicular to the surface. Our findings are in
agreement with existing experimental3,9 results and previous numerical19

and analytical22 studies. With the restriction to time reversal symmetry
a classification scheme23 was presented, which is related to a non-trivial
geometric phase. However, we noticed a difference in the prediction of
stable systems in the common case of zero magnetic field.
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5.2 Single atom nanomagnet

Further, we generalize our findings to multiatom clusters where adatoms
are coupled with each other via bipartite Heisenberg interactions. This
extension creates also a link between our work and classical research on
general properties of spin systems24,25.

5.2 Single atom nanomagnet

5.2.1 Model

The Hamiltonian we consider can be decomposed as summation of parts
related to the atom (A), to the electrons in the substrate (S) and their
mutual interaction

H = HA +HS +Ht. (5.1)

The atom is assumed to be described, at low temperature, by a magnetic
moment of magnitude J . For instance, this is the case of some rare-earth
atoms26, whose strong internal spin-orbit coupling is such that only one
multiplet of the total angular momentum plays a role in the low energy
physics, and transition metal ions27. The atom, affected by the substrate
crystal field and subject to an external magnetic field ~B, can be described
by the single-spin Hamiltonian

HA = H
(0)
A +H

(1)
A + ~B · ~J, H

(0)
A = −|D| J2

z (5.2)

where H
(0)
A represents the so-called uniaxial (longitudinal) anisotropy (at

second order) and H
(1)
A contains higher order uniaxial and transversal

anisotropy terms. The coefficient |D| has been found as big as 1.5meV
in Fe deposited on CuN28 and 0.1meV in Fe deposited on Cu(111)4. In
the rest of the paper we will refer to J as a spin degree of freedom for
brevity; however, the reader must intend that we mean total angular
momentum. The substrate Hamiltonian is that of a single-band metallic
Fermi liquid with no self-interactions:

HS =
∑
k,σ

εk c
†
k,σ ck,σ. (5.3)

Finally, we describe the effective interaction between metal and adatom
by the Appelbaum Hamiltonian29

Ht = κ ~J ·~j (5.4)

where κ is a momentum-independent coupling strength and~j = c†x=0~σcx=0 ∝∑
k,k′ c

†
k~σck′ is the effective spin degree of freedom of the metal electrons

coupled to the atom. Here and later σi are the Pauli matrices and ~ = 1.
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5 General scheme for stable single and multiatom nanomagnets

We assume the temperature to be large enough, to justify a perturbative
master equation approach30 and neglect strong correlations with the bath,
such as the Kondo effect or energy renormalization31. On the other hand,
thermal excitations should be small enough to ensure only the ground
states to be occupied and resemble switching dynamics of a two level
system. According to the Boltzmann distribution, the temperature
should verify kBT . 0.1∆, where ∆ ∝ |D| is the energy gap between the
two lowest-energy levels and the other ones. We will not treat atomic
hyperfine interactions.

5.2.2 Operators

Three physical operations on the system are relevant for our analysis of
the stability of the atomic nanomagnet: rotation with discrete angles
with axis perpendicular to the surface, time reversal (TR) and mirror
across a certain mirror plane. We define here their representations in the
atomic spin space. In the next sections, we will regard these operations
as symmetries of the atomic system and analyze the consequences on the
stability of the groundstate.

Rotation generator. The rotational symmetry of the adatom within the
crystal field maps onto a rotational symmetry into the spin space. The
generator of the rotation group is represented by

Rz,2π/χ = exp{i2π
χ
Jz}. (5.5)

The rotation generator has the property Rχ = ±1 (we will omit the
subscript in Rz,2π/χ for the rest of the paper), where the plus refers to
integer spin systems and the minus to half-integer ones. This generator
has at most χ distinct unit eigenvalues, equal to rχ = exp{i 2πn/χ} with
n ∈ Z, for integer momentum systems, and n ∈ Z + 1/2, for a half-integer
ones.

Time reversal operator. Time reversal is represented by the antiunitary
operator

T = exp{iπ Jy}K, (5.6)

acting on the basis {|J, jz〉}, where K is the conjugation operator. In
the following we will shorten the notation of the basis states as {|jz〉}.
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5.2 Single atom nanomagnet

The action of T can be defined such that T |jz〉 = (−1)bjzc|−jz〉, where
b·c is the floor function. The square of the TR operator acting on a integer
or half-integer momentum Hilbert space gives 1 or −1, respectively32.

T commutes with R. Nonetheless its antiunitarity hinders the possibil-
ity to find a common eigenbasis. Indeed, suppose |ψ〉 is an eigenstate of
R with eigenvalue r, then TR |ψ〉 = T r |ψ〉 = r∗ T |ψ〉. At the same time
TR |ψ〉 = RT |ψ〉 and we conclude that T |ψ〉 is an eigenstate of R but
with eigenvalue r∗. Considering the quantity 〈Tψ|R|ψ〉 and applying R
in the bracket first to the left and then to the right state, one immediately
concludes that T |ψ〉 ⊥ |ψ〉 when r is non real. Only if r is real we can
find a |ψ〉 which is eigenstate of both T and R. We will use this feature
later, in section 5.2.4.

In other words, even though two commuting symmetries are present,
eigenstates cannot be in general labeled with two well defined quantum
numbers at the same time.

Mirror operator. Freedom in choosing the coordinate axes allows to set
one mirror plane along yz. We call M the operator that reflects across
this plane. Then, all other possible reflections with the other mirror
planes are constructed conjugating it with the elements of the rotation
group.

Since ~J is a pseudo-vector, M acts on the spin fundamental algebra
transforming Jy,z to (−Jy,z) while keeping Jx unchanged. To obtain the
explicit representation, we notice that this operator is equivalent to a π
rotation around x. Therefore,

M = eiπ Jx . (5.7)

Notice that M2 = ±1 (the plus refer to integer spins systems and the
minus for half-integer ones) and that M R = R†M .

5.2.3 Hamiltonian symmetry constraints and
Stevens operator expansion

Using all symmetries we can characterize the most general structure
that the Hamiltonian can have. In Ref. 26 a general tesseral harmonic
expansion of H compatible with a number of point symmetry groups
is discussed and relative constraints are found. Here, we stick to the
point group Cχ v symmetry and analyze the Stevens operator expansion
of the Hamiltonian HA in Eq. (5.1). We start considering the spatial
symmetries constraints, then we show the one due to the TR symmetry.
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5 General scheme for stable single and multiatom nanomagnets

A generic Stevens operator33 Oqp (with q < p) is expressed in a closed
form in Ref. 34. These operators are Hermitian by construction and,
after trivial manipulations, we can write them in the following form:

Oqp =
1

2

b(p−q)/2c∑
r=0

c(p, q, r)
{
Jq+ + Jq−, J

p−q−2r
z

}
,

O−qp =
i

2

b(p−q)/2c∑
r=0

c(p, q, r)
{
Jq+ − Jq−, Jp−q−2r

z

}
, (5.8)

where q and p are natural numbers and c(p, q, r) are real prefactors whose
magnitude is not relevant for our discussion.

Since the atomic system has spatial symmetry Cχv, the equations

[HA, R] = 0,

[HA,M ] = 0 (5.9)

must hold.
The first equation implies that all matrix elements of H between states

with different eigenvalue rχ must vanish. Moreover, we can expand HA

using the operators in Eq. (5.8). Each operator Oqp or O−qp , when applied
to the basis state |jz〉, transforms it to a superposition α|jz+q〉+β|jz−q〉.
The superposition retains the rotation eigenvalue of the latter state only
if rχ(Jz ± q) = rχ(Jz) i.e. if q = mχ,m ∈ N∗. Therefore, only terms
proportional to O±mχp , are allowed in the expansion.

Notice that rotational symmetry in our problem is analogous to trans-
lation symmetry in one dimensional periodic crystals. The Hamiltonian
eigenstates can be labeled with their eigenvalues r and the latter are
in one to one correspondence with a set of quasi -spin† defined in a one
dimensional Brillouin zone (BZ). Such a set is isomorphic to Zχ and
can be defined as {−bχ/2c+ 1,−bχ/2c+ 2, . . . , bχ/2c}, for systems with
integer J , and {−dχ/2e + 1/2,−dχ/2e + 3/2, . . . , dχ/2e − 1/2} for sys-
tems with half-integer J (notice the use of floor and ceiling functions
here). For instance, for half-integer spin systems with χ = 3 the BZ
is {−1/2, 1/2, 3/2}; for integer ones with χ = 4, the BZ is {−1, 0, 1, 2}.
Clearly, every spin state has a well defined quasi -spin in the above defined
BZs and this is equal to

J
(q)
Jz

:= ([Jz + (χ− 1)/2] mod χ) − (χ− 1)/2. (5.10)

∗In our convention, N includes the zero unless further specifications are present.
†Our definition of quasi-spin must not be confused with the one used in nuclear

physics. See B.H. Flowers, S. Szpikowski, Proc. Roy. Soc. 84 (1964) 193 for details.
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5.2 Single atom nanomagnet
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Figure 5.2: (a) Periodic Brillouin Zones (BZs) for integer spin systems (top) and half-
integer ones (bottom). To better visualize the periodicity of the BZs, their elements (the
little circles) are placed at the complex eigenvalues of R and the number they contain
indicates the associated quasi-spin. Blue(red) arrows indicate SE transitions with transfer
of positive(negative) quasi-spin. (b) Typical spectrum of a three-fold rotation symmetric
system with small transversal anisotropy. On horizontal axis is the average magnetization
along z of the levels. The color code of the level indicates its quasi-spin according to the
top left case in (a). All figures are adapted from Ref. 22.

where we make use of the modulo operation (x mod y indicates the value
of x modulo y).

For instance, the spin state with Jz = −4 in a system with χ = 3 has
J (q) = −1. More “bands” are present as soon as J ≥ χ/2 i.e. when J
is such that at least two different spin states have the same quasi -spin.
Fig. 5.2(a) shows the periodic BZs for χ = 3, 6.

The mirror operator M acts with the transformations (Jz, J±) →
(−Jz, J∓). Eq. (5.9) implies [M,O±qp ] = 0 and the latter equation
constrains the difference p− q to be even(odd) when the superscript of O
is positive(negative). Hence, combining this constraint with the rotational
one, we see that only operators of the form Omχmχ+2n and O−mχmχ+2n+1 with
m,n ∈ N are allowed.

Finally, TR operator acts with the transformation (J±, Jz)→ −(J∓, Jz)
and i→ (−i). Consequently, TR symmetry, if present, implies the label
p to be even.

To be explicit, when all symmetries are present, the allowed Stevens

operators in the expansion of HA only O
(−1)mχmχ
2n , (m,n ∈ N). Notice

that the Hamiltonian would be always real (in the spin eigenbasis {|jz〉})
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5 General scheme for stable single and multiatom nanomagnets

for χ 6= 3, but is in general not real for χ = 3∗.

In the following, we will use the quasi-spins as quantum numbers
to label the atomic eigenstates. In some cases, the eigenvalues of the
mirror operator M could be added to the set of the quantum numbers.
However, its eigenstates present no magnetization along the z direction†

and are not suitable for the analysis of the next sections. Thus, the
rotational symmetry is a central ingredient in determining the stability
of the nanomagnet.

In the rest of the paper we will allow also for TR symmetry breaking
due to magnetic field. However, only the component Bz is allowed as is
the only one which preserves rotational symmetry. Per contra, the mirror
symmetry gets broken. Notice that the antiunitary product operator
TM would still represent a symmetry for the system. We have checked
the implications of this symmetry. It is antiunitary and surprisingly
allows for an additional quantum number for the Hamiltonian eigenstates.
However, since it does not provide strong selection rules for GSS or SE
switching processes, we limit ourselves to briefly mention them in App.
5.6.

5.2.4 Groundstate splitting at Ht = 0

We now turn our attention to the first goal: to show that, assuming
Ht = 0 and ~B = 0, it is possible to tell whether the groundstate of the
atom is degenerate or it is allowed not to be, only by knowledge of the
symmetries and the magnitude J of its spin.

First, switch off momentaneously H
(1)
A in H (with Ht = 0 and ~B = 0).

The two degenerate groundstates are |ψGS〉 := |jz = J〉 and |ψ̃GS〉 :=
T |ψGS〉 ∝ | − J〉 (we will omit ’jz =’ for the rest of the paper). Even

though H
(0)
A has symmetry C∞v, it is convenient to identify already their

eigenvalues under the action of the rotation generator Rz,2π/χ (where χ is

defined as the maximum value for which [H
(1)
A , Rz,2π/χ] = 0 holds). They

are rGS = (r
G̃S

)∗ = exp{i J 2π/χ} (r
G̃S

is the eigenvalue for |ψ̃GS〉) and
their quasi -spin are defined in Eq. (5.10).

∗The allowed Stevens operators depend, if χ = 3, on the choice of the mirror
axis as clarified in C. Rudowicz, Chem. Phys. 97, 43–50 (1985). Our convention
follows Ref. 26, other authors (for instance Ref. 3 and Y. M. Chang, T. H. Yeom, Y.
Y. Yeung, and C. Rudowicz, J. Phys. 5, 6221 (1993) ) follow a different convention
according to which the Hamiltonian is real.
†To see this, let |ψ〉 be an eigenstate of M . Its eigenvalue is a unit complex

number (see App. 5.6 for details). Considering that {Jz ,M} = 0, the magnetization
of the state along z satisfies 〈ψ|Jz |ψ〉 = −〈ψ|M†JzM |ψ〉 = −〈ψ|Jz |ψ〉. Thus, the
magnetization is vanishing.

116



5.2 Single atom nanomagnet

Now, we switch on H
(1)
A adiabatically to its actual value. Energies and

eigenstates change along the process, but the quasi-spin of all eigen-

states are preserved since [H
(1)
A , R] = 0. At the end of the process the

groundstates of the system would have retained their initial quasi -spins
unless some state with different quasi -spin crossed the groundstates along

the process, becoming lower in energy. Since H
(1)
A is left generic in

our analysis, we can not have control on the final value of the ground-
state quasi-spin after such crossings. To prevent these inconvenience,

we assume H
(1)
A to be small enough (roughly speaking, H

(1)
A � H

(0)
A is

sufficient).

Using the properties of the TR operator illustrated Sec. 5.2.2, we claim
that eigenstates |ψ〉 of both HA and R with non-real r are degenerate in
presence of TR symmetry.

Clearly, this statement is non-trivial only for integer spin systems
because half-integer spin ones under TR symmetry always exhibit ground-
state degeneracy by Kramers theorem. To prove the claim, remind that
if r is non-real then |ψ̃〉 := T |ψ〉 ⊥ |ψ〉. Subsequently, [H,T ] = 0 implies
that, on one hand TH|ψ〉 = ε0T |ψ〉 = ε0|ψ̃〉 and on the other hand
TH|ψ〉 = HT |ψ〉 = H|ψ̃〉. Hence, joining together the two equations, we
get H |ψ̃〉 = ε0|ψ̃〉.

The statement above applies to the groundstate. We conclude that it
can get split by tranversal anisotropy terms only if rGS is real or, in other
words, if its associated quasi -spin is a TR invariant point of the Brillouin

zone (|J (q)
GS | = −|J

(q)
GS |+mχ,m ∈ N). Thus, the splitting happens when

∃m ∈ N : J =
mχ

2
. (5.11)

This constraint determines the columns GSS in the Tables 5.1 and 5.2.
When the system features GSS in presence of TR symmetry, the two
lower states are also non magnetic. They have to be eigenstates of the TR
operator, therefore, {Jz, T} = 0 implies 〈ψGS |Jz|ψGS〉 = 0. We stress
that the splitting may be also seen as a consequence of lowering the
symmetry from the C∞v subgroup of the free atom point group to the
Cχv subgroup of the atom within the crystal field.

5.2.5 Single-electron switching process at Ht 6= 0

Finally, we switch on the interaction with the metal, Ht 6= 0. When
the substrate gets coupled with the atom, the energy and quasi -spin of
the atomic state are not preserved anymore, because of scattering with
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5 General scheme for stable single and multiatom nanomagnets

the metal electrons. Since the metal has many degrees of freedom with
respect to the atom, it is usually assumed to thermalize quickly and its
Boltzmann distribution, being a classical one, leads the atom to have
also an associated classical distribution35. The approximated Markovian
law, that describes the dynamics of energy-defined states of the atom
(the pointer basis of the nanomagnet36), is well known in literature37,38.
However, there is an ambiguity in the definition of the pointer basis when
the atom presents pairs of degenerate states (which is the case when the
atom has no GSS and applied magnetic field). There are indications39

that the states of the pointer basis are those with maximum magnitude of
the average magnetization, as the dephasing due to the scattering is the
largest for these states. Thus, we are allowed to assume that the pointer
basis coincides with the atomic eigenstates considered in the previous
sections, with well defined quasi-spin.

It was shown31 that the GSS feature might be destroyed when the
Kondo coupling times the substrate electronic density of states gets large
via a mechanism of gap quenching. However, such a mechanism is not
effective in most of the experiments performed, therefore here we limit
the discussion to small Kondo couplings i.e. Ht � HA.

The rate of switching between two atomic eigenstates, say |ψa〉 and
|ψb〉, at lowest order in Ht, i.e. due to a SE scattering with the atom, is

Γab =
2πκ2

~
∑
µ,ν

|〈ψa, ν|Ht|ψb, µ〉|2 e−βEµδ(x)

=
2πκ2

~
∑
µ,ν

∣∣∣∣∣∣
∑

s∈{+,−,z}

〈ψa|Js|ψb〉 〈ν|js̄|µ〉

∣∣∣∣∣∣
2

e−βEµδ(x) (5.12)

where µ, ν are states in the substrate, the bar in js̄ indicates that the
subscript takes opposite sign if s = ± and x = Eν − Eµ + Ea − Eb. It is
clear that transitions are possible only when the states are connected by
an operators Js, with s = +,−, z.

We show that the rotational symmetry provides a selection rule on SE
switching processes. The commutation relations between Js and R are
RJs = eiϕsJsR, where ϕs = 0,±2π/χ respectively for s = z,±. Since
the states ψa,b are also eigenvalues of R, one gets:[

ei(ϕb−ϕa+ϕs) − 1
]
〈ψa|Js|ψb〉 = 0. (5.13)

Thus, given ψa,b, at most one value of s is such that ϕs = ϕa − ϕb. This
means that a SE transition produces a quasi -spin change equal to either
0, 1 or −1. When the quasi -spins of the states differ by more than one,
we are guaranteed that Γab = 0 and there is no SE transition between
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5.2 Single atom nanomagnet

the two states. For instance, systems with χ = 6 and J = 15/2 have
groundstates with J (q) = ±3/2 therefore at least three SE transitions
are needed for a groundstate switching. One could easily check it using
Fig. 5.2(a) (SE transitions from the eigenstates are shown with arrows).

A second selection rule comes from the TR symmetry. It protects
degenerate groundstates of integer spin systems from SE switching. Given
|ψGS〉 and |ψ̃GS〉 as the two time-reversal groundstate partners and
making use of {Jz, T} = 0 and J+ T = −T J− one finds3,20 for all
s ∈ {+,−, z}

〈ψGS |Js|ψ̃GS〉 = 0 for integer spin. (5.14)

Actually, this constraint is non-trivial only with χ = 3. In the other cases
the groundstates are either already split by transversal anisotropy or have
quasi -spin difference greater than one. For instance, in the experimental
set of Ref. 28 (Fe atoms on CuN substrate with J = 2, χ = 2) GSS
is present and SE transitions between the two lowest-energy states are
indeed observed even at B = 0.

Other weak constraints come from the mirror symmetry but they are
not enough to make SE switching to vanish. We leave this discussion to
App. 5.6.

As a final remark, we notice that also small spin systems with χ >
2J > 1 are protected against SE switching process. This happens because
there are no pairs of states with the same phase or, in other words, there
is only one “band” in the Brillouin zone. Only if J = 1/2, the system
groundstates can be connected by SE transitions.

5.2.6 Suppression of SE switching process at

Ht . H
(1)
A � H

(0)
A

As an application of the tools of analysis developed in the previous
sections, we describe here a feature related to the suppression of SE

switching rate in some systems, when the terms in H
(1)
A gets uniformly

small. We assume, therefore, that Ht . H
(1)
A � H

(0)
A , making the further

assumption that the different prefactors in front of each Jns (n ≥ 0; s =

+,−, z), in the expansion of H
(1)
A , have all the same order of magnitude

ε� 1. In this regime we can treat H
(1)
A as perturbation of the system

with Hamiltonian H
(0)
A .

Consider now ΓψGS ,ψ̃GS in Eq. (5.12), the transition rate of the SE
switching process between the true groundstates. The groundstates can
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5 General scheme for stable single and multiatom nanomagnets

be expressed as a perturbation series in ε:

|ψGS〉 = |J〉+ ε
∑
m

αm|J −mχ〉+O
(
ε2
)

|ψ̃GS〉 ∝ | − J〉+ ε
∑
n

α′n| − J + nχ〉+O
(
ε2
)

(5.15)

where m(n) is a natural number such that J −m(n)χ > −J and {αm(n)}
are expansion coefficients∗.

The quantity 〈ψGS |Js|ψ̃GS〉 in ΓψGS ,ψ̃GS gets contributions of different
perturbative orders, of the form ε α′n〈J−mχ|Js|−J〉 or ε αm〈J |Js|−J +
nχ〉 and ε2 αmα

′
n〈J −mχ|Js| − J + nχ〉. We notice that, inside the sets

of systems which exhibit SE switching, we can distinguish two subsets.
The systems in the first one presents the O(ε) contributions while the
systems in the second one not. The first subset contains systems in which
the unperturbed groundstate | − J〉, call it the left one, has the same
quasi -spin of either |J〉 (in the half-integer case only) or |J − 1〉. On the
contrary, systems of the second subset possess a left groundstate which
would have the same quasi -spin of the state |J + 1〉. Of course this state
is not allowed, thus, the O(ε) contributions are vanishing. A systems
falls in the second group when the difference between the quasi -spin of
|ψ̃GS〉 and |ψGS〉 (modulo χ) is equal to one. The magnitude of its spin,
then, must verify (we make use of Eq. (5.10))

(2J) mod χ = χ− 1. (5.16)

In this perturbative regime the SE switching rates are

ΓψGS ,ψ̃GS ∝
{
κ2(ε2 +O(ε3) ) for the first subset,

κ2(ε4 +O(ε5) ) for the second subset.
(5.17)

where κ . ε (the assumption H
(1)
A & Ht is to guarantee that the dominant

switching path for the second subset remains the SE one and not a
multiple-electrons one). From this expression is clear how systems in the
second subset have smaller SE switching rates in the perturbative limit.
They are listed in the column “Supp” in Tables 5.1 and 5.2.

5.2.7 Numerical simulations

We demonstrate the consequences of the symmetry considerations on
the switching rate of a single-atom nanomagnet when experimentally

∗To be precise, for the approximation to be valid, the second-order terms must
be smaller then the first order ones. This happen if ε verifies ε� 1/(2Jαmax), with
αmax = maxk αk.
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Figure 5.3: Bias-dependent switching rate of a spin with J = 13/2 . . . 17/2 in a six-fold

rotational symmetric crystal (χ = 6). Other parameters are κ2/D = 0.1, α6
6/D = 5 · 10−5,

kT/D = 0.01, P = 0.1 (P is the tip polarization) and ∆ is the first excitation energy of
the spin.

measured by spin-resolved scanning tunneling microscopy (STM). In
previous experiments, the stability of few-atoms clusters was investigated
by means of this technique4,6,17. In particular, the switching rate be-
tween groundstates has been observed in the telegraph noise. Such an
experimental setup can be described by adding the STM tip Hamiltonian
to Eq. (5.1) while accessible quantities like the bias voltage, tempera-
ture and external magnetic field are varied. For this purpose we solve
the master equation (see Refs. 4,19) for a six-fold rotational symmetric

system with small transversal anisotropy, H
(1)
A = α6

6O
6
6, and several

different spin magnitudes. As already mentioned before, we neglect the
small energy renormalization of the atomic levels due to the coupling
with the tip. All rates will be given in units of the direct tunneling rate
Γ0 = πv4

S(ρT↑ρS↑ + ρT↓ρS↓).

Fig. 5.3 shows the bias-dependent switching rate for several spin
magnitudes. We observe that in all cases an increasing switching rate
is observed for voltage higher than the spin excitation energy ∆ of the
magnet (∆ is the energy difference between the first excited state and
the groundstate of the system with B = 0). For the protected cases
J = 7, 15/2, 8, however, the switching rate becomes negligible for low
temperatures kT � ∆ in accordance to Tables 5.1 and 5.2. In contrast,
J = 13/2 and 17/2 show SE switching even at low bias voltages resulting
in a finite switching time τ = Γ−1.

Temperature-dependent switchings are investigated often by X-ray
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Figure 5.4: Zero-bias temperature dependence of the switching rate of a spin with J =
13/2 . . . 17/2 in a six-fold rotational symmetric crystal (χ = 6). Other parameter as in in
Fig. 5.3.

absorption spectroscopy and magnetic circular dichroism (XCMD) mea-
surements to infer the stability of an atom or cluster (Fig. 5.4). Similar
to the bias-dependent measurement, one can observe, in all cases, an
onset of the switching rate for temperatures high enough to excite the
spin. At low temperature, the switching rate becomes negligible for the
stable cases while remaining finite for unstable ones. In contrast to the
bias dependence where the switching sets in abruptly at eV = ∆ for
stable atom configurations, the onset of the switching with temperature
appears continuous and monotonously.

In a next step, we break TR symmetry by applying magnetic field
of strength B along the z axis (Fig. 5.5). For the chosen magnetic
field range, the cases J = 13/2 and J = 17/2 show SE switching as
they are not protected by symmetry. In particular, J = 13/2 shows a
Lorentzian-like peak at the magnetic field strength at which one of the
former groundstates gets degenerate with one of the former first excited
states. The specific shape has to be associated to the fact that the two
states have the same quasi-spin and hybridize. In contrast, J = 7 is
stable for low magnetic field. However, spin switching gets activated at
higher applied fields when the former groundstate is brought in resonance
with one excited state. In this case the curve profile is different since the
two states have different quasi -spins.
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Figure 5.5: Magnetic field dependence of the switching rate of a spin with J =
13/2, 7, 17/2 in a six-fold symmetric crystal (χ = 6) for eV/D = 6 and other parame-
ters as in Fig. 5.3.

5.2.8 Discussion

The results of our single-atom analysis are summarized in Tables 5.1 and
5.2.

From our considerations, we can conclude that the higher the symmetry
the more stable will be the bit encoded in the groundstates. To substan-
tiate this statement we bring to the attention of the reader the cases
of χ = 2 and χ = 6. The former case does not host good nanomagnets
as either their groundstates are split or present SE switching processes.
On the contrary, the latter case hosts nanomagnets with high stability
against both SE and single-phonons switching processes∗. Indeed, in
half-integer spin systems with J = 3

2 +3n, (n ∈ N) the difference between
the groundstates quasi -spins is maximal, equal to 3.

We remark the advantage in working with the quasi-spin formalism,
analog to the quasi-momentum formalism in crystal theory, in order
to get universal formula for the presence of GSS and other features.
The quasi-spin would also be a more natural horizontal axis in typical
spectrum plots encountered in literature, like the one in Fig. 5.2(b).

Notice that the mirror symmetry plays only a marginal role in our
qualitative discussion: it does not provide strong constraints to GSS or

∗About the phonon contribution to Γa,b (cf. Eq. (5.12)) the reader may consult
Refs. 13 and M. Mannini et al., Nature 468, 417–421 (2010). In first approximation,
single-phonon processes induce quasi-spin changes equal to |∆J(q)| = 1, 2. Moreover,

notice that they induce no groundstate switching if ~B = 0, as their density of state at
zero energy vanishes.
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5 General scheme for stable single and multiatom nanomagnets

χ GSS SES(T) SES(BT) Protected Supp

2 {n} {} {n} {} {}
3 {3n} {} {n} \{1} {1} {1 + 3n}
4 {2n} {} {2n} {1, 3, 5} {}
6 {3n} {} {3n} {1, 2, 4, 5} {}

Table 5.1: Sets of integer spin magnitudes {Jn}, with n ∈ N>0, which exhibit ground-
state splitting (GSS) or SE switching processes (SES), at given system symmetry Cχ v .
The etiquette “(T)” and “(BT)” differentiate on whether time reversal symmetry is, re-
spectively, present or broken. “{}” indicates the empty set and the notation “{a}\{b}”
stands for the set subtraction of {b} from {a}. The fourth column (Protected) shows
instances of magnitudes which are protected from both GSS and SES. The last column

(Supp) shows the sets with suppressed SE switching processes at very small H(1) and Ht,
as described in Sec. 5.2.6.

χ GSS SES(T,BT) Protected Supp

2 {} {n+1/2} {} {}
3 {} {n+1/2} \{ 3

2} { 3
2} { 5

2 +3n}
4 {} {n+1/2} \{ 3

2} { 3
2} { 3

2 +2n}
6 {} {n+1/2} \{ 5

2 ,
3
2 +3n} { 3

2 ,
5
2 ,

9
2 ,

15
2 } { 5

2 +3n}

Table 5.2: Same as in Table 5.1, but for half-integer spin magnitudes. Notice that TR
symmetry does not provide additional protection from SE switching processes as it does
in integer spin systems.

SE switching processes. However, its inclusion is relevant for quantitative
numerics where the correct (symmetry preserving) Stevens operators
must be taken into account.

We warn the reader that our results refer to “generic” Hamiltonians,
that is, within a non-zero measure subset of the set of all possible
symmetry preserving Hamiltonian. For example, a system with J = 9/2
and χ = 3 would not present SE switching processes (in contrast with

Table 5.2) if only the Stevens operator O3
4 is included in H

(1)
A . However,

inclusion of higher order Stevens operators like O6
6 would restore the

agreement with our theory.
The absence of SE switching processes in the case J = 3/2 and χ = 3

is explained at the end of App. 5.5.

As a final remark, we comment a few relevant, recent experiments.
One experiment is Ho on Pt(111) where the substrate has 3-fold

degeneracy. One experimental group3 found the adatom spin magnitude
to be J = 8 and measured low groundstates switching rate. According
to our theory, such system would be protected from both GSS and SE
switching if the transversal anisotropy is not too big (see Table 5.1).
The latter was actually computed by the authors by means of ab-initio
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5.3 Multiatom cluster systems

calculations. The ratio between the uniaxial anisotropy term and the
biggest transversal anisotropy term was found to be approximately 0.1%.
Such value is compatible with the absence of level crossing and allows
the usage of our theory. However, another experimental group14 found a
strong fourth-order uniaxial term inducing a groundstate level crossing.
The system groundstate then does not occupy the spin state |Jz| = 8
anymore but rather it occupies the spin state |Jz| = 6. In this case we
can still use our theory in this way: the groundstate quasi-spin can be
inferred using Eq. (5.10) with Jz = 6 and not with Jz = 8. Table 5.1
can be used assuming the system as effective spin J = 6. However, the
suppression feature of Sec. 5.2.6 does not take place anymore. According
to our table, GSS had indeed to be expected.

Another experiment9 is Ho on MnO. Here, χ = 4 while spin magnitude
is found to be J = 8. Also in this case ab-initio calculations reveal the
presence of a groundstate level crossing. The ratio between the uniaxial
anisotropy term and the biggest transversal anisotropy term is found to
be as big as 5%. The latter term favours a groundstate occupation of
the spin state with |Jz| = 7, rather than |Jz| = 8. With the prescriptions
above indicated, Table 5.1 can still be exploited (using J = 7) and
protection from GSS and SE switching are found, in agreement with the
statements of the authors.

A similar situation happens in a third experiment. Dy atoms are
deposited on graphene40. Hence χ = 6 and J = 8. Again, a strong
uniaxial field leads to a groundstate occupation of the spin state |Jz| = 7.
The authors found protection from GSS and SE switching, which agrees
to the indication of Table 5.1 (using J = 7).

This comparison with real experiments shows that level crossing is
likely to happen. When this is case, the groundstate quasi-spin can
not be inferred from the spin magnitude (and χ) only. Nonetheless, as
shown above, our theory can still be applied, for a deep understanding
of the system properties, if additional independent informations, e.g.
from ab-initio calculations or direct measurements, give access to the
groundstate quasi-spin.

5.3 Multiatom cluster systems

Since not only single-atom nanomagnets but also multiatom clusters are
under the attention of researchers1,4,6,41, we generalize the single atom
results to non-frustrated multiatom configurations.
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5 General scheme for stable single and multiatom nanomagnets

5.3.1 Model

We assume that the atoms interact through Heisenberg-like couplings
due to e.g. direct ferromagnetic exchange or indirect Ruderman-Kittel-
Kasuya-Yosida interaction42,43. For simplicity, we do not include Dzyaloshinsky-
Moriya interactions44. As they might play a role when dealing with
rare-earth adatoms and in general with systems with broken inversion-
symmetry45, their inclusion is left to future investigations. Thus, the
total Hamiltonian

HA =
∑
i

[
H

(0)
A (i) +H

(1)
A (i) + ~Bi · ~J(i)

]
+
∑
i>j

Hint
A (i, j) (5.18)

includes the uniaxial anisotropy felt by the i−th atom

H
(0)
A (i) =− |Di| J2

z (i), (5.19)

further anisotropy terms H
(1)
A (i), and the multiatom Heisenberg interac-

tion

Hint
A (i, j) =Gij J(i) · J(j). (5.20)

The effective interaction between the electrons in the metallic surface
and the atoms is

Ht =
∑
l

κl J(l) · jxl (5.21)

where jxl = c†xlσcxl ∝
∑
k,k′ e

i (k−k′)·xlc†kσck′ is the effective spin degree
of freedom of the metal electrons coupled to the atom at position xl.

To avoid magnetically frustrated configurations, we restrict the discus-
sion to clusters where one can distinguish two groups of atoms, say A
and B, such that they have intragroup ferromagnetic coupling (Gij < 0
if the i− th and the j−th atoms are in the same group) and intergroup
antiferromagnetic couplings (Gij > 0 if the i− th and the j−th atoms
are in different groups). A part from this restriction, the clusters are not
required to have other additional properties like, for instance, a specific
symmetric spatial configuration of the adatoms that compose it.

5.3.2 Operators

Similarly to R in Eq. (5.5), the rotation generators for every atom may be
defined as R(l) = exp{i Jz(l) 2π/χ}. We define the operator associated
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5.3 Multiatom cluster systems

to the rotation of all spins as

Rtot = ⊗lR(l) = exp{i Jz,tot 2π/χ} (5.22)

where Jz,tot =
∑
l Jz(l) is the projection along the z-axis of the total

spin.
The mirror operators M(l) at mirror planes by each atom may be

defined analogously.
The time-reversal operator is also trivially generalized to act on multiple

spins.

5.3.3 Groundstate splitting for Ht = 0

As a first step, we show that a quasi-spin can be associated to the
groundstates of the multiatom configuration.

With H
(1)
A (i) = H

(int)
A (i, j) = ~Bi = 0 (∀i, j), the non-interacting

groundstates of the system are products of the groundstates of every
independent atom. For instance, with only two atoms, the four ground-
states are | ± J1〉 | ± J2〉, Ji being the magnitude of the spin of the i-th
atom.

We now switch on adiabatically all the interactions Hint
A (i, j). These

terms have actually a higher symmetry than Cχ, namely they are isotropic,
and preserves Jz,tot. Since the non-interacting groundstate has high degen-
eracy, at first sight it is not clear a priori which states remain groundstate
of the system after the switching process. However, such clusters seam
to have the following, per se interesting, feature:

Conjecture. Given the Hamiltonian in Eq. (5.18) with vanishing

H
(1)
A (i), the groundstate is an eigenstate of Jz,tot, with eigenvalue in mod-

ulus equal to |JA − JB |, where JA(B) :=
∑
i∈A(B) J(i). By TR symmetry,

the groundstate is doubly degenerate if JA 6= JB.

Through the analysis of the spectrum of several HA and numerical
simulations (see Sec. 5.3.5), we got evidence that this conjecture46 holds
true. We are able to give a rigorous proof only in first order perturbation
theory in the intergroup couplings of the matrix G (the intragroup
couplings being allowed to have arbitrary magnitude). This regime is
enough to understand how the single-atom features, found in Sec. 5.2,
appear also in the multiatom case. Notice that purely ferromagnetic
configurations fall into the range of our proof (as either group A or B
is empty). Due to the technical character of the proof, we present it in
App. 5.7.

The Marshall theorem, in the generalized fashion by Lieb and Mattis24,

ensures that, at H
(0,1)
A = ~Bi = 0, for each l ≥ |JA − JB |, the lowest
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5 General scheme for stable single and multiatom nanomagnets

Hamiltonian eigenvalue with total spin magnitude Jtot equal to l is
a monotone increasing function of l while, for l ≤ |JA − JB |, it is
monotone decreasing. Lieb and Mattis have proven that a magnetic
field, proportional to Jzi , destroys this order. Our conjecture regards the
same kind of systems but with an additional finite and negative definite
TR symmetric term, the uniaxial anisotropy (also higher order negative
definite uniaxial terms may be added). The magnitude of the total spin
is not anymore a good quantum number and the ordering of levels is
destroyed. Still, according to our conjecture, the groundstates have the
property

|Jz,GS | = |JA − JB | (5.23)

and, crucially, we can associate them well defined quasi -spins. The latter
are inferred by their eigenvalue under Rtot (see Eq. (5.22)) and are
computed via Eq. (5.10) inserting Jz according to Eq. (5.23).

As a further step in the discussion upon the presence of GSS, we switch

on the H
(1)
A (i) terms. As in Sec. 5.2.4, if we assume these terms to

be small enough such that the initial groundstates are not crossed (in
energy) by other levels, then the groundstates quasi -spins are preserved.
At this point the discussion about the GSS is identical to one done for
the single-atom case: when the groundstates quasi -spins are integers and
are at the TR invariant points of the Brillouin Zone, then GSS takes
place. Notice that, according to the conjecture, equal-spin dimers have
zero Jz,tot (and quasi-spin) and their groundstate is generically non-
degenerate. We conclude that dimers present GSS even with vanishing

H
(1)
A (i) terms.

5.3.4 Single-electron switching process at Ht 6= 0

We now switch on the small interaction with the metal. Similarly as
before (cf. Eq. (5.12))

Γab =
2π

~
∑
µ,ν

|〈ψa, ν|Ht|ψb, µ〉|2 e−βEµδ(x)

=
2π

~
∑
µ,ν

∣∣∣∣∣∣∣∣〈ψa, ν|
∑
i

s∈{+,−,z}

κiJs(i) · jxis̄|ψb, µ〉

∣∣∣∣∣∣∣∣
2

e−βEµδ(x)

=
2π

~
∑
µ,ν

∣∣∣~κ · ~V ∣∣∣2 e−βEµδ(x) (5.24)
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where
(
~V
)
i

=
∑
s∈{+,−,z}〈ψa|J

(i)
s |ψb〉 〈ν|jxis̄|µ〉, (~κ)i = κi and x =

Eν − Eµ + Ea − Eb.
Γ = 0 only when ~V ·~κ = 0 for all possible µ, ν states i.e. when 〈ψa| J (i)

s |ψb〉
are vanishing for every i. Fortunately, an analog of Eqs. (5.13) and (5.14),

with Js replaced by J
(i)
s , does hold and, in particular we get again protec-

tion from SE switching process for integer spin system. The protection
here may be subtle. Consider, for instance, a system with χ = 6 made
up of two atoms with spins J = 7/2. If their coupling G is ferromagnetic,
the total spin is J = 7 and the system presents no SE switching process,
according to Eq. (5.24) and Table 5.1. In particular, this fact holds
true even when the atoms are set at big reciprocal distance. However,
in this situation the two atoms may be regarded as non-interacting and
present individually SE switching processes, according to Table 5.2. We
remark that there is no contradiction between the two viewpoints: the
full groundstate, being a product of the groundstates of the two atoms in
the non-interacting limit, needs two electrons to be fully switched. Even
though quantitatively, the dimer has a big rate of switching, qualitatively
it remains SE switching protected.

We warn the reader that switching transitions between degenerate
groundstates of integer spin systems can be observed. However, these
transitions must be attributed to 2n-electrons processes, with n integer,
(as one can see generalizing Eq. 5.14) and not to single-electron ones∗.

Finally, we notice that the suppression feature of Sec. 5.2.6 is not
present for the multiatom case. The difference with the single-atom case
lies in the fact that the state |1 + J〉 was a forbidden state there, while
here its analog, |1 + |JA − JB |〉 is, in general, allowed.

5.3.5 Numerical simulations

We perform numerical simulations similar to the ones shown in section
5.2.7, focusing only on the bias dependence of the switching rate. We
analyze the cases of two dimers with same quasi -spins when they are in a
ferromagnetic configuration but different when in a antiferromagnetic one
(see Figs. 5.6,5.7). Since we are interested only in the stability features,
we assume vanishing distance between the atoms.

When the coupling is ferromagnetic (G12 < 0), both dimers are pre-

dicted to be unstable, as in both cases |J (q)
GS | = 5/2. Both our simulations

∗An example of multiatom systems, in which the switching has been measured,
are antiferromagnetic chains with an even number of atoms (see Ref. 6). A special
mechanism sets in as the chains become longer for which the GSS disappears and a
degenerate groundstate is restored31. The effective groundstates of these chains are
the Néél (time reversal partner) states.
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5 General scheme for stable single and multiatom nanomagnets

confirm the expectation. The case G12 = −0.1 in Fig. 5.7 points to an
important feature of multiatom configurations: the rate (at zero voltage)
can be very small. Notice that, in order to get rates Γ comparable
with the single-atom case, we need to increase the transversal anisotropy
(α6

6/D) about two orders of magnitude.

When the coupling is antiferromagnetic (G12 > 0) the case in Fig. 5.6

is predicted to be stable, as |J (q)
GS | = 3/2, while the other one unstable,

as |J (q)
GS | = 1/2.

Notice that the cases G12 = ±0.1 in Fig. 5.7 present the first kink at
higher voltage than the one which corresponds to the first excitation
energy (∆). This interesting phenomenon is a prerogative of multiatom
systems (with χ = 6): the first excited states can be not SE-connected to
the groundstates. When it happens, the transition rates between these
states are suppressed and a new channel of switching opens only at higher
voltage when second excited states can get excited. This feature may be
exploited to increase the energy-window of stability (in units of ∆). For
instance, a dimer with J1 = 4 and J2 = 2 with the same parameter set as
in the figures and antiferromagnetic coupling G12 = −0.1 has groundstate

quasi-spin |J (q)
GS | = 2 while the first excited states have |J (q)

GS | = 0. The
groundstates are then SE-switching protected and the switching (at small
T ) activates only at eV ∼ 2∆ in correspondence with the second excited
states.

As a final remark, we see that our numerical simulations support the
conjecture in Sec. 5.3.3. Indeed, the cases with G12 = 1 fall outside the
range of validity of our proof (see App. 5.7), but the numerics confirms
our expectations in terms of the stability of the groundstates.

5.3.6 Discussion

Clusters seem to behave as single atoms as far as our analysis is concerned.
We can associate them a quasi-spin and they have analogous selection
rules for SE switching processes. A difference with the single-atom case
is that the magnitude of total spin of the groundstates is not well defined
anymore (a part in the ferromagnetic case). Nonetheless, this is of no
consequence since the unique quantum number needed to determine the
symmetry selection rules is the quasi -spin.

One other caveat is that the feature of missing SE switching process for
small spin systems (see Sec. 5.2.5) is not present here unless for all atoms,
that compose the cluster, χ > 2J > 1 holds. These systems do not follow
our tables but could be addressed separately as they are relatively simple
to be studied. Moreover, also the suppression feature of Sec. 5.2.6 is not
present.
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Figure 5.6: Bias-dependent switching rate of a dimer with spin magnitudes J1 and J2 in
a six-fold symmetric crystal (χ = 6), at different strength of the exchange coupling G12

(in unit of D). The tip is placed on top of the first atom i.e. κ2
1/D = 0.1 and κ2

2/D = 0.

Here, α6
6/D = 1 · 10−3, all other parameters are as in Fig. 5.3.

To conclude, we inform that Tables 5.1 and 5.2 can be used for the
multiatom case. However, the spin magnitude of the single atom has to
be replaced with an effective groundstate spin magnitude |JA − JB |+ χ,
where the “+χ” term is conveniently added to avoid those small spins
constraints, as illustrated above.

5.4 Summary and Outlook

We focused on the dynamic properties of generic nanomagnets made
of absorbed adatoms on metallic or insulating surfaces. We presented
a complete and comprehensive discussion on the implications of the
symmetries of the system on the stability of the magnetic states. In
particular, the symmetries of interest are the rotational, the mirror and
the time-reversal symmetry. All our results are summarized in Tables
5.1 and 5.2. Given the effective spin magnitude of the adatoms and the
symmetries of the system, our main results, the Tables 5.1, 5.2, indicate
whether a nanomagnet is stable by its desirable properties: absence of
groundstate splitting and single-electron switching processes. Further,
we discovered the interesting feature of suppression of single-electron
switching process in some systems with uniform and weak transversal
anisotropy.

Finally, we presented an extension of our symmetry considerations to
a rather generic class of multiatom clusters. The Tables 5.1, 5.2 can still
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Figure 5.7: Same as in Fig. 5.6 but for a dimer with different spin magnitudes.

be used if the effective spin magnitude of each adatoms composing the
cluster is known. Here, we limited our study to generic non-frustrated
configurations. Our analysis of the multiatom clusters could be in future
extended to many other symmetries (for example to systems where the
adatoms form chains or lattices).

All our results are supported by numerical simulations which show
the switching behavior of these nanomagnets and offer guidance for
experimental measurements, e.g. by scanning tunneling microscopy.

We notice that high rotational symmetry is desirable for the stability
of nanomagnets. Indeed, the Brillouin zone associated to the adatom or
cluster eigenstates has many elements and systems with a big difference
between the grounstates’ quasi -spin can be found.

We found that the mirror symmetry does not influence qualitative
results.

As one rules out the translation symmetry of the substrate, χ is
not restricted anymore by the crystallographic restriction theorem47.
However, our expressions, been generic, are still valid and applicable.
For instance, if a single adatom is put at the high symmetric point of
a pentagonal quasi-crystal, our expressions apply with χ = 5 and we
expect the system to have similar (but richer) properties compared to
a system with χ = 3. Moreover, the adatom could be put on top of an
high symmetric molecule with χ > 648. However, a quantitative analysis
that ensures that environmental crystal field (the one due to the support
of the molecule) is negligible must be attached to the study.

Future work may be done in this direction or to prove the conjecture
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in section 5.3.3 at arbitrary Heisenberg intergroup couplings.

5.5 Appendix A. Matrix representation of
the Hamiltonian in the single-atom case

Here, we analyze an explicit matrix representation of HA in the single-
atom case. This is an alternative to the most straightforward Stevens
operator expansion presented in the main text. It proves to be useful for
finding the weak constraints on SE switching due to the mirror symmetry
and for checking calculations done with other approaches. It may be used
for statistical analysis of the system with the tools of Random Matrix
Theory49,50.

As in Sec. 5.2.3, we start considering the spatial symmetry constraints,
then we show the one due to TR symmetry.

Rotational symmetry. The symmetry [R,H] = 0 imposes all matrix
element between different elements with different r to be zero. Clearly
the unspecified H can be represent in an hermitian block diagonal form
which has, in general, 3 kinds of blocks: blocks associated to R-eigenspaces
with real eigenvalue r and pairs of blocks associated to eigenspaces with
conjugated pairs of eigenvalues r. To simplify the discussion, assume one
real r block, call it Q, and one pair of blocks, call them X and Y, then:

H =

Q 0 0
0 X 0
0 0 Y

 (5.25)

Mirror symmetry. When acting on the spin eigenbasis {|jz〉}, the mirror
operator in Eq. (5.7) can be written as

M =

{
A for integer spin

iA for half integer spin
(5.26)

with A a matrix with antidiagonal filled with ones and zeros outside.
The Hamiltonian elements get the simple constraint:

〈jz|H|jz〉 = 〈−jz|H| − j′z〉. (5.27)

It is convenient, to order the elements of this basis in each block by
putting states with descending order in jz, for blocks Q and X , and
with ascending order for Y. For instance, with J = 3 and χ = 3 such
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basis is {|jz〉} = {|3〉, |0〉, | − 3〉, |2〉, | − 1〉, | − 2〉, |1〉}. This choice will be
particularly useful when we will implement the TR symmetry.

We see clearly that the mirror symmetry creates a constraint between
the elements of block Q and implies that the block X must be equal to
the block Y.

Time reversal symmetry. We show the constraint due to TR symmetry
alone; spatial symmetries are not necessarily present. We order the states
of the spin eigenbasis such that TR-partners are grouped together. For
instance, with J = 3 and χ = 3 such basis is {|jz〉} = {|3〉, | − 3〉, |2〉, | −
2〉, |1〉, | − 1〉, |0〉}. In this basis the operator T is represented as

T = K ⊕Jj 6=0

[
σ(j)
x cos(π j) + iσ(j)

y sin(π j)
]

⊕
{

1(j=0) for integer spin

−− for half integer spin
(5.28)

where the superscript (j) indicates that the operator acts on the time
reversal pair {|j〉, |−j〉} (or on the singlet state when j = 0). For the sake
of the discussion, we discard the presence of the Jz = 0 state for integer
spin systems; we reintroduce it next paragraph. The TR symmetry
constraint reads

h̄lk =

{
(−1)l+kσx h̄

∗
lk σx for integer spin

(−1)l+k−1σy h̄
∗
lk σy for half integer spin

(5.29)

here all h̄lks are 2× 2 Hamiltonian submatrices acting on time reversal
pairs with |jz| = l, k.
We see that, for integer systems,

h̄lk =



(
a b

b∗ a∗

)
, for l + k even(

a b

−b∗ −a∗

)
, for l + k odd

(5.30)

For half-integer systems

h̄lk =



(
a b

b∗ −a∗

)
, for l + k even(

a b

−b∗ a∗

)
, for l + k odd

(5.31)

134



5.6 Appendix B. Weak constraints on the SE switching processes

General form with all symmetries. When TR symmetry is added to the
spatial symmetries, the Hamiltonian structure in Eq. (5.25) becomes

H =



P 0 0

0 S 0

0 0 S

 , for χ 6= 3

C†PC 0 0

0 C†SC 0

0 0 C†SC

 , for χ = 3

(5.32)

where P is a real matrix where the superdiagonals have components dis-
posed in a palindromic way∗; S is a symmetric matrix; C = diag{1, i, 1, i, . . . }
where the alternating pattern is limited by the dimension of the block.
Notice that block Q is not present for half-integer spin systems with
χ 6= 3 (hence P is null), since there are not TR invariant quasi -spins in
the BZ.

We remark that, for χ 6= 3, the eigenvectors can be chosen to be real,
since the Hamiltonian matrix is real and symmetric. For χ = 3, the
eigenvectors are complex but can be written in the form ~w = C†~v with ~v
a real vector. In Dirac notation, the eigenstates could be written as

|ψ〉 =

{∑
j∈block vj |j〉, for χ 6= 3∑
j∈block cjjvj |j〉 for χ = 3

(5.33)

Hermiticity constraints the diagonal elements of the half-integer cases
bringing to Kramers degeneracy. One relevant consequences of this fact
is that systems with J = 3/2 and χ = 3 are protected from SE switching
processes (as indicated in Table 5.2).

5.6 Appendix B. Weak constraints on the
SE switching processes

Here, we show the constraints to the quantity

〈ψGS |Js|ψ̃GS〉, (s = +,−, z) (5.34)

∗We define superdiagonal of order m, (m ∈ Z), the vector with component vi = Hij

with i−j = m. For palindromic vector we mean, for instance v = (4, 2,−1, 9,−1, 2, 4).
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coming from the mirror symmetry and the symmetry under the operator
TM , effective in a specific regime. The analysis is restricted to the single-
atom case. As these constraints appear to affect the SE switching rates
only quantitatively we call them “weak” as opposed to the constraints
due to time reversal and rotational symmetries. We do not generalize
them to the multiatom case as we expect, also for this case, similar weak
constraints.

Constraint from the mirror symmetry. Consider the quantity in the
expression (5.34) when the mirror symmetry is present. The Hamiltonian
eigenstates |ψ〉 can be chosen to be also eigenstates of R, since [H,R] =
0. The commutation relation RM = MR†, then, implies R (M |ψ〉) =
r∗M |ψ〉. This means that M |ψ〉 is an eigenstate of R but with different
quasi -spin if r is non real. On the other hand M |ψ〉 and |ψ〉 must have the
same energy since [H,M ] = 0. Therefore, when r is not real M |ψ〉 ⊥ |ψ〉
i.e. M |ψ〉 = a|ψ̃〉 := aT |ψ〉, with a a unit complex number. Applying M
to both sides of the previous equation and using M2 = ±1, after a trivial
manipulation one gets M |ψ̃〉 = ±a∗|ψ〉, where plus(minus) sign refers
to integer(half integer) spin systems. About a we only need to know
whether it is real or imaginary, as it will be clear in a moment. From Eq.
(5.28) and the specification of the form of |ψ〉 in Eq. (5.33), we see that
T maps the vector v, for χ 6= 3, in another real vector, and w = C†v,
for χ = 3, to the vector C†v′ (with v′ 6= v). Differently, M maps the
vectors to same-shape vectors but multiplied by the imaginary unit for
half-integer spins (see Eq. (5.26)). Therefore, a is real(imaginary) for
integer(half-integer) spin systems. We are now ready to obtain the SE
switching constraint:

〈ψGS |J±|ψ̃GS〉 =〈ψGS |M†J∓M |ψ̃GS〉
=± (a∗)2〈ψ̃GS |J∓|ψGS〉
=± (a∗)2〈ψGS |J±|ψ̃GS〉∗

=〈ψGS |J±|ψ̃GS〉∗ (5.35)

where the external plus(minus) sign refers to integer(half integer) spin
systems.

Finally, we conclude

Im〈ψGS |J±|ψ̃GS〉 = 0. (5.36)

When r is real, it is of interest to consider whether there is a constraint
on 〈ψGS |Jz|ψ̃GS〉, for half-integer spin systems (then with χ = 3). We
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show first that

〈ψ|M |ψ〉 = 0. (5.37)

Using Eq. (5.33), we can rewrite the the l.h.s of the previous equation
as the scalar product (w,Mw) =

(
C†v,MC†v

)
. Remember, now, that

M = iA and notice that the dimension of the block Q must be even,
therefore iAC† = CA holds. The quantity, then, simplifies to

(
v, C2Av

)
which vanishes since v is real and C2A antisymmetric. Similarly as when
r is non-real, we conclude that M |ψ〉 = b|ψ̃〉.
One could show that b, like a is real(imaginary) for integer(half-integer)
spin systems and, with similar passages as before, conclude

Re〈ψGS |Jz|ψ̃GS〉 = 0. (5.38)

Notice that the constraints (5.36) and (5.38) are not enough to make
SE switching processes vanish since, respectively, the real and imaginary
parts are left unconstrained and, unfortunately, they are different from
zero, given a generic systems.

Constraint from the TM symmetry operation. Here, we show the weak
constraint on the expression (5.34) coming from the symmetry operator
TM , relevant when the time reversal symmetry is broken by a (rotational
symmetry preserving) magnetic field along the z axis. In this situation,
the groundstate is non degenerate. However, for small enough Bz, the
two lower energy eigenstates retain the same quasi spins and eigenvalues
under the action of TM as the ones of the two groundstate at Bz = 0.
Calling (improperly) these two lower eigenstates |ψGS〉 and |ψ̃GS〉 one
can find: 

Im〈ψGS |Jz|ψ̃GS〉 = 0

Re〈ψGS |J±|ψ̃GS〉 = 0 for integer spin

Re〈ψGS |Jz|ψ̃GS〉 = 0

Im〈ψGS |J±|ψ̃GS〉 = 0 for half integer spin.

(5.39)

We limit ourselves to just show this result because its proof is lengthy
and the result is just weak constraints which are not enough to make SE
switching processes vanish. The reader may appreciate how, at Bz = 0,
these constraints plus the constraints in Eq. (5.36) and (5.38) imply the
time reversal one in Eq. (5.14).

137



5 General scheme for stable single and multiatom nanomagnets

5.7 Appendix C. Prove of the conjecture in
Sec. 5.3.3 at small intragroup couplings

We show a proof of the conjecture that appears in Sec. 5.3.3, restricted
to the case when intragroup couplings of the matrix G are small in
comparison to all other energies in HA.

At zeroth order in the intergroup terms in Hint
A , without uniaxial

anisotropy and magnetic field but with finite intragroup terms, the ground-
states are (2JA + 1)× (2JB + 1) product states of the form Jm−,A|GSA〉 ⊗
Jn+,B |GSB〉 with m(n) = 0, . . . , 2JA(B), J±,X =

∑
i∈X J±(i) and |GSX〉

is the state with all spin aligned up, for X = A, and down, for X = B.
Clearly, once the uniaxial anisotropy is switched on, |GSA〉 ⊗ |GSB〉,
along with the other three states obtained by applying the TR operator
to the state in either to A, to B or to both, remains the unique ground-
state. Indeed, they are eigenstates with maximum eigenvalue of both∑
ij H

int
A (i, j) and

∑
iH

(0)
A (i). Then, we add small intergroup coupling

terms in Hint
A , small with respect to the other energies involved. It is

straightforward to see that configurations in which the spin of the two
groups are oppositely aligned i.e. |GSA〉 ⊗ |GSB〉 along with its TR
partner, gain a negative first-order perturbation energy. This energy is
equal to −∑i∈A,j∈B GijJ(i)J(j). On the contrary, the other two states
(aligned) gain the same term but with opposite sign. Since the intergroup
coupling preserves the value of Jz,tot of the perturbed states, the new
groundstates will have the same Jz,tot of |GSA〉 ⊗ |GSB〉 and its TR
partner, given by ±(JA − JB). Thus, the conjecture is proven for small
intergroup couplings as claimed in the main text.
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