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4 Effect of a tunnel barrier on
the scattering from a
Majorana bound state in an
Andreev billiard

4.1 Introduction

The quantum states of particle and anti-particle excitations in a supercon-
ductor (Bogoliubov quasiparticles) are related by a unitary transforma-
tion, which means that they can be represented by a real wave function.
In this so-called Majorana representation the N ×N scattering matrix
S at the Fermi level is real orthogonal rather than complex unitary1.
Since the orthogonal group O(N) is doubly connected, this immediately
implies a twofold distinction of scattering problems in a superconductor:
The subgroup O+(N) ≡ SO(N) of scattering matrices with determinant
+1, connected to the unit matrix, is called topologically trivial, while the
disconnected set O−(N) of scattering matrices with determinant −1 is
called topologically nontrivial. In mathematical terms, the experimental
search for Majorana bound states can be called a search for systems
that have DetS = −1. This search has been reviewed, from different
perspectives, in Refs. 2–6.

If the scattering is chaotic the scattering matrix becomes very sensitive
to microscopic details, and it is useful to develop a statistical description:
Rather than studying a particular S, one studies the probability distribu-
tion P (S) in an ensemble of chaotic scatterers. This is the framework of
random-matrix theory (RMT)7–9. The ensemble generated by drawing
S uniformly from the unitary group U(N), introduced by Dyson in the
context of nuclear scattering10, is called the circular unitary ensemble
(CUE). Superconductors need a new ensemble. A natural name would
have been the circular orthogonal ensemble (COE), but since that name
is already taken for the coset U(N)/O(N), the alternative name circular
real ensemble (CRE) is used when S is drawn uniformly from O(N). The
RMT of the CRE, and the physical applications to Majorana fermions
and topological superconductors, have been reviewed recently11.
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.1: Andreev billiard on the conducting surface of a three-dimensional topological
insulator. The billiard consists of a confined region (quantum dot, mean level spacing δ0)
with superconducting boundaries, connected to metal electrodes by a pair of point contacts
(supporting a total of N = N1 +N2 propagating modes). A magnetic insulator introduces
a tunnel barrier in each point contact (transmission probability Γ per mode). A magnetic
vortex may introduce a Majorana bound state in the quantum dot.

The uniformity of the distribution requires ideal coupling of the scatter-
ing channels to the continuum, which physically means that the discrete
spectrum of a quantum dot is coupled to metal electrodes by ballistic
point contacts. If the point contact contains a tunnel barrier, then P (S)
is no longer uniform but biased towards the reflection matrix rB of the
barrier. The modified distribution PPoisson(S) is known12–16, it goes by
the name “Poisson kernel” and equals

PPoisson(S) ∝ Det (1− r†BS)1−N (4.1)

in the CRE16.

In the present work we apply this result to the scattering (Andreev
reflection) in a superconducting quantum dot (Andreev billiard), see Fig.
4.1. We focus in particular on the effect of a bound state at the Fermi level
(E = 0) in the quantum dot, a so-called Majorana zero-mode or Majorana
bound state. In addition to the scattering matrix, which determines the
thermal and electrical conductance, we consider also the time-delay
matrix Q = −i~S†dS/dE. The eigenvalues of Q are positive numbers
with the dimension of time, that govern the low-frequency dynamics of
the system (admittance and charge relaxation17–19). Moreover, the trace
of Q gives the density of states and Q and S together determine the
thermopower20,21.

The joint distribution of S and Q is known for ballistic coupling22–24,
here we generalize that to tunnel coupling. The effect of a tunnel barrier
on the time-delay matrix has been studied for complex scattering matri-
ces25,26, but not yet for real matrices. One essential distinction is that
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4.2 Scattering formulation

the tunnel barrier has no effect on the density of states in the CUE and
COE, but it does in the CRE.

The outline of the chapter is as follows. The next two sections formulate
the scattering theory of the Andreev billiard and the appropriate random-
matrix theory. Our key technical result, the joint distribution P (S,Q),
is given in Sec. 4.4. We apply this to the simplest single-channel case
(N = 1) in Sec. 4.5, where obtain a remarkable scaling relation: For a high
tunnel barrier (transmission probability Γ� 1) the distribution P (ρ|Γ)
of the density of states at the Fermi level is described by a one-parameter
scaling function F (x):

P (ρ|Γ) ∝
{
F (Γρ/4) with a Majorana bound state,

F (4ρ/Γ) without a Majorana.
(4.2)

The average density of states in the multi-channel case is calculated
in Sec. 4.6. By relating the ensemble averages of Q and S we derive the
relation

〈ρ〉 = 〈ρ〉ballistic

(
1− 2

NΓ
Tr r†B[〈S〉 − rB]

)
, (4.3)

for a mode-independent tunnel probability Γ. In the CUE and COE the
average scattering matrix 〈S〉 is just equal to rB, so 〈ρ〉 remains equal to
its ballistic value 〈ρ〉ballistic, but the CRE is not so constrained.

Applications to the thermal conductance g and the electrical (Andreev)
conductance gA follow in Secs. 4.7 and 4.8. For ballistic coupling it
is known that P (g) is the same with or without the Majorana bound
state27. (This also holds for P (ρ)23.) In the presence of a tunnel barrier
this is no longer the case, but we find that the Majorana bound state
remains hidden if even a single scattering channel has Γ = 1. The
distribution of gA, in contrast, is sensitive to the presence or absence
of the Majorana bound state even for ballistic coupling28. The way in
which P (gA) changes as we tune the system through a topological phase
transition, at which a Majorana bound state emerges, is calculated in
Sec. 4.9. We conclude in Sec. 4.10.

In the main text we focus on the results and applications. Details of
the calculations are moved to the Appendices. These also contain more
general results for other RMT ensembles, with or without time-reversal
and/or spin-rotation symmetry. (Both symmetries are broken in the
CRE.)

4.2 Scattering formulation

Fig. 4.1 shows the scattering geometry, consisting of a superconducting
quantum dot (Andreev billiard) on the surface of a topological insulator,
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

connected to normal metal electrodes by point contacts. The Hamiltonian
H of the quantum dot is related to the energy-dependent scattering matrix
S(E) by the Mahaux-Weidenmüller formula29,

S(E) =
1− iπW †(E −H)−1W

1 + iπW †(E −H)−1W

= 1− 2πiW †(E −H + iπWW †)−1W.

(4.4)

The M ×N matrix W couples the M energy levels in the quantum dot
(mean level spacing δ0) to a total of N �M propagating modes in the
point contact.

We assume that degeneracies are broken by spin-orbit coupling in the
topological insulator in combination with a magnetic field (perpendicular
to the surface). All degrees of freedom are therefore counted separately
in N and M , as well as in δ0. The electron-hole degree of freedom
is also included in the count, but we leave open the possibility of an
unpaired Majorana fermion — a coherent superposition of electron and
hole quasiparticles that does not come with a distinct antiparticle. An
odd level number M indicates the presence of a Majorana bound state
in the quantum dot, produced when a magnetic vortex enters30. An
odd mode number N signals a propagating Majorana mode in the point
contact, allowed by a π-phase difference between the superconducting
boundaries31.

The N modes have an energy-independent transmission probability
Γn ∈ [0, 1] per mode. If we choose a basis such that the coupling matrix
W has only nonzero elements on the diagonal, it has the explicit form32

Wmn = wnδmn, 1 ≤ m ≤M, 1 ≤ n ≤ N,

|wn|2 =
Mδ0κn
π2

, κn =
1− rn
1 + rn

, r2
n = 1− Γn.

(4.5)

Notice that the tunnel probability Γn determines the reflection ampli-
tude rn ∈ [−1, 1] up to a sign. The conventional choice is to take rn ≥ 0,
when κn = κ+

n can be written as

κ+
n =

1

Γn
(2− Γn − 2

√
1− Γn). (4.6)

Alternatively, if rn ≤ 0 one has κn = κ−n given by

κ−n =
1

Γn
(2− Γn + 2

√
1− Γn) = 1/κ+

n . (4.7)

The two choices are equivalent for ballistic coupling, Γn = 1 = κ±n , but for
a high tunnel barrier Γn � 1 one has κ+

n → 0 while κ−n →∞. The sign
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4.2 Scattering formulation

change of rn is a topological phase transition33, which we will analyze in
Section 4.9. For now we take rn ≥ 0 for all n, so κn = κ+

n .
From the scattering matrix we can obtain transport properties, such as

the electrical and thermal conductance, and thermodynamic properties,
such as the density of states. If we restrict ourselves to properties at the
Fermi level, E = 0, we need the matrix S(0) ≡ S and the derivative

Q = −i~ lim
E→0

S†(E)
dS(E)

dE
. (4.8)

The unitarity of S(E) implies that Q is Hermitian, so it has real eigen-
values τn with the dimension of time. The τn’s are called (proper) delay
times and Q is called the Wigner-Smith time-delay matrix34–36. The
Fermi-level density of states ρ is obtained from Q via the Birman-Krein
formula37–39,

ρ =
1

2πi
lim
E→0

d

dE
ln DetS(E) =

1

2π~
TrQ. (4.9)

For the thermal conductance we partition the modes into two sets,
N = N1 +N2, each set connected to a different terminal, and decompose
the scattering matrix into reflection and transmission subblocks,

S =

(
r t′

t r′

)
. (4.10)

A small temperature difference δT between the two terminals, at aver-
age temperature T0, drives a heat current J = GthermalδT . The ther-
mal conductance Gthermal in the low-temperature linear-response limit
T0, δT/T0 → 0 is given by

g = Gthermal/G0 = Tr tt†, G0 =
π2k2

BT0

6h
. (4.11)

The quantum G0 is a factor-of-two smaller than in systems without
superconductivity41, due to our separate counting of electron and hole
degrees of freedom that allows to account for the possibility of propagation
via an unpaired Majorana mode.

If we keep the two terminals at the same temperature but instead apply
a voltage difference, we can drive an electrical current. We consider a
situation where both terminal 2 and the superconductor are grounded,
while terminal 1 is biased at voltage V . The current I from terminal 1
to ground is then given by the Andreev conductance

gA =
h

e2

dI

dV
= Tr (1− reer†ee + rher

†
he)

= 1
2 Tr (1− rτzr†τz),

(4.12)
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

in the zero-temperature, zero-voltage limit. In the last equality we used
the particle-hole symmetry relation t = τxt

∗τx at E = 0, where the τi
Pauli matrices act on the electron (e) and hole (h) degree of freedom.

4.3 Random-matrix formulation

For a statistical description we consider an ensemble of quantum dots,
each with its own random Hamiltonian H. The mean level spacing
δ0 and coupling matrix W are kept fixed. If the wave dynamics in
the quantum dot is chaotic, the ensemble is fully characterized by the
presence or absence of certain fundamental symmetries. This is the
universal framework of random-matrix theory.

Superconducting systems are characterized by particle-hole symmetry,

H = −τxH∗τx, W = τxW
∗τx,

⇒ S = τxS
∗τx, Q = τxQ

∗τx.
(4.13)

The Pauli matrices τx can be removed from the symmetry relation by a
unitary transformation

H 7→ ΩHΩ†, Ω =
√

1
2

(
1 1
i −i

)
, (4.14)

after which we simply have

H = −H∗, W = W ∗, S = S∗, Q = Q∗. (4.15)

In this so-called Majorana basis the Hamiltonian is real antisymmetric,
H = iA with Anm = A∗nm = −Amn.

If no other symmetries are imposed on the Hamiltonian we have the
class-D ensemble of random-matrix theory1,11, with Gaussian probability
distribution

P ({Anm}) ∝
∏
n>m

exp

(
−π

2A2
nm

2Mδ2
0

)
. (4.16)

The eigenvalues of the antisymmetric M ×M matrix H come in ±E
pairs, hence if M is odd there must be a nondegenerate eigenvalue E = 0
at the Fermi level, in the middle of the superconducting gap. This so-
called Majorana bound state is the hallmark of a topologically nontrivial
superconductor42,43. If M is even there is no level pinned to E = 0, and
the superconductor is called topologically trivial. It is helpful to encode
the distinction in a topological quantum number ν that counts the number
of Majorana bound states, so ν equals 0 or 1 if the superconductor is
topologically trivial or non-trivial, respectively.
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4.4 Joint distribution of scattering matrix and time-delay matrix

In the scattering matrix the presence of a Majorana bound state is
signaled by the sign of the determinant,

DetS = (−1)ν , ν ∈ {0, 1}. (4.17)

This can be seen directly from the definition (4.4) in the Majorana basis:
For M even the matrix H = iA is invertible, so we have

S =
1 + πWTA−1W

1− πWTA−1W
⇒ DetS = +1, (4.18)

since Det (1 + A) = Det (1 − A) if A = −AT. For M odd the bound
state contributes to the determinant a factor

lim
ε→0

Det (1 + ε−1vvT)

Det (1− ε−1vvT)
= −1,

for some vector v, so DetS = −1.
The class-D ensemble of scattering matrices thus consists of two disjunct

sets: The special orthogonal group SO(N) ≡ O+(N) of orthogonal
matrices with determinant +1 in the topologically trivial case, and the
complement O−(N) of orthogonal matrices with determinant −1 in the
topologically nontrivial case.

4.4 Joint distribution of scattering matrix
and time-delay matrix

For ballistic coupling (Γn = 1 for all n) the matrices S and Q are
statistically independent22, so they can be considered separately. The
class-D ballistic scattering matrix is uniformly distributed in O±(N) —
uniformity being defined with respect to the Haar measure1,11. This
is the Circular Real Ensemble (CRE), the analogue for real orthogonal
matrices of the Circular Unitary Ensemble (CUE) for complex unitary
matrices8–10.

The class-D ballistic time-delay matrix has probability distribution23,

Pballistic(Q) ∝ (DetQ)−3N/2Θ(Q) exp(− 1
2τH TrQ−1), (4.19)

where tH = 2π~/δ0 is the Heisenberg time and Θ(Q) restricts Q to positive
definite real symmetric matrices. This constraint can be implemented
more directly by defining

Q−1 = t−1
H KKT, K ∈ RN,2N−1, (4.20)
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

with Rn,m the set of n×m matrices with real elements. The distribution
(4.19) is then equivalent∗ to the Wishart distribution9

PWishart(K) ∝ exp(− 1
2 TrKKT). (4.21)

Remarkably, there is no dependence on the topological quantum number
for ballistic coupling: Q has the same distribution irrespective of the
presence or absence of a Majorana bound state.

Tunnel coupling is described by a reflection matrix rB (from outside
to outside) and transmission matrix tB (from outside to inside). In the
Majorana basis these are real matrices, parameterized by

rB = O1 diag (r1, r2, . . . rN )O2,

tB = O3 diag (Γ
1/2
1 ,Γ

1/2
2 , . . .Γ

1/2
N )O2,

O1, O2, O3 ∈ SO(N), Γn = 1− r2
n ∈ (0, 1].

(4.22)

As we derive in App. 4.11, the matrix product

Σ = (1− STrB)t−1
B (4.23)

determines the joint distribution

P (S,Q) ∝ (Det Σ)N (DetQ)−3N/2 Θ(Q)

× exp(− 1
2τH Tr ΣTQ−1Σ), (4.24a)

⇔ P (S,K) ∝ (Det Σ)N exp(− 1
2 Tr ΣTKKTΣ). (4.24b)

As a check, we can integrate out the time-delay matrix to obtain the
marginal distribution of the scattering matrix,

P (S) =

∫
dK P (S,K) ∝ (Det Σ)N

∣∣∣∣∣∣∣∣∂ΣTK

∂K

∣∣∣∣∣∣∣∣−1

. (4.25)

The Jacobian evaluates to44∣∣∣∣∣∣∣∣∂ΣTK

∂K

∣∣∣∣∣∣∣∣ = (Det Σ)2N−1 for K ∈ RN,2N−1, (4.26)

and we recover the class-D Poisson kernel† 16,

PPoisson(S) = (Det Σ)1−N =

( ∏
n

√
Γn

Det (1− rT
BS)

)N−1

. (4.27)

∗To transform from P (Q) to P (K) multiply by the Jacobians ||∂Q/∂Q−1|| ×
||∂KKT/∂K|| = (DetQ)N+1 × (DetK)2−N ∝ (DetQ)3N/2, for Q = QT ∈ RN,N

and K ∈ RN,2N−1.
†In most expressions for the probability distribution we write ∝ to indicate

an unspecified normalization constant. The Poisson kernel (4.27) is normalized,∫
PPoisson(S) dS =

∫
dS ≡ 1 with dS the Haar measure on O±(N), so we use =

instead of ∝.
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4.5 Single-channel delay-time statistics

The joint distribution (4.24) tells us that S and Q become correlated
in the presence of a tunnel barrier. However, S remains independent of
the matrix product

Q0 =
1

Σ
Q

1

ΣT
, (4.28)

so that the joint distribution of S and Q0 factorizes,

P (S,Q0) = PPoisson(S)× Pballistic(Q0). (4.29)

The transformation from Q to Q0 removes the effect of the tunnel barrier
on the time-delay matrix (see App. 4.11).

4.5 Single-channel delay-time statistics

For ballistic coupling the distribution (4.19) implies that the eigenvalues
γn ≡ 1/τn of Q−1 have the ν-independent distibution23

Pballistic({γn}) ∝
N∏
k=1

γ
−1+N/2
k exp(− 1

2 tHγk)θ(γk)

×
∏
i<j

|γi − γj |, ν ∈ {0, 1}.
(4.30)

The unit step function θ(x) ensures that γn > 0 for all n = 1, 2, . . . N .
In the single-channel case N = 1 we can use the joint distribution

(4.24) to immediately extend this result to arbitrary tunnel probability
Γ = 1− r2

B. The scalar S is pinned to (−1)ν , hence

Σ =

(
1− (−1)νrB

)√
1− r2

B

=

{√
κ for ν = 0,

1/
√
κ for ν = 1,

(4.31)

κ =
1

Γ
(2− Γ− 2

√
1− Γ). (4.32)

[This definition of κ corresponds to κ+ from Eq. (4.6).]
Since κ then appears only as a scale factor, we conclude that the single

eigenvalue γ1 ≡ γ of Q−1 for N = 1 and any κ ∈ (0, 1] has distribution

P (γ) =
θ(γ)tH√
2πtHγ

×
{
κ1/2 exp(− 1

2κ tHγ) for ν = 0,

κ−1/2 exp(− 1
2κ
−1tHγ) for ν = 1.

(4.33)

The single-parameter scaling P (γ|κ, ν) = κ1−2νF (κ1−2νγ) is tested nu-
merically in Fig. 4.2, by drawing random Hamiltonians from the Gaussian
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.2: Probability distribution of the inverse delay time γ for a single-channel
chaotic scatterer, without (ν = 0) or with (ν = 1) a Majorana bound state. The histograms
are numerical results obtained by generating random Hamiltonians (of size M = 40 + ν)
with distribution (4.16). The scattering matrix, and hence the delay time, then follows
from Eqs. (4.4) and (4.5). The different curves correspond to different transmission proba-

bility Γ of the tunnel barrier. Rescaling with a factor κ1−2ν , with κ defined in Eq. (4.32),
makes all histograms collapse onto a single curve, in agreement with the analytical result
(4.33).

class-D ensemble (4.16). The excellent agreement serves as a check on
our analytics.

With ρ = (2π~γ)−1 the distribution (4.33) gives the scaling form (4.2)
of the density of states distribution P (ρ|Γ) from the introduction, in the
tunneling regime Γ� 1 when κ = Γ/4.

4.6 Average density of states

For ballistic coupling, integration of ρ = (2π~)−1
∑
n γ
−1
n with distribu-

tion (4.30) gives the average density of states at the Fermi level23,

〈ρ〉ballistic = δ−1
0

N

N − 2
, δ0 = 2π~/τH, (4.34)

for N ≥ 3. The ensemble average diverges for N = 1, 2.
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4.6 Average density of states

To calculate the effect of a tunnel barrier we write

ρ = (2π~)−1 Tr (ΣQ0ΣT), (4.35)

see Eq. (4.28), and then use the fact that Q0 is independent of S and
hence independent of Σ. The average of Q0 with distribution Pballistic(Q0)
is proportional to the unit matrix,

〈Q0〉 = 1
2π~
N
〈ρ〉ballistic = 1

τH
N − 2

, (4.36)

so the average density of states (still for N ≥ 3) is given by

δ0〈ρ〉 =
1

N − 2
Tr 〈ΣΣT〉

=
1

N − 2

(∑
n

2− Γn
Γn

− 2 Tr
[
(tTBtB)−1rT

B〈S〉
])

. (4.37)

(This is Eq. (4.3) from the introduction.)
It remains to calculate the average of S with the Poisson kernel (4.27).

In the Wigner-Dyson symmetry classes this average is just rB, but as
pointed out in Ref. 16 this no longer holds in the Altland-Zirnbauer
class D. A simple result for 〈S〉 is possible for mode-independent tunnel
probabilities, Γn = Γ for all n, see App. 4.12:

〈S〉± = rB

(
1−N−1 ±N−1(1− Γ)N/2−1

)
, (4.38)

where again the + sign corresponds to ν = 0 (without a Majorana bound
state) and the − sign to ν = 1 (with a Majorana bound state).

We thus arrive at the average density of states,

δ0〈ρ〉± =
N

N − 2

(
1− 2

NΓ

[
Γ− 1± (1− Γ)N/2

])
, (4.39)

plotted in Fig. 4.3. In the ballistic limit Γ→ 1 the dependence on the
Majorana bound state drops out, while in the tunneling limit Γ→ 0 we
obtain

δ0〈ρ〉 =
2

N − 2
×
{
N − 1 +O(Γ) for ν = 0,

2/Γ− 1 +O(Γ) for ν = 1.
(4.40)

The 1/Γ divergence of the density of states for ν = 1 corresponds to
the delta-function contribution from the Majorana bound state in the
closed system. Without the Majorana bound state (ν = 0) the density
of states at the Fermi level remains finite in the Γ → 0 limit, but it
does remain above the normal-state value of 1/δ0. This midgap spectral
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.3: Ensemble averaged density of states as a function of mode-independent trans-
mission probability through the barrier, in the absence (ν = 0) or in the presence (ν = 1) of
a Majorana bound state. The curves are calculated from the analytical expression (4.39).

peak is characteristic for a class-D superconductor1,11,42,43,45. While in
a closed system the peak is simply a factor of two, in the weakly coupled
open system it is a larger factor 2(N − 1)/(N − 2), which only tends to 2
in the large-N limit. The fact that the ensemble of open systems does
not reduce to an ensemble of closed systems in the limit Γ→ 0 is due to
statistical fluctuations that remain important for small N .

4.7 Thermal conductance

We consider the thermal conductance in the simplest case N1 = N2 = 1
of a quantum dot with single-mode point contacts. These are Majorana
modes, carrying heat but no charge.

The scattering matrix S ∈ O±(2) is parameterized by

S± =

(
cos θ ∓ sin θ
sin θ ± cos θ

)
, S =

{
S+ if ν = 0,

S− if ν = 1.
(4.41)

The Haar measure equals

dµ = π−1dθ, 0 < θ < π, (4.42)
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4.7 Thermal conductance

the same for both O+ and O−.
For the tunnel barrier we take the reflection matrix rB = diag (r1, r2),

with rn =
√

1− Γn ≥ 0. The Poisson kernel (4.27) then has the explicit
form

P±(θ) =

√
Γ1Γ2

1± r1r2 − (r1 ± r2) cos θ
. (4.43)

The dimensionless thermal conductance (4.11) has distribution

P±(g) =
1

π

∫ π

0

dθ δ(g − sin2 θ)P±(θ)

= Pballistic(g)
(1± r1r2)

√
Γ1Γ2

(1± r1r2)2 − (1− g)(r1 ± r2)2
, (4.44)

where as before, P+ applies to ν = 0 and P− to ν = 1. The distribution

Pballistic(g) =
1

π
√
g(1− g)

, 0 < g < 1, (4.45)

is the result27 for ballistic coupling (Γn = 1, rn = 0).
For identical tunnel barriers, Γ1 = Γ2 = Γ, this reduces to

P (g) = Pballistic(g)×
{

Γ(2−Γ)
Γ2+4g(1−Γ) if ν = 0,

1 if ν = 1.
(4.46)

Quite remarkably, the distribution of the thermal conductance for two
identical single-mode point contacts is unaffected by the presence of a
tunnel barrier in the topologically nontrivial case. Fig. 4.4 is a numerical
check of this analytical result.

Notice that the distribution (4.11) becomes independent of ν if r1r2 = 0.
This is a special case of a more general result, valid for any N1, N2:

P+(g) = P−(g) if Det rB = 0, (4.47)

in words: The probability distribution of the thermal conductance be-
comes independent of the presence or absence of a Majorana bound state
if the quantum dot is coupled ballistically to at least one of the scattering
channels. In other words, ballistic coupling to a propagating Majorana
mode hides the Majorana bound state.

The proof is straightforward: If Γn0 = 1 for one of the indices n0 ∈
{1, 2, . . . N}, then the Poisson kernel (4.27) is unchanged if we multiply
S 7→ O1ΛOT

1 S, with Λnm = δnm(1− 2δnn0
). [The orthogonal matrix O1

is defined in Eq. (4.22).] The Haar measure remains unchanged as well,
and so does the thermal conductance (4.11). Since DetS = −Det (ΛS),
so O+ is mapped onto O−, we conclude that P+(g) = P−(g).
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.4: Probability distribution of the thermal conductance g = Gthermal/G0, see
Eq. (4.11), for a chaotic scatterer having two single-mode point contacts with identical
tunnel probabilities Γ. The data points are numerical results for a random Hamiltonian
(M = 46 + ν), the curves are the analytical result (4.46). In the presence of a Majorana
zero-mode (ν = 1) the distribution is independent of Γ.

This proof for the Poisson kernel extends to the entire joint distribution
(4.24) of S and Q: The transformation S 7→ O1ΛOT

1 S has no effect on
the matrices Q and Σ, so P (S,Q) remains unchanged. It follows that
the probability distribution of the density of states is the same with
or without a Majorana bound state if Γn = 1 for at least one of the
scattering channels.
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4.8 Electrical conductance

4.8 Electrical conductance

Because a Majorana mode is charge-neutral, no electrical current can
be driven for N1 = N2 = 1. A nonzero current I is possible for N1 = 2,
when terminal 1 biased at voltage V has a distinct electron and hole
mode. We investigate the effect of a tunnel barrier for N1 = 2, N2 = 1.
In the Majorana basis the expression (4.12) for the Andreev conductance
reads

gA = 1
2 Tr (1− rτyrTτy), (4.48)

with r a 2× 2 real matrix.
The scattering matrix S± ∈ O±(3) can be conveniently parameterized

using three Euler angles46,

S+ =

(
R(α) 0

0 1

)(
1 0
0 R(θ)

)(
R(α′) 0

0 1

)
,

S− = diag (1, 1,−1)S+,

(4.49)

where we have defined

R(α) =

(
cosα − sinα
sinα cosα

)
. (4.50)

The Haar measure on O±(3) is given by23

dµ =
sin θ

8π2
dθdαdα′, α, α′ ∈ (0, 2π), θ ∈ (0, π). (4.51)

Because R(α) commutes with τy, the dimensionless conductance (4.48)
depends only on the Euler angle θ,

gA = 1− cos θ. (4.52)

In point contact 1 we take a tunnel probability Γ1, the same for the
electron and hole mode, while in point contact 2 we have tunnel probability
Γ2 for the unpaired Majorana mode. Evaluation of the Poisson kernel
(4.27) with rB = diag (r1, r1, r2) gives the conductance distribution

P±(gA) =
1
2Γ

1/2
1 Γ2[(Γ1 − 2)(±r2 − 1) + (±r2 − 1 + Γ1)gA]

[(1± r2(gA − 1))2 − (gA − 1± r2)2(1− Γ1)]3/2
,

0 < gA < 2, r2 =
√

1− Γ2, (4.53)

plotted in Fig. 4.5 for ν = 0 (P+), ν = 1 (P−) and two values of
Γ1 = Γ2 ≡ Γ.
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.5: Probability distribution of the Andreev conductance gA, see Eq. (4.12), for
N1 = 2, N2 = 1, Γ1 = Γ2 ≡ Γ. The data points are numerical results for a random
Hamiltonian (M = 46 + ν), the curves are the analytical result (4.53). For ballistic
coupling (Γ = 1) the distribution is the same with or without a Majorana bound state. In
the limit Γ→ 0 the distribution becomes sharply peaked at gA = 2ν.

In the limit r2 → 1, when terminal 2 is decoupled from the quantum
dot, we recover the result47

P (gA) =

{
δ(gA) if ν = 0,

δ(2− gA) if ν = 1,
(4.54)

independent of Γ1. The conductance in this case is uniquely determined
by the topological quantum number.

In the opposite limit r2 → 0 the distribution (4.53) becomes indepen-
dent of ν,

P (gA) =
1
2Γ

1/2
1 [2− Γ1 − (1− Γ1)gA]

[1− (1− Γ1)(gA − 1)2]3/2
, if r2 = 0. (4.55)

This is a special case of a more general result, for any N1, N2,

P+(gA) = P−(gA) if DetP2rB = 0, (4.56)

where P2 projects onto the modes coupled to terminal 2. Ballistic
coupling, even for a single mode, to terminal 2 therefore removes the
dependence on the topological quantum number.

The proof of Eq. (4.56) proceeds along the lines of the proof of Eq.
(4.47), with the difference that the transformation S 7→ O1ΛOT

1 S should
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4.9 Majorana phase transition

Figure 4.6: Device to study the topological phase transition in a semiconductor nanowire
covered by a superconductor. When the Zeeman energy of a parallel magnetic field exceeds
the induced superconducting gap in the nanowire, a pair of Majorana bound states emerges
at the end points. One of these is coupled directly to electrode 2, while the other is coupled
to electrode 1 via a point contact.

leave the upper-left block r of S unaffected — otherwise the Andreev con-
ductance (4.48) would change. This also explains why the ν-dependence
of P (gA) remains for ballistic coupling to terminal 128.

4.9 Majorana phase transition

The appearance of a Majorana bound state is a topological phase tran-
sition. There is a search for this transition in a nanowire geometry, see
Fig. 4.6, where it has been predicted to occur when the Zeeman energy
of a magnetic field (parallel to the wire axis) exceeds the gap induced by
the proximity to a superconductor48,49.

Because the Majorana bound states emerge pairwise at the two ends of
the nanowire, the topological quantum number ν of the entire structure
remains 0 and the determinant DetS of the full scattering matrix remains
+1 through the transition. What changes is the sign of the determinant
Det r of the reflection submatrix. At the topological phase transition
Det r = 0, implying a perfectly transmitted mode and a quantized peak
in the thermal conductance33.

We study the effect of the phase transition on the statistics of the
electrical conductance, measured by contacting one end of the nanowire
(terminal 1) to a metal electrode at voltage V , while the superconductor
and the other end of the nanowire (terminal 2) are at ground. Terminal
1 is connected to the nanowire via a point contact, thus creating a
confined region (quantum dot) with chaotic scattering. The minimal
dimensionality of the scattering matrix S of the quantum dot is 3×3: One
electron and one hole mode connected to terminal 1 and one Majorana
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

mode connected to terminal 2.
To minimize the number of free parameters we assume ballistic coupling

through the point contact, so the matrix rB in the Poisson kernel (4.27)
is rB = diag (1, 1, r2). The reflection amplitude r2 at terminal 2 is tuned
through zero by some external control parameter ξ, typically magnetic
field or gate voltage. Near the transition (conveniently shifted to ξ ≡ 0)
this dependence can be conveniently parameterized by33

r2(ξ) = tanh(ξ/ξ0). (4.57)

(The width ξ0 of the transition is system dependent.) The corresponding
coupling constant κ2 in Eq. (4.5) then has an exponential ξ-dependence,

κ2 =
1− r2

1 + r2
= exp(−2ξ/ξ0). (4.58)

The probability distribution of the Andreev conductance (in units of
e2/h) follows from Eq. (4.53),

P (gA) = 1
2 (1− r2

2)[1 + (gA − 1)r2]−2

= 1
2 [cosh(ξ/ξ0) + (gA − 1) sinh(ξ/ξ0)]−2,

0 < gA < 2. (4.59)

The delta-function limits (4.54) are reached for ξ → ±∞ (keeping ν = 0,
because the entire system is topologically trivial). Right at the transition,
at ξ = 0, the distribution is uniform in the interval 0 < gA < 2. The
average conductance varies through the transition as

〈gA〉 = 1− 1

tanh(ξ/ξ0)
+

ξ/ξ0

sinh2(ξ/ξ0)
, (4.60)

see Fig. 4.7.

4.10 Conclusion

In conclusion, we have investigated a variety of observable consequences of
the fact that the scattering matrix of Majorana fermions is real orthogonal
rather than complex unitary. Of particular interest is the identification of
observables that can detect the sign of the determinant, since DetS = −1
signifies the presence of a Majorana bound state. The obvious signal
of such a zero-mode, a midgap peak in the density of states42,43, is
broadened by tunnel coupling to the continuum. We find that the peak
remains hidden if the coupling is ballistic (unit transmission) in even a
single scattering channel. The thermal conductance is likewise insensitive
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4.11 Appendix A. Joint distribution of scattering matrix and time-delay matrix

Figure 4.7: Variation of the ensemble-averaged Andreev conductance in the geometry of
Fig. 4.6, as the nanowire is driven through a topological phase transition (controlled by
a parameter ξ, which can be thought of as the deviation of the magnetic field from the
critical field strength). The curve is the result (4.60) for a single-channel ballistic point
contact.

to the presence or absence of a Majorana bound state, but the electrical
conductance retains this sensitivity when the coupling is ballistic.

These results for the effect of a tunnel barrier on the midgap spectral
peak are derived from the distribution P (S,Q) of scattering matrix
and time-delay matrix under the assumption of chaotic scattering, due
to disorder or due to irregularly shaped boundaries. The appropriate
ensemble in the absence of time-reversal and spin-rotation symmetry
has symmetry class D in the Altland-Zirnbauer classification1. Chiral
symmetry would change this to class BDI, in which multiple zero-modes
can overlap without splitting32. The effect of chiral symmetry on the
joint distribution P (S,Q) is known for ballistic coupling24 — but not yet
for tunnel coupling. This seems a worthwhile project for future research.

4.11 Appendix A. Joint distribution of
scattering matrix and time-delay
matrix

We calculate the joint distribution P (S,Q) of scattering matrix and
time-delay matrix in the presence of a tunnel barrier, starting from the
known distribution P (S0, Q0) without a barrier22,23. The application in
the main text concerns symmetry class D, but for the sake of generality
and for later reference we give results for all four Altland-Zirnbauer1

97



4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Altland-Zirnbauer Wigner-Dyson
D DIII C CI A AI AII

α −1 −1 2 1 0 0 0
β 1 2 4 2 2 1 4

t0/τH 1 1 1
2

1
2 1 1 1

degeneracy d 1 2 2 2 1 1 2

Table 4.1: Parameters that appear in the distribution of the scattering matrix and time-
delay matrix, for each of the Altland-Zirnbauer and Wigner-Dyson symmetry classes. No-
tice that a different set of indices α′, β′ govern the energy level statistics11. The degeneracy
factor d refers to the Kramers degeneracy of the scattering channels and the delay times,
ignoring uncoupled spin bands. (The energy levels may have a different degeneracy.)

symmetry classes D, DIII, C, CI, as well as for the three Wigner-Dyson7,50

symmetry classes A, AI, AII. The symmetry indices that distinguish the
ensembles are listed in Table 4.1, see Ref. 11 for an overview of this
classification.

The unitary matrix S and the Hermitian matrix Q are real in class D,
complex in class A, and quaternion in class C. We consider these three
symmetry classes without time-reversal symmetry first, and then include
the constraints of time-reversal symmetry in classes DIII, CI, AI, AII.∗

4.11.1 Broken time-reversal symmetry

Without the barrier S0 is independent of Q0 and uniformly distributed,

P (S0, Q0)dµ(S0)dµ(Q0) = P (Q0)dµ(S0)dµ(Q0). (4.61)

The differential dµ indicates the Haar measure for the unitary matrix S0

and the Euclidean measure for the Hermitian matrix Q0. The ballistic
time-delay matrix distribution is given by22,23

P (Q−1
0 ) ∝ (Det′Q−1

0 )α+Nβ/2

×Θ(Q0) exp(− 1
2βt0 Tr′Q−1

0 ), (4.62a)

⇔ P (Q0) ∝ (Det′Q0)−β(N−1)−2−α−Nβ/2

×Θ(Q0) exp(− 1
2βt0 Tr′Q−1

0 ). (4.62b)

Degenerate eigenvalues of Q0 are counted only once in Tr′ and Det′. In
terms of the degeneracy factor d from Table 4.1 this can be written as

Det′Q0 = (DetQ0)1/d, Tr′Q0 =
1

d
TrQ0. (4.63)

∗The seven symmetry classes in Table 4.1 do not exhaust the tenfold way classifi-
cation of random-matrix theory: There are three more chiral classes51 (labeled AIII,
BDI, CII) that require separate consideration24.
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D C A AI CI AII DIII

broken time-reversal symmetry preserved time-reversal symmetry

δS ≡ S†dS = −δS† δS ≡ Ũ†dSU† = −δS† = δS̃

Ũ ≡ UT Ũ ≡ UD ≡ σyUTσy
δSnm q0 q0σ0 + iq · σ a+ ib ia iaσx + ibσz iq0σ0 + q · σ aσx + bσz
(n 6= m) β = 1 β = 4 β = 2 β = 1 β = 2 β = 4 β = 2
δSnn 0 iq · σ ib ia iaσx + ibτz iq0σ0 0

α+ 1 = 0 α+ 1 = 3 α+ 1 = 1 α+ 1 = 1 α+ 1 = 2 α+ 1 = 1 α+ 1 = 0

Q ≡ −i~S†dS/dE = Q† Q ≡ −i~Ũ†(dS/dE)U† = Q† = Q̃
Qnm q0 q0σ0 + iq · σ a+ ib a aσ0 + ibσy q0σ0 + iq · σ aσ0 + ibσy
Qnn q0 q0σ0 a a aσ0 q0σ0 aσ0

Table 4.2: Characterization of the scattering matrix differential δS and of the time-delay
matrix Q. All coefficients qn, a, b are real, and σi is a Pauli matrix. The symmetry indices
β and α+ 1 count, respectively, the number of degrees of freedom of the off-diagonal and
diagonal components of the anti-Hermitian matrix δS. The off-diagonal elements of the
Hermitian matrix Q have β degrees of freedom, while the diagonal elements have one single
degree of freedom in each symmetry class.

The channel number N also does not include degeneracies, so the total
number of eigenvalues of Q0 is d×N . The characteristic time t0 differs
from the Heisenberg time tH by a numerical coefficient,∗ see Table 4.1.

Insertion of the barrier, with unitary scattering matrix

SB =

(
rB t′B
tB r′B

)
, (4.64)

transforms S0 into

S = rB + t′BS0(1− r′BS0)−1tB

⇔ S0 = t′B
−1
S(1− S†rB)(1− r†BS)−1t†B.

(4.65)

Variations of S and S0 are related by9

S†dS = Σ(S†0dS0)Σ†, Σ = (1− S†rB)t−1
B . (4.66)

The differentials

δS = S†dS, δS0 = S†0dS0, (4.67)

are anti-Hermitian matrices, δS† = −δS. The number of degrees of
freedom of the off-diagonal elements are given by β and the number of

∗We define tH = 2π~/δ0, with δ0 the mean spacing of nondegenerate levels. The
ratio t0/tH then equals the degeneracy of energy levels divided by the degeneracy of
delay times23. It is unity in all symmetry classes except C and CI, where the delay
times have a Kramers degeneracy that the energy levels lack11.
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

degrees of freedom of the diagonal elements by 1 + α. As summarized in
Table 4.2, real matrices (class D) have α = −1, β = 1, complex matrices
(class A) have α = 0, β = 2, and quaternion matrices (class C) have
α = 2, β = 4. These parameters determine the Jacobian44

JS =
dµ(S)

dµ(S0)
=

∣∣∣∣∣∣∣∣ΣδS0Σ†

δS0

∣∣∣∣∣∣∣∣
= (Det′ ΣΣ†)(N−1)β/2+1+α. (4.68)

Eq. (4.66) also implies the relation between the time-delay matrices,

Q = ΣQ0Σ† ⇒ dQ = ΣdQ0Σ† +O(dS). (4.69)

The off-diagonal elements of the Hermitian matrix Q have β degrees of
freedom, the diagonal elements have one single degree of freedom in each
symmetry class. The Jacobian is then given by

JQ =
dµ(Q)

dµ(Q0)
=

∣∣∣∣∣∣∣∣ΣdQ0Σ†

dQ0

∣∣∣∣∣∣∣∣
= (Det′ΣΣ†)(N−1)β/2+1. (4.70)

The joint probability distribution P (S,Q) now follows upon division
of P (S0, Q0) by the product of Jacobians,

P (S,Q) =
P (Q0)

JSJQ

= P (Q0)(Det′ ΣΣ†)−βN+β−2−α. (4.71)

Substituting Q0 = Σ−1QΣ†
−1

into Eq. (4.62) we thus arrive at the joint
distribution

P (S,Q) ∝ (Det′ ΣΣ†)βN/2(Det′Q)−3βN/2+β−2−α

×Θ(Q) exp(− 1
2βt0 Tr′Σ†Q−1Σ). (4.72)

The class-D result (4.24) from the main text follows for α = −1, β = 1,
t0 = τH, d = 1, Σ† = ΣT.

4.11.2 Preserved time-reversal symmetry

Time-reversal symmetry equates the scattering matrix to its transpose
ST in class AI and CI and to its dual SD in class AII and DIII. (The dual
of a matrix is SD = σyS

Tσy.) We use a unified notation S = S̃, where
the tilde indicates the transpose or the dual, whichever is appropriate for
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that symmetry class. The symmetry S = S̃ allows for the “square root”
factorization

S = ŨU = S̃, (4.73)

with unitary U .
The time-delay matrix in these symmetry classes is constructed such

that it satisfies the same symmetry,

Q = −i~ lim
E→0

Ũ†
dS

dE
U† = Q̃. (4.74)

This redefinition of Q differs from Eq. (4.8) by a unitary transformation,
so the delay times are not affected.

The ballistic Q0 and S0 are again independent22,23, distributed ac-
cording to Eqs. (4.61) and (4.62) with the appropriate values of α and β
from Table 4.1. These numbers now count the diagonal and off-diagonal
degrees of freedom of the symmetrized differential

δS = Ũ†dSU†, (4.75)

constrained by δS = −δS†, δS̃ = δS. The matrix elements of δS are
imaginary in class AI (α = 0, β = 1), i times a quaternion∗ in class AII
(α = 0, β = 4), and of the form aσx + bσz with a, b imaginary in class CI
(α = 1, β = 2) and a, b real in class DIII (α = −1, β = 2).

The elements of the Hermitian matrix Q are real in class AI, quaternion
in class AII, and of the form aσ0 + ibσy with a, b real in both classes CI
and DIII. The off-diagonal elements of Q have the same number of β
degrees of freedom as δS, but the diagonal elements have only a single
degree of freedom irrespective of α. All of this is summarized in Table
4.2.

The symmetrization of the differential modifies the relation (4.66),
which now reads

δS = UΣU†0δS0U0Σ†U†, Σ = (1− U†Ũ†rB)t−1
B . (4.76)

The relation (4.69) between Q and Q0 is similarly modified by the sym-
metrization,

Q = UΣU†0Q0U0Σ†U†. (4.77)

Because the matrices U , U0 are unitary, the Jacobians (4.68) and (4.70)
are unchanged,

JS = (Det′ΣΣ†)(N−1)β/2+1+α, (4.78)

JQ = (Det′ΣΣ†)(N−1)β/2+1. (4.79)

∗A quaternion has the form a0σ0+ia1σx+ia2σy+ia3σz , with four real coefficiients
an. The matrix σ0 is the 2× 2 unit matrix.
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We thus obtain the joint distribution

P (S,Q) ∝ (Det′ ΣΣ†)βN/2(Det′Q)−3βN/2+β−2−α

×Θ(Q) exp(− 1
2βt0 Tr′Σ†U†Q−1UΣ). (4.80)

4.11.3 Poisson kernel

The marginal distribution of the scattering matrix resulting from the
Jacobians (4.68) and (4.78) is

P (S) =

∫
dQP (S,Q) = 1/JS

= (Det′ ΣΣ†)−(N−1)β/2−1−α

=

(
Det′(1− r†BrB)

|Det′ (1− r†BS)|2

)(N−1)β/2+1+α

, (4.81)

including the normalization constant. This formula combines the known
expressions for the Poisson kernel∗ in the Wigner-Dyson ensembles15 and
in the Altland-Zirnbauer ensembles16.

The present analysis confirms that Eq. (4.81) holds without modifi-
cation in the two symmetry classes D and DIII that support Majorana
zero-modes, depending on the sign of the determinant DetS = ±1 in
class D and the sign of the Pfaffian Pf (iσyS) = ±1 in class DIII52. As
a check, we can take N = 1, when S = ±1 in class D and S = ±σ0 in
class DIII. The ± sign determines the presence or absence of a Majorana
bound state (twofold degenerate in class DIII). Since there is only a single
element in the ensemble we should have P (S) = 1, which is indeed what
Eq. (4.81) gives for N = 1, α = −1.

4.12 Appendix B. Calculation of the
ensemble-averaged scattering matrix

4.12.1 Symmetry class D

According to Eq. (4.37), the effect of a tunnel barrier on the average
density of states follows directly once we know the average scattering
matrix. Simple expressions can be obtained if we assume that the tunnel
probabilities are mode-independent, Γn = Γ for n = 1, 2, . . . N .

∗The name “Poisson kernel” applies strictly speaking only to the Wigner-Dyson
ensembles, when rB =

∫
SP (S)dS. In the Altland-Zirnbauer ensembles the average

scattering matrix differs from rB, see Ref. 16 and App. 4.12.
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The scattering matrix of the barrier has the polar decomposition

SB =

(
O1 0
0 O3

)(√
1− Γ

√
Γ√

Γ −
√

1− Γ

)(
O2 0
0 O4

)
, (4.82)

with O1, O2, O3, O4 ∈ SO(N). The block structure corresponds to Eqs.
(4.22) and (4.64), in particular, rB =

√
1− ΓO1O2. From Eq. (4.65) we

obtain the scattering matrix S of the quantum dot,

S = O1

[√
1− Γ + ΓU(1 +

√
1− ΓU)−1

]
O2, (4.83)

in terms of a matrix U = O4S0O3 that is uniformly distributed in O±(N).

Because the average of Up for any power p = 1, 2, . . . is proportional
to the identity matrix, we may write the average of S in the form of a
power series,

〈S〉± = rB

(
1− Γ

1− Γ

∞∑
p=1

(−1)p(1− Γ)p/2
1

N
〈TrUp〉±

)
. (4.84)

If the average of U would be over the entire unitary group, then all terms
in the power series would vanish and we would simply have 〈S〉 = rB.
But averages over orthogonal matrices do not vanish, in the nontrivial
way calculated∗ by Rains53:

〈TrUp〉± =
1 + (−1)p

2
±
{

(−1)N+1 if p−N = 0, 2, 4, . . .

0 otherwise.
(4.85)

We substitute Eq. (4.85) into Eq. (4.84) and sum the geometric series,
to arrive at the average scattering matrix

〈S〉± = rB

(
1− 1

N
± 1

N
(1− Γ)−1+N/2

)
, (4.86)

used in Sec. 4.6 to obtain the average density of states in class D.

∗For the record, we note that Eq. (4.85) differs from the formula in Ref. 53 by a
minus sign (± instead of ∓).
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4.12.2 Symmetry class C

In a similar way we can derive the average scattering matrix in other
symmetry classes. We give the result for class C. The matrix U then
varies over the unitary symplectic group Sp(2N). Ref. 53 gives the
required average:

〈TrUp〉C =

{
−1 if p ≤ 2N and even,

0 otherwise.
(4.87)

Eq. (4.84) still holds with the factor 1/N replaced by 1/2N . We thus
find the average scattering matrix in class C,

〈S〉C = rB

(
1 +

1

2N
[1− (1− Γ)N ]

)
. (4.88)

For N = 1 this gives 〈S〉C = (1 + Γ/2)rB, in agreement with Ref. 16.
The average density of states in class C follows from Eq. (4.3), where

we again account for the doubling of the dimensionality N 7→ 2N :

〈ρ〉C = 〈ρ〉ballistic

(
1− 1

NΓ
Tr r†B[〈S〉C − rB]

)
=

N

(N + 1)δ0

(
1− 1− Γ

NΓ
[1− (1− Γ)N ]

)
. (4.89)

In the second equation we have substituted the ballistic class-C result
from Ref. 23. The tunneling limit Γ → 0 gives a vanishing density of
states,

〈ρ〉C =
NΓ

(N + 1)δ0
+O(Γ2), (4.90)

consistent with the class-C result for a closed system42,43.
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