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3 Effect of chiral symmetry
on chaotic scattering from
Majorana zero-modes

3.1 Introduction

In classical mechanics the duration τ of a scattering process can be defined
without ambiguity, for example as the energy derivative of the action.
The absence of a quantum mechanical operator of time complicates the
simple question “by how much is an electron delayed?”1,2. Since the
action, in units of ~, corresponds to the quantum mechanical phase
shift φ, the quantum analogue of the classical definition is τ = ~dφ/dE.
In a multi-channel scattering process, described by an N × N unitary
scattering matrix S(E), one then has a set of delay times τ1, τ2, . . . τN ,
defined as the eigenvalues of the socalled Wigner-Smith matrix

Q = −i~S†(dS/dE). (3.1)

(For a scalar S = eiφ the single-channel definition is recovered.)
This dynamical characterization of quantum scattering processes goes

back to work by Wigner and others3–5 in the 1950’s. Developments in the
random-matrix theory of chaotic scattering from the 1990’s6,7 allowed
for a universal description of the statistics of the delay times τn in an
ensemble of chaotic scatterers. The inverse delay matrix Q−1 turns out to
be statistically equivalent to a socalled Wishart matrix8: the Hermitian
positive-definite matrix product WW †, with W a rectangular matrix
having independent Gaussian matrix elements. The corresponding proba-
bility distribution of the inverse delay times γn ≡ 1/τn > 0 (measured in
units of the Heisenberg time τH = 2π~/δ0, with mean level spacing δ0),
takes the form9∗

P ({γn}) ∝
N∏

j>i=1

|γi − γj |β
N∏
k=1

γ
βN/2
k e−βτHγk/2. (3.2)

∗The distribution (3.2) is known as a Laguerre distribution in random-matrix
theory. It represents the eigenvalue distribution of a Wishart matrix WW † for β = 1
(when W is a real Gaussian N × (2N + 1)-dimensional matrix) and for β = 2 (complex
Gaussian N × 2N matrix W ). For β = 4 there is no corresponding Wishart ensemble.

59



3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

The symmetry index β ∈ {1, 2, 4} distinguishes real, complex, and quater-
nion Hamiltonians. This connection between delay-time statistics and the
Wishart ensemble is the dynamical counterpart of the connection between
spectral statistics and the Wigner-Dyson ensemble10,11 — discovered
several decades later although the Wishart ensemble12 is several decades
older than the Wigner-Dyson ensemble.

The delay-time distribution (3.2) assumes ballistic coupling of the N
scattering channels to the outside world. It has been generalized to
coupling via a tunnel barrier13,14, and has been applied to a variety of
transport properties (such as thermopower, low-frequency admittance,
charge relaxation resistance) of disordered electronic quantum dots and
chaotic microwave cavities15–28. Because the density of states ρ(E) is
directly related to the Wigner-Smith matrix,

ρ(E) = (2π~)−1 TrQ(E) =
∑
n(2π~γn)−1, (3.3)

the delay-time distribution also provides information on the degree to
which levels are broadened by coupling to a continuum.

The discovery of topological insulators and superconductors29,30 has
opened up a new arena of applications of random-matrix theory31,32.
Topologically nontrivial chaotic scatterers are distinguished by a topo-
logical invariant ν that is either a parity index, ν ∈ Z2, or a winding
number ν ∈ Z. In the spectral statistics, topologically distinct systems
are immediately identified through the number of zero-modes, a total
of |ν| levels pinned to the middle of the excitation gap33,34. If the gap
is induced by a superconductor, the zero-modes are Majorana, of equal
electron and hole character35–37.

These developments raise the question how topological invariants con-
nect to the Wishart ensemble: How do Majorana zero-modes affect the
dynamics of chaotic scattering? That is the problem adressed and solved
in this chapter, building on two earlier works38,39. In Ref. 38 it was
found that a Z2 invariant (only particle-hole symmetry, symmetry class D
in the Altland-Zirnbauer classification40) has no effect on the delay-time
distribution for ideal (ballistic) coupling to the scatterer: The distribu-
tion is the same with or without an unpaired Majorana zero-mode in
the spectrum. Here we show that the Z invariant of |ν|-fold degenerate
Majorana zero-modes does significantly affect the delay-time distribution.
This is symmetry class BDI, with particle-hole symmetry as well as
chiral symmetry41,42. Chiral symmetry without particle-hole symmetry,
symmetry class AIII, was considered in Ref. 39 for a scalar S = eiφ, with
a single delay time τ = ~dφ/dE. While our interest here is in Majorana
modes, for which particle-hole symmetry is essential, our general results
include a multi-channel generalization of Ref. 39.

60



3.2 Chiral symmetry and time-delay matrix

Majorana zero-modes are being pursued in either two-dimensional (2D)
or one-dimensional (1D) systems35,36,43,44. In the former geometry the
zero-modes are bound to a magnetic vortex core, in the latter geometry
they appear at the end point of a nanowire. Particle-hole symmetry by
itself can only protect a single zero-mode, so even though the Majoranas
always come in pairs, they have to be widely separated. The significance
of chiral symmetry is that it provides additional protection for multiple
overlapping Majorana zero-modes45–48. The origin of the chiral symmetry
is different in the 1D and 2D geometries.

3.2 Chiral symmetry and time-delay matrix

By definition, chiral symmetry means that the Hamiltonian H anticom-
mutes with a unitary operator. The 1D realization of chiral symmetry
relies on the fact that the Rashba Hamiltonian of a nanowire in a parallel
magnetic field is real — if its width W is well below the spin-orbit scatter-
ing length. Particle-hole symmetry H = −τxH∗τx then implies that H
anticommutes with the Pauli matrix τx that switches electrons and holes.
It follows that a nanowire with W . lso (the typical regime of operation)
is in the BDI symmetry class and supports multiple degenerate Majorana
zero-modes at its end49–51.

The Andreev billiard of Fig. 4.1 illustrates a 2D realization on the
surface of a topological insulator. The massless Dirac fermions on the
surface have a chiral symmetry at the charge-neutrality point (the Dirac
point), because the 2D Dirac Hamiltonian

H0 = v(px − eAx)σx + v(py − eAy)σy (3.4)

anticommutes with the Pauli spin-matrix σz. The coupling to a super-
conducting pair potential ∆ introduces particle-hole symmetry without
breaking the chiral symmetry, since the Bogoliubov-De Gennes Hamilto-
nian

H =

(
H0 − µ −iσy∆
iσy∆∗ µ−H∗0

)
(3.5)

still anticommutes with σz for µ = 0.
Therefore, overlapping Majorana zero-modes in a superconductor/topological

insulator heterostructure (the Fu-Kane model52) will not split when the
chemical potential is tuned to within a Thouless energy Nδ0 from the
Dirac point53–55. In this 2D geometry one needs random scattering by
disorder to produce a finite density of states at E = 0, but in order to
preserve the chiral symmetry the disorder cannot be electrostatic (V must
remain zero). Scattering by a random vector potential is one possibil-
ity56,57, or alternatively scattering by random surface deformations58–60.
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

Figure 3.1: Andreev billiard on the conducting surface of a three-dimensional topolog-
ical insulator in a magnetic field. The winding number ν of the superconducting order
parameter around the billiard is associated with |ν| Majorana zero-modes, that affect the
quantum delay time when the Fermi level lines up with the Dirac point (red dot) of the
conical band structure.

To be definite, we will refer to the 2D Andreev billiard geometry in the
following, but our results apply as well to 1D nanowires∗.

The unitary scattering matrix S(E) of the Andreev billiard is obtained
from the Green’s function G(E) = K(E −H)−1K† via

S(E) = [1− iπG(E)][1 + iπG(E)]−1. (3.6)

The matrix K describes the coupling of the quasibound states inside
the billiard to the continuum outside via 2N scattering channels61. We
assume that K commutes with σz so as not to spoil the chiral symmetry
of the Green’s function and scattering matrix,

σzG(E) = −G(−E)σz ⇒ σzS(E) = S†(−E)σz. (3.7)

It follows that the matrix product S0 = σzS(0) is both Hermitian and
unitary, so its eigenvalues can only be +1 or −1. There are N ± ν0 eigen-
values equal to ±1, where the socalled matrix signature ν0 is determined
by the number of Majorana zero-modes62:

ν0 = 1
2 TrS0 =

{
ν if |ν| ≤ N,
N (sign ν) if |ν| ≥ N. . (3.8)

∗According to the “ten-fold way” classification of topological states of mat-
ter29–31,40, class BDI is nontrivial in 1D but not in 2D. To reconcile this with
the 2D realization of Fig. 4.1, we refer to the analysis of Teo and Kane54, who
showed that the effective dimensionality for a topological defect is d− d′, where d = 2,
d′ = 1 for a vortex on the surface of a topological insulator. More generally, d is the
dimensionality of the Brillouin zone and d′ is the dimensionality of a contour that
encloses the defect.
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3.2 Chiral symmetry and time-delay matrix

At the Fermi level, the time-delay matrix (4.8) depends on S0 and
on the first-order energy variation, σzS(E) = S0 · [1 + iES1 + O(E2)].
Unitarity requires that S1 is Hermitian and the chiral symmetry (3.7)
then implies that S1 commutes with S0. Since Q(0) ≡ Q0 = ~S1, the
same applies to the time-delay matrix at the Fermi level: S0Q0 = Q0S0.
This implies the block structure

S0 = U0

(
1N+

0
0 −1N−

)
U†0 , Q0 = U0

(
Q+ 0
0 Q−

)
U†0 , (3.9)

with 1n the n× n unit matrix, U0 a 2N × 2N unitary matrix, and Q±
a pair of N± ×N± Hermitian matrices. There are therefore two sets of
delay times τ±n , n = 1, 2, . . . N±, corresponding to an eigenvalue ±1 of
S0.

After these preparations we can now state our central result: For ballis-
tic coupling the two matrices Q−1

+ and Q−1
− are statistically independent,

each described by its own Wishart ensemble63 and eigenvalue distribution
P± of γ±n = 1/τ±n given by

P±({γ±n }) ∝
N±∏

j>i=1

|γ±i − γ±j |β
N±∏
k=1

(γ±k )β/2−1e−βτHγ
±
k /4

× (γ±k )(β/2)|±ν−N |, (3.10)

with symmetry index β = 1 for the class BDI Hamiltonian (3.5). The
distribution (3.10) holds also for |ν| ≥ N , when the scattering matrix
signature (3.8) is saturated. In that case a single Wishart ensemble
remains for all 2N delay times, with distribution

P ({γn}) ∝
2N∏

j>i=1

|γi − γj |β
2N∏
k=1

γ
β/2−1
k e−βτHγk/4

× γ(β/2)(|ν|−N)
k , |ν| ≥ N. (3.11)

The derivation of Eq. (3.10) starts from the Gaussian ensemble for
Hamiltonians with chiral symmetry8,42,

H =

(
0 A
A† 0

)
, P (A) ∝ exp

(
− βπ2

8δ2
0N

TrAA†
)
. (3.12)

The rectangular matrix A has dimensions N × (N + ν), so H has |ν|
eigenvalues pinned to zero. The matrix elements of A are real (β = 1,
symmetry class BDI, chiral orthogonal ensemble), complex (β = 2, class
AIII, chiral unitary ensemble) or quaternion (β = 4, class CII, chiral
symplectic ensemble).
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

The coupling matrix K = K1 ⊕K2 is composed of two rectangular
blocks of dimensions N ×N and N × (N + ν), having nonzero matrix
elements

(K1)nn = (K2)nn = κn, n = 1, 2, . . . N, (3.13)

with κn =
√

2N δ0/π2 ≡ κ0 for ballistic coupling. These matrices
determine the time-delay matrix (4.8) via Eq. (3.6). At the Fermi level
one has

Q0 = 2π~ΩΩ†, Ω = K(H + iπK†K)−1. (3.14)

We seek the distribution of Q0 given the Gaussian distribution of H, in
the limit N →∞ at fixed ν.

The corresponding problem in the absence of chiral symmetry was
solved9,38 by using the unitary invariance of the distribution to perform
the calculation in the limit S → −1, when a major simplification occurs.
Here this would only work in the topologically trivial case∗ ν0 = 0,
so a different approach is needed. We would like to exploit the block
decomposition (3.12) of the Hamiltonian, but this decomposition is lost
in Eq. (3.14).

Unitary invariance does allow us to directly obtain the distribution of
the eigenvectors of Q± = U± diag (τ±1 , τ

±
2 , . . .)U

†
±. From the invariance

P (S0, Q0) = P (V S0V
†, V Q0V

†) under joint unitary transformations of
S0 and Q0 we conclude that the matrices of eigenvectors U0, U+, U− are
all independent and uniformly distributed in the unitary group (for β = 2,
and in the orthogonal or symplectic subgroups for β = 1 or β = 4).

The “trick” that allows us to obtain the eigenvalue distribution is to
note that Q̃0 = 2π~Ω†Ω has the same nonzero eigenvalues as Q0 — but
unlike Q0 it is block-diagonal:

Q̃0 = 2π~
(

Λ−1
− 0
0 Λ−1

+

)
, (3.15a)

Λ− = π2K†1K1 +A(K†2K2 + ε)−1A†, (3.15b)

Λ+ = π2K†2K2 +A†(K†1K1 + ε)−1A. (3.15c)

The infinitesimal ε is introduced to regularize the inversion of the singular
matrices K†nKn = κ2

0Pn, where (Pn)ij = 1 if 1 ≤ i = j ≤ N and zero
otherwise. In the limit ε→ 0 some eigenvalues of Λ± diverge, while the
others converge to the inverse delay times γ±n .

The calculation of the eigenvalues of Λ± in the ε → 0 limit is now
a matter of perturbation theory64. This is a degenerate perturbation
expansion in the null space ofA(1N+ν−P2)A† for Λ+ and in the null space
of A†(1N −P1)A for Λ−. The small perturbation (an order ε smaller than

∗This complication was explained to us by P. W. Brouwer.
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3.2 Chiral symmetry and time-delay matrix

Figure 3.2: Probability distributions in symmetry class BDI (β = 1) of the n-th inverse
delay time γn, ordered from small to large: 0 < γ1 < γ2 · · · < γ2N , with N = 4. The
various plots are for different numbers ν = 0, 1, 2, . . . 6 of Majorana zero-modes. The black
histograms of the chiral Gaussian ensemble (3.12) (calculated for N = 80) are almost
indistinguishable from the the red histograms of the Wishart ensemble, validating our
theory. The divergent peak of P (γ1) for ν = 3, 4, 5 is responsible for the divergence of
the average density of states (3.3) when the number of zero-modes differs by less than two
units from the number of channels.

the leading order term) is π2κ2
0P1 +κ−2

0 AP2A† and π2κ2
0P2 +κ−2

0 A†P1A,
for Λ+ and Λ− respectively. The Gaussian distribution (3.12) of the
matrix elements of A results in the eigenvalue distributions P ({γn}) =
P+({γ+

n })P−({γ−n }) given by Eq. (3.10).
To test our analysis, we have numerically generated random matrices

from the chiral Gaussian ensemble, on the one hand, and from the Wishart
ensemble, on the other hand, and compared the resulting time delay
matrices. We find excellent agreement of the delay-time statistics for all
three values of the symmetry index β ∈ {1, 2, 4}, representative plots for
β = 1 are shown in Fig. 3.2.

In view of Eq. (3.3) we can directly apply the delay-time distribution to
determine the density ρ(E) of quasi-bound states in the Andreev billiard.
This is the density of states in the continuous spectrum. For |ν| > N the
full density of states contains additionally a contribution (|ν| −N)δ(E)
from the discrete spectrum of zero-modes that are not coupled to the
continuum∗.

∗The |ν| − N uncoupled zero-modes in the Andreev billiard, not broadened by
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

Figure 3.3: Probability distribution of the Fermi-level density of states, calculated from
Eqs. (3.17) and (3.18) in symmetry class D (only particle-hole symmetry) and class BDI
(particle-hole with chiral symmetry). In class D there is no dependence on the presence or
absence of Majorana zero-modes38, while in class BDI there is.

The probability distribution of the Fermi-level density of states ρ0 =
ρ(0) follows upon integration of Eq. (3.10). The ensemble average 〈ρ0〉
has a closed-form expression64,

δ0〈ρ0〉 =

{
N(N+1−2/β)+ν2

(N+1−2/β)2−ν2 , if |ν| < N + 1− 2/β,
N

|ν|−N+1−2/β , if |ν| > N − 1 + 2/β.
(3.16)

For β = 1, |ν| ∈ {N,N ± 1} and for β = 2, |ν| = N the average of ρ0

diverges. (There is no divergency for β = 4.) Notice that the |ν| − N
uncoupled zero-modes still affect the density of states coupled to the
continuum, because they repel the quasi-bound states away from the
Fermi level.

As a concrete example we return to the Andreev billiard at the surface of
a topological insulator of Fig. 4.1, and contrast the delay-time distribution
at the Dirac point [chemical potential µ = 0 in the Hamiltonian (3.5)]
and away from the Dirac point (µ� Nδ0). Away from the Dirac point
the symmetry class is D (only particle-hole symmetry), while at the Dirac
point the additional chiral symmetry promotes the system to class BDI.
To simplify the comparison between these two cases we take a point
contact with one electron and one hole mode (N = 1). The scattering
matrix has dimension 2× 2 and there are two delay times τ1, τ2.

The class-D distribution is independent of the presence or absence of

the 2N scattering channels into the continuum, span the null-space of H+ iπK†K.
For |ν| ≤ N all zero-modes are broadened by coupling to the continuum.
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3.3 Conclusions

Majorana zero-modes38,

PD(τ1, τ2) ∝ (τ1τ2)−3|τ1 − τ2|e−(τH/2)(1/τ1+1/τ2). (3.17)

In contrast, the class-BDI distribution (3.10) is sensitive to the number
|ν| of Majorana zero-modes,

PBDI(τ1, τ2) ∝ e−(τH/4)(1/τ1+1/τ2)

×
{

(τ1τ2)−2 for ν = 0,

(τ1τ2)−2−|ν|/2|τ1 − τ2| for |ν| ≥ 1.
(3.18)

The corresponding probability distributions of the Fermi-level density of
states ρ0 = τ1/δ0 + τ2/δ0 are plotted in Fig. 3.3. Chiral symmetry has a
strong effect even for unpaired Majorana zero-modes: While away from
the Dirac point (class D) the distribution P (ρ0) is the same for ν = 0, 1,
at the Dirac point (class BDI) these two distributions are significantly
different.

3.3 Conclusions

This chapter presents the solution to a long-standing problem in the
theory of chaotic scattering: the effect of chiral symmetry on the statistics
of the Wigner-Smith time-delay matrix Q. The solution completes a line
of investigation in random-matrix theory started six decades ago10,11,
by establishing the connection between Q and Wishart matrices for the
chiral counterparts of the Wigner-Dyson ensembles41,42. The solution
predicts an effect of Majorana zero-modes on the quantum delay-times for
chaotic scattering, with significant consequences for the density of states
(Fig. 3.3). Because the experimental search for Majorana zero-modes
operates on 1D and 2D systems with chiral symmetry, the general and
exact results obtained here are likely to provide a reliable starting point
for more detailed investigations.

3.4 Appendix A. Details of the calculation
of the Wigner-Smith time-delay
distribution in the chiral ensembles

3.4.1 Wishart matrix preliminaries

Wishart matrices originate from multivariate statistics12. We collect
some formulas we need8.
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

The Hermitian positive definite matrix WW † is called a Wishart matrix
if the n×m (m ≥ n) rectangular matrix W has real (β = 1), complex (β =
2), or quaternion (β = 4) matrix elements with a Gaussian distribution.
For unit covariance matrix, 〈WijW

∗
i′j′〉 = δii′δjj′ , the distribution reads

P (W ) ∝ exp
(
− 1

2β TrWW †
)
. (3.19)

The eigenvalues of WW † have the probability distribution

P (λ1, λ2, . . . λn) ∝
n∏

j>i=1

|λi − λj |β

×
n∏
k=1

λ
β/2−1
k λ

β(m−n)/2
k e−βλk/2, λk > 0. (3.20)

The distribution (3.20) is called Wishart distribution, or Laguerre distri-
bution because of its connection with Laguerre polynomials.

3.4.2 Degenerate perturbation theory

We seek the eigenvalue distribution of the 2N × 2N -dimensional Wigner-
Smith time-delay matrix

Q0 = −i~S† dS
dE

= 2π~ΩΩ†, Ω = K(H + iπK†K)−1. (3.21)

As explained in the main text, the key step that allows us to make
progress is to invert the order of Ω and Ω†, and to consider a larger
matrix that is block-diagonal:

Q̃0 = 2π~Ω†Ω = 2π~(Λ−1
− ⊕ Λ−1

+ ), (3.22a)

Λ− =π2K†1K1 +A(K†2K2 + ε)−1A†, (3.22b)

Λ+ =π2K†2K2 +A†(K†1K1 + ε)−1A. (3.22c)

In this way we can separate the chirality sectors from the very beginning,
which is a major simplification.

The two matrices Q0 and Q̃0 have the same set of nonzero eigenvalues,
and Q̃0 has an additional set of eigenvalues that are identically zero. The
corresponding diverging eigenvalues of Λ± need to be separated from the
finite eigenvalues that determine the inverse delay times γ±n . We assume
|ν| ≤ N and handle the case |ν| > N at the end.

To simplify the notation we scale the chiral blocks in the Hamiltonian
(3.12) as A = (2N δ0/π)a, where a has the Gaussian distribution

P (a) ∝ exp
(
− 1

2βN Tr aa†
)
. (3.23)
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3.4 Appendix A. Details of the calculation of the time-delay distribution

We scale the coupling matrix as Ki = (2N δ0/π2)1/2Pi. The rank-N
projector onto the open channels in chirality sector i = 1, 2 is PT

i Pi, with
PiP

T
i = 1N .

To access the finite eigenvalues of Λ±, we need to perform degenerate
perturbation theory in the null spaces of

Λ
(0)
− = a(1N+ν − PT

2 P2)a†, Λ
(0)
+ = a†(1N − PT

1 P1)a, (3.24)

with perturbation

δΛ− = 2N δ0(PT
1 P1 + aPT

2 P2a
†),

δΛ+ = 2N δ0(PT
2 P2 + a†PT

1 P1a).
(3.25)

The null space of Λ
(0)
± has rank N± = N ± ν ≥ 0. To project onto this

null space we make an eigenvalue decomposition,

Λ
(0)
− = u−s−u

†
−, Λ

(0)
+ = u+s+u

†
+. (3.26)

The matrix u± is unitary and s± is a diagonal matrix with nonnegative
entries in descending order. The last N± = N ± ν entries on the diagonal
of s± vanish, so the projector p± onto the null space consists of the last
N± columns of u±. The dimensionalities of p+ and p− are (N + ν)×N+

and N × N−, respectively. For later use we note that the null space

condition p†±Λ
(0)
± = 0 = Λ

(0)
± p± requires that

PT
2 P2a

†p− = a†p−, PT
1 P1ap+ = ap+. (3.27)

The N± finite eigenvalues of Λ± are the eigenvalues of the projected
perturbation p†±δΛ±p±, which we decompose as

p†±δΛ±p± = 2N δ0(X±X
†
± + Y±Y

†
±), (3.28)

X− = p†−P
T
1 , X+ = p†+P

T
2 ,

Y− = p†−aP
T
2 , Y+ = p†+a

†PT
1 .

(3.29)

The dimensionality of X± and Y± is N± ×N . The null space condition
(3.27) implies the constraint

X−Y
†
+ = Y−X

†
+. (3.30)

It is helpful to rescale and combine X±, Y± into a single matrix W±
of dimension N± × 2N ,

W+ =

√
N δ0
π~

(
X+, Y+

)
, W− =

√
N δ0
π~

(
−Y−, X−

)
. (3.31)
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

The eigenvalues of W±W
†
± equal the inverse delay times γ±n and the

constraint (3.30) now reads

W−W
†
+ = 0. (3.32)

Considering first the marginal distributions P±(W±) of W+ and W−
separately, we see that these matrices are constructed from rank-N sub-
blocks taken from rank-N random unitary matrices u± and Gaussian
matrices a. In the limit N →∞ at fixed N the marginal distributions of
W± tend to a Gaussian,

P±(W±) ∝ exp

(
−βπ~

2δ0
TrW±W

†
±

)
. (3.33)

In view of Eq. (3.20), the eigenvalues of W±W
†
± then have marginal

distributions P±({γ±n }) of the Wishart form (3.10).
It remains to show that the two sets of eigenvalues γ+

n and γ−n have
independent distributions, so that

P ({γ±n }) = P+({γ+
n })P−({γ−n }). (3.34)

The two matrices W+ and W− are not independent, because of the con-
straint (3.32). To see that this constraint has no effect on the eigenvalue
distributions, we make the singular value decomposition

W± = ω±

(
diag

(√
γ±n

)
, ∅N±,(2N−N±)

)
Ω†±. (3.35)

The unitary matrices ω± and Ω± have dimension N±×N± and 2N ×2N ,
respectively, and ∅n,m is the n×m null matrix. The constraint (3.32) is
now expressed exclusively in terms of the matrices Ω± — the first N−
columns of Ω− have to be orthogonal to the first N+ columns of Ω+. The
matrix products

W±W
†
± = ω± diag (γ±n )ω†± (3.36)

thus have independent Wishart distributions.
All of this is for |ν| ≤ N . The extension to |ν| > N goes as follows. For

ν > N one has N− = 0, so we deal only with a single set of delay times,
obtained as the N+ = 2N eigenvalues of the Wishart matrix W †+W+.

(We have inverted the order, because W+W
†
+ has a spurious set of ν

vanishing eigenvalues, representing zero-modes that are uncoupled to
the continuum.) Similarly, for ν < −N one has N+ = 0 and the delay

times are the N− = 2N eigenvalues of the Wishart matrix W †−W−. The
resulting eigenvalue distribution is Eq. (3.11).

70



3.4 Appendix A. Details of the calculation of the time-delay distribution

3.4.3 Numerical test

We have performed extensive numerical simulations to test our analytical
result of two independent Wishart distributions for the inverse delay
times, comparing with a direct calculation using the Gaussian ensemble
of random Hamiltonians. Some results for β = 1, symmetry class BDI
are show in the main text (Fig. 3.2), some more results for all three chiral
symmetry classes are shown in Fig. 3.4. The quality of the agreement
(the two sets of histograms are almost indistinguishable) convinces us of
the validity of our analysis.

3.4.4 Generalization to unbalanced coupling

The results in Appendix 3.4.2 pertain to the case of an equal number
N1 = N2 = N of channels coupling to each chiral sector. This is the
appropriate case in the context of superconductivity, where the chirality
refers to the electron and hole degrees of freedom — which are balanced
under most circumstances. In other contexts, in particular when the
chirality refers to a sublattice degree of freedom, the coupling may be
unbalanced. We generalize our results to that case.

When N1 = N2 + δN Eq. (3.8) for the topological invariant should be
replaced by

ν0 = 1
2 TrS0 = max

[
− 1

2Ntot,min
(
ν + 1

2δN,
1
2Ntot

)]
. (3.37)

The unitary and Hermitian matrix S0 has dimension 2Ntot × 2Ntot, with
Ntot = N1 +N2. When Ntot is odd the number ν0 is half-integer. The
winding number ν is always an integer.

Because S0 stills commutes with the time-delay matrix Q0 we still have
two sets of inverse delay times γ±n , associated to the N± = Ntot/2± ν0

eigenvalues of S0 equal to ±1. The two sets again have independent
Wishart distributions,

P±({γ±n }) ∝
N±∏

j>i=1

|γ±i − γ±j |β
N±∏
k=1

(γ±k )β/2−1e−βτHγ
±
k /4

× (γ±k )(β/4)|Ntot∓δN∓2ν|. (3.38)

This formula also applies to the saturation regime |2ν+δN | > Ntot, where
either N+ or N− vanishes and only one set of delay times remains. In
this regime the system has an additional |ν + δN/2| −Ntot/2 zero-modes
that are not coupled to the continuum.

We can use Eq. (3.38) to make contact with the “single-site limit”
N1 = 1, N2 = 0 studied by Fyodorov and Ossipov39. We distinguish
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

Figure 3.4: Probability distributions in symmetry class BDI (β = 1), class AIII (β = 2),
and class CII (β = 4) of the n-th inverse delay time γn, ordered from small to large:
0 < γ1 < γ2 · · · < γ2N , with N = 4. All plots are for ν = 2 Majorana zero-modes.
The black histograms of the chiral Gaussian ensemble (3.12) (calculated with N = 80 for
β = 1, 2 and N = 120 for β = 4) are almost indistinguishable from the red histograms
of the Wishart ensemble. In each panel the inset shows the corresponding probability
distribution of the density of states ρ0 =

∑
n(2π~γn)−1.
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3.4 Appendix A. Details of the calculation of the time-delay distribution

positive and negative winding number ν. For ν ≥ 0 one has ν0 = 1/2,
N+ = 1, N− = 0. The single delay time τ ≡ 1/γ+

1 has distribution

P (τ) ∝ τ−(β/2)(1+ν)−1e−βτH/4τ , ν ≥ 0, (3.39)

in agreement with Ref.39 for β = 2. There are then ν zero-modes not
coupled to the continuum.

For negative ν (or equivalently, positive ν with N1 = 0, N2 = 1) Ref.39

argues that all delay times diverge, but instead we do find one finite
τ ≡ 1/γ−1 with distribution

P (τ) ∝ τ (β/2)ν−1e−βτH/4τ , ν ≤ −1, (3.40)

accompanied by |ν| − 1 zero-modes not coupled to the continuum.

3.4.5 Calculation of the average density of states

The formula (3.16) for the ensemble averaged density of states results
upon integration of

2π~δ0〈ρ0〉 =

∫ ∞
0

dγ+
1 · · ·

∫ ∞
0

dγ+
N+
P+({γ+

n })
N+∑
n=1

1

γ+
n

+

∫ ∞
0

dγ−1 · · ·
∫ ∞

0

dγ−N−P−({γ−n })
N−∑
n=1

1

γ−n
, (3.41)

with probability distributions P± given by Eq. (3.10). These integrals
can be carried out in closed form, as follows.

We need to evaluate an expression of the form

I =
1

C

N∏
k=1

∫ ∞
0

dγk γ
p
ke
−βτHγk/4

N∏
j>i=1

|γi − γj |β
(

N∑
n=1

1

γn

)
, (3.42)

with normalization integral

C =

N∏
k=1

∫ ∞
0

dγk γ
p
ke
−βτHγk/4

N∏
j>i=1

|γi − γj |β . (3.43)

For a finite answer we need an exponent p > 0.
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

We substitute γp−1
k = p−1dγpk/dγk and perform a partial integration,

I =
1

pC

N∏
k=1

∫ ∞
0

dγk e
−βτHγk/4

N∏
j>i=1

|γi − γj |β

×
(

N∑
n=1

d

dγn

)
N∏
k′=1

γpk′ (3.44)

=
βNτH

4p
− 1

pC

N∏
k=1

∫ ∞
0

dγk γ
p
ke
−βτHγk/4

×
(

N∑
n=1

d

dγn

)
N∏

j>i=1

|γi − γj |β

=
βNτH

4p
, (3.45)

because (
N∑
n=1

d

dγn

)
N∏

j>i=1

|γi − γj |β = 0. (3.46)
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4974 (1996).

[16] P. W. Brouwer, S. A. van Langen, K. M. Frahm, M. Büttiker, and
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