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2 Time-delay matrix, midgap
spectral peak, and
thermopower of an Andreev
billiard

2.1 Introduction

A semiconductor quantum dot feels the proximity to a superconductor
even when a magnetic field has closed the excitation gap that would open
in zero magnetic field: The average density of states has either a peak or
a dip,1

ρ±(E) = δ−1
0 ± sin(2πE/δ0)

2πE
, (2.1)

see Fig. 2.1, within a mean level spacing δ0 from the Fermi level at
E = 0 (in the middle of the superconducting gap). The appearance of
a midgap spectral peak or dip distinguishes the two symmetry classes
C (dip, when spin-rotation symmetry is preserved) and D (peak, spin-
rotation symmetry is broken by strong spin-orbit coupling). These
Altland-Zirnbauer symmetry classes exist because of the ±E electron-hole
symmetry in a superconductor, and are a late addition to the Wigner-
Dyson symmetry classes conceived in the 1960’s to describe universal
properties of nonsuperconducting systems.2

Electron-hole symmetry in the absence of spin-rotation symmetry
allows for a nondegenerate level at E = 0, a socalled Majorana zero-
mode.3,4 The class-D spectral peak is then converted into a dip, ρ+ →
ρ−+ δ(E), such that the integrated density of states remains the same as
without the zero-mode.5,6 The entire spectral weight of this Fermi-level
anomaly is 1/2, consistent with the notion that a Majorana zero-mode is
a half-fermion.7

Here we study what happens if the quantum dot is coupled to M
conducting modes, so that the discrete spectrum of the closed system
is broadened into a continuum. We focus on the strong-coupling limit,
typically realized by a ballistic point contact, complementing earlier
work on the limit of weak coupling by a tunnel barrier or a localized
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2 Time-delay matrix, midgap spectral peak, and thermopower

Figure 2.1: Ensemble-averaged density of states (2.1) of an Andreev billiard in symmetry
class C (ρ−, dashed curve), or class D without a Majorana zero-mode (ρ+, solid curve).
The class D billiard with a Majorana zero-mode has the smooth density of states ρ−
together with the delta-function contribution from the zero-mode. In this chapter we
investigate how the midgap spectral peak or dip evolves when the billiard is opened via a
ballistic point contact to a metallic reservoir. We find that the distinction between class
C and D remains, but the signature of the Majorana zero-mode is lost.

conductor.8–15 The simplicity of the strong-coupling limit allows for an
analytical calculation using random-matrix theory of the entire probability
distribution of the Fermi-level density of states — not just the ensemble
average. Using the same random-matrix approach we also calculate the
probability distribution of the thermopower of the quantum dot, which
is nonzero in spite of electron-hole symmetry when the superconductor
contains gapless Majorana edge modes.16

The key technical ingredient that makes these calculations possible
is the joint probability distribution of the scattering matrix S and the
time-delay matrix Q = −i~S†dS/dE, in the limit E → 0. This is known
for the Wigner-Dyson ensembles,17 and here we extend that to the
Altland-Zirnbauer ensembles. The Fermi-level density of states then
follows directly from the trace of Q, while the thermopower requires
also knowledge of the statistics of S. We find that these probability
distributions depend on the symmetry class (C or D), and on the number
M of conducting modes, but are the same irrespective of whether the
quantum dot contains a Majorana zero-mode or not. A previous calcu-
lation14 had found that the density-of-states signature of a Majorana
zero-mode becomes less evident when the quantum dot is coupled by a
tunnel barrier to the continuum. We conclude that ballistic coupling
completely removes any trace of the Majorana zero-mode in the density
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2.2 Scattering formula for the thermopower

Figure 2.2: Andreev-billiard geometry to measure the thermopower S of a semiconductor
quantum dot coupled to chiral Majorana modes at the edge of a topological superconductor.
A temperature difference δT induces a voltage difference V = −SδT under the condition
that no electrical current flows between the contacts. For a random-matrix theory we
assume that the Majorana modes are uniformly mixed with the modes in the point contact,
by chaotic scattering events in the quantum dot.

of states, as well as in the thermopower — but not, we hasten to add, in
the Andreev conductance.18

The outline of the chapter is as follows. In the next section we present
the geometry of an “Andreev billiard”,19 a semiconductor quantum
dot with Andreev reflection from a superconductor and a point-contact
coupling to a metallic conductor. (Systems of this type have been studied
experimentally, for example in Refs. 20–22.) We derive a formula relating
the thermopower to the scattering matrix S and time-delay matrix Q, in
a form which is suitable for a random-matrix approach. The distribution
of the transmission eigenvalues Tn of S was already derived in Ref. 23;
what we need additionally is the distribution of the eigenvalues Dn of Q
(the delay times), which we present in Sec. 2.3. The distributions of the
Fermi-level density of states and thermopower are given in Secs. 2.4 and
2.5, respectively. We conclude in Sec. 4.10.

2.2 Scattering formula for the thermopower

We study the thermopower of a quantum dot connecting a two-dimensional
topological superconductor and a semiconductor two-dimensional elec-
tron gas (see Fig. 2.2). In equilibrium the normal-metal contact and the
superconducting contact have a common temperature T0 and chemical
potential EF. Application of a temperature difference δT induces a volt-
age difference V at zero electrical current. The ratio S = −V/δT is the
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2 Time-delay matrix, midgap spectral peak, and thermopower

thermopower or Seebeck coefficient.
In the low-temperature limit δT � T0 → 0 the thermopower is given

by the Cutler-Mott formula,24

S/S0 = − lim
E→0

1

G

dG

dE
, S0 =

π2k2
BT0

3e
, (2.2)

in terms of the electrical conductance G(E) near the Fermi level (E = 0).
See Ref. 16 for a demonstration that this relationship, originally derived
for normal metals, still holds when one of the contacts is superconducting
and G is the Andreev conductance.

Without gapless Majorana modes in the superconductor the Andreev
conductance is an even function of E, so the ratio S/S0 vanishes in
the low-temperature limit. For that reason, with some exceptions,25,26

most studies of the effect of a superconductor on thermo-electric trans-
port take a three-terminal geometry, where the temperature difference is
applied between two normal contacts and the conductance is not so con-
strained.27–36 As pointed out by Hou, Shtengel, and Refael,16 Majorana
edge modes break the ±E symmetry of the conductance allowing for
thermo-electricity in a two-terminal geometry — even if they themselves
carry only heat and no charge.

In a random-matrix formulation of the problem two matrices enter, the
scattering matrix at the Fermi level S0 ≡ S(E = 0) and the Wigner-Smith
time-delay matrix37–39

Q = −i~ lim
E→0

S†
dS

dE
. (2.3)

Before proceeding to the random-matrix theory, we first express the
thermopower in terms of these two matrices. The existing expressions in
the literature40,41 cannot be directly applied for this purpose, since they
do not incorporate Andreev reflection processes.

The Andreev conductance is given by42

G(E)/G0 = 1
2N − Tr ree(E)r†ee(E) + Tr rhe(E)r†he(E), (2.4)

in terms of the matrix of reflection amplitudes

r =

(
ree reh
rhe rhh

)
(2.5)

for electrons and holes injected via a point contact into the quantum
dot. The submatrix ree describes normal reflection (from electron back
to electron), while rhe describes Andreev reflection (from electron to hole,
induced by the proximity effect of the superconductor that interfaces
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2.2 Scattering formula for the thermopower

with the quantum dot). The conductance quantum is G0 = e2/h and
N is the total number of modes in the point contact (counting spin and
electron-hole degrees of freedom), so r has dimension N ×N .

Without edge modes in the superconductor, the reflection matrix r
would be unitary at energies E below the superconducting gap. In that
case one can simplify Eq. (2.4) as G/G0 = 2 Tr rher

†
he. Because of the

gapless edge modes the more general formula (2.4) is needed, which does
not assume unitarity of r.

Equivalently, Eq. (2.4) may be written in terms of the full unitary
scattering matrix S(E),

G(E)/G0 = 1
2N − 1

2TrPτzS(E)P(1 + τz)S
†(E), (2.6)

where the Pauli matrix τz acts on the electron-hole degree of freedom
and P projects onto the modes at the point contact:

S =

(
r t′

t r′

)
, Pτz =

(
τz 0
0 0

)
. (2.7)

The off-diagonal matrix blocks t, t′ couple the N ′ Majorana edge modes
to the N electron-hole modes in the point contact, mediated by the
quasibound states in the quantum dot. The incoming and outgoing
Majorana edge modes are coupled by the N ′ ×N ′ submatrix r′.

Electron-hole symmetry in class D is most easily accounted for by first
making a unitary transformation from S to

S′ =

(
U 0
0 U

)
S

(
U† 0
0 U†

)
, U =

√
1
2

(
1 1
i −i

)
. (2.8)

In this socalled Majorana basis∗ the electron-hole symmetry relation
reads

S′(E) = S′∗(−E). (2.9)

The Pauli matrix τz transforms into τy, so the conductance is given in
the Majorana basis by

G(E)/G0 = 1
2N − 1

2TrPτyS′(E)P(1 + τy)S′†(E). (2.10)

In what follows we will omit the prime, for ease of notation.
To first order in E the energy dependence of the scattering matrix is

given by
S(E) = S0[1 + iE~−1Q+O(E2)]. (2.11)

∗The transformation (2.8) from electron-hole basis to Majorana basis assumes
that there is an even number of modes at each contact. This number is odd if the
superconductor has an unpaired Majorana mode, in which case we have to work in
the Majorana basis from the very beginning.
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2 Time-delay matrix, midgap spectral peak, and thermopower

Unitarity and electron-hole symmetry together require that S0 is real
orthogonal and Q is real symmetric, both in the Majorana basis. The
conductance, still to first order in E, then takes the form

G(E)/G0 = 1
2N − 1

2TrPτyS0P(1 + τy)ST
0

− 1
2 iE~−1 TrPτyS0

[
QP(1 + τy)− P(1 + τy)Q

]
ST

0 . (2.12)

Since TrPτyX vanishes for any symmetric matrix X, we can immedi-
ately set some of the traces in Eq. (2.12) to zero:

G(E)/G0 = 1
2N − 1

2TrPτyS0PτyST
0

− 1
2 iE~−1 TrPτyS0

(
QP − PQ

)
ST

0 . (2.13)

The resulting thermopower is

S/S0 = i~−1 TrPτyS0(QP − PQ)ST
0

N − TrPτyS0PτyST
0

, (2.14)

in the Majorana basis. Equivalently, in the electron-hole basis one has

S/S0 = i~−1 TrPτzS0(QP − PQ)S†0

N − TrPτzS0PτzS†0
. (2.15)

This scattering formula for the thermopower is a convenient starting
point for a random-matrix calculation. Notice that the commutator of Q
and P in the numerator ensures a vanishing thermopower in the absence
of gapless modes in the superconductor, because then the projector P is
just the identity.

2.3 Delay-time distribution in the
Altland-Zirnbauer ensembles

Chaotic scattering in the quantum dot mixes the N ′ Majorana edge modes
with the N electron-hole modes in the point contact. The assumption
that the mixing uniformly covers the whole available phase space produces
one of the circular ensembles of random-matrix theory, distinguished
by fundamental symmetries that restrict the available phase space.43

Two Altland-Zirnbauer symmetry classes support chiral Majorana modes
at the edge of a two-dimensional superconductor,44–46 corresponding to
spin-singlet d-wave pairing (symmetry class C) or spin-triplet p-wave
pairing (symmetry class D). Time-reversal symmetry is broken in both, in
class C there is electron-hole symmetry as well as spin-rotation symmetry,
while in class D only electron-hole symmetry remains. (See Table 2.1.)
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2.3 Delay-time distribution in the Altland-Zirnbauer ensembles

symmetry class C D
pair potential spin-singlet d-wave spin-triplet p-wave
canonical basis electron-hole Majorana
S-matrix elements quaternion real
S-matrix space symplectic orthogonal
circular ensemble CQE CRE

dT 4 1
dE 2 1
α 2 −1
β 4 1

Table 2.1: The two Altland-Zirnbauer symmetry classes that support chiral Majorana
edge modes, with d-wave pairing (class C) or p-wave pairing (class D). The “canonical
basis” is the basis in which the scattering matrix elements are quaternion (class C) or real
(class D). The degeneracies dT and dE refer to transmission eigenvalues and energy eigen-
values, respectively. The α and β parameters determine the exponents in the probability
distributions (2.17) and (2.18) of the transmission eigenvalues and inverse delay times.

The uniformity of the circular ensembles is expressed by the invariance

P [S(E)] = P [U · S(E) · U ′] (2.16)

of the distribution functional P [S(E)] upon multiplication of the scat-
tering matrix by a pair of energy-independent matrices U,U ′, restricted
by symmetry to a subset of the full unitary group: In class C they are
quaternion symplectic∗ in the electron-hole basis (circular quaternion en-
semble, CQE), while in class D they are real orthogonal in the Majorana
basis (circular real ensemble, CRE).

The unitary invariance (2.16) of the Wigner-Dyson scattering matrix
ensembles was postulated in Ref. 47 and derived from the corresponding
Hamiltonian ensembles in Ref. 48. We extend the derivation to the
Altland-Zirnbauer ensembles in App. 2.7.1. The key step in this extension
is to ascertain that the class-D unitary invariance applies to U,U ′ in
the full orthogonal group — without any restriction on the sign of the
determinant.

For the thermopower statistics we need the joint distribution P (S0, Q)
of Fermi-level scattering matrix and time-delay matrix. The invariance
(2.16) implies P (S0, Q) = P (−1, Q) (take U = −S†0, U ′ = 1), so Q is
statistically independent of S0 and the two matrices can be considered
separately.17†

∗We recall the definition of a quaternion, q = q0τ0 +iq1τx +iq2τy +iq3τz , with real
coefficients qn. A symplectic matrix U is unitary, UU† = 1, and satisfies U∗ = τyUτy .
Since q∗ = τyqτy , a symplectic matrix is a unitary matrix with quaternion elements
(just like an orthogonal matrix is a unitary matrix with real elements).

†Ref. 17 uses a modified definition of the time-delay matrix, with a symmetrized
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2 Time-delay matrix, midgap spectral peak, and thermopower

The uniform distribution of S0 in the symplectic group (CQE, class
C) or orthogonal group (CRE, class D) directly gives the probability
distribution of the transmission eigenvalues Tn ∈ [0, 1] of quasiparticles
from the normal metal into the superconductor. [These are the quantities
that determine the thermal conductance ∝ ∑n Tn, not the electrical
conductance (2.4).] For a transmission matrix of dimension N ′ × N
there are Nmin = min (N,N ′) nonzero transmission eigenvalues, fourfold
degenerate (dT = 4) in class C and nondegenerate (dT = 1) in class D.
The Nmin/dT distinct Tn’s have probability distribution23

P ({Tn}) ∝
∏
k

T
β|δN |/2
k T

−1+β/2
k (1− Tk)α/2

×
∏
i<j

|Ti − Tj |β , (2.17)

with δN = (N −N ′)/dT and parameters α, β listed in Table 2.1.49

The Hermitian positive-definite matrix Q has dimension M×M with
M = N+N ′. Its eigenvalues Dn > 0 are the delay times, and γn ≡ 1/Dn

are the corresponding rates. The degeneracy dT of the Dn’s is the same
as that of the Tn’s. The derivation of the distribution P (γ1, γ2, . . . γM )
of the M = M/dT distinct delay rates is given in App. 2.7, for all
four Altland-Zirnbauer symmetry classes: C, D without time-reversal
symmetry and CI, DIII with time-reversal symmetry. The result is

P ({γn}) ∝
∏
k

Θ(γk)γ
α+Mβ/2
k exp

(
− 1

2βt0γk
)

×
∏
i<j

|γi − γj |β . (2.18)

The unit step function Θ(γ) ensures that the probability vanishes if any
γn is negative. The characteristic time t0 is defined by

t0 =
dE
dT

2π~
δ0

, (2.19)

in terms of the average spacing δ0 of dE-fold degenerate energy levels in
the isolated quantum dotThe mean level spacing δ0 includes the electron-
hole degree of freedom, so the single-electron Hamiltonian has mean level
spacing 2δ0. Since δ0 is the mean spacing of distinct levels, the mean
spacing of all levels is δ0/dE .. For α = 0 and dE = dT we recover the
result of Ref. 17 for the Wigner-Dyson ensembles.

energy derivative, to ensure the independence of S0 and Q also in the presence of time-
reversal symmetry. This modification is not needed for the class C and D ensembles
considered in the main text, so we can stay with the usual unsymmetrized definition
(4.8). The more general case is considered in App. 2.7.3.
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2.4 Fermi-level anomaly in the density of states

The difference between the Altland-Zirnbauer and Wigner-Dyson en-
sembles manifests itself in a nonzero value of α and in a difference in
the degeneracies dE and dT of energy and transmission eigenvalues (see
Table 2.1). One has dT = dE in the absence of particle-hole symmetry
or when the particle-hole conjugation operator C squares to +1; when
C2 = −1 one has dT = 2dE .∗

Already at this stage we can conclude that the thermopower distribution
in the circular ensemble does not depend on the presence or absence of
Majorana zero-modes inside the quantum dot, for example, bound to
the vortex core in a chiral p-wave superconductor.3,4 The parity of the
number nM of Majorana zero-modes fixes the sign of the determinant of
the orthogonal class-D scattering matrix,

DetS0 = (−1)nM . (2.20)

The unitary invariance (2.16) of the CRE implies, on the one hand,
that P (S0, Q) is unchanged under the transformation S0 7→ US0, U =
diag (−1, 1, 1, . . . 1), that inverts the sign of DetS0. (Here we make
essential use of the fact that Eq. (2.16) in class D applies to the full
orthogonal group.) On the other hand, the same transformation leaves
the thermopower (2.14) unaffected, provided we assign the first matrix
element to a superconducting edge mode (so Pτy commutes with U).

2.4 Fermi-level anomaly in the density of
states

2.4.1 Analytical calculation

A striking difference between the Wigner-Dyson and Altland-Zirnbauer
ensembles appears when one considers the density of states at the Fermi
level ρ0, related to the time-delay matrix by

ρ0 =
1

2π~
dT
dE

M∑
n=1

Dn. (2.21)

(The factor dT /dE is needed because delay times and energy levels may
have a different degeneracy. The density of states counts degenerate

∗To understand why the degeneracies dE and dT of energy and transmission
eigenvalues may differ in the presence of particle-hole symmetry, we recall that Kramers
degeneracy applies to Hermitian operators that commute with an anti-unitary operator
squaring to −1. The Hamiltonian H anti-commutes with the particle-hole conjugation
operator C, so Kramers theorem does not apply. In contrast, the transmission matrix
product tt† commutes with C, so when C2 = −1 its eigenvalues have a Kramers
degeneracy.
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2 Time-delay matrix, midgap spectral peak, and thermopower

levels once.) In the Wigner-Dyson ensembles the average density of
states equals exactly 1/δ0, independent of the symmetry index β and of
the number of channels M that couple the discrete spectrum inside the
quantum dot to the continuum outside.17,51

In the Altland-Zirnbauer ensembles, instead, we find from Eq. (2.18)
thatThe result (2.22) for the average density of states in the Altland-
Zirnbauer ensembles follows upon integration of the probability distribu-
tion (2.18). This can be achieved with the help of the general integral for-
mulas of F. Mezzadri and N. J. Simm, J. Math. Phys. 52, 103511 (2011),
but it’s easier to start from the zero-α equation (Mt0)−1〈∑nDn〉 = 1/M
and note that a nonzero α amounts to the substitution M 7→M + 2α/β
on the right-hand-side.

δ0〈ρ0〉 =
1

t0

〈
M∑
n=1

Dn

〉
=

M

max(0,M + 2α/β)

=


M/(M + 1) in class C for any M ≥ 1,

M/(M − 2) in class D for M ≥ 3,

∞ in class D for M = 1, 2.

(2.22)

It is known1,6,8–15 that the tunneling density of states of a superconduct-
ing quantum dot with broken time-reversal symmetry, weakly coupled
to the outside, has a Fermi-level anomaly consisting of a narrow dip in
symmetry class C and a narrow peak in class D. Eq. (2.22) shows the
effect of level broadening upon coupling via M channels to the continuum.
For M →∞ the normal-state result 1/δ0 is recovered, but for small M
the Fermi-level anomaly persists.

For M = 1, 2 the average density of states in class D diverges, because
of a long tail in the probability distribution of κ ≡ δ0ρ0:

PD(κ) =

{
(2π)−1/2κ−3/2e−(2κ)−1

for M = 1,

κ−3(2 + κ)e−2/κ for M = 2.
(2.23)

See Fig. 2.3 for a plot and a comparison with the class-C distribution,
that has a finite average for alle M .

The result (2.23) holds irrespective of the sign of DetS0, in other words,
the statistics of the Fermi-level anomaly in the CRE does not depend
on the presence or absence of an unpaired Majorana zero-mode in the
quantum dot. As we remarked at the end of the previous section, in
connection with the thermopower, this is a direct consequence of the
unitary invariance (2.16) of the circular ensemble.
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2.4 Fermi-level anomaly in the density of states

Figure 2.3: Probability distributions of the Fermi-level density of states, for M = 1 and
M = 2 modes coupling the quantum dot to the continuum, in symmetry classes C and D.
The ensemble average diverges for class D, see Eq. (2.22).

2.4.2 Numerical check

As check on our analytical result we have calculated P (ρ0) numerically
from the Gaussian ensemble of random Hamiltonians. We focus on
symmetry class D, where we can test in particular for the effect of a
Majorana zero-mode.

The Hamiltonian H is related to the scattering matrix S(E) by the
Weidenmüller formula,52,53

S(E) =
1 + iπW †(H − E)−1W

1− iπW †(H − E)−1W

= 1 + 2πiW †(Heff − E)−1W, Heff = H − iπWW †. (2.24)

The M0×M matrix W couples the M0 energy levels in the quantum dot
to M �M0 scattering channels. Ballistic coupling corresponds to

Wnm = δnm
√
M0δ0/π. (2.25)

The density of states is determined by the scattering matrix via54

ρ(E) = − i

2π

d

dE
ln DetS(E). (2.26)

From Eqs. (4.4) and (2.26) we obtain an expression for the Fermi-level
density of states in terms of the Hamiltonian,

ρ0 = Tr

([
1− 2πiW †(H†eff)−1W

]
W †H−2

eff W

)
. (2.27)
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2 Time-delay matrix, midgap spectral peak, and thermopower

Figure 2.4: Histograms: Probability distributions of the Fermi-level density of states in
symmetry class D for M = 1, M0 = 140, 141 and M = 2, M0 = 200, 201, calculated numer-
ically from Eq. (2.27) by averaging the Hamiltonian over the Gaussian ensemble. For each
dimensionality M of the scattering matrix we compare an even-dimensional Hamiltonian,
without a Majorana zero-mode, to an odd-dimensional Hamiltonian with a zero-mode. The
black curve is the analytical result (2.23) for the circular scattering matrix ensemble, pre-
dicting no effect from the Majorana zero-mode for this case of ballistic coupling. Notice
that there is no fit parameter in this comparison between numerics and analytics.

In the Majorana basis the class-D Hamiltonian is purely imaginary,
H = iA, with A a real antisymmetric matrix. The Gaussian ensemble
has probability distribution6,50

P (A) ∝
∏
n>m

exp

(
−π

2A2
nm

2M0δ2
0

)
. (2.28)

The dimensionality of A is odd if the quantum dot contains an unpaired
Majorana zero-mode, otherwise it is even.

Numerical results for the probability distribution of ρ0 for M = 1, 2
scattering channels are shown in Fig. 2.4. The agreement with the
analytical distribution (2.23) is excellent, including the absence of any
effect from the Majorana zero-mode.

2.5 Thermopower distribution

We apply the general thermopower formulas (2.14) and (2.15) to a single-
channel point contact, with transmission probability T into the edge
mode of the superconductor. There are two independent delay times
D1, D2 in class C, each with a twofold spin degeneracy and a twofold
electron-hole degeneracy (dT = 4). Because of this degeneracy the class-C
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2.6 Conclusion

edge mode contains Kramers pairs of Majorana fermions. In class D the
Majorana edge mode is unpaired and all delay times are nondegenerate
(dT = 1). The point contact contributes two and the edge mode one
more, so class D has a total of three independent delay times D1, D2, D3.

Eqs. (2.14) and (2.15) can be expressed in terms of these quantities, see
App. 2.8. We denote the dimensionless thermopower by p = (~/t0)S/S0

and add a subscript C,D to indicate the symmetry class. For class C we
have

pC =
(D2/t0 −D1/t0)ξ

√
T (1− T )

1− (1− T ) cos 2β
. (2.29)

The independent variables β, ξ enter via the eigenvectors of S0 and Q,
with distribution

P (β, ξ) = 3
4 (1− ξ2) sin 2β, |ξ| < 1, 0 < β < π/2. (2.30)

The class-D distribution pD has a more lengthy expression, involving
three delay times, see App. 2.8. These are all averages in the grand-
canonical ensemble, without including effects from the charging energy
of the quantum dot (which could force a transition into the canonical
ensemble).55

The resulting distributions, shown in Fig. 2.5, are qualitatively different,
with a quadratic maximum in class C and a cusp in class D. The variance
diverges in class D, while in class C

〈p2
C〉 =

2

15
(3 ln 2− 2) = 0.011. (2.31)

2.6 Conclusion

Perhaps the most remarkable conclusion of our analysis is that the density
of states of a Majorana zero-mode is not topologically protected in an
open system.

Take a superconducting quantum dot with an unpaired Majorana
zero-mode and bring it into contact with a metallic contact, as in Fig.
4.6 — is something left of the spectral peak? The answer is “yes” for
tunnel coupling,8–15 as it should be if the level broadening is less than
the level spacing in the quantum dot. What we have found is that the
answer is “no” for ballistic coupling, with level broadening comparable
to level spacing.

As an intuitive explanation, one might argue that this is the ultimate
consequence of the fact that the two average densities of states ρ+(E)
and ρ−(E) + δ(E) of a closed quantum dot without and with a Majorana
zero-mode are markedly different,5,6 see Eq. (2.1), and yet have the same

41



2 Time-delay matrix, midgap spectral peak, and thermopower

Figure 2.5: Probability distribution of the dimensionless thermopower p = S ×~/t0S0 in
symmetry class C (black solid curve, bottom and left axes), and in class D (blue dashed
curve, top and right axes). These are results for the quantum dot of Fig. 2.2 connecting
a single-channel point contact to the unpaired Majorana edge mode of a chiral p-wave su-
perconductor (class D), or to the paired Majorana mode of a chiral d-wave superconductor
(class C).

integrated spectral weight of half a fermion. Still, we had not expected to
find that the entire probability distribution of the Fermi-level density of
states becomes identical in the topologically trivial and nontrivial system,
once the quantum dot is coupled ballistically to M ≥ 1 conducting modes.

It would be a mistake to conclude that the whole notion of a topologi-
cally nontrivial superconductor applies only to a closed system. Indeed,
the Andreev conductance remains sensitive to the presence or absence
of a Majorana zero-mode, even for ballistic coupling, when no trace is
left in the density of states.18 This can be seen most directly for the case
M = 2 of a superconducting quantum dot coupled to a normal metal by
a pair of spin-resolved electron-hole modes. The Andreev conductance is
then given simply by

G =
e2

h
(1−DetS0), (2.32)

and so is in one-to-one relationship with the topological quantum number
DetS0 = ±1. In contrast, the Fermi-level density of states has the same
probability distribution (2.23) regardless of the sign of DetS0.

We have applied our results for the probability distribution of the time-
delay matrix to a calculation of the thermopower induced by edge modes
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Figure 2.6: Geometry to detect a Majorana zero-mode by a measurement of the Andreev
conductance of a ballistic point contact to a superconducting quantum dot. The probability
distribution of the conductance depends on the presence or absence of the Majorana zero-
mode, while the distribution of the density of states does not.

of a chiral p-wave or chiral d-wave superconductor.16 The search for
electrical edge conduction in such topological superconductors, notably
Sr2RuO4,56 has remained inconclusive,57 in part because of the charge-
neutrality of an unpaired Majorana mode at the Fermi level.58–61 Fig. 2.5
shows that both unpaired and paired Majorana edge modes can produce
a nonzero thermopower — of random sign, with a magnitude of order
S0/δ0 = (0.3 mV/K) × kBT0/δ0. This is a small signal, but it has the
attractive feature that it directly probes for the existence of propagating
edge modes — irrespective of their charge neutrality.

2.7 Appendix A. Derivation of the
delay-time distribution for the
Altland-Zirnbauer ensembles

Repeating the steps of Refs. 17 and 48 we extend the calculation of the
joint distribution P (S0, Q) from the nonsuperconducting Wigner-Dyson
ensembles to the superconducting Altland-Zirnbauer ensembles. We
treat the two symmetry classes C, D without time-reversal symmetry, of
relevance for the main text (see Table 2.1), and for completeness also
consider the time-reversally symmetric classes CI and DIII (see Table
2.2).
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symmetry class CI DIII
S-matrix space symplectic orthogonal

& symmetric & selfdual
dT 4 2
dE 2 2
α 1 −1
β 2 2

Table 2.2: The two Altland-Zirnbauer classes with time-reversal symmetry.

2.7.1 Unitary invariance

Since the entire calculation relies on the unitary invariance (2.16) of
the Altland-Zirnbauer circular ensembles, we demonstrate that first.
Following Ref. 48 we construct the M×M energy-dependent unitary
scattering matrix S(E) in terms of an M0 ×M0 energy-independent
unitary matrix U ,

S(E) = PU(e−2πiE/M0δ0 +RU)−1PT. (2.33)

The rectangular M × M0 matrix P has elements Pnm = δnm and
R = 1−PTP. The eigenvalues eiφn of U have the same degeneracy dE
as the energy eigenvalues, so there are M0 =M0/dE distinct eigenvalues
on the unit circle, arranged symmetrically around the real axis.

The M0 × M0 Hermitian matrix H is related to U via a Cayley
transform,

U = e2πiε/M0δ0
πH/M0δ0 + i

πH/M0δ0 − i

⇔ H =
iM0δ0
π

U + e2πiε/M0δ0

U − e2πiε/M0δ0
.

(2.34)

The factor e2πiε/M0δ0 with ε→ 0 is introduced to regularize the singular
inverse when U has an eigenvalue pinned at +1, as we will discuss in just
a moment.

We can immediately observe that if we take a circular ensemble for U ,
with distribution function P (U) = P (U ′U) = P (UU ′), then the unitary
invariance (2.16) of the distribution functional P [S(E)] is manifestly true.
So what we have to verify is that the construction (2.33)–(2.34) with U in
the circular ensemble is, firstly, equivalent to the Weidenmüller formula
(4.4), and secondly, produces a Gaussian ensemble for H. It is sufficient
if the equivalence holds in the low-energy range |E| .Mδ0 �M0δ0.
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Firstly, substitution of Eq. (2.34) into Eq. (2.33) gives

S(E) =
1 + iPM0δ0−iπH tan(πE+/M0δ0)

πH−M0δ0 tan(πE+/M0δ0) PT

1− iPM0δ0−iπH tan(πE+/M0δ0)
πH−M0δ0 tan(πE+/M0δ0) PT

=
1 + iP M0δ0

π(H−E+)PT

1− iP M0δ0
π(H−E+)PT

+O(M/M0), (2.35)

with E+ = E + ε. This is the Weidenmüller formula (4.4), with the
ballistic coupling matrix W = PT(M0δ0/π

2)1/2 from Eq. (4.5).

Secondly, the Cayley transform (2.34) produces a Lorentzian instead
of a Gaussian distribution for H, but in the low-energy range the two
ensembles are equivalent.62 One also readily checks that a uniform distri-
bution with spacing 2π/M0 of the distinct eigenphases φn of U produces a
mean spacing δ0 of the distinct eigenvalues En of H, through the relation
(π/M0δ0)En = cotan (φn/2) ≈ (π − φn)/2 in the low-energy range.

The finite-ε regularization is irrelevant in the class C and CI circular
ensembles, because there the U ’s with an eigenvalue +1 are of measure
zero. In the class D and DIII circular ensembles, in contrast, an eigenvalue
may be pinned at unity and the regularization is essential. Let us analyze
this for class D (the discussion in class DIII is similar). The matrix U in
class D is real orthogonal, with determinant DetU = (−1)nM fixed by
the parity of the number of Majorana zero-modes [cf. Eq. (2.20)]. This
implies that U has an eigenvalue pinned at +1 if M0 is even and nM

is odd, or if M0 is odd and nM is even. The Cayley transform (2.34)
then maps to an eigenvalue of H at infinity. This eigenvalue does not
contribute to the low-energy scattering matrix (2.35), so that it can be
removed from the spectrum of H. Hence, whereas the dimension M0 of
the unitary matrix U can be arbitrary, the dimension of H is always even
for even nM and odd for odd nM.

2.7.2 Broken time-reversal symmetry, class C and D

We now proceed with the calculation of the distribution of the time-
delay matrix, first in symmetry classes C and D. Starting point is the
Weidenmüller formula (4.4) or (2.35) for the energy-dependent scattering
matrix. Differentiation gives the time-delay matrix defined in Eq. (4.8),

Q−1 =
1

2π~
lim
ε→0

[1− iπW †(H − ε)−1W ]

× 1

W †(H − ε)−2W
[1 + iπW †(H − ε)−1W ], (2.36)
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in terms of the Hamiltonian H of the closed quantum dot and the
coupling matrix W to the scattering channels. The dimensionality of H
is dEM0 × dEM0 while the dimensionality of Q and S is dTM × dTM
(and W has dimension dEM0 × dTM). The unitary invariance (2.16)
implies P (S0, Q) = P (−1, Q), so we may restrict ourselves to the case
that H has a zero-eigenvalue with multiplicity dTM — since then S0 =
limE→0 S(E) = −1.

Restricting H to its dTM -dimensional nullspace we have, using the
ballistic coupling matrix (4.5),

W †(H − ε)−pW → (M0δ0/π
2)(−ε)−pΩ̃†Ω̃, (2.37)

Q−1 → (δ0/2π~)Ω†Ω, Ω = M
1/2
0 Ω̃. (2.38)

The matrix Ω is a dTM × dTM submatrix of a dEM0 × dEM0 unitary
matrix, rescaled by a factor

√
M0. In the relevant limit M0/M →∞ this

matrix has independent Gaussian elements,

P (Ω) ∝ exp
[
− 1

2β(dE/dT ) Tr′ Ω†Ω
]

= exp
(
− 1

2βt0 Tr′Q−1
)
,

(2.39)

with t0 = (2π~/δ0)(dE/dT ). The prime in the trace, and in the determi-
nants appearing below, indicates that the dT -fold degenerate eigenvalues
are only counted once. The symmetry index β counts the number of
independent degrees of freedom of the matrix elements of Ω, real in class
D (β = 1) and quaternion in class C (β = 4). The positive-definite ma-
trix Q−1 of the form (2.38) is called a Wishart matrix in random-matrix
theory.63

Using Eq. (4.4), an infinitesimal deviation of S0 from −1 can be
expressed as

V Ω(S0 + 1)Ω†V † = A, (2.40)

with A a dTM × dTM anti-Hermitian matrix, A = −A†. The matrix
A is a submatrix of iH, so its matrix elements are real in class D and
quaternion in class C. The unitary matrix V has been inserted so that
P (A) = constant near A = 0. Since the transformation Ω 7→ V Ω has no
effect on P (Ω) and leaves Q unaffected, we may in what follows omit V .

The joint distribution P (S0, Q
−1) follows from P (Ω)P (A) upon multi-

plication by two Jacobian determinants,

P (S0, Q
−1) = P (Ω)P (A)

∣∣∣∣∣∣∣∣ ∂Ω

∂Q−1

∣∣∣∣∣∣∣∣× ∣∣∣∣∣∣∣∣ ∂A∂S0

∣∣∣∣∣∣∣∣
∝ exp(− 1

2βt0 Tr′Q−1)

∣∣∣∣∣∣∣∣∂Ω†Ω

∂Ω

∣∣∣∣∣∣∣∣−1 ∣∣∣∣∣∣∣∣∂Ω−1AΩ†−1

∂A

∣∣∣∣∣∣∣∣−1

. (2.41)
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The Jacobians can be evaluated using textbook methods,63,64∣∣∣∣∣∣∣∣∂Ω†Ω

∂Ω

∣∣∣∣∣∣∣∣−1

∝ (Det′Ω†Ω)−1+β/2, (2.42)∣∣∣∣∣∣∣∣∂Ω−1AΩ†−1

∂A

∣∣∣∣∣∣∣∣−1

∝ (Det′ Ω†Ω)α+1+(M−1)β/2. (2.43)

Here α+ 1 equals the number of degrees of freedom of a diagonal element
of A, while an off-diagonal element has β degrees of freedom. So α+1 = 0,
β = 1 for a real antisymmetric matrix A (class D), while α+ 1 = 3, β = 4
for a quaternion anti-Hermitian A (class C).

Collecting results, we arrive at the distribution

P (S0, Q
−1) ∝ exp(− 1

2βt0 Tr′Q−1) (Det′Q−1)α+Mβ/2. (2.44)

The distribution (2.18) of the eigenvalues γn of Q−1 follows upon multi-
plication by one more Jacobian, from matrix elements to eigenvalues.

2.7.3 Preserved time-reversal symmetry, class CI
and DIII

The time-reversal operator acts in a different way in class CI and DIII.
In class CI the action is the transpose, so that S = ST, H = HT are
symmetric matrices. In class DIII these matrices are selfdual, S =
σyS

Tσy ≡ SD, where the Pauli matrix σy acts on the spin-degree of

freedom. It is convenient to use a unified notation Ũ to denote the
transpose UT of a matrix in class CI and the dual UD in class DIII.
Unitary invariance of the circular ensemble then amounts to

P [S(E)] = P [Ũ · S(E) · U ], (2.45)

for energy-independent unitary matrices U .
Time-reversal symmetry allows to “take the square root” of the Fermi-

level scattering matrix (Takagi factorization65),

S0 = S̃1/2S1/2. (2.46)

In class DIII the sign of the determinant of S1/2 is a topological quantum
number,66

DetS1/2 = Pf (iσyS0) = ±1, (2.47)

equal to −1 when the quantum dot contains a Kramers pair of Majorana
zero-modes. The symmetrized time-delay matrix is defined in terms of
this square root,

Q = −i~ lim
E→0

S̃†1/2
dS

dE
S†1/2. (2.48)
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C D CI DIII
Hnm iq0 + q · τ iq0 aτx + bτz iaσx + ibσz
(n 6= m) β = 4 β = 1 β = 2 β = 2
Hnn q · τ 0 aτx + bτz 0

α+ 1 = 3 α+ 1 = 0 α+ 1 = 2 α+ 1 = 0

A AI AII
Hnm a+ ib a q0 + iq · σ
(n 6= m) β = 2 β = 1 β = 4
Hnn a a q0

α+ 1 = 1 α+ 1 = 1 α+ 1 = 1

Table 2.3: Upper table: Representation of the Hamiltonian H in the four Altland-
Zirnbauer symmetry classes. All coefficients qn, a, b are real. The Pauli matrices
τ = (τx, τy, τz) act on the electron-hole degree of freedom, while the σ’s act on the
spin degree of freedom. The symmetry indices β and α+ 1 from Tables 2.1 and 2.2 count,
respectively, the number of degrees of freedom of the off-diagonal and diagonal components
of the Hermitian matrix H, in the Majorana basis for class D, DIII and in the electron-hole
basis for class C, CI . For completeness and comparison, we show in the lower table the
corresponding listing for the three Wigner-Dyson symmetry classes.

The definition (4.8) of the matrix Q used in class C and D, without
time-reversal symmetry, gives the same eigenvalues as definition (2.48),
but would introduce a spurious correlation between S and Q. With the
definition (2.48) the unitary invariance (2.45) allows to equate P (S0, Q) =

P (−1, Q), by taking U = S†1/2iσx in class CI and U = S†1/2σx in class
DIII.

Comparing to the derivation of the previous subsection, what changes
is that the matrix elements of Ω and A are equivalent to complex numbers
a+ ib, rather than being real or quaternion. Specifically, Ω has matrix
elements of the form aσ0 + ibσy in both class CI and DIII (to ensure that

Ω† = Ω̃), while the matrix elements of A are of the form iaσx + ibσz in
class CI and of the form aσx+bσz in class DIII (to ensure that A† = −Ã).
The Jacobian (2.42) still applies, now with β = 2, while the Jacobian
(2.43) evaluates to∣∣∣∣∣∣∣∣∂Ω−1AΩ†−1

∂A

∣∣∣∣∣∣∣∣−1

∝
{

(Det′Ω†Ω)M+1 in class CI,

(Det′Ω†Ω)M−1 in class DIII.
(2.49)

Collecting results, we arrive at

P (S0, Q
−1) ∝ exp(−t0 Tr′Q−1) (Det′Q−1)M±1, (2.50)

with exponent M + 1 in class CI and M − 1 in class DIII. As before, the
primed trace and determinant count degenerate eigenvalues only once.
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The distribution (2.18) of the eigenvalues γn of Q−1 follows with β = 2
and α = ±1.

2.8 Appendix B. Details of the calculation
of the thermopower distribution

2.8.1 Invariant measure on the unitary, orthogonal,
or symplectic groups

For later reference, we record explicit expressions for the invariant mea-
sure dU = P ({αn})

∏
n dαn (the Haar measure) in parameterizations

U({αn}) of the unitary group SU(N), as well as the orthogonal or unitary
symplectic subgroups SO(N), Sp(2N). (We will only need results for
small N .)

The invariant measure is determined by the metric tensor

gmn = −TrU†(∂U/∂αm)U†(∂U/∂αn), (2.51)

via P ({αn}) ∝
√

det g. The function P represents the probability distri-
bution of the αn’s when the matrix U is drawn randomly and uniformly
from the unitary group (circular unitary ensemble, CUE), or from the
orthogonal and symplectic subgroups (circular real and quaternion en-
sembles, CRE and CQE).

For SO(2) we have trivially

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
⇒ P (θ) = constant. (2.52)

For SU(2) = Sp(2) we can choose different parameterizations:

U = exp
[
iβ(τz cos θ + τx sin θ cosφ+ τy sin θ sinφ)

]
⇒ P (β, θ, φ) ∝ sin2 β sin θ, (2.53a)

U = eiατz exp
[
iβ(τx cosφ+ τy sinφ)

]
⇒ P (α, β, φ) ∝ sin 2β, (2.53b)

U = eiατzR(θ)eiα
′τz ⇒ P (α, α′, θ) ∝ sin 2θ. (2.53c)

For the group of 3× 3 orthogonal matrices we will use the Euler angle
parameterization

O± =

(
R(α) 0

0 1

)(
±1 0
0 R(θ)

)(
R(α′) 0

0 1

)
⇒ P (α, α′, θ) ∝ sin θ. (2.54)
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The ± sign distinguishes the sign of the determinant DetO± = ±1, with
SO(3) corresponding to O+.

Finally, for Sp(4) we use the polar decomposition

U =

(
U1 0
0 U2

)(
τ0 cos θ −τ0 sin θ
τ0 sin θ τ0 cos θ

)(
τ0 0
0 U3

)
⇒ P (θ) = sin3 2θ. (2.55)

The matrices Up are independently and uniformly distributed in SU(2),
see Eq. (2.53). There are only three independent Up’s, with 3 free
parameters each, because one of the four blocks can be absorbed in the
three others, so we have set it to the unit τ0 without loss of generality.
(One can check that the total number N(2N +1) 7→ 10 of free parameters
of Sp(2N) agrees: 3 + 3 + 3 from the Up’s plus θ makes 10.)

2.8.2 Elimination of eigenvector components

The thermopower expressions (2.14) and (2.15) depend on the trans-
mission eigenvalues Tn and delay times Dn, but in addition there is a
dependence on eigenvectors. Many of the eigenvector degrees of freedom
can be eliminated by using the invariance of the distribution of the time-
delay matrix under the unitary transformation Q 7→ U†QU , following
from Eq. (2.16).

Class C

In class C we proceed as follows. The 4× 4 unitary symplectic scattering
matrix S0 has the polar decomposition (2.55), which we write in the form

S0 =

(
U1 0
0 U2

)(
τ0
√

1− T −τ0
√
T

τ0
√
T τ0

√
1− T

)(
τ0 0
0 U3

)
, (2.56)

Un = eiαnτz exp
[
iβn(τx cosφn + τy sinφn)

]
. (2.57)

We ignore the spin degree of freedom, which plays no role in the calcula-
tion. The remaining two-fold degeneracy of the transmission eigenvalue
T comes from the electron-hole degree of freedom.

The time-delay matrix is Hermitian with quaternion elements,

Q =

(
aτ0 q
q† bτ0

)
, q = q0τ0 + iq1τx + iq2τy + iq3τz. (2.58)
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With some trial and error, we found the unitary symplectic transformation

Q 7→ U†QU, U = (U0)2

(
τ0 0

0 e−iα3τzU†3e
iα3τz

)
, (2.59)

U0 =

(
U1 0
0 τ0

)(
τ0
√

1− T −τ0
√
T

τ0
√
T τ0

√
1− T

)
, (2.60)

that eliminates most of the eigenvector components from the class-C
thermopower expression (2.15). We are left with

S/S0 = −~−1 2q3

√
T (1− T )

1− (1− T ) cos 2β1
. (2.61)

The probability distribution of the eigenvector parameter β1 follows from
Eq. (2.53b),

P (β1) = sin 2β1, 0 < β1 < π/2. (2.62)

Class D

The algebra is simpler in class D, where the matrix elements are real rather
than quaternion. We use the Euler angle parameterization (2.54) of the
3× 3 orthogonal matrix S0 with determinant DetS0 = ±1. Substitution
of the orthogonal transformation

Q 7→
(
R(−α′) 0

0 1

)
Q

(
R(α′) 0

0 1

)
(2.63)

into the class-D thermopower expression (2.14) leads directly to

S
S0

=
Q13

~
×
{
−cotan (θ/2) if DetS0 = +1,

tan(θ/2) if DetS0 = −1,
(2.64a)

P (θ) = 1
2 sin θ, 0 < θ < π. (2.64b)

The transmission eigenvalue is T = sin2 θ. Since P (θ) = P (π − θ) the
probability distribution of the thermopower does not depend on the sign
of DetS0.

2.8.3 Marginal distribution of an element of the
time-delay matrix

The two expressions (2.61) and (2.64a) for the thermopower contain a
single off-diagonal element of the time-delay matrix Q. We can calculate
its marginal distribution, using the eigenvalue distribution of Sec. 2.3
and the fact that the eigenvectors of Q are uniformly distributed with
the invariant measure of the symplectic group (class C) or the orthogonal
group (class D).
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Class C

In class C the 4 × 4 time-delay matrix Q is diagonalized by a unitary
symplectic matrix U ,

Q = U

(
D1τ0 0

0 D2τ0

)
U†. (2.65)

Each of the eigenvalues D1 and D2 of Q has a two-fold degeneracy from
the electron-hole degree of freedom. (As before, we can ignore the spin
degree of freedom.) The matrix U has the polar decomposition (2.55).

The quaternion Q12 is given in this parameterization by

Q12 = 1
2 (D1 −D2)(sin 2θ)U1U

†
2 , (2.66)

and since q3 from Eq. (2.58) equals − 1
2 iTr τzQ12, we have

q3 = 1
4 (D1 −D2)(sin 2θ) TrU0. (2.67)

The matrix U0 = −iτzU1U
†
2 is uniformly distributed in SU(2). Using the

invariant measures (2.53a) and (2.55) we arrive at

q3 = 1
2 (D1 −D2) cosβ sin 2θ,

P (β, θ) = (6/π) sin2 β sin3 2θ, 0 < β, θ < π/2.
(2.68)

The two angular variables β, θ can be combined into a single variable ξ:

q3 = 1
2 (D1 −D2)ξ,

P (ξ) = 3
4 (1− ξ2), −1 < ξ < 1.

(2.69)

The marginal distribution of q3 then follows upon integration.
Collecting results, we have the following probability distributions for

the variables appearing in the class-C thermopower:

S/S0 = t0~−1 (D2 −D1)ξ
√
T (1− T )

1− (1− T ) cos 2β
, (2.70)

P (β) = sin 2β, 0 < β < π/2, (2.71)

P (ξ) = 3
4 (1− ξ2), −1 < ξ < 1, (2.72)

P (T ) = 6T (1− T ), 0 < T < 1, (2.73)

P (D1, D2) =
32

42525
(D1 −D2)4(D1D2)−12

× exp[−2/D1 − 2/D2], D1, D2 > 0, (2.74)

where for notational convenience we measure the delay times in units of
t0.
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Class D

The 3× 3 time-delay matrix in class D is diagonalized by
Q = O+ diag (D1, D2, D3)OT

+, with O+ ∈ SO(3) parameterized as in Eq.
(2.54). In terms of these parameters, the matrix element Q13 is given by

Q13 = X cosα+ Y sinα,

X = 1
2 (D1 −D2) sin θ′ sin 2α′, (2.75)

Y = 1
2

[
(D3 −D2) cos2 α′ + (D3 −D1) sin2 α′

]
sin 2θ′,

P (α, α′, θ′) = (8π2)−1 sin θ′, 0 < α,α′ < 2π, 0 < θ < π.

The thermopower distribution follows upon integration, using Eqs. (2.18),
(2.64), and (2.75).

53





Bibliography of chapter 2

[1] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).

[2] Handbook on Random Matrix Theory, edited by G. Akemann, J.
Baik, and P. Di Francesco (Oxford University Press, Oxford, 2011).

[3] G. Volovik, JETP Lett. 70, 609 (1999).

[4] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[5] M. Bocquet, D. Serban, and M. R. Zirnbauer, Nucl. Phys. B 578,
628 (2000).

[6] D. A. Ivanov, J. Math. Phys. 43, 126 (2002); arXiv:cond-
mat/0103089.

[7] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).

[8] D. Bagrets and A. Altland, Phys. Rev. Lett. 109, 227005 (2012).

[9] J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Phys. Rev. Lett.
109, 267002 (2012).

[10] M. A. Skvortsov, P. M. Ostrovsky, D. A. Ivanov, and Ya. V. Fominov,
Phys. Rev. B 87, 104502 (2013).

[11] T. D. Stanescu and S. Tewari, Phys. Rev. B 87, 140504(R) (2013).

[12] J. D. Sau and S. Das Sarma, Phys. Rev. B 88, 064506 (2013).

[13] P. A. Ioselevich and M. V. Feigel’man, New J. Phys. 15, 055011
(2013).

[14] P. Neven, D. Bagrets, and A. Altland, New J. Phys. 15, 055019
(2013).

[15] D. A. Ivanov, P. M. Ostrovsky, and M. A. Skvortsov, Europhys. Lett.
106, 37006 (2014).

[16] C.-Y. Hou, K. Shtengel, and G. Refael, Phys. Rev. B 88, 075304
(2013).

55



Bibliography of chapter 2

[17] P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Phys. Rev.
Lett. 78, 4737 (1997).

[18] C. W. J. Beenakker, J. P. Dahlhaus, M. Wimmer, and A. R.
Akhmerov, Phys. Rev. B 83, 085413 (2011).

[19] C. W. J. Beenakker, Lect. Notes Phys. 667, 131 (2005).

[20] T. Dirks, T. L. Hughes, S. Lal, B. Uchoa, Y.-F. Chen, C. Chialvo,
P. M. Goldbart, and N. Mason, Nature Phys. 7, 386 (2011).

[21] E. J. H. Lee, X. Jiang, R. Aguado, G. Katsaros, C. M. Lieber, and
S. De Franceschi, Phys. Rev. Lett. 109, 186802 (2012).

[22] W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygard, and C.
M. Marcus, Phys. Rev. Lett. 110, 217005 (2013).

[23] J. P. Dahlhaus, B. Béri, and C. W. J. Beenakker, Phys. Rev. B 82,
014536 (2010).

[24] M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1969).

[25] M. S. Kalenkov, A. D. Zaikin, and L. S. Kuzmin, Phys. Rev. Lett.
109, 147004 (2012).

[26] A. Ozaeta, P. Virtanen, F. S. Bergeret, and T. T. Heikkilä, Phys.
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