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1 Introduction

1.1 Preface

The last decade, solid state materials with topological order have at-
tracted the attention of the scientific community. Topologically protected
states can form at the boundaries or defects of these materials and could
be used as robust logical units in quantum computers1,2. Among these
states, Majorana bound states in superconductors, coherent and equal-
weight superpositions of electrons and holes with a real wave function,
are of particular interest. The corresponding creation operators possess
unusual commutation relations, distinct from the bosonic and fermionic
commutators, providing the simplest example of quasipartices with non-
Abelian statistics. Many models hosting Majorana bound states have
been suggested3–5 and subsequently investigated in great depth theoreti-
cally. Experimentally, we are in the stage between the first detection of
Majoranas and their reliable reproducibility6,7.

Beyond the detailed analysis of specific devices, one may ask about the
universality of their properties. The question is also motivated by the nat-
ural presence of disorder and imperfections in experimental realizations,
which call for a statistical “ensemble” description. Already seventy years
ago8 it had been realized by Wigner and Dyson that Random-Matrix
Theory9 (RMT) provides an elegant and rather simple way to obtain
the universal statistical properties of ensembles of random Hamiltonians
and random scattering matrices10–12. Three universality classes were
distinguished originally, depending on the presence or absence of time-
reversal and spin-rotation symmetry. Relatively recently, twenty years
ago, seven more universality classes were added13,14, to accommodate
chiral symmetry and particle-hole symmetry, and it is in these new classes
that we can find topological invariants and Majorana bound states. A
central objective of this thesis is to describe the topologically nontrivial
universality classes at the same level of detail as the original Wigner-
Dyson classes, by filling in the gaps in our knowledge of the various
distribution functions. Table 1.1 summarizes what we have been able to
contribute.

The predictions from RMT can be tested experimentally in quantum
dots, confined regions in a two-dimensional electron gas. The electron

1



1 Introduction

RMT ensembles
Wigner-Dyson Altland-Zirnbauer chiral

energy levels [8,18] [14] [13]

ballistic transmission [19,20] [21] [22]
coupling delay times [23] chapter 2 chapter 3

tunnel transmission [24] [25] ?
coupling delay times chapter 4 chapter 4 ?

Table 1.1: References to papers that have derived various probability distributions in the
random-matrix theory of Hamiltonians and scattering matrices of quantum dots. The
columns distinguish the symmetry-based universality classes, a total of 10 in groups of
3+4+3. The rows refer to the distributions of the eigenvalues of the Hamiltonian, of the
transmission matrix, and of the time-delay matrix. For the latter two distributions the
coupling of the quantum dot to the outside world can be via a ballistic point contact or
via a tunnel barrier. Contributions developed in the various chapters of this thesis are
marked in red; two green entries remain to be done.

dynamics in a quantum dot is chaotic, due to disorder or due to an irreg-
ular shape. Much of the theory of quantum chaos developed for electron
billiards can be applied to quantum dots. Superconducting quantum
dots, also known as Andreev billiards, represent a good platform for the
application of the Altland-Zirnbauer ensembles of RMT15. Calculations
of the probability distributions of thermal and electrical conductances
have shown that topology strongly affects transport properties, even
determining a pinning, in some cases, to quantized values16,17.

One application of the new probability distributions obtained in this
thesis is to the density of states ρ(E) of an Andreev billiard. A Majorana
bound state shows up as a peak at the Fermi energy (E = 0) in the
density of states, but to detect this peak in a superconducting quantum
dot is nontrivial for the following reason: as illustrated in Fig. 1.1, the
peak from the Majorana bound state is superimposed on a dip in the
background from the other levels. When the quantum dot is coupled to
a point contact, the peak is broadened and merges with the background
dip, and the net result is close to the density of states of a topologically
trivial system, without the Majorana bound state. Remarkably enough,
we have found that the cancellation is exact for ballistic coupling: an
ensemble of quantum dots has the same distribution of the Fermi-level
density of states whether or not there are Majorana bound states. To
detect the Majoranas either tunnel coupling or chiral symmetry is needed

— the corresponding distributions are calculated in this thesis.

In the rest of this introduction, we summarize the background in
quantum transport and random-matrix theory, needed to understand
the following chapters. For more accurate and self-contained treatments,
references are provided throughout the text. In the last paragraph we

2



1.2 Scattering formalism in Quantum Transport

N = 3

N = 4

N = 6

N ! 1

Figure 1.1: Average density of states ρ(E) of an uncoupled superconducting Andreev
billiard as a function of the energy E. The labels −/+, associated respectively to the
green and blue curves, refer to the two topological subclasses of billiards with or without a
Majorana bound state. The Majorana delta peak is represented as the green vertical line
at the Fermi energy (E = 0). The red dashed lines indicate the finite value at E = 0 of
ρ(E), computed when the billiard is coupled ballistically to N modes. The energy and the
functions are rescaled to unit mean level spacing δ0 of the Hamiltonian ensemble.

present the summaries of the various chapters.

1.2 Scattering formalism in Quantum
Transport

To gain information on a physical system, two approaches can be used:
an intrinsic or extrinsic one. The first approach consists in working out a
mathematical model of the system under investigation, thereby obtaining,
at the required degree of depth, a sufficiently detailed understanding of
its properties. The second approach consists in coupling the system to
another simple and well understood system with fewer degrees of freedom
and study how the former system interacts with or respond to the latter.
Clearly, the second approach is closer to what experimentalists do in
their labs. Inside this working frame, scattering theory is aimed to study
the specific case in which the ancillary system consists of probe particles
colliding with the main system. Then, many of the properties of the
main system can be inferred from the change occurred in the particles
state.

3



1 Introduction

Figure 1.2: Surface states at the edge of a topological insulator form a 2D electron gas.
A superconductor is placed on top of the surface and defines a quantum dot (the scattering
region) where electrons are allowed to enter from metal electrodes (reservoirs) via two point
contacts (the leads). At one side of the bottom- and top-point contact magnetic insulators
allow respectively N1 and N2 channels to successfully enter the dot. A Majorana zero
mode is present in the dot if a magnetic fluxon threads the latter. [From Chapter 4]

In the following we will focus on solid state devices where a satisfactory
description of electronic transport phenomena could be obtained assuming
a non-self interacting coherent Fermi-liquid of electrons. Electrons are
confined, via gating or other potentials, in (ideally long) quasi-1D regions
or edges of the device, referred to as leads or waveguides, contacted at one
end to a reservoir, a bigger metallic sample at electrothermic equilibrium.
At the other end, the leads is contacted with a small sub-micron region
(with characteristic length much bigger than the lead width) with non-
regular geometry, where electrons are chaotically scattered. This region is
referred to as scattering region and can be regarded as zero dimensional.
In terms of the description above, the scattering region represents the
main system, whose properties are of interest, while the leads the ancillary
one. To catch the many essential features of the scattering, it is enough
to assume that just two leads are attached to the scattering region.
Fig. 1.2 shows one instance of device we will study. Then, the matter of
interest is how electronic asymptotic states in the leads shot toward the
scattering region are transformed after the interaction into asymptotic
states traveling outward.

1.2.1 The scattering matrix S

Let us consider electronic modes in the leads with a specific energy
E. Let us call N1 and N2 the number of linearly independent modes
(sometimes call also channels), with energy E, propagating toward the
scattering region respectively in lead 1 and 2. These modes are usually
called the incoming modes. We will assume the leads to be made of
a crystal with inversion symmetry. Therefore, the number of linearly

4



1.2 Scattering formalism in Quantum Transport

independent modes propagating outward with the same energy, usually
called outgoing modes, is the same. For the rest of the thesis we will
assume the scattering to be elastic, i.e. with no absorption or dissipation
involved.

Let define the two sets of incoming and outgoing asymptotic states
respectively as {|Ii〉} and {|Oj〉}, with i, j = 0, . . . , N1 +N2. Using the
Schrödinger equation, one can show that the electronic eigenstate at
energy E, far away from the scattering region, can be expressed as28

ψ =
∑
i

αi|Ii(t)〉 −
∑
ij

Sjiαi|Oj(t)〉 (1.1)

The full content of the scattering process in contained in the (N1 +N2)×
(N1 +N2) unitary matrix S. Assuming an incoming wave-packet with
small energy broadening, this matrix connects its projections {αi} on
the asymptotic states {|Ii〉}, at early times, to its projections {βi} on

the states {|Oi〉}, at late times, via the relation ~β = S~α.
In a two leads problem S can be conveniently block decomposed as

S =

(
r t′

t r′

)
(1.2)

Here r and r′ are respectively N1 × N1 and N2 × N2 matrices, and
t, t′ are rectangular matrices with the complementing dimensions. The
matrices r and r′ are referred to as “reflection matrices” relative to the
lead 1 and 2, respectively, while t and t′ are referred to as “transmission
matrices”. Generally, such a scattering matrix formalism is used also
outside the quantum realm, in systems with wave-dynamics like optics
and acoustics29,30.

1.2.2 Thermal and electrical conductances

The main concern of Quantum Transport is to understand non-equilibrium
properties of the systems. Usually, the major goal is the prediction or
the understanding of the behavior of currents under variation of an
external drive imposed on the system. As straightforward examples, if
the drive is a voltage bias between the two leads, one could be interested
in the electric current vs voltage bias dependence while, if the drive is
a temperature difference, one could be interested in the heat flow vs
temperature gradient dependence. Clearly, also cross-responses and more
exotic observables could be addressed.

The scattering formalism proves to be a very successful tool for com-
puting all these transport quantities. For example, consider the electrical
and the thermal (differential) conductances i.e. the derivative of the

5



1 Introduction

current with respect to the drive. In the most simple case of a normal
metal, at low temperature and in weak and constant drive regime, the
electrical conductance is

Ge :=
∂I

∂V

∣∣∣∣
V=0

∼ Ge0 Tr t†t, Ge0 =
e2

h
(1.3)

while, similarly, the thermal conductance is

GT :=
∂Q

∂T

∣∣∣∣
V=0

∼ GT0 Tr t†t, GT0 =
π2k2

BT

6h
(1.4)

here t is the transmission matrix (cf. Eq. (1.2)) evaluated at the Fermi
energy. GTe0 , GT0 are called respectively electrical and thermal conduc-
tance quanta. The interpretation is straightforward: in normal metals
currents are made out of electrons filling the incoming modes in one
lead and successfully transmitted into the other lead31. The quantities
Ge0 ≈ 3.37× 10−5Ω−1 and GT0 =≈ (4.73× 10−13W/K2)T set the maxi-
mum contribution to the conductances one single non-degenerate channel
could give. These maxima show an example of quantum upper limit
imposed to transport phenomena32,33.

1.2.3 The Mahaux-Weidenmüller formula

The link between the scattering matrix and the Hamiltonian scattering
region is provided by the so-called Mahaux-Weidenmüller formula28. The
starting point of the derivation is the full Hamiltonian of the scatterer
and the leads mode:

H =
∑
µ,ν

|ν〉Hµ,ν〈µ|+
∑
c

∫ ∞
Ec

dE |c(E)〉E〈c(E)|

+
∑
c,µ

∫ ∞
Ec

dE |c(E)〉Wc,µ(E)〈µ|+ h.c. (1.5)

where H is the scatterer M × M Hamiltonian, W (E) is a tunneling
matrix between the leads modes (both incoming and outgoing) and the
scatterer states, Ec is the threshold energy above which a certain channel
can gets active i.e. W (E ≤ Ec) = 0 and W (E > Ec) 6= 0.

If the energy dependence of W is sufficiently weak and the energy E
is far away from the metallic band edges, the scattering matrix of the
channels at that energy is found to be

S(E) =
1− iW (E −H)

−1
W †

1 + iW (E −H)
−1
W †

(1.6)

6



1.2 Scattering formalism in Quantum Transport

Figure 1.3: Atomic chain with sites positioned at j = 0, 1, 2, . . . . The orbital energy of
the 0-th site is assumed to be tunable. An electron with energy E = ε0 is present on
the chain and the sketches of its wavefunction in the special cases of hard-wall (ψhw) and
resonance (ψres) are shown on the vertical axis.

where E is the energy of the incoming electrons and W (E) ≡W .
From this formula one can extract important features of the system. To

best highlight them, we consider the case where only one lead is present.
In this case electrons can only be reflected back from the scattering region.
Energy levels in H which lie far away from E have a small contribution
to S because of the term (E −H)−1. Moreover, if all of them are far
away, S reduces to the identity matrix i.e. the scattering region trivially
sends the incoming electrons back to the same channels. On the other
hand, if a number of levels are close to E, the associated eigenstates of
H have a dominant contribution and an equal number of eigenvalues of
S will be close to (−1). If the number of such resonant states equals the
number of the attached modes, then S = −1.

A simple example that helps to understand this hard-wall and resonant
limit is the following. Consider the semi-infinite atomic chain in Fig. 1.3.
All atoms but the first have a single orbital with energy ε0 and the orbital
overlap induces a tunneling of amplitude t. We assume the energy of the
first atom, ε′0, to be tunable:

H = ε0

∞∑
j=1

c†jcj + ε′0c
†
0c0 + t

∞∑
j=0

c†jcj+1 + c†j+1cj (1.7)

where ci is the annihilation operator at the i-th site.
The first atom could be regarded as the scattering region and coupling

t between the first and second atom plays the role of W (energy indepen-
dent). First we check the resonant limit. Let assume the first atom to
have orbital energy ε′0 = ε0. The Hamiltonian is readily diagonalized

H =

∞∑
k=0

(ε0 − 2t cos(ka)) c†kck (1.8)

7



1 Introduction

where a is the lattice constant.
The eigenstates ψk(j) = α exp (−ikaj) − β exp (ikaj) (cf. Eq. (1.1))

must verify the (hard-wall) boundary condition ψk(−1) = 0. Now, if
we consider the eigenstate with energy in resonance with the one of the
scattering region (ε′0), its momentum must be k = π/(2a). The boundary
condition, then, implies β = −α. Notice that this is in agreement with
S = −1 as discussed above∗. To check the hard-wall limit, we increase
the energy of the scattering region to make it unaccessible, ε′0 →∞. The
new boundary condition for the eigenstate, then, is moved on the first
atom. The new boundary condition is ψk(0) = 0. For all eigenstates, and
in particular for the previous one, this implies β = α, compatible with
S = 1 as discussed above.

1.3 The time-delay matrix Q

The energy dependence of the scattering matrix turns out to be useful
to extract information about e.g. low-frequency responses of the system
under external drives, the density of state of the system and thermody-
namical quantities34. A convenient way to work with the derivative of
the scattering matrix is to define the matrix

Q = −i~S†∂S/∂E (1.9)

The convenience lies upon its mathematical properties (Q is hermitian and
closely related to the uniform measure of the space of the matrices S) and
its direct physical interpretation. This matrix was first defined by Smith35,
after seminal works36–38; its application in Quantum Transport have
been reviewed recently by Texier34. The matrix Q contains information
about the time-delay experienced by the scattered particle with respect
to the case in which the interaction is turned off. We show now in some
more detail this physical interpretation.

There are essentially two approaches to define and compute time-delays
in scattering events. One is a dynamical one, in which a wave-packet is
shot against the target36–38. The other approach35 considers a stationary
situation in which a constant particle flux illuminates the target. The
central object in this approach is, indeed, the matrix Q in Eq. (1.9).

1.3.1 Wave-packet approach

For simplicity, consider first a one dimensional problem with a scattering
region located at −R ≤ x ≤ 0 and a metallic lead, at x > 0, with

∗A redefinition of the global phases of the eigenstates exp (±ikaj) may lead to
find S = 1. The main point, here, is to show opposite values of S in the two cases of
resonance and hard-wall barrier.

8



1.3 The time-delay matrix Q

only one channel. A wave-packet may be constructed on the lead as
a superposition of two almost similar monocromatic waves respectively
with energies E± = E ± δE and momenta k± = k ± δk. The asymptotic
form of the wave-packet at x� 0 can be written as ψas = ψα−ψβ where
the incoming wave is

ψα(x� 0, t) =
1√
v

[exp (−i(k−x+ E−t/~)) + exp (−i(k+x+ E+t/~))]

=
2√
v

exp (−i(kx+ Et/~)) cos(δkx+ δEt/~) (1.10)

while the outgoing one is

ψβ(x� 0, t) =
1√
v

[exp (i(k−x− E−t/~ + η−)) + exp (i(k+x− E+t/~ + η+))]

=
2√
v

exp (i(kx− Et/~ + η)) cos(δkx− δEt/~ + δη)

(1.11)

where v is the channel velocity and η is the phase increment due to the
reflection from the scattering region.

The additional phase increment δη can be understood as the cause
of a displacement of the peaks positions of the outgoing wave. With
no scatterer action, i.e. hard-wall condition at x = 0, η(E) = 0. If we
consider only the peak corresponding to the vanishing trigonometric angle
in the cos() function, its position is found to be at x0 = δE/(~δk) t −
δη/δk = v(t − ~ δη/δE). The quantity τ := ~ δη/δE appears to be
retardation of the peak i.e. a time delay. Wigner found it to have a lower
bound of the order −R/v. In our case the scattering region is taken to
be 0D, therefore we will find τ > 0. An important remark is that time
retardation is associated to the scattering matrix, via η. In particular, it
can be expressed in the form of Eq. (1.9) as τ = −i~S†∂S/∂E, as in this
case S = exp(iη).

Eisenbud36 consider this approach in a multi-channel fashion. He found
the time-delay of the fraction of an incoming wave-packet in channel
i ending up in channel j to be τ (ij) = Re

[
−i~(Sij)

−1∂Sij/∂E
]
. The

quantities τ (ij) could be used to form naturally a time-delay matrix;
however, its connection with S is cumbersome and differs from that of Q
in Eq. (1.9).

1.3.2 Steady-state approach

In the steady state approach, the time dependence of the wave is dis-
regarded. Consider the one channel problem analyzed in the previous

9
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paragraph. Smith noticed that the difference in the local density (concen-
trated around state of the scattering region) in a case under study and
in a trivialized situation with vanishing potential disorder is a measure
of the time-delay of the scattering process. Indeed, at constant flux
normalization of the wave function, higher probabilities in some region
correspond to higher dwell times in it. Hence, he defined

τ ′ =

∫ ∞
−R

dx ψ(x)∗ψ(x)− ψ(x)∗asψ(x)as (1.12)

where ψas(x) = 〈x|I〉 − 〈x|O〉 is the asymptotic superposition of the
incoming and outgoing monocromatic waves.

Importantly, he found τ ′ = τ − ~ sin(η)/(2E) with τ and η as in the
previous paragraph. We stress that, in the case relevant for Quantum
Transport, scattering happens at high energies (EF � ~/〈τ〉), therefore
the identity τ ′ ∼ τ holds. Inside this frame, also τ may be expressed as
a spatially averaged local density difference. For technical reasons the
generalization to the multi-channel case is best implemented upon the
expression for τ , rather then upon τ ′:

Q̃ =

[∫ ∞
−R

dx ψi(x)∗ψj(x)− ψ(x)∗as,iψ(x)as,j

]
Av

(1.13)

where ψas,k(x) = 〈x|Ik〉 −
∑
l Skn〈x|On〉.

The equivalence of Q̃ and Q, as in Eq. (1.9), is found to extend
also to the multi-channel case. The elements Q̃ij , however, have no
transparent physical meaning but the hermiticity of the matrix they form
and their bilinear dependence with respect to the modes ψk allow for an
interpretation.

After diagonalization, one gets the eigenvalues: τi :=
[ ∫∞
−R dx Ψi(x)∗Ψi(x)−

Ψ(x)∗as,iΨ(x)as,i
]
Av

, with {Ψi} the eigenvector set of Q̃. Comparing with

the single channel case, it is evident that the eigenvalues of Q̃ are well-
defined dwelling times associated to the eigenvectors of the matrix.

Finally, we remark that Ψi has a well-defined time-delay equal to τi
also in the a wave-packet fashion of Section 1.3.1. Indeed, expanding
S(E) in E, one finds that the wave-packets of the form

1√
v̂

Ψi(E)
[
e−i(k−x+E−t/~) + e−i(k+x+E+t/~)

]
=

2√
v̂

Ψi(E)e−i(kx+Et/~) cos(δkx+ δEt/~), (1.14)

10



1.3 The time-delay matrix Q

where k± and E± defined as in Eq. (1.10), gets scattered into the states

1√
v̂

[
S(E−)Ψi(E)e−i(k−x+E−t/~) + S(E+)Ψi(E)e−i(k+x+E+t/~)

]
=

2√
v̂
S(E)Ψi(E) cos(δkx− δE(t− τi)/~) (1.15)

with well-defined delay times τi, (here v̂ is the diagonal matrix of the
channels velocities). Notice that Ψi(E) is not, in general, an eigenstate
of S(E).

1.3.3 Time-delay matrix of a 0D system

The matrix Q can be expressed in terms of the scatterer Hamiltonian
using its definition, in Eq. (1.9), and the Mahaux-Weidermüller formula
Eq. (1.6):

Q(E) = W †
1

E −H − iπWW †
1

E −H + iπWW †
W (1.16)

From this expression, the hermiticity of Q is evident, as it has the form of
a product XX†. This suggests to consider the dual matrix QD := X†X
which shares with Q the same set of non-zero eigenvalues. We have
used this matrix in Chapter 3 to compute the joint distribution of the
time-delays {τi} in a RMT setting. Moreover, this M×M matrix has the
interesting feature to be also a dual of Q also in its physical interpretation.
Easily, one can check

QD(E) =
1

E −H + iπWW †
WW †

1

E −H − iπWW †

= − i
π

Ant

[
1

E −H − iπWW †

]
=

i

π
Ant

[
GR(E)

]
(1.17)

where Ant[·] = 1/2
[
(·)− (·)†

]
stands for anti-Hermitian part, and GR(E)

is the retarded Green function of the quantum dot with the self energy
iπWW † induced by the coupling with the lead.

The reader may appreciate how, on the one hand, Q is a matrix
describing extrinsic properties of the scatterer while, on the other hand,
QD describes it intrinsically.

The connection of Q with the density of state of the (coupled) quantum
dot39–41, is made evident by QD:

TrQ(E) = TrQD(E) = −ImTrGR(E) = 2π ρ(E) (1.18)

where the property TrAnt[·] = −i ImTr[·] has been used and the last step
is implied by a well known identity in Green function theory.

11
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1.4 Majorana fermions

Majorana fermions42 are the particles whose field satisfies a real repre-
sentation of the Dirac equation. The Majorana field must be Hermitian:

ψ(r, t) = ψ†(r, t) (1.19)

Such particles are their own antiparticle as it can be seen from the
eigenmodes expansion of the field. Bosonic particles with the latter
property are easy to be found (photons, pions and so on) while Majorana
particles have not been detected so far43.

In Condensed Matter Physics, Majorana fermions appear in super-
conducting systems. In this context, the real Dirac equation is replaced
by the real Bogoliubov-de Gennes equations in the Nambu space. The
latter equation describes the excitations over the nontrivial vacuum of
Cooper pairs. Since these excitations, called Bogoliubov excitations, are
described by a real field they are actually Majorana fermions. Their
particle annihilation operator satisfies

dE = (d−E)†, (1.20)

with E the energy of the particle.
As states with negative energy describe antiparticles, the previous re-
lation states the equality between the Bogoliubov particles and their
antiparticles. This property implies, for instance, that holes in the Nambu
formalism are not really the independent antiparticles of the electrons as
opposed to the case of positrons in the high-energy context.

Remarkably, if one is to deal with a model superconductor with an
odd number of states - call it an odd-states superconductor - then one
excitation is necessarily pinned at E = 0. For this special state its
creation/annihilation operator satisfies (cf. Eq. Eq. (1.21)):

γ = γ†, (1.21)

where we have defined γ = d0.
The γ excitation is profoundly different from the other excitations at
finite energy as it verifies

{γ, γ†} = 1

γ2 = 1/2. (1.22)

Remind that, for regular fermions, one expects d2 = 0.
This γ excitation has a fixed occupation 1/2 and is therefore questionable
whether is appropriate to call it “excitation” and not simply a “state” or
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Figure 1.4: Kitaev chain in the topological trivial phase (up) and in the topologically non-
trival one (down), at a special choice of the Hamiltonian parameters as in Ref. 5. Each
electron complex state of the chain (big blue circles) can be decomposed into two Majorana
states (little blue circles). Bogoliubov excitations involve Majorana states connected by
the green lines. In the topologically non-trivial phase unpaired Majorana bound states,
γA1 and γBN , appear and are localized at the two ends of the chain. Different choices of
the parameters do not spoil the qualitative feature of these pictures.

“mode”. To rescue from misleading physical interpretations, we remark
that real superconductors can have only an even number of states as
electrons come always in pair with a hole. In Sec. 1.4.1 we will show
how some superconductors can be thought as “split” into two odd-states
superconductors featuring two distinct γ states, called in this cases
“Majorana bound states”.

Hermitian Majorana-like operators are usefully exploited for the analy-
sis of generic superconductors. For any fermionic degree of freedom cn,
n being an unspecified quantum number, we can define two “Majorana
operators”, A and B:

γAn := cn + c†n

γBn := i(cn − c†n) (1.23)

Notice that the property (1.21) does not hold for even-states super-
conductors for which, in the limit of vanishing E, one has d0− 6= d0+ .
Nonetheless, two Majorana (hermitian) operators at zero energy can be
defined as in Eq. (1.23) using d0− and d0+ instead of c and c†.

1.4.1 Majorana bound states and Kitaev chain

The properties of Majorana bound states can be harnessed for quantum
computation purposes in some topological superconductors. A qubit can
be constructed out of excitations that are robust under local noise and
controllable in a deterministic way.

The simplest example of such system came out in the year 20015.
Kitaev showed that a p-wave superconducting and spinless electronic
chain (of finite length N � 1) presents a phase transition to a phase
which supports an excitation at zero-energy and localized at the two ends
of the chain (see Fig. Fig. 1.4). This zero-energy Bogoliubov particle,
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d(Kit), can be expressed as the sum of two Majorana operators in this
way: d(Kit) = γA1 +iγBN , where the degree of freedom n = 1, N indicates
spatial localization of the corresponding states, respectively around the
first and last sites (cf. Eq. (1.23)). γA1 and γBN are the two “Majorana
bound states”. Only non-local perturbations can delocalize them and
move from zero the energy of the excitation associated to d(Kit). In the
following we give an heuristic explanation of these features.

First, notice that in this topological phase all bulk excitations are
localized in space (at least for the case of the “special” Hamiltonian
parameters chosen by Kitaev). As a consequence, as we are interested
in the excitations at the ends of the chain, we can write two distinct
Nambu Hamiltonians, Hj (j = 1, 2), each describing one edge. Both
Hamiltonians can be written as Hj = iAj with Aj an antisymmetric
matrix (cf. Sec. 1.6.2). The crucial point is that the dimensions of both
matrices are odd as they must describe the states associated to a certain
number of Bogoliubov excitations of finite energy (each requiring two
Nambu degrees of freedom) and the one associated to the single Majorana
operator, either γA1 or γBN . Odd antisymmetric matrices have a pinned
zero eigenvalue and describe odd-states superconductors. In principle,
if we now add local perturbations in the chain, the Hamiltonian of the
bulk may become relevant, connect the states of the two ends and break
the validity of our Hamiltonian splitting argument. However, if N � 1
any effective coupling of the two edges is exponentially suppressed, as N
increases. Thus local perturbations can only affect the elements of Hj

separately and the dimensions of the matrices themselves, but leaving
these dimensions with the same (odd) parity.

As the two ends of the chain are effectively decoupled, we have seen
a realization of two odd-states supercondutors each one supporting an
unpaired Majorana bound state γ. We conclude that Majorana bound
states are states that are stiffly localized in space. Moreover, they
constitute an excitation (d(Kit)) bound at zero energy that can be used
as a qubit.

Other mechanisms have been found to produce Majorana bound states,
they are well described in Ref. 2. Most of the setups considered in this
work (cf. Fig. 1.2), exploit the fact that magnetic fluxons threading a
2D electron gas in a p-wave superconducting phase are encircled by a
vortexing zero-energy Majorana bound states.

1.5 Random-Matrix Theory

Random-Matrix theory (RMT) finds its origin in the late 19th century9.
In a nutshell, it is the theory of matrices ensembles i.e. matrix spaces
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with a given (probabilistic) measures.
A first application of this tool to a physical problem have been discov-

ered by Wigner47 in 1955. The problem regarded the understanding of
general properties of neutron scattering off heavy nuclei. Experiments
were showing narrow resonances at certain energies. Inside the compound-
nucleus approach48, a description of such a phenomenon could be done
in terms of the so-called R-matrix, function of the energy of the collision
and of nucleus excitation energy. However, the complexity of the nuclei
Hamiltonians hinder an exact treatment of such R-matrix and suggest
that a stochastic approach could be effective. Following Wigner, the prob-
lem can be attacked at follows. The nucleus Hamiltonian is, in principle,
an operator on a infinite dimensional Hilbert spaces. One can truncate
the Hilbert space to a finite dimensional subspace, therefore representing
the Hamiltonian operator by a matrix of finite dimension M . At reason,
one can assume that all matrix elements should be independently and
identically distributed and that eigenvectors rotations should leave the
distribution unchanged. These conditions are met only by a Gaussian
measure 12 of the form

dµ(H) = e−TrH2/2σ2

dH (1.24)

Having a probability for the Hamiltonian, one is finally enabled to com-
pute the probability density function (or its momenta) of physical ob-
servables (e.g. the R-matrix). To meet physical consistency, the limit
M →∞ has to be performed at the end of the calculation.

The only inputs to this theory are the degrees of freedom of the entries
Hij , inferred by the physical symmetries the system possesses, and the
energy scale σ. In real applications, however, a more accessible energy
scale is the so-called mean level spacing δ0 i.e. the average difference
between two subsequent eigenvalues Ei of H in the bulk of their joint
distribution (that is |Ei| �

√
M). A part from a factor c, of order unity

and dependent on the symmetry, σ0 = c
√
Mδ0/π holds.

Motivated by the somewhat arbitrary assumptions giving rise to the
above Gaussian ensemble, in a series of important papers18, Dyson applied
the statistical approach directly to the scattering matrices, defining the
so-called Circular ensembles. To meet physical consistency only rotational
invariance of the distribution is assumed as a chaotic system should not
privilege any of the scattering channels. The important gain of this
approach is that the specific ensemble describing a system is defined only
by the symmetries of the system and no energy scale is needed as an
input. The only ensemble measure allowed by the physical requirements
is the so-called invariant Haar measure of the space of unitary matrices

dµ(U) = −iU†dU (1.25)
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appropriately restricted to the matrices U compatible with the symmetries
of the system.

In the following years, the field has rapidly developed. For what
concerns this Thesis, we simply underline two important formal results.
First, the Gaussian ensemble has been shown to be the simplest in a whole
class of ensembles (with a more complex function of H inside the trace
in Eq. (1.24)) giving rise, asymptotically in M , to the same eigenvalues
correlation functions49. Second, for a certain set of symmetries (the
Wigner-Dyson one, see Section 1.6.1), the Gaussian ensemble has been
proven to be equivalent to the Circular one when dealing with the kind
of scattering processes we consider here24. These results will allow us to
make use of both Gaussian and Circular ensembles interchangeably.

1.5.1 RMT and Quantum Transport

In the context of electronic Quantum Transport in mesoscopic devices,
RMT can be applied to study chaotic quantum billiards or chaotic quan-
tum dots. Usual realization of such billiards are 2D regions of sub-micron
size, located at the interface of crystals along the 1D path of a confined
2D electron gases. In the scattering formalism language, the chaotic
billiard is the scattering region and the 1D electron path determines the
leads (one, two or more). A chaotic quantum billiard is defined as a
billiard whose classical description (obtained sending ~→ 0) would be
chaotic. The Hamiltonian of a chaotic quantum billiard is expected to
show level repulsion as some parameter (e.g. shape, lattice constant) is
varied. Such feature is typical of generic Hamiltonians of the Gaussian
ensembles. Moreover, transport observables present several features not
present in integrable quantum systems. For instance, the electrical and
thermal conductances show universal conductance fluctuations. These
features are signatures of non-deterministic chaotic transport, confirmed
by several experiments in the past years . The conclusion is that chaotic
billiard can be studied by means of RMT. However, one has to keep
in mind there are some limitations in the allowed energy range of the
scattered particles (electron or hole) for the applicability. Essentially, if
τ = TrQ/N is the channel-averaged dwell time, then RMT is applicable
if tE , terg � τ � tφ, where tE is the Ehrenfest time, terg is the ergodic
time, and tφ the dephasing time51.
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Wigner-Dyson Altland-Zirnbauer Chiral
Class A AI AII D DIII C CI AIII BDI CII

H-name GUE GOE GSE – – – – chGUE chGOE chGSE
S-name CUE COE CSE CRE T−CRE CQE T+CQE – T+CRE T−CQE

Table 1.2: For each symmetry class, the names of the relative Hamiltonian and scatter-
ing matrix ensembles are given. The sign “–” indicates that a name has not yet been
consensually assigned.

1.6 Symmetry Classes and the ten-fold way

We give now a list of the ensembles of the matrices H, S and Q, relevant
for 0D systems11,14,15.

Consider a one-body electronic Hamiltonian H. When dealing with
an electronic chaotic systems (especially 0D systems), four kind of com-
mutation properties have physical relevance (these are usually called
symmetries). H can commute or anticommute with a unitary or antiuni-
tary operator. Conventional symmetries are unitary operators commuting
with H. In the following, we will assume there are none of them in the
system, or equivalently, we can assume we are treating separately the
sectors of H with different quantum numbers associated to these latter
symmetries. The other commuting properties are usually referred to with
the name of a prominent element: time-reversal T (antiunitary commut-
ing); particle/hole C, (antiunitary anticommuting); chiral S, (unitary
anticommuting). Notice that the presence of both T and C symmetries
implies the symmetry S.

In the usual Nambu space (spin 1/2) T 2 = −1 and C2 = 1 hold. When
spin rotational (unitary and commuting) symmetry is present, once H is
restricted to one spin-block, the system is effectively spinless. For this
reason, the list below contains also ensembles with T 2 = 1 and C2 = −1.

Three families of ensembles, named Wigner-Dyson, Altland-Zirnbauer
and Chiral, are found out of ten independent combinations of these
symmetries, according to different values of the squares of the operators.
Sometimes, this classification is picturesquely referred to as the ten-fold
way. Table 1.2 presents the names of the Hamiltonian and scattering ma-
trices ensembles associated to each ensemble - notice that mathematicians
usually prefer to call the latter “classes”.

1.6.1 Wigner-Dyson ensembles

The time-delay matrix Q in this ensembles has the same structure of the
Hamiltonian H.
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Class A (No symmetries). The Hamiltonian H is a complex hermitian
matrix. The associated scattering matrix S is complex unitary.

Class AI (Time reversal and spin-rotational symmetries, T 2 = 1).
This class contains effectively spinless systems. One can always find a
basis where H is real. The matrix S is unitary symmetric and can be
written as the product UUT , with U complex unitary.

Class AII (Time reversal symmetry, T 2 = −1). This class contains
spin-full systems. The 2×2 Hamiltonian spin blocks, are real quaternions∗.
The matrix S is unitary self-dual (or, equivalently, unitary symplectic),
where self-dual means σyS

Tσy = S with σy acting on the spin degree of
freedom.

1.6.2 Altland-Zirnbauer ensembles

Particle/hole symmetry is present in these ensembles. Notice that Q has
now a different structure from H. Moreover, classes D and DIII carry a
Z2 topological invariant. For more details, check Table II in Chapter 4.

Class D (Particle/hole symmetry, C2 = 1). In the Majorana basis,
introduced in Section 1.4, H is a purely imaginary antisymmetric matrix.
The matrix S is orthogonal. As in class AI, Q is real symmetric.

Class DIII (Particle/hole and Time reversal symmetries, C2 = 1, T 2 =
−1). In the Majorana basis H is a purely imaginary antisymmetric
matrix but now the spin blocks (coupling same Majorana states with
opposite spins) are real quaternions (the entries of which are pure imagi-
nary). The matrix S is orthogonal and self-dual. The matrix Q is real
symmetric with real quaternionic elements.

Class C (Particle/hole and spin-rotational symmetries, C2 = −1). Sim-
ilarly to class AI, this ensemble contains effectively spinless systems. In
the Nambu basis, the Hamiltonian is the imaginary unit times an anti-
hermitian real quaternionic matrix. The matrix S is unitary with real
quaternionic elements. The matrix Q is hermitian real quaternionic.
For all the matrices H,S and Q, the quaternionic structure is in the
particle/hole degree of freedom.

∗A real quaternion q as the structure q = q0σ0 + i~q · ~σ.
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Class CI (Particle/hole, Time reversal and spin-rotational symmetries,
C2 = −1, T 2 = 1). In the Nambu basis, H is the imaginary unit times
the real part of an antihermitian real quaternionic matrix. The associated
S is complex unitary with real quaternionic elements and symmetric. As
in class DIII, Q is real symmetric with real quaternionic elements.

1.6.3 Chiral ensembles

A chiral operator can square only to 1. The classes DIII and CII in the
previous paragraph are also chiral symmetric as they possesses both T
and C symmetries (notice that T 2C2 = −1 holds in these ensembles). The
chiral ensembles comprehends, however, systems with either only chiral
symmetry or with all symmetries provided T 2C2 = 1. These systems carry
a Z topological invariant. Moreover, the electronic states can be divided
in two groups, say A and B, upon which the chiral operator is represented
by τz = 1M⊕(−1M ′), with M(M ′) the dimension of the space spanned by
the A(B) electrons. Thus, H is a (M+M ′)× (M+M ′) hermitian matrix
with vanishing diagonal M ×M and M ′ ×M ′ blocks. The scattering
matrix in these ensembles is conveniently defined as S̃ = τzS, (S being
connected to H via Eq. (1.6)). Remarkably, Q commutes with S̃. Hence,
time eigenstates are also scattering eigenstates.

Class AIII (Chiral symmetry). The Hamiltonian off diagonal blocks
have complex elements. The matrix S̃ is unitary and hermitian. It can be
represented as UτU†, with U unitary and τ a diagonal signature matrix.
The matrix Q is hermitian.

Class BDI (Chiral, Particle/hole and Time reversal symmetry, C2 =
1, T 2 = 1). The Hamiltonian off diagonal blocks have real elements.
The matrix XS̃X†, with X = 1A ⊕ (i1B) is orthogonal and symmetric
and can be written as OτOT , with O unitary and τ a diagonal signature
matrix. The matrix Q is real symmetric.

Class CII (Chiral, Particle/hole and Time reversal symmetry, C2 =
−1, T 2 = −1). The Hamiltonian off diagonal blocks have quaternionic
elements. The matrix XS̃X† (X as above) is unitary self-dual and can
be written as UτU†, with U is unitary symplectic equivalent (i.e. maps
self-dual matrices to self-dual ones) and τ a diagonal signature matrix.
The matrix Q is hermitian self-dual.
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Figure 1.5: (left) Andreev-billiard geometry to measure the thermopower S of a semi-
conductor quantum dot coupled to chiral Majorana modes at the edge of a topological
superconductor. A temperature difference δT induces a voltage difference V = −SδT
under the condition that no electrical current flows between the contacts. For a random-
matrix theory we assume that the Majorana modes are uniformly mixed with the modes
in the point contact, by chaotic scattering events in the quantum dot. (right) Probability
distribution of the dimensionless thermopower p = S ×~/t0S0 in symmetry class C (black
solid curve, bottom and left axes), and in class D (blue dashed curve, top and right axes).
These are results for the quantum dot of Fig. 2.2 connecting a single-channel point contact
to the unpaired Majorana edge mode of a chiral p-wave superconductor (class D), or to
the paired Majorana mode of a chiral d-wave superconductor (class C). [From Chapter 2]

1.7 This thesis

1.7.1 Chapter 2

In this chapter we compute (i) the joint probability density function
of S and Q related to a chaotic quantum dot in the regime of ballistic
coupling for the Altland-Zirnbauer ensembles, (ii) the average density
of states in the dot and (iii) the probability density function of the
Seebeck coefficient (also called thermopower), S = (∂G(E)/∂E)/G(E).
All quantities are computed at the Fermi energy (defined as E = 0), as
the most characteristic features due to the ensemble symmetries manifest
themselves at this energy. The derivation of (i) is a generalization of the
one for the Wigner-Dyson ensembles, to be found in Ref. 52. However,
some additional care was required to take into account the topological
invariant of classes D and DIII. Similarly to the case of the Wigner-Dyson
ensembles, S and Q are found to be independently distributed, S with a
uniform distribution and Q with a Laguerre-type one. In classes D and
DIII, the independence of S and Q implies the remarkable independence
of the pd.f. of Q from the topological invariants. As a consequence,
also the average density of states is found to be topology independent.
In contrast to the case of the Wigner-Dyson ensembles, the quantity is
dependent on the number of channels that couple to the dot. As an
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application of the previous findings, the thermopower is considered. It
depends both on S and Q and has no direct topology dependence. As S
vanishes if G(E) is an even function, a minimal superconducting setup
must have a three terminal geometry. The thermopower probability
density function have been computed for minimal channels cases, for
classes D and C. Finally, we discuss how thermopower could be used for
the detection of chiral edge states.

1.7.2 Chapter 3

We complete, here, the calculation of the joint probability density function
of S and Q, at the Fermi energy and in the ballistic coupling regime,
for all ten ensembles adding the computation regarding the three chiral
ensembles. In these ensembles S and Q are not fully independent, as they
commute, and a different approach to the computation is required. The
computation of the time-delay eigenvalues distribution is made easier
using the hermitian-dual of Q = 2π~ΩΩ† i.e. Q̃ = 2π~Ω†Ω. This matrix
shares with Q the same non-zero eigenvalues, but has a block diagonal
structure. Surprisingly, the finite eigenvalues of the two blocks (i.e the
proper delay times) have independent Laguerre distributions; moreover,
they depend on the topological number ν of the dot. Since the scattering
matrix depends on ν only up to a certain saturation value (ν = N),
Q has more topological information than S, as opposed to the cases of
classes D and DIII (see Chapter 2). Restricting ourselves to a case of
equal dimension N of the chiral sectors of the scattering channels, we
compute the average density of states in the dot. It is found to diverge
at values of the topological number close to the saturation one. Focusing
on an Andreev chaotic billiard formed on top of a topological insulator,
we compute analytically the different time-delay distributions as the
chemical potential is set to the Dirac point or is far away from it. In the
former case the system is in the chiral class BDI, in the latter case in
class D. The difference in the distribution is striking and, remarkably,
could be experimentally measured on the same physical system.

1.7.3 Chapter 4

This chapter is the natural completion of Chapter 2. Here, we analyze the
effect of a tunnel barrier at the entrance of a QD on the joint probability
density function of S and Q for the Altland-Zirnbauer ensembles. The
two matrices get statistically correlated. As a consequence, the marginal
distribution of Q, in classes D and DIII, acquires a marked dependence
on the topological invariant. For classes D and C, we compute the
average density of states of the QD as a function of a generic barrier.
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1 Introduction

Figure 1.6: Ensemble averaged (Class D) density of states as a function of mode-
independent transmission probability Γ through the barrier, in the absence (ν = 0) or
in the presence (ν = 1) of a Majorana bound states. [From Chapter 4]

Interestingly, the DoS in the trivial topological phase of class D, calculated
in the tunnelling limit does not coincide with the DoS of the closed
system. Again for class D, we focus the attention on the Poisson Kernel,
the probability density function of S, trying to understand why, at
ballistic coupling, many statistical features due to a Majorana bound
state disappear. With this task in mind, we consider the thermal and the
Andreev conductances. They are observables that depend only on the
scattering properties of one terminal. We found that just one channel
(of the terminal not engaged by the observable) coupled ballistically is
enough to make the effect of the Majorana bound state disappear. Finally,
we study the variation of the average Andreev conductance across the
topological phase transition in a QD/nanowire geometry.

1.7.4 Chapter 5

This last chapter presents a contribution to a different field of research:
the control of nanomagnets composed by “adatoms” (atoms adsorbed on
surfaces). One of the main goals is to obtain a sufficient magnetization
stability to make them exploitable as bit units. At low temperature and
other specific conditions, the adatom can be described as an effective spin
with well-defined magnitude. In some systems, the main effect of the
substrate crystaline field is to set the ground state to be degenerate and
formed by the two states with highest spin projection (in modulo) to the
axis perpendicular to the substrate. However, the same field may couple
these two states splitting them energetically, an unwanted phenomenon
called “ground state splitting”. Moreover scattering of substrate electrons
off the atom destabilizes the atomic state, creating transitions between
the two states. When just one electron is needed for such transitions
the process is referred to as “single electron switching”. Building on
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1.7 This thesis

Figure 1.7: (a-d) Atoms deposited on different surfaces with Cχv symmetry. χ = 2, 3, 4, 6
respectively for the adatoms (a),(b),(c),(d). (e) Sketch of a scanning tunneling microscope
current measurement to infer the total momentum of the atom. The tip of the microscope
is in grey.[From Chapter 5]

earlier discoveries, we describe rigorously how the point group symmetry
of the substrate and the time reversal symmetry forbid either ground
state splitting or single electron switching or both, via selection rules. We
identify which combinations of rotational symmetries and spin magnitudes
are expected to be stable (i.e. with neither ground state splitting and
single electron switching mechanisms), time reversal symmetry being
present or not. The mirror symmetry is found to produce no selection
rules. Finally, we use the same formalism to analyze configurations of
adatoms interacting via generic (first-order) Heisenberg interaction. In a
setting similar to the known Lieb-Mattis theorem but generalized by the
presence of the crystaline field, we prove a theorem about the ground
state of the atomic clusters and conjecture its extension. The analytics is
supported by numerics that simulates typical outputs of scanning electron
microscope measurements.
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2 Time-delay matrix, midgap
spectral peak, and
thermopower of an Andreev
billiard

2.1 Introduction

A semiconductor quantum dot feels the proximity to a superconductor
even when a magnetic field has closed the excitation gap that would open
in zero magnetic field: The average density of states has either a peak or
a dip,1

ρ±(E) = δ−1
0 ± sin(2πE/δ0)

2πE
, (2.1)

see Fig. 2.1, within a mean level spacing δ0 from the Fermi level at
E = 0 (in the middle of the superconducting gap). The appearance of
a midgap spectral peak or dip distinguishes the two symmetry classes
C (dip, when spin-rotation symmetry is preserved) and D (peak, spin-
rotation symmetry is broken by strong spin-orbit coupling). These
Altland-Zirnbauer symmetry classes exist because of the ±E electron-hole
symmetry in a superconductor, and are a late addition to the Wigner-
Dyson symmetry classes conceived in the 1960’s to describe universal
properties of nonsuperconducting systems.2

Electron-hole symmetry in the absence of spin-rotation symmetry
allows for a nondegenerate level at E = 0, a socalled Majorana zero-
mode.3,4 The class-D spectral peak is then converted into a dip, ρ+ →
ρ−+ δ(E), such that the integrated density of states remains the same as
without the zero-mode.5,6 The entire spectral weight of this Fermi-level
anomaly is 1/2, consistent with the notion that a Majorana zero-mode is
a half-fermion.7

Here we study what happens if the quantum dot is coupled to M
conducting modes, so that the discrete spectrum of the closed system
is broadened into a continuum. We focus on the strong-coupling limit,
typically realized by a ballistic point contact, complementing earlier
work on the limit of weak coupling by a tunnel barrier or a localized

29



2 Time-delay matrix, midgap spectral peak, and thermopower

Figure 2.1: Ensemble-averaged density of states (2.1) of an Andreev billiard in symmetry
class C (ρ−, dashed curve), or class D without a Majorana zero-mode (ρ+, solid curve).
The class D billiard with a Majorana zero-mode has the smooth density of states ρ−
together with the delta-function contribution from the zero-mode. In this chapter we
investigate how the midgap spectral peak or dip evolves when the billiard is opened via a
ballistic point contact to a metallic reservoir. We find that the distinction between class
C and D remains, but the signature of the Majorana zero-mode is lost.

conductor.8–15 The simplicity of the strong-coupling limit allows for an
analytical calculation using random-matrix theory of the entire probability
distribution of the Fermi-level density of states — not just the ensemble
average. Using the same random-matrix approach we also calculate the
probability distribution of the thermopower of the quantum dot, which
is nonzero in spite of electron-hole symmetry when the superconductor
contains gapless Majorana edge modes.16

The key technical ingredient that makes these calculations possible
is the joint probability distribution of the scattering matrix S and the
time-delay matrix Q = −i~S†dS/dE, in the limit E → 0. This is known
for the Wigner-Dyson ensembles,17 and here we extend that to the
Altland-Zirnbauer ensembles. The Fermi-level density of states then
follows directly from the trace of Q, while the thermopower requires
also knowledge of the statistics of S. We find that these probability
distributions depend on the symmetry class (C or D), and on the number
M of conducting modes, but are the same irrespective of whether the
quantum dot contains a Majorana zero-mode or not. A previous calcu-
lation14 had found that the density-of-states signature of a Majorana
zero-mode becomes less evident when the quantum dot is coupled by a
tunnel barrier to the continuum. We conclude that ballistic coupling
completely removes any trace of the Majorana zero-mode in the density
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2.2 Scattering formula for the thermopower

Figure 2.2: Andreev-billiard geometry to measure the thermopower S of a semiconductor
quantum dot coupled to chiral Majorana modes at the edge of a topological superconductor.
A temperature difference δT induces a voltage difference V = −SδT under the condition
that no electrical current flows between the contacts. For a random-matrix theory we
assume that the Majorana modes are uniformly mixed with the modes in the point contact,
by chaotic scattering events in the quantum dot.

of states, as well as in the thermopower — but not, we hasten to add, in
the Andreev conductance.18

The outline of the chapter is as follows. In the next section we present
the geometry of an “Andreev billiard”,19 a semiconductor quantum
dot with Andreev reflection from a superconductor and a point-contact
coupling to a metallic conductor. (Systems of this type have been studied
experimentally, for example in Refs. 20–22.) We derive a formula relating
the thermopower to the scattering matrix S and time-delay matrix Q, in
a form which is suitable for a random-matrix approach. The distribution
of the transmission eigenvalues Tn of S was already derived in Ref. 23;
what we need additionally is the distribution of the eigenvalues Dn of Q
(the delay times), which we present in Sec. 2.3. The distributions of the
Fermi-level density of states and thermopower are given in Secs. 2.4 and
2.5, respectively. We conclude in Sec. 4.10.

2.2 Scattering formula for the thermopower

We study the thermopower of a quantum dot connecting a two-dimensional
topological superconductor and a semiconductor two-dimensional elec-
tron gas (see Fig. 2.2). In equilibrium the normal-metal contact and the
superconducting contact have a common temperature T0 and chemical
potential EF. Application of a temperature difference δT induces a volt-
age difference V at zero electrical current. The ratio S = −V/δT is the
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2 Time-delay matrix, midgap spectral peak, and thermopower

thermopower or Seebeck coefficient.
In the low-temperature limit δT � T0 → 0 the thermopower is given

by the Cutler-Mott formula,24

S/S0 = − lim
E→0

1

G

dG

dE
, S0 =

π2k2
BT0

3e
, (2.2)

in terms of the electrical conductance G(E) near the Fermi level (E = 0).
See Ref. 16 for a demonstration that this relationship, originally derived
for normal metals, still holds when one of the contacts is superconducting
and G is the Andreev conductance.

Without gapless Majorana modes in the superconductor the Andreev
conductance is an even function of E, so the ratio S/S0 vanishes in
the low-temperature limit. For that reason, with some exceptions,25,26

most studies of the effect of a superconductor on thermo-electric trans-
port take a three-terminal geometry, where the temperature difference is
applied between two normal contacts and the conductance is not so con-
strained.27–36 As pointed out by Hou, Shtengel, and Refael,16 Majorana
edge modes break the ±E symmetry of the conductance allowing for
thermo-electricity in a two-terminal geometry — even if they themselves
carry only heat and no charge.

In a random-matrix formulation of the problem two matrices enter, the
scattering matrix at the Fermi level S0 ≡ S(E = 0) and the Wigner-Smith
time-delay matrix37–39

Q = −i~ lim
E→0

S†
dS

dE
. (2.3)

Before proceeding to the random-matrix theory, we first express the
thermopower in terms of these two matrices. The existing expressions in
the literature40,41 cannot be directly applied for this purpose, since they
do not incorporate Andreev reflection processes.

The Andreev conductance is given by42

G(E)/G0 = 1
2N − Tr ree(E)r†ee(E) + Tr rhe(E)r†he(E), (2.4)

in terms of the matrix of reflection amplitudes

r =

(
ree reh
rhe rhh

)
(2.5)

for electrons and holes injected via a point contact into the quantum
dot. The submatrix ree describes normal reflection (from electron back
to electron), while rhe describes Andreev reflection (from electron to hole,
induced by the proximity effect of the superconductor that interfaces
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2.2 Scattering formula for the thermopower

with the quantum dot). The conductance quantum is G0 = e2/h and
N is the total number of modes in the point contact (counting spin and
electron-hole degrees of freedom), so r has dimension N ×N .

Without edge modes in the superconductor, the reflection matrix r
would be unitary at energies E below the superconducting gap. In that
case one can simplify Eq. (2.4) as G/G0 = 2 Tr rher

†
he. Because of the

gapless edge modes the more general formula (2.4) is needed, which does
not assume unitarity of r.

Equivalently, Eq. (2.4) may be written in terms of the full unitary
scattering matrix S(E),

G(E)/G0 = 1
2N − 1

2TrPτzS(E)P(1 + τz)S
†(E), (2.6)

where the Pauli matrix τz acts on the electron-hole degree of freedom
and P projects onto the modes at the point contact:

S =

(
r t′

t r′

)
, Pτz =

(
τz 0
0 0

)
. (2.7)

The off-diagonal matrix blocks t, t′ couple the N ′ Majorana edge modes
to the N electron-hole modes in the point contact, mediated by the
quasibound states in the quantum dot. The incoming and outgoing
Majorana edge modes are coupled by the N ′ ×N ′ submatrix r′.

Electron-hole symmetry in class D is most easily accounted for by first
making a unitary transformation from S to

S′ =

(
U 0
0 U

)
S

(
U† 0
0 U†

)
, U =

√
1
2

(
1 1
i −i

)
. (2.8)

In this socalled Majorana basis∗ the electron-hole symmetry relation
reads

S′(E) = S′∗(−E). (2.9)

The Pauli matrix τz transforms into τy, so the conductance is given in
the Majorana basis by

G(E)/G0 = 1
2N − 1

2TrPτyS′(E)P(1 + τy)S′†(E). (2.10)

In what follows we will omit the prime, for ease of notation.
To first order in E the energy dependence of the scattering matrix is

given by
S(E) = S0[1 + iE~−1Q+O(E2)]. (2.11)

∗The transformation (2.8) from electron-hole basis to Majorana basis assumes
that there is an even number of modes at each contact. This number is odd if the
superconductor has an unpaired Majorana mode, in which case we have to work in
the Majorana basis from the very beginning.
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2 Time-delay matrix, midgap spectral peak, and thermopower

Unitarity and electron-hole symmetry together require that S0 is real
orthogonal and Q is real symmetric, both in the Majorana basis. The
conductance, still to first order in E, then takes the form

G(E)/G0 = 1
2N − 1

2TrPτyS0P(1 + τy)ST
0

− 1
2 iE~−1 TrPτyS0

[
QP(1 + τy)− P(1 + τy)Q

]
ST

0 . (2.12)

Since TrPτyX vanishes for any symmetric matrix X, we can immedi-
ately set some of the traces in Eq. (2.12) to zero:

G(E)/G0 = 1
2N − 1

2TrPτyS0PτyST
0

− 1
2 iE~−1 TrPτyS0

(
QP − PQ

)
ST

0 . (2.13)

The resulting thermopower is

S/S0 = i~−1 TrPτyS0(QP − PQ)ST
0

N − TrPτyS0PτyST
0

, (2.14)

in the Majorana basis. Equivalently, in the electron-hole basis one has

S/S0 = i~−1 TrPτzS0(QP − PQ)S†0

N − TrPτzS0PτzS†0
. (2.15)

This scattering formula for the thermopower is a convenient starting
point for a random-matrix calculation. Notice that the commutator of Q
and P in the numerator ensures a vanishing thermopower in the absence
of gapless modes in the superconductor, because then the projector P is
just the identity.

2.3 Delay-time distribution in the
Altland-Zirnbauer ensembles

Chaotic scattering in the quantum dot mixes the N ′ Majorana edge modes
with the N electron-hole modes in the point contact. The assumption
that the mixing uniformly covers the whole available phase space produces
one of the circular ensembles of random-matrix theory, distinguished
by fundamental symmetries that restrict the available phase space.43

Two Altland-Zirnbauer symmetry classes support chiral Majorana modes
at the edge of a two-dimensional superconductor,44–46 corresponding to
spin-singlet d-wave pairing (symmetry class C) or spin-triplet p-wave
pairing (symmetry class D). Time-reversal symmetry is broken in both, in
class C there is electron-hole symmetry as well as spin-rotation symmetry,
while in class D only electron-hole symmetry remains. (See Table 2.1.)

34



2.3 Delay-time distribution in the Altland-Zirnbauer ensembles

symmetry class C D
pair potential spin-singlet d-wave spin-triplet p-wave
canonical basis electron-hole Majorana
S-matrix elements quaternion real
S-matrix space symplectic orthogonal
circular ensemble CQE CRE

dT 4 1
dE 2 1
α 2 −1
β 4 1

Table 2.1: The two Altland-Zirnbauer symmetry classes that support chiral Majorana
edge modes, with d-wave pairing (class C) or p-wave pairing (class D). The “canonical
basis” is the basis in which the scattering matrix elements are quaternion (class C) or real
(class D). The degeneracies dT and dE refer to transmission eigenvalues and energy eigen-
values, respectively. The α and β parameters determine the exponents in the probability
distributions (2.17) and (2.18) of the transmission eigenvalues and inverse delay times.

The uniformity of the circular ensembles is expressed by the invariance

P [S(E)] = P [U · S(E) · U ′] (2.16)

of the distribution functional P [S(E)] upon multiplication of the scat-
tering matrix by a pair of energy-independent matrices U,U ′, restricted
by symmetry to a subset of the full unitary group: In class C they are
quaternion symplectic∗ in the electron-hole basis (circular quaternion en-
semble, CQE), while in class D they are real orthogonal in the Majorana
basis (circular real ensemble, CRE).

The unitary invariance (2.16) of the Wigner-Dyson scattering matrix
ensembles was postulated in Ref. 47 and derived from the corresponding
Hamiltonian ensembles in Ref. 48. We extend the derivation to the
Altland-Zirnbauer ensembles in App. 2.7.1. The key step in this extension
is to ascertain that the class-D unitary invariance applies to U,U ′ in
the full orthogonal group — without any restriction on the sign of the
determinant.

For the thermopower statistics we need the joint distribution P (S0, Q)
of Fermi-level scattering matrix and time-delay matrix. The invariance
(2.16) implies P (S0, Q) = P (−1, Q) (take U = −S†0, U ′ = 1), so Q is
statistically independent of S0 and the two matrices can be considered
separately.17†

∗We recall the definition of a quaternion, q = q0τ0 +iq1τx +iq2τy +iq3τz , with real
coefficients qn. A symplectic matrix U is unitary, UU† = 1, and satisfies U∗ = τyUτy .
Since q∗ = τyqτy , a symplectic matrix is a unitary matrix with quaternion elements
(just like an orthogonal matrix is a unitary matrix with real elements).

†Ref. 17 uses a modified definition of the time-delay matrix, with a symmetrized
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2 Time-delay matrix, midgap spectral peak, and thermopower

The uniform distribution of S0 in the symplectic group (CQE, class
C) or orthogonal group (CRE, class D) directly gives the probability
distribution of the transmission eigenvalues Tn ∈ [0, 1] of quasiparticles
from the normal metal into the superconductor. [These are the quantities
that determine the thermal conductance ∝ ∑n Tn, not the electrical
conductance (2.4).] For a transmission matrix of dimension N ′ × N
there are Nmin = min (N,N ′) nonzero transmission eigenvalues, fourfold
degenerate (dT = 4) in class C and nondegenerate (dT = 1) in class D.
The Nmin/dT distinct Tn’s have probability distribution23

P ({Tn}) ∝
∏
k

T
β|δN |/2
k T

−1+β/2
k (1− Tk)α/2

×
∏
i<j

|Ti − Tj |β , (2.17)

with δN = (N −N ′)/dT and parameters α, β listed in Table 2.1.49

The Hermitian positive-definite matrix Q has dimension M×M with
M = N+N ′. Its eigenvalues Dn > 0 are the delay times, and γn ≡ 1/Dn

are the corresponding rates. The degeneracy dT of the Dn’s is the same
as that of the Tn’s. The derivation of the distribution P (γ1, γ2, . . . γM )
of the M = M/dT distinct delay rates is given in App. 2.7, for all
four Altland-Zirnbauer symmetry classes: C, D without time-reversal
symmetry and CI, DIII with time-reversal symmetry. The result is

P ({γn}) ∝
∏
k

Θ(γk)γ
α+Mβ/2
k exp

(
− 1

2βt0γk
)

×
∏
i<j

|γi − γj |β . (2.18)

The unit step function Θ(γ) ensures that the probability vanishes if any
γn is negative. The characteristic time t0 is defined by

t0 =
dE
dT

2π~
δ0

, (2.19)

in terms of the average spacing δ0 of dE-fold degenerate energy levels in
the isolated quantum dotThe mean level spacing δ0 includes the electron-
hole degree of freedom, so the single-electron Hamiltonian has mean level
spacing 2δ0. Since δ0 is the mean spacing of distinct levels, the mean
spacing of all levels is δ0/dE .. For α = 0 and dE = dT we recover the
result of Ref. 17 for the Wigner-Dyson ensembles.

energy derivative, to ensure the independence of S0 and Q also in the presence of time-
reversal symmetry. This modification is not needed for the class C and D ensembles
considered in the main text, so we can stay with the usual unsymmetrized definition
(4.8). The more general case is considered in App. 2.7.3.
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2.4 Fermi-level anomaly in the density of states

The difference between the Altland-Zirnbauer and Wigner-Dyson en-
sembles manifests itself in a nonzero value of α and in a difference in
the degeneracies dE and dT of energy and transmission eigenvalues (see
Table 2.1). One has dT = dE in the absence of particle-hole symmetry
or when the particle-hole conjugation operator C squares to +1; when
C2 = −1 one has dT = 2dE .∗

Already at this stage we can conclude that the thermopower distribution
in the circular ensemble does not depend on the presence or absence of
Majorana zero-modes inside the quantum dot, for example, bound to
the vortex core in a chiral p-wave superconductor.3,4 The parity of the
number nM of Majorana zero-modes fixes the sign of the determinant of
the orthogonal class-D scattering matrix,

DetS0 = (−1)nM . (2.20)

The unitary invariance (2.16) of the CRE implies, on the one hand,
that P (S0, Q) is unchanged under the transformation S0 7→ US0, U =
diag (−1, 1, 1, . . . 1), that inverts the sign of DetS0. (Here we make
essential use of the fact that Eq. (2.16) in class D applies to the full
orthogonal group.) On the other hand, the same transformation leaves
the thermopower (2.14) unaffected, provided we assign the first matrix
element to a superconducting edge mode (so Pτy commutes with U).

2.4 Fermi-level anomaly in the density of
states

2.4.1 Analytical calculation

A striking difference between the Wigner-Dyson and Altland-Zirnbauer
ensembles appears when one considers the density of states at the Fermi
level ρ0, related to the time-delay matrix by

ρ0 =
1

2π~
dT
dE

M∑
n=1

Dn. (2.21)

(The factor dT /dE is needed because delay times and energy levels may
have a different degeneracy. The density of states counts degenerate

∗To understand why the degeneracies dE and dT of energy and transmission
eigenvalues may differ in the presence of particle-hole symmetry, we recall that Kramers
degeneracy applies to Hermitian operators that commute with an anti-unitary operator
squaring to −1. The Hamiltonian H anti-commutes with the particle-hole conjugation
operator C, so Kramers theorem does not apply. In contrast, the transmission matrix
product tt† commutes with C, so when C2 = −1 its eigenvalues have a Kramers
degeneracy.
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2 Time-delay matrix, midgap spectral peak, and thermopower

levels once.) In the Wigner-Dyson ensembles the average density of
states equals exactly 1/δ0, independent of the symmetry index β and of
the number of channels M that couple the discrete spectrum inside the
quantum dot to the continuum outside.17,51

In the Altland-Zirnbauer ensembles, instead, we find from Eq. (2.18)
thatThe result (2.22) for the average density of states in the Altland-
Zirnbauer ensembles follows upon integration of the probability distribu-
tion (2.18). This can be achieved with the help of the general integral for-
mulas of F. Mezzadri and N. J. Simm, J. Math. Phys. 52, 103511 (2011),
but it’s easier to start from the zero-α equation (Mt0)−1〈∑nDn〉 = 1/M
and note that a nonzero α amounts to the substitution M 7→M + 2α/β
on the right-hand-side.

δ0〈ρ0〉 =
1

t0

〈
M∑
n=1

Dn

〉
=

M

max(0,M + 2α/β)

=


M/(M + 1) in class C for any M ≥ 1,

M/(M − 2) in class D for M ≥ 3,

∞ in class D for M = 1, 2.

(2.22)

It is known1,6,8–15 that the tunneling density of states of a superconduct-
ing quantum dot with broken time-reversal symmetry, weakly coupled
to the outside, has a Fermi-level anomaly consisting of a narrow dip in
symmetry class C and a narrow peak in class D. Eq. (2.22) shows the
effect of level broadening upon coupling via M channels to the continuum.
For M →∞ the normal-state result 1/δ0 is recovered, but for small M
the Fermi-level anomaly persists.

For M = 1, 2 the average density of states in class D diverges, because
of a long tail in the probability distribution of κ ≡ δ0ρ0:

PD(κ) =

{
(2π)−1/2κ−3/2e−(2κ)−1

for M = 1,

κ−3(2 + κ)e−2/κ for M = 2.
(2.23)

See Fig. 2.3 for a plot and a comparison with the class-C distribution,
that has a finite average for alle M .

The result (2.23) holds irrespective of the sign of DetS0, in other words,
the statistics of the Fermi-level anomaly in the CRE does not depend
on the presence or absence of an unpaired Majorana zero-mode in the
quantum dot. As we remarked at the end of the previous section, in
connection with the thermopower, this is a direct consequence of the
unitary invariance (2.16) of the circular ensemble.
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2.4 Fermi-level anomaly in the density of states

Figure 2.3: Probability distributions of the Fermi-level density of states, for M = 1 and
M = 2 modes coupling the quantum dot to the continuum, in symmetry classes C and D.
The ensemble average diverges for class D, see Eq. (2.22).

2.4.2 Numerical check

As check on our analytical result we have calculated P (ρ0) numerically
from the Gaussian ensemble of random Hamiltonians. We focus on
symmetry class D, where we can test in particular for the effect of a
Majorana zero-mode.

The Hamiltonian H is related to the scattering matrix S(E) by the
Weidenmüller formula,52,53

S(E) =
1 + iπW †(H − E)−1W

1− iπW †(H − E)−1W

= 1 + 2πiW †(Heff − E)−1W, Heff = H − iπWW †. (2.24)

The M0×M matrix W couples the M0 energy levels in the quantum dot
to M �M0 scattering channels. Ballistic coupling corresponds to

Wnm = δnm
√
M0δ0/π. (2.25)

The density of states is determined by the scattering matrix via54

ρ(E) = − i

2π

d

dE
ln DetS(E). (2.26)

From Eqs. (4.4) and (2.26) we obtain an expression for the Fermi-level
density of states in terms of the Hamiltonian,

ρ0 = Tr

([
1− 2πiW †(H†eff)−1W

]
W †H−2

eff W

)
. (2.27)
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2 Time-delay matrix, midgap spectral peak, and thermopower

Figure 2.4: Histograms: Probability distributions of the Fermi-level density of states in
symmetry class D for M = 1, M0 = 140, 141 and M = 2, M0 = 200, 201, calculated numer-
ically from Eq. (2.27) by averaging the Hamiltonian over the Gaussian ensemble. For each
dimensionality M of the scattering matrix we compare an even-dimensional Hamiltonian,
without a Majorana zero-mode, to an odd-dimensional Hamiltonian with a zero-mode. The
black curve is the analytical result (2.23) for the circular scattering matrix ensemble, pre-
dicting no effect from the Majorana zero-mode for this case of ballistic coupling. Notice
that there is no fit parameter in this comparison between numerics and analytics.

In the Majorana basis the class-D Hamiltonian is purely imaginary,
H = iA, with A a real antisymmetric matrix. The Gaussian ensemble
has probability distribution6,50

P (A) ∝
∏
n>m

exp

(
−π

2A2
nm

2M0δ2
0

)
. (2.28)

The dimensionality of A is odd if the quantum dot contains an unpaired
Majorana zero-mode, otherwise it is even.

Numerical results for the probability distribution of ρ0 for M = 1, 2
scattering channels are shown in Fig. 2.4. The agreement with the
analytical distribution (2.23) is excellent, including the absence of any
effect from the Majorana zero-mode.

2.5 Thermopower distribution

We apply the general thermopower formulas (2.14) and (2.15) to a single-
channel point contact, with transmission probability T into the edge
mode of the superconductor. There are two independent delay times
D1, D2 in class C, each with a twofold spin degeneracy and a twofold
electron-hole degeneracy (dT = 4). Because of this degeneracy the class-C
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2.6 Conclusion

edge mode contains Kramers pairs of Majorana fermions. In class D the
Majorana edge mode is unpaired and all delay times are nondegenerate
(dT = 1). The point contact contributes two and the edge mode one
more, so class D has a total of three independent delay times D1, D2, D3.

Eqs. (2.14) and (2.15) can be expressed in terms of these quantities, see
App. 2.8. We denote the dimensionless thermopower by p = (~/t0)S/S0

and add a subscript C,D to indicate the symmetry class. For class C we
have

pC =
(D2/t0 −D1/t0)ξ

√
T (1− T )

1− (1− T ) cos 2β
. (2.29)

The independent variables β, ξ enter via the eigenvectors of S0 and Q,
with distribution

P (β, ξ) = 3
4 (1− ξ2) sin 2β, |ξ| < 1, 0 < β < π/2. (2.30)

The class-D distribution pD has a more lengthy expression, involving
three delay times, see App. 2.8. These are all averages in the grand-
canonical ensemble, without including effects from the charging energy
of the quantum dot (which could force a transition into the canonical
ensemble).55

The resulting distributions, shown in Fig. 2.5, are qualitatively different,
with a quadratic maximum in class C and a cusp in class D. The variance
diverges in class D, while in class C

〈p2
C〉 =

2

15
(3 ln 2− 2) = 0.011. (2.31)

2.6 Conclusion

Perhaps the most remarkable conclusion of our analysis is that the density
of states of a Majorana zero-mode is not topologically protected in an
open system.

Take a superconducting quantum dot with an unpaired Majorana
zero-mode and bring it into contact with a metallic contact, as in Fig.
4.6 — is something left of the spectral peak? The answer is “yes” for
tunnel coupling,8–15 as it should be if the level broadening is less than
the level spacing in the quantum dot. What we have found is that the
answer is “no” for ballistic coupling, with level broadening comparable
to level spacing.

As an intuitive explanation, one might argue that this is the ultimate
consequence of the fact that the two average densities of states ρ+(E)
and ρ−(E) + δ(E) of a closed quantum dot without and with a Majorana
zero-mode are markedly different,5,6 see Eq. (2.1), and yet have the same
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2 Time-delay matrix, midgap spectral peak, and thermopower

Figure 2.5: Probability distribution of the dimensionless thermopower p = S ×~/t0S0 in
symmetry class C (black solid curve, bottom and left axes), and in class D (blue dashed
curve, top and right axes). These are results for the quantum dot of Fig. 2.2 connecting
a single-channel point contact to the unpaired Majorana edge mode of a chiral p-wave su-
perconductor (class D), or to the paired Majorana mode of a chiral d-wave superconductor
(class C).

integrated spectral weight of half a fermion. Still, we had not expected to
find that the entire probability distribution of the Fermi-level density of
states becomes identical in the topologically trivial and nontrivial system,
once the quantum dot is coupled ballistically to M ≥ 1 conducting modes.

It would be a mistake to conclude that the whole notion of a topologi-
cally nontrivial superconductor applies only to a closed system. Indeed,
the Andreev conductance remains sensitive to the presence or absence
of a Majorana zero-mode, even for ballistic coupling, when no trace is
left in the density of states.18 This can be seen most directly for the case
M = 2 of a superconducting quantum dot coupled to a normal metal by
a pair of spin-resolved electron-hole modes. The Andreev conductance is
then given simply by

G =
e2

h
(1−DetS0), (2.32)

and so is in one-to-one relationship with the topological quantum number
DetS0 = ±1. In contrast, the Fermi-level density of states has the same
probability distribution (2.23) regardless of the sign of DetS0.

We have applied our results for the probability distribution of the time-
delay matrix to a calculation of the thermopower induced by edge modes
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2.7 Appendix A. Derivation of the delay-time distribution

Figure 2.6: Geometry to detect a Majorana zero-mode by a measurement of the Andreev
conductance of a ballistic point contact to a superconducting quantum dot. The probability
distribution of the conductance depends on the presence or absence of the Majorana zero-
mode, while the distribution of the density of states does not.

of a chiral p-wave or chiral d-wave superconductor.16 The search for
electrical edge conduction in such topological superconductors, notably
Sr2RuO4,56 has remained inconclusive,57 in part because of the charge-
neutrality of an unpaired Majorana mode at the Fermi level.58–61 Fig. 2.5
shows that both unpaired and paired Majorana edge modes can produce
a nonzero thermopower — of random sign, with a magnitude of order
S0/δ0 = (0.3 mV/K) × kBT0/δ0. This is a small signal, but it has the
attractive feature that it directly probes for the existence of propagating
edge modes — irrespective of their charge neutrality.

2.7 Appendix A. Derivation of the
delay-time distribution for the
Altland-Zirnbauer ensembles

Repeating the steps of Refs. 17 and 48 we extend the calculation of the
joint distribution P (S0, Q) from the nonsuperconducting Wigner-Dyson
ensembles to the superconducting Altland-Zirnbauer ensembles. We
treat the two symmetry classes C, D without time-reversal symmetry, of
relevance for the main text (see Table 2.1), and for completeness also
consider the time-reversally symmetric classes CI and DIII (see Table
2.2).
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2 Time-delay matrix, midgap spectral peak, and thermopower

symmetry class CI DIII
S-matrix space symplectic orthogonal

& symmetric & selfdual
dT 4 2
dE 2 2
α 1 −1
β 2 2

Table 2.2: The two Altland-Zirnbauer classes with time-reversal symmetry.

2.7.1 Unitary invariance

Since the entire calculation relies on the unitary invariance (2.16) of
the Altland-Zirnbauer circular ensembles, we demonstrate that first.
Following Ref. 48 we construct the M×M energy-dependent unitary
scattering matrix S(E) in terms of an M0 ×M0 energy-independent
unitary matrix U ,

S(E) = PU(e−2πiE/M0δ0 +RU)−1PT. (2.33)

The rectangular M × M0 matrix P has elements Pnm = δnm and
R = 1−PTP. The eigenvalues eiφn of U have the same degeneracy dE
as the energy eigenvalues, so there are M0 =M0/dE distinct eigenvalues
on the unit circle, arranged symmetrically around the real axis.

The M0 × M0 Hermitian matrix H is related to U via a Cayley
transform,

U = e2πiε/M0δ0
πH/M0δ0 + i

πH/M0δ0 − i

⇔ H =
iM0δ0
π

U + e2πiε/M0δ0

U − e2πiε/M0δ0
.

(2.34)

The factor e2πiε/M0δ0 with ε→ 0 is introduced to regularize the singular
inverse when U has an eigenvalue pinned at +1, as we will discuss in just
a moment.

We can immediately observe that if we take a circular ensemble for U ,
with distribution function P (U) = P (U ′U) = P (UU ′), then the unitary
invariance (2.16) of the distribution functional P [S(E)] is manifestly true.
So what we have to verify is that the construction (2.33)–(2.34) with U in
the circular ensemble is, firstly, equivalent to the Weidenmüller formula
(4.4), and secondly, produces a Gaussian ensemble for H. It is sufficient
if the equivalence holds in the low-energy range |E| .Mδ0 �M0δ0.
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2.7 Appendix A. Derivation of the delay-time distribution

Firstly, substitution of Eq. (2.34) into Eq. (2.33) gives

S(E) =
1 + iPM0δ0−iπH tan(πE+/M0δ0)

πH−M0δ0 tan(πE+/M0δ0) PT

1− iPM0δ0−iπH tan(πE+/M0δ0)
πH−M0δ0 tan(πE+/M0δ0) PT

=
1 + iP M0δ0

π(H−E+)PT

1− iP M0δ0
π(H−E+)PT

+O(M/M0), (2.35)

with E+ = E + ε. This is the Weidenmüller formula (4.4), with the
ballistic coupling matrix W = PT(M0δ0/π

2)1/2 from Eq. (4.5).

Secondly, the Cayley transform (2.34) produces a Lorentzian instead
of a Gaussian distribution for H, but in the low-energy range the two
ensembles are equivalent.62 One also readily checks that a uniform distri-
bution with spacing 2π/M0 of the distinct eigenphases φn of U produces a
mean spacing δ0 of the distinct eigenvalues En of H, through the relation
(π/M0δ0)En = cotan (φn/2) ≈ (π − φn)/2 in the low-energy range.

The finite-ε regularization is irrelevant in the class C and CI circular
ensembles, because there the U ’s with an eigenvalue +1 are of measure
zero. In the class D and DIII circular ensembles, in contrast, an eigenvalue
may be pinned at unity and the regularization is essential. Let us analyze
this for class D (the discussion in class DIII is similar). The matrix U in
class D is real orthogonal, with determinant DetU = (−1)nM fixed by
the parity of the number of Majorana zero-modes [cf. Eq. (2.20)]. This
implies that U has an eigenvalue pinned at +1 if M0 is even and nM

is odd, or if M0 is odd and nM is even. The Cayley transform (2.34)
then maps to an eigenvalue of H at infinity. This eigenvalue does not
contribute to the low-energy scattering matrix (2.35), so that it can be
removed from the spectrum of H. Hence, whereas the dimension M0 of
the unitary matrix U can be arbitrary, the dimension of H is always even
for even nM and odd for odd nM.

2.7.2 Broken time-reversal symmetry, class C and D

We now proceed with the calculation of the distribution of the time-
delay matrix, first in symmetry classes C and D. Starting point is the
Weidenmüller formula (4.4) or (2.35) for the energy-dependent scattering
matrix. Differentiation gives the time-delay matrix defined in Eq. (4.8),

Q−1 =
1

2π~
lim
ε→0

[1− iπW †(H − ε)−1W ]

× 1

W †(H − ε)−2W
[1 + iπW †(H − ε)−1W ], (2.36)
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2 Time-delay matrix, midgap spectral peak, and thermopower

in terms of the Hamiltonian H of the closed quantum dot and the
coupling matrix W to the scattering channels. The dimensionality of H
is dEM0 × dEM0 while the dimensionality of Q and S is dTM × dTM
(and W has dimension dEM0 × dTM). The unitary invariance (2.16)
implies P (S0, Q) = P (−1, Q), so we may restrict ourselves to the case
that H has a zero-eigenvalue with multiplicity dTM — since then S0 =
limE→0 S(E) = −1.

Restricting H to its dTM -dimensional nullspace we have, using the
ballistic coupling matrix (4.5),

W †(H − ε)−pW → (M0δ0/π
2)(−ε)−pΩ̃†Ω̃, (2.37)

Q−1 → (δ0/2π~)Ω†Ω, Ω = M
1/2
0 Ω̃. (2.38)

The matrix Ω is a dTM × dTM submatrix of a dEM0 × dEM0 unitary
matrix, rescaled by a factor

√
M0. In the relevant limit M0/M →∞ this

matrix has independent Gaussian elements,

P (Ω) ∝ exp
[
− 1

2β(dE/dT ) Tr′ Ω†Ω
]

= exp
(
− 1

2βt0 Tr′Q−1
)
,

(2.39)

with t0 = (2π~/δ0)(dE/dT ). The prime in the trace, and in the determi-
nants appearing below, indicates that the dT -fold degenerate eigenvalues
are only counted once. The symmetry index β counts the number of
independent degrees of freedom of the matrix elements of Ω, real in class
D (β = 1) and quaternion in class C (β = 4). The positive-definite ma-
trix Q−1 of the form (2.38) is called a Wishart matrix in random-matrix
theory.63

Using Eq. (4.4), an infinitesimal deviation of S0 from −1 can be
expressed as

V Ω(S0 + 1)Ω†V † = A, (2.40)

with A a dTM × dTM anti-Hermitian matrix, A = −A†. The matrix
A is a submatrix of iH, so its matrix elements are real in class D and
quaternion in class C. The unitary matrix V has been inserted so that
P (A) = constant near A = 0. Since the transformation Ω 7→ V Ω has no
effect on P (Ω) and leaves Q unaffected, we may in what follows omit V .

The joint distribution P (S0, Q
−1) follows from P (Ω)P (A) upon multi-

plication by two Jacobian determinants,

P (S0, Q
−1) = P (Ω)P (A)

∣∣∣∣∣∣∣∣ ∂Ω

∂Q−1

∣∣∣∣∣∣∣∣× ∣∣∣∣∣∣∣∣ ∂A∂S0

∣∣∣∣∣∣∣∣
∝ exp(− 1

2βt0 Tr′Q−1)

∣∣∣∣∣∣∣∣∂Ω†Ω

∂Ω

∣∣∣∣∣∣∣∣−1 ∣∣∣∣∣∣∣∣∂Ω−1AΩ†−1

∂A

∣∣∣∣∣∣∣∣−1

. (2.41)
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2.7 Appendix A. Derivation of the delay-time distribution

The Jacobians can be evaluated using textbook methods,63,64∣∣∣∣∣∣∣∣∂Ω†Ω

∂Ω

∣∣∣∣∣∣∣∣−1

∝ (Det′Ω†Ω)−1+β/2, (2.42)∣∣∣∣∣∣∣∣∂Ω−1AΩ†−1

∂A

∣∣∣∣∣∣∣∣−1

∝ (Det′ Ω†Ω)α+1+(M−1)β/2. (2.43)

Here α+ 1 equals the number of degrees of freedom of a diagonal element
of A, while an off-diagonal element has β degrees of freedom. So α+1 = 0,
β = 1 for a real antisymmetric matrix A (class D), while α+ 1 = 3, β = 4
for a quaternion anti-Hermitian A (class C).

Collecting results, we arrive at the distribution

P (S0, Q
−1) ∝ exp(− 1

2βt0 Tr′Q−1) (Det′Q−1)α+Mβ/2. (2.44)

The distribution (2.18) of the eigenvalues γn of Q−1 follows upon multi-
plication by one more Jacobian, from matrix elements to eigenvalues.

2.7.3 Preserved time-reversal symmetry, class CI
and DIII

The time-reversal operator acts in a different way in class CI and DIII.
In class CI the action is the transpose, so that S = ST, H = HT are
symmetric matrices. In class DIII these matrices are selfdual, S =
σyS

Tσy ≡ SD, where the Pauli matrix σy acts on the spin-degree of

freedom. It is convenient to use a unified notation Ũ to denote the
transpose UT of a matrix in class CI and the dual UD in class DIII.
Unitary invariance of the circular ensemble then amounts to

P [S(E)] = P [Ũ · S(E) · U ], (2.45)

for energy-independent unitary matrices U .
Time-reversal symmetry allows to “take the square root” of the Fermi-

level scattering matrix (Takagi factorization65),

S0 = S̃1/2S1/2. (2.46)

In class DIII the sign of the determinant of S1/2 is a topological quantum
number,66

DetS1/2 = Pf (iσyS0) = ±1, (2.47)

equal to −1 when the quantum dot contains a Kramers pair of Majorana
zero-modes. The symmetrized time-delay matrix is defined in terms of
this square root,

Q = −i~ lim
E→0

S̃†1/2
dS

dE
S†1/2. (2.48)
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2 Time-delay matrix, midgap spectral peak, and thermopower

C D CI DIII
Hnm iq0 + q · τ iq0 aτx + bτz iaσx + ibσz
(n 6= m) β = 4 β = 1 β = 2 β = 2
Hnn q · τ 0 aτx + bτz 0

α+ 1 = 3 α+ 1 = 0 α+ 1 = 2 α+ 1 = 0

A AI AII
Hnm a+ ib a q0 + iq · σ
(n 6= m) β = 2 β = 1 β = 4
Hnn a a q0

α+ 1 = 1 α+ 1 = 1 α+ 1 = 1

Table 2.3: Upper table: Representation of the Hamiltonian H in the four Altland-
Zirnbauer symmetry classes. All coefficients qn, a, b are real. The Pauli matrices
τ = (τx, τy, τz) act on the electron-hole degree of freedom, while the σ’s act on the
spin degree of freedom. The symmetry indices β and α+ 1 from Tables 2.1 and 2.2 count,
respectively, the number of degrees of freedom of the off-diagonal and diagonal components
of the Hermitian matrix H, in the Majorana basis for class D, DIII and in the electron-hole
basis for class C, CI . For completeness and comparison, we show in the lower table the
corresponding listing for the three Wigner-Dyson symmetry classes.

The definition (4.8) of the matrix Q used in class C and D, without
time-reversal symmetry, gives the same eigenvalues as definition (2.48),
but would introduce a spurious correlation between S and Q. With the
definition (2.48) the unitary invariance (2.45) allows to equate P (S0, Q) =

P (−1, Q), by taking U = S†1/2iσx in class CI and U = S†1/2σx in class
DIII.

Comparing to the derivation of the previous subsection, what changes
is that the matrix elements of Ω and A are equivalent to complex numbers
a+ ib, rather than being real or quaternion. Specifically, Ω has matrix
elements of the form aσ0 + ibσy in both class CI and DIII (to ensure that

Ω† = Ω̃), while the matrix elements of A are of the form iaσx + ibσz in
class CI and of the form aσx+bσz in class DIII (to ensure that A† = −Ã).
The Jacobian (2.42) still applies, now with β = 2, while the Jacobian
(2.43) evaluates to∣∣∣∣∣∣∣∣∂Ω−1AΩ†−1

∂A

∣∣∣∣∣∣∣∣−1

∝
{

(Det′Ω†Ω)M+1 in class CI,

(Det′Ω†Ω)M−1 in class DIII.
(2.49)

Collecting results, we arrive at

P (S0, Q
−1) ∝ exp(−t0 Tr′Q−1) (Det′Q−1)M±1, (2.50)

with exponent M + 1 in class CI and M − 1 in class DIII. As before, the
primed trace and determinant count degenerate eigenvalues only once.
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The distribution (2.18) of the eigenvalues γn of Q−1 follows with β = 2
and α = ±1.

2.8 Appendix B. Details of the calculation
of the thermopower distribution

2.8.1 Invariant measure on the unitary, orthogonal,
or symplectic groups

For later reference, we record explicit expressions for the invariant mea-
sure dU = P ({αn})

∏
n dαn (the Haar measure) in parameterizations

U({αn}) of the unitary group SU(N), as well as the orthogonal or unitary
symplectic subgroups SO(N), Sp(2N). (We will only need results for
small N .)

The invariant measure is determined by the metric tensor

gmn = −TrU†(∂U/∂αm)U†(∂U/∂αn), (2.51)

via P ({αn}) ∝
√

det g. The function P represents the probability distri-
bution of the αn’s when the matrix U is drawn randomly and uniformly
from the unitary group (circular unitary ensemble, CUE), or from the
orthogonal and symplectic subgroups (circular real and quaternion en-
sembles, CRE and CQE).

For SO(2) we have trivially

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
⇒ P (θ) = constant. (2.52)

For SU(2) = Sp(2) we can choose different parameterizations:

U = exp
[
iβ(τz cos θ + τx sin θ cosφ+ τy sin θ sinφ)

]
⇒ P (β, θ, φ) ∝ sin2 β sin θ, (2.53a)

U = eiατz exp
[
iβ(τx cosφ+ τy sinφ)

]
⇒ P (α, β, φ) ∝ sin 2β, (2.53b)

U = eiατzR(θ)eiα
′τz ⇒ P (α, α′, θ) ∝ sin 2θ. (2.53c)

For the group of 3× 3 orthogonal matrices we will use the Euler angle
parameterization

O± =

(
R(α) 0

0 1

)(
±1 0
0 R(θ)

)(
R(α′) 0

0 1

)
⇒ P (α, α′, θ) ∝ sin θ. (2.54)
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2 Time-delay matrix, midgap spectral peak, and thermopower

The ± sign distinguishes the sign of the determinant DetO± = ±1, with
SO(3) corresponding to O+.

Finally, for Sp(4) we use the polar decomposition

U =

(
U1 0
0 U2

)(
τ0 cos θ −τ0 sin θ
τ0 sin θ τ0 cos θ

)(
τ0 0
0 U3

)
⇒ P (θ) = sin3 2θ. (2.55)

The matrices Up are independently and uniformly distributed in SU(2),
see Eq. (2.53). There are only three independent Up’s, with 3 free
parameters each, because one of the four blocks can be absorbed in the
three others, so we have set it to the unit τ0 without loss of generality.
(One can check that the total number N(2N +1) 7→ 10 of free parameters
of Sp(2N) agrees: 3 + 3 + 3 from the Up’s plus θ makes 10.)

2.8.2 Elimination of eigenvector components

The thermopower expressions (2.14) and (2.15) depend on the trans-
mission eigenvalues Tn and delay times Dn, but in addition there is a
dependence on eigenvectors. Many of the eigenvector degrees of freedom
can be eliminated by using the invariance of the distribution of the time-
delay matrix under the unitary transformation Q 7→ U†QU , following
from Eq. (2.16).

Class C

In class C we proceed as follows. The 4× 4 unitary symplectic scattering
matrix S0 has the polar decomposition (2.55), which we write in the form

S0 =

(
U1 0
0 U2

)(
τ0
√

1− T −τ0
√
T

τ0
√
T τ0

√
1− T

)(
τ0 0
0 U3

)
, (2.56)

Un = eiαnτz exp
[
iβn(τx cosφn + τy sinφn)

]
. (2.57)

We ignore the spin degree of freedom, which plays no role in the calcula-
tion. The remaining two-fold degeneracy of the transmission eigenvalue
T comes from the electron-hole degree of freedom.

The time-delay matrix is Hermitian with quaternion elements,

Q =

(
aτ0 q
q† bτ0

)
, q = q0τ0 + iq1τx + iq2τy + iq3τz. (2.58)
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With some trial and error, we found the unitary symplectic transformation

Q 7→ U†QU, U = (U0)2

(
τ0 0

0 e−iα3τzU†3e
iα3τz

)
, (2.59)

U0 =

(
U1 0
0 τ0

)(
τ0
√

1− T −τ0
√
T

τ0
√
T τ0

√
1− T

)
, (2.60)

that eliminates most of the eigenvector components from the class-C
thermopower expression (2.15). We are left with

S/S0 = −~−1 2q3

√
T (1− T )

1− (1− T ) cos 2β1
. (2.61)

The probability distribution of the eigenvector parameter β1 follows from
Eq. (2.53b),

P (β1) = sin 2β1, 0 < β1 < π/2. (2.62)

Class D

The algebra is simpler in class D, where the matrix elements are real rather
than quaternion. We use the Euler angle parameterization (2.54) of the
3× 3 orthogonal matrix S0 with determinant DetS0 = ±1. Substitution
of the orthogonal transformation

Q 7→
(
R(−α′) 0

0 1

)
Q

(
R(α′) 0

0 1

)
(2.63)

into the class-D thermopower expression (2.14) leads directly to

S
S0

=
Q13

~
×
{
−cotan (θ/2) if DetS0 = +1,

tan(θ/2) if DetS0 = −1,
(2.64a)

P (θ) = 1
2 sin θ, 0 < θ < π. (2.64b)

The transmission eigenvalue is T = sin2 θ. Since P (θ) = P (π − θ) the
probability distribution of the thermopower does not depend on the sign
of DetS0.

2.8.3 Marginal distribution of an element of the
time-delay matrix

The two expressions (2.61) and (2.64a) for the thermopower contain a
single off-diagonal element of the time-delay matrix Q. We can calculate
its marginal distribution, using the eigenvalue distribution of Sec. 2.3
and the fact that the eigenvectors of Q are uniformly distributed with
the invariant measure of the symplectic group (class C) or the orthogonal
group (class D).
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2 Time-delay matrix, midgap spectral peak, and thermopower

Class C

In class C the 4 × 4 time-delay matrix Q is diagonalized by a unitary
symplectic matrix U ,

Q = U

(
D1τ0 0

0 D2τ0

)
U†. (2.65)

Each of the eigenvalues D1 and D2 of Q has a two-fold degeneracy from
the electron-hole degree of freedom. (As before, we can ignore the spin
degree of freedom.) The matrix U has the polar decomposition (2.55).

The quaternion Q12 is given in this parameterization by

Q12 = 1
2 (D1 −D2)(sin 2θ)U1U

†
2 , (2.66)

and since q3 from Eq. (2.58) equals − 1
2 iTr τzQ12, we have

q3 = 1
4 (D1 −D2)(sin 2θ) TrU0. (2.67)

The matrix U0 = −iτzU1U
†
2 is uniformly distributed in SU(2). Using the

invariant measures (2.53a) and (2.55) we arrive at

q3 = 1
2 (D1 −D2) cosβ sin 2θ,

P (β, θ) = (6/π) sin2 β sin3 2θ, 0 < β, θ < π/2.
(2.68)

The two angular variables β, θ can be combined into a single variable ξ:

q3 = 1
2 (D1 −D2)ξ,

P (ξ) = 3
4 (1− ξ2), −1 < ξ < 1.

(2.69)

The marginal distribution of q3 then follows upon integration.
Collecting results, we have the following probability distributions for

the variables appearing in the class-C thermopower:

S/S0 = t0~−1 (D2 −D1)ξ
√
T (1− T )

1− (1− T ) cos 2β
, (2.70)

P (β) = sin 2β, 0 < β < π/2, (2.71)

P (ξ) = 3
4 (1− ξ2), −1 < ξ < 1, (2.72)

P (T ) = 6T (1− T ), 0 < T < 1, (2.73)

P (D1, D2) =
32

42525
(D1 −D2)4(D1D2)−12

× exp[−2/D1 − 2/D2], D1, D2 > 0, (2.74)

where for notational convenience we measure the delay times in units of
t0.
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Class D

The 3× 3 time-delay matrix in class D is diagonalized by
Q = O+ diag (D1, D2, D3)OT

+, with O+ ∈ SO(3) parameterized as in Eq.
(2.54). In terms of these parameters, the matrix element Q13 is given by

Q13 = X cosα+ Y sinα,

X = 1
2 (D1 −D2) sin θ′ sin 2α′, (2.75)

Y = 1
2

[
(D3 −D2) cos2 α′ + (D3 −D1) sin2 α′

]
sin 2θ′,

P (α, α′, θ′) = (8π2)−1 sin θ′, 0 < α,α′ < 2π, 0 < θ < π.

The thermopower distribution follows upon integration, using Eqs. (2.18),
(2.64), and (2.75).
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3 Effect of chiral symmetry
on chaotic scattering from
Majorana zero-modes

3.1 Introduction

In classical mechanics the duration τ of a scattering process can be defined
without ambiguity, for example as the energy derivative of the action.
The absence of a quantum mechanical operator of time complicates the
simple question “by how much is an electron delayed?”1,2. Since the
action, in units of ~, corresponds to the quantum mechanical phase
shift φ, the quantum analogue of the classical definition is τ = ~dφ/dE.
In a multi-channel scattering process, described by an N × N unitary
scattering matrix S(E), one then has a set of delay times τ1, τ2, . . . τN ,
defined as the eigenvalues of the socalled Wigner-Smith matrix

Q = −i~S†(dS/dE). (3.1)

(For a scalar S = eiφ the single-channel definition is recovered.)
This dynamical characterization of quantum scattering processes goes

back to work by Wigner and others3–5 in the 1950’s. Developments in the
random-matrix theory of chaotic scattering from the 1990’s6,7 allowed
for a universal description of the statistics of the delay times τn in an
ensemble of chaotic scatterers. The inverse delay matrix Q−1 turns out to
be statistically equivalent to a socalled Wishart matrix8: the Hermitian
positive-definite matrix product WW †, with W a rectangular matrix
having independent Gaussian matrix elements. The corresponding proba-
bility distribution of the inverse delay times γn ≡ 1/τn > 0 (measured in
units of the Heisenberg time τH = 2π~/δ0, with mean level spacing δ0),
takes the form9∗

P ({γn}) ∝
N∏

j>i=1

|γi − γj |β
N∏
k=1

γ
βN/2
k e−βτHγk/2. (3.2)

∗The distribution (3.2) is known as a Laguerre distribution in random-matrix
theory. It represents the eigenvalue distribution of a Wishart matrix WW † for β = 1
(when W is a real Gaussian N × (2N + 1)-dimensional matrix) and for β = 2 (complex
Gaussian N × 2N matrix W ). For β = 4 there is no corresponding Wishart ensemble.
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

The symmetry index β ∈ {1, 2, 4} distinguishes real, complex, and quater-
nion Hamiltonians. This connection between delay-time statistics and the
Wishart ensemble is the dynamical counterpart of the connection between
spectral statistics and the Wigner-Dyson ensemble10,11 — discovered
several decades later although the Wishart ensemble12 is several decades
older than the Wigner-Dyson ensemble.

The delay-time distribution (3.2) assumes ballistic coupling of the N
scattering channels to the outside world. It has been generalized to
coupling via a tunnel barrier13,14, and has been applied to a variety of
transport properties (such as thermopower, low-frequency admittance,
charge relaxation resistance) of disordered electronic quantum dots and
chaotic microwave cavities15–28. Because the density of states ρ(E) is
directly related to the Wigner-Smith matrix,

ρ(E) = (2π~)−1 TrQ(E) =
∑
n(2π~γn)−1, (3.3)

the delay-time distribution also provides information on the degree to
which levels are broadened by coupling to a continuum.

The discovery of topological insulators and superconductors29,30 has
opened up a new arena of applications of random-matrix theory31,32.
Topologically nontrivial chaotic scatterers are distinguished by a topo-
logical invariant ν that is either a parity index, ν ∈ Z2, or a winding
number ν ∈ Z. In the spectral statistics, topologically distinct systems
are immediately identified through the number of zero-modes, a total
of |ν| levels pinned to the middle of the excitation gap33,34. If the gap
is induced by a superconductor, the zero-modes are Majorana, of equal
electron and hole character35–37.

These developments raise the question how topological invariants con-
nect to the Wishart ensemble: How do Majorana zero-modes affect the
dynamics of chaotic scattering? That is the problem adressed and solved
in this chapter, building on two earlier works38,39. In Ref. 38 it was
found that a Z2 invariant (only particle-hole symmetry, symmetry class D
in the Altland-Zirnbauer classification40) has no effect on the delay-time
distribution for ideal (ballistic) coupling to the scatterer: The distribu-
tion is the same with or without an unpaired Majorana zero-mode in
the spectrum. Here we show that the Z invariant of |ν|-fold degenerate
Majorana zero-modes does significantly affect the delay-time distribution.
This is symmetry class BDI, with particle-hole symmetry as well as
chiral symmetry41,42. Chiral symmetry without particle-hole symmetry,
symmetry class AIII, was considered in Ref. 39 for a scalar S = eiφ, with
a single delay time τ = ~dφ/dE. While our interest here is in Majorana
modes, for which particle-hole symmetry is essential, our general results
include a multi-channel generalization of Ref. 39.
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3.2 Chiral symmetry and time-delay matrix

Majorana zero-modes are being pursued in either two-dimensional (2D)
or one-dimensional (1D) systems35,36,43,44. In the former geometry the
zero-modes are bound to a magnetic vortex core, in the latter geometry
they appear at the end point of a nanowire. Particle-hole symmetry by
itself can only protect a single zero-mode, so even though the Majoranas
always come in pairs, they have to be widely separated. The significance
of chiral symmetry is that it provides additional protection for multiple
overlapping Majorana zero-modes45–48. The origin of the chiral symmetry
is different in the 1D and 2D geometries.

3.2 Chiral symmetry and time-delay matrix

By definition, chiral symmetry means that the Hamiltonian H anticom-
mutes with a unitary operator. The 1D realization of chiral symmetry
relies on the fact that the Rashba Hamiltonian of a nanowire in a parallel
magnetic field is real — if its width W is well below the spin-orbit scatter-
ing length. Particle-hole symmetry H = −τxH∗τx then implies that H
anticommutes with the Pauli matrix τx that switches electrons and holes.
It follows that a nanowire with W . lso (the typical regime of operation)
is in the BDI symmetry class and supports multiple degenerate Majorana
zero-modes at its end49–51.

The Andreev billiard of Fig. 4.1 illustrates a 2D realization on the
surface of a topological insulator. The massless Dirac fermions on the
surface have a chiral symmetry at the charge-neutrality point (the Dirac
point), because the 2D Dirac Hamiltonian

H0 = v(px − eAx)σx + v(py − eAy)σy (3.4)

anticommutes with the Pauli spin-matrix σz. The coupling to a super-
conducting pair potential ∆ introduces particle-hole symmetry without
breaking the chiral symmetry, since the Bogoliubov-De Gennes Hamilto-
nian

H =

(
H0 − µ −iσy∆
iσy∆∗ µ−H∗0

)
(3.5)

still anticommutes with σz for µ = 0.
Therefore, overlapping Majorana zero-modes in a superconductor/topological

insulator heterostructure (the Fu-Kane model52) will not split when the
chemical potential is tuned to within a Thouless energy Nδ0 from the
Dirac point53–55. In this 2D geometry one needs random scattering by
disorder to produce a finite density of states at E = 0, but in order to
preserve the chiral symmetry the disorder cannot be electrostatic (V must
remain zero). Scattering by a random vector potential is one possibil-
ity56,57, or alternatively scattering by random surface deformations58–60.
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Figure 3.1: Andreev billiard on the conducting surface of a three-dimensional topolog-
ical insulator in a magnetic field. The winding number ν of the superconducting order
parameter around the billiard is associated with |ν| Majorana zero-modes, that affect the
quantum delay time when the Fermi level lines up with the Dirac point (red dot) of the
conical band structure.

To be definite, we will refer to the 2D Andreev billiard geometry in the
following, but our results apply as well to 1D nanowires∗.

The unitary scattering matrix S(E) of the Andreev billiard is obtained
from the Green’s function G(E) = K(E −H)−1K† via

S(E) = [1− iπG(E)][1 + iπG(E)]−1. (3.6)

The matrix K describes the coupling of the quasibound states inside
the billiard to the continuum outside via 2N scattering channels61. We
assume that K commutes with σz so as not to spoil the chiral symmetry
of the Green’s function and scattering matrix,

σzG(E) = −G(−E)σz ⇒ σzS(E) = S†(−E)σz. (3.7)

It follows that the matrix product S0 = σzS(0) is both Hermitian and
unitary, so its eigenvalues can only be +1 or −1. There are N ± ν0 eigen-
values equal to ±1, where the socalled matrix signature ν0 is determined
by the number of Majorana zero-modes62:

ν0 = 1
2 TrS0 =

{
ν if |ν| ≤ N,
N (sign ν) if |ν| ≥ N. . (3.8)

∗According to the “ten-fold way” classification of topological states of mat-
ter29–31,40, class BDI is nontrivial in 1D but not in 2D. To reconcile this with
the 2D realization of Fig. 4.1, we refer to the analysis of Teo and Kane54, who
showed that the effective dimensionality for a topological defect is d− d′, where d = 2,
d′ = 1 for a vortex on the surface of a topological insulator. More generally, d is the
dimensionality of the Brillouin zone and d′ is the dimensionality of a contour that
encloses the defect.
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At the Fermi level, the time-delay matrix (4.8) depends on S0 and
on the first-order energy variation, σzS(E) = S0 · [1 + iES1 + O(E2)].
Unitarity requires that S1 is Hermitian and the chiral symmetry (3.7)
then implies that S1 commutes with S0. Since Q(0) ≡ Q0 = ~S1, the
same applies to the time-delay matrix at the Fermi level: S0Q0 = Q0S0.
This implies the block structure

S0 = U0

(
1N+

0
0 −1N−

)
U†0 , Q0 = U0

(
Q+ 0
0 Q−

)
U†0 , (3.9)

with 1n the n× n unit matrix, U0 a 2N × 2N unitary matrix, and Q±
a pair of N± ×N± Hermitian matrices. There are therefore two sets of
delay times τ±n , n = 1, 2, . . . N±, corresponding to an eigenvalue ±1 of
S0.

After these preparations we can now state our central result: For ballis-
tic coupling the two matrices Q−1

+ and Q−1
− are statistically independent,

each described by its own Wishart ensemble63 and eigenvalue distribution
P± of γ±n = 1/τ±n given by

P±({γ±n }) ∝
N±∏

j>i=1

|γ±i − γ±j |β
N±∏
k=1

(γ±k )β/2−1e−βτHγ
±
k /4

× (γ±k )(β/2)|±ν−N |, (3.10)

with symmetry index β = 1 for the class BDI Hamiltonian (3.5). The
distribution (3.10) holds also for |ν| ≥ N , when the scattering matrix
signature (3.8) is saturated. In that case a single Wishart ensemble
remains for all 2N delay times, with distribution

P ({γn}) ∝
2N∏

j>i=1

|γi − γj |β
2N∏
k=1

γ
β/2−1
k e−βτHγk/4

× γ(β/2)(|ν|−N)
k , |ν| ≥ N. (3.11)

The derivation of Eq. (3.10) starts from the Gaussian ensemble for
Hamiltonians with chiral symmetry8,42,

H =

(
0 A
A† 0

)
, P (A) ∝ exp

(
− βπ2

8δ2
0N

TrAA†
)
. (3.12)

The rectangular matrix A has dimensions N × (N + ν), so H has |ν|
eigenvalues pinned to zero. The matrix elements of A are real (β = 1,
symmetry class BDI, chiral orthogonal ensemble), complex (β = 2, class
AIII, chiral unitary ensemble) or quaternion (β = 4, class CII, chiral
symplectic ensemble).
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

The coupling matrix K = K1 ⊕K2 is composed of two rectangular
blocks of dimensions N ×N and N × (N + ν), having nonzero matrix
elements

(K1)nn = (K2)nn = κn, n = 1, 2, . . . N, (3.13)

with κn =
√

2N δ0/π2 ≡ κ0 for ballistic coupling. These matrices
determine the time-delay matrix (4.8) via Eq. (3.6). At the Fermi level
one has

Q0 = 2π~ΩΩ†, Ω = K(H + iπK†K)−1. (3.14)

We seek the distribution of Q0 given the Gaussian distribution of H, in
the limit N →∞ at fixed ν.

The corresponding problem in the absence of chiral symmetry was
solved9,38 by using the unitary invariance of the distribution to perform
the calculation in the limit S → −1, when a major simplification occurs.
Here this would only work in the topologically trivial case∗ ν0 = 0,
so a different approach is needed. We would like to exploit the block
decomposition (3.12) of the Hamiltonian, but this decomposition is lost
in Eq. (3.14).

Unitary invariance does allow us to directly obtain the distribution of
the eigenvectors of Q± = U± diag (τ±1 , τ

±
2 , . . .)U

†
±. From the invariance

P (S0, Q0) = P (V S0V
†, V Q0V

†) under joint unitary transformations of
S0 and Q0 we conclude that the matrices of eigenvectors U0, U+, U− are
all independent and uniformly distributed in the unitary group (for β = 2,
and in the orthogonal or symplectic subgroups for β = 1 or β = 4).

The “trick” that allows us to obtain the eigenvalue distribution is to
note that Q̃0 = 2π~Ω†Ω has the same nonzero eigenvalues as Q0 — but
unlike Q0 it is block-diagonal:

Q̃0 = 2π~
(

Λ−1
− 0
0 Λ−1

+

)
, (3.15a)

Λ− = π2K†1K1 +A(K†2K2 + ε)−1A†, (3.15b)

Λ+ = π2K†2K2 +A†(K†1K1 + ε)−1A. (3.15c)

The infinitesimal ε is introduced to regularize the inversion of the singular
matrices K†nKn = κ2

0Pn, where (Pn)ij = 1 if 1 ≤ i = j ≤ N and zero
otherwise. In the limit ε→ 0 some eigenvalues of Λ± diverge, while the
others converge to the inverse delay times γ±n .

The calculation of the eigenvalues of Λ± in the ε → 0 limit is now
a matter of perturbation theory64. This is a degenerate perturbation
expansion in the null space ofA(1N+ν−P2)A† for Λ+ and in the null space
of A†(1N −P1)A for Λ−. The small perturbation (an order ε smaller than

∗This complication was explained to us by P. W. Brouwer.
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3.2 Chiral symmetry and time-delay matrix

Figure 3.2: Probability distributions in symmetry class BDI (β = 1) of the n-th inverse
delay time γn, ordered from small to large: 0 < γ1 < γ2 · · · < γ2N , with N = 4. The
various plots are for different numbers ν = 0, 1, 2, . . . 6 of Majorana zero-modes. The black
histograms of the chiral Gaussian ensemble (3.12) (calculated for N = 80) are almost
indistinguishable from the the red histograms of the Wishart ensemble, validating our
theory. The divergent peak of P (γ1) for ν = 3, 4, 5 is responsible for the divergence of
the average density of states (3.3) when the number of zero-modes differs by less than two
units from the number of channels.

the leading order term) is π2κ2
0P1 +κ−2

0 AP2A† and π2κ2
0P2 +κ−2

0 A†P1A,
for Λ+ and Λ− respectively. The Gaussian distribution (3.12) of the
matrix elements of A results in the eigenvalue distributions P ({γn}) =
P+({γ+

n })P−({γ−n }) given by Eq. (3.10).
To test our analysis, we have numerically generated random matrices

from the chiral Gaussian ensemble, on the one hand, and from the Wishart
ensemble, on the other hand, and compared the resulting time delay
matrices. We find excellent agreement of the delay-time statistics for all
three values of the symmetry index β ∈ {1, 2, 4}, representative plots for
β = 1 are shown in Fig. 3.2.

In view of Eq. (3.3) we can directly apply the delay-time distribution to
determine the density ρ(E) of quasi-bound states in the Andreev billiard.
This is the density of states in the continuous spectrum. For |ν| > N the
full density of states contains additionally a contribution (|ν| −N)δ(E)
from the discrete spectrum of zero-modes that are not coupled to the
continuum∗.

∗The |ν| − N uncoupled zero-modes in the Andreev billiard, not broadened by
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

Figure 3.3: Probability distribution of the Fermi-level density of states, calculated from
Eqs. (3.17) and (3.18) in symmetry class D (only particle-hole symmetry) and class BDI
(particle-hole with chiral symmetry). In class D there is no dependence on the presence or
absence of Majorana zero-modes38, while in class BDI there is.

The probability distribution of the Fermi-level density of states ρ0 =
ρ(0) follows upon integration of Eq. (3.10). The ensemble average 〈ρ0〉
has a closed-form expression64,

δ0〈ρ0〉 =

{
N(N+1−2/β)+ν2

(N+1−2/β)2−ν2 , if |ν| < N + 1− 2/β,
N

|ν|−N+1−2/β , if |ν| > N − 1 + 2/β.
(3.16)

For β = 1, |ν| ∈ {N,N ± 1} and for β = 2, |ν| = N the average of ρ0

diverges. (There is no divergency for β = 4.) Notice that the |ν| − N
uncoupled zero-modes still affect the density of states coupled to the
continuum, because they repel the quasi-bound states away from the
Fermi level.

As a concrete example we return to the Andreev billiard at the surface of
a topological insulator of Fig. 4.1, and contrast the delay-time distribution
at the Dirac point [chemical potential µ = 0 in the Hamiltonian (3.5)]
and away from the Dirac point (µ� Nδ0). Away from the Dirac point
the symmetry class is D (only particle-hole symmetry), while at the Dirac
point the additional chiral symmetry promotes the system to class BDI.
To simplify the comparison between these two cases we take a point
contact with one electron and one hole mode (N = 1). The scattering
matrix has dimension 2× 2 and there are two delay times τ1, τ2.

The class-D distribution is independent of the presence or absence of

the 2N scattering channels into the continuum, span the null-space of H+ iπK†K.
For |ν| ≤ N all zero-modes are broadened by coupling to the continuum.
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3.3 Conclusions

Majorana zero-modes38,

PD(τ1, τ2) ∝ (τ1τ2)−3|τ1 − τ2|e−(τH/2)(1/τ1+1/τ2). (3.17)

In contrast, the class-BDI distribution (3.10) is sensitive to the number
|ν| of Majorana zero-modes,

PBDI(τ1, τ2) ∝ e−(τH/4)(1/τ1+1/τ2)

×
{

(τ1τ2)−2 for ν = 0,

(τ1τ2)−2−|ν|/2|τ1 − τ2| for |ν| ≥ 1.
(3.18)

The corresponding probability distributions of the Fermi-level density of
states ρ0 = τ1/δ0 + τ2/δ0 are plotted in Fig. 3.3. Chiral symmetry has a
strong effect even for unpaired Majorana zero-modes: While away from
the Dirac point (class D) the distribution P (ρ0) is the same for ν = 0, 1,
at the Dirac point (class BDI) these two distributions are significantly
different.

3.3 Conclusions

This chapter presents the solution to a long-standing problem in the
theory of chaotic scattering: the effect of chiral symmetry on the statistics
of the Wigner-Smith time-delay matrix Q. The solution completes a line
of investigation in random-matrix theory started six decades ago10,11,
by establishing the connection between Q and Wishart matrices for the
chiral counterparts of the Wigner-Dyson ensembles41,42. The solution
predicts an effect of Majorana zero-modes on the quantum delay-times for
chaotic scattering, with significant consequences for the density of states
(Fig. 3.3). Because the experimental search for Majorana zero-modes
operates on 1D and 2D systems with chiral symmetry, the general and
exact results obtained here are likely to provide a reliable starting point
for more detailed investigations.

3.4 Appendix A. Details of the calculation
of the Wigner-Smith time-delay
distribution in the chiral ensembles

3.4.1 Wishart matrix preliminaries

Wishart matrices originate from multivariate statistics12. We collect
some formulas we need8.
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

The Hermitian positive definite matrix WW † is called a Wishart matrix
if the n×m (m ≥ n) rectangular matrix W has real (β = 1), complex (β =
2), or quaternion (β = 4) matrix elements with a Gaussian distribution.
For unit covariance matrix, 〈WijW

∗
i′j′〉 = δii′δjj′ , the distribution reads

P (W ) ∝ exp
(
− 1

2β TrWW †
)
. (3.19)

The eigenvalues of WW † have the probability distribution

P (λ1, λ2, . . . λn) ∝
n∏

j>i=1

|λi − λj |β

×
n∏
k=1

λ
β/2−1
k λ

β(m−n)/2
k e−βλk/2, λk > 0. (3.20)

The distribution (3.20) is called Wishart distribution, or Laguerre distri-
bution because of its connection with Laguerre polynomials.

3.4.2 Degenerate perturbation theory

We seek the eigenvalue distribution of the 2N × 2N -dimensional Wigner-
Smith time-delay matrix

Q0 = −i~S† dS
dE

= 2π~ΩΩ†, Ω = K(H + iπK†K)−1. (3.21)

As explained in the main text, the key step that allows us to make
progress is to invert the order of Ω and Ω†, and to consider a larger
matrix that is block-diagonal:

Q̃0 = 2π~Ω†Ω = 2π~(Λ−1
− ⊕ Λ−1

+ ), (3.22a)

Λ− =π2K†1K1 +A(K†2K2 + ε)−1A†, (3.22b)

Λ+ =π2K†2K2 +A†(K†1K1 + ε)−1A. (3.22c)

In this way we can separate the chirality sectors from the very beginning,
which is a major simplification.

The two matrices Q0 and Q̃0 have the same set of nonzero eigenvalues,
and Q̃0 has an additional set of eigenvalues that are identically zero. The
corresponding diverging eigenvalues of Λ± need to be separated from the
finite eigenvalues that determine the inverse delay times γ±n . We assume
|ν| ≤ N and handle the case |ν| > N at the end.

To simplify the notation we scale the chiral blocks in the Hamiltonian
(3.12) as A = (2N δ0/π)a, where a has the Gaussian distribution

P (a) ∝ exp
(
− 1

2βN Tr aa†
)
. (3.23)
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3.4 Appendix A. Details of the calculation of the time-delay distribution

We scale the coupling matrix as Ki = (2N δ0/π2)1/2Pi. The rank-N
projector onto the open channels in chirality sector i = 1, 2 is PT

i Pi, with
PiP

T
i = 1N .

To access the finite eigenvalues of Λ±, we need to perform degenerate
perturbation theory in the null spaces of

Λ
(0)
− = a(1N+ν − PT

2 P2)a†, Λ
(0)
+ = a†(1N − PT

1 P1)a, (3.24)

with perturbation

δΛ− = 2N δ0(PT
1 P1 + aPT

2 P2a
†),

δΛ+ = 2N δ0(PT
2 P2 + a†PT

1 P1a).
(3.25)

The null space of Λ
(0)
± has rank N± = N ± ν ≥ 0. To project onto this

null space we make an eigenvalue decomposition,

Λ
(0)
− = u−s−u

†
−, Λ

(0)
+ = u+s+u

†
+. (3.26)

The matrix u± is unitary and s± is a diagonal matrix with nonnegative
entries in descending order. The last N± = N ± ν entries on the diagonal
of s± vanish, so the projector p± onto the null space consists of the last
N± columns of u±. The dimensionalities of p+ and p− are (N + ν)×N+

and N × N−, respectively. For later use we note that the null space

condition p†±Λ
(0)
± = 0 = Λ

(0)
± p± requires that

PT
2 P2a

†p− = a†p−, PT
1 P1ap+ = ap+. (3.27)

The N± finite eigenvalues of Λ± are the eigenvalues of the projected
perturbation p†±δΛ±p±, which we decompose as

p†±δΛ±p± = 2N δ0(X±X
†
± + Y±Y

†
±), (3.28)

X− = p†−P
T
1 , X+ = p†+P

T
2 ,

Y− = p†−aP
T
2 , Y+ = p†+a

†PT
1 .

(3.29)

The dimensionality of X± and Y± is N± ×N . The null space condition
(3.27) implies the constraint

X−Y
†
+ = Y−X

†
+. (3.30)

It is helpful to rescale and combine X±, Y± into a single matrix W±
of dimension N± × 2N ,

W+ =

√
N δ0
π~

(
X+, Y+

)
, W− =

√
N δ0
π~

(
−Y−, X−

)
. (3.31)
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

The eigenvalues of W±W
†
± equal the inverse delay times γ±n and the

constraint (3.30) now reads

W−W
†
+ = 0. (3.32)

Considering first the marginal distributions P±(W±) of W+ and W−
separately, we see that these matrices are constructed from rank-N sub-
blocks taken from rank-N random unitary matrices u± and Gaussian
matrices a. In the limit N →∞ at fixed N the marginal distributions of
W± tend to a Gaussian,

P±(W±) ∝ exp

(
−βπ~

2δ0
TrW±W

†
±

)
. (3.33)

In view of Eq. (3.20), the eigenvalues of W±W
†
± then have marginal

distributions P±({γ±n }) of the Wishart form (3.10).
It remains to show that the two sets of eigenvalues γ+

n and γ−n have
independent distributions, so that

P ({γ±n }) = P+({γ+
n })P−({γ−n }). (3.34)

The two matrices W+ and W− are not independent, because of the con-
straint (3.32). To see that this constraint has no effect on the eigenvalue
distributions, we make the singular value decomposition

W± = ω±

(
diag

(√
γ±n

)
, ∅N±,(2N−N±)

)
Ω†±. (3.35)

The unitary matrices ω± and Ω± have dimension N±×N± and 2N ×2N ,
respectively, and ∅n,m is the n×m null matrix. The constraint (3.32) is
now expressed exclusively in terms of the matrices Ω± — the first N−
columns of Ω− have to be orthogonal to the first N+ columns of Ω+. The
matrix products

W±W
†
± = ω± diag (γ±n )ω†± (3.36)

thus have independent Wishart distributions.
All of this is for |ν| ≤ N . The extension to |ν| > N goes as follows. For

ν > N one has N− = 0, so we deal only with a single set of delay times,
obtained as the N+ = 2N eigenvalues of the Wishart matrix W †+W+.

(We have inverted the order, because W+W
†
+ has a spurious set of ν

vanishing eigenvalues, representing zero-modes that are uncoupled to
the continuum.) Similarly, for ν < −N one has N+ = 0 and the delay

times are the N− = 2N eigenvalues of the Wishart matrix W †−W−. The
resulting eigenvalue distribution is Eq. (3.11).
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3.4 Appendix A. Details of the calculation of the time-delay distribution

3.4.3 Numerical test

We have performed extensive numerical simulations to test our analytical
result of two independent Wishart distributions for the inverse delay
times, comparing with a direct calculation using the Gaussian ensemble
of random Hamiltonians. Some results for β = 1, symmetry class BDI
are show in the main text (Fig. 3.2), some more results for all three chiral
symmetry classes are shown in Fig. 3.4. The quality of the agreement
(the two sets of histograms are almost indistinguishable) convinces us of
the validity of our analysis.

3.4.4 Generalization to unbalanced coupling

The results in Appendix 3.4.2 pertain to the case of an equal number
N1 = N2 = N of channels coupling to each chiral sector. This is the
appropriate case in the context of superconductivity, where the chirality
refers to the electron and hole degrees of freedom — which are balanced
under most circumstances. In other contexts, in particular when the
chirality refers to a sublattice degree of freedom, the coupling may be
unbalanced. We generalize our results to that case.

When N1 = N2 + δN Eq. (3.8) for the topological invariant should be
replaced by

ν0 = 1
2 TrS0 = max

[
− 1

2Ntot,min
(
ν + 1

2δN,
1
2Ntot

)]
. (3.37)

The unitary and Hermitian matrix S0 has dimension 2Ntot × 2Ntot, with
Ntot = N1 +N2. When Ntot is odd the number ν0 is half-integer. The
winding number ν is always an integer.

Because S0 stills commutes with the time-delay matrix Q0 we still have
two sets of inverse delay times γ±n , associated to the N± = Ntot/2± ν0

eigenvalues of S0 equal to ±1. The two sets again have independent
Wishart distributions,

P±({γ±n }) ∝
N±∏

j>i=1

|γ±i − γ±j |β
N±∏
k=1

(γ±k )β/2−1e−βτHγ
±
k /4

× (γ±k )(β/4)|Ntot∓δN∓2ν|. (3.38)

This formula also applies to the saturation regime |2ν+δN | > Ntot, where
either N+ or N− vanishes and only one set of delay times remains. In
this regime the system has an additional |ν + δN/2| −Ntot/2 zero-modes
that are not coupled to the continuum.

We can use Eq. (3.38) to make contact with the “single-site limit”
N1 = 1, N2 = 0 studied by Fyodorov and Ossipov39. We distinguish
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

Figure 3.4: Probability distributions in symmetry class BDI (β = 1), class AIII (β = 2),
and class CII (β = 4) of the n-th inverse delay time γn, ordered from small to large:
0 < γ1 < γ2 · · · < γ2N , with N = 4. All plots are for ν = 2 Majorana zero-modes.
The black histograms of the chiral Gaussian ensemble (3.12) (calculated with N = 80 for
β = 1, 2 and N = 120 for β = 4) are almost indistinguishable from the red histograms
of the Wishart ensemble. In each panel the inset shows the corresponding probability
distribution of the density of states ρ0 =

∑
n(2π~γn)−1.
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3.4 Appendix A. Details of the calculation of the time-delay distribution

positive and negative winding number ν. For ν ≥ 0 one has ν0 = 1/2,
N+ = 1, N− = 0. The single delay time τ ≡ 1/γ+

1 has distribution

P (τ) ∝ τ−(β/2)(1+ν)−1e−βτH/4τ , ν ≥ 0, (3.39)

in agreement with Ref.39 for β = 2. There are then ν zero-modes not
coupled to the continuum.

For negative ν (or equivalently, positive ν with N1 = 0, N2 = 1) Ref.39

argues that all delay times diverge, but instead we do find one finite
τ ≡ 1/γ−1 with distribution

P (τ) ∝ τ (β/2)ν−1e−βτH/4τ , ν ≤ −1, (3.40)

accompanied by |ν| − 1 zero-modes not coupled to the continuum.

3.4.5 Calculation of the average density of states

The formula (3.16) for the ensemble averaged density of states results
upon integration of

2π~δ0〈ρ0〉 =

∫ ∞
0

dγ+
1 · · ·

∫ ∞
0

dγ+
N+
P+({γ+

n })
N+∑
n=1

1

γ+
n

+

∫ ∞
0

dγ−1 · · ·
∫ ∞

0

dγ−N−P−({γ−n })
N−∑
n=1

1

γ−n
, (3.41)

with probability distributions P± given by Eq. (3.10). These integrals
can be carried out in closed form, as follows.

We need to evaluate an expression of the form

I =
1

C

N∏
k=1

∫ ∞
0

dγk γ
p
ke
−βτHγk/4

N∏
j>i=1

|γi − γj |β
(

N∑
n=1

1

γn

)
, (3.42)

with normalization integral

C =

N∏
k=1

∫ ∞
0

dγk γ
p
ke
−βτHγk/4

N∏
j>i=1

|γi − γj |β . (3.43)

For a finite answer we need an exponent p > 0.
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3 Effect of chiral symmetry on chaotic scattering from Majorana zero-modes

We substitute γp−1
k = p−1dγpk/dγk and perform a partial integration,

I =
1

pC

N∏
k=1

∫ ∞
0

dγk e
−βτHγk/4

N∏
j>i=1

|γi − γj |β

×
(

N∑
n=1

d

dγn

)
N∏
k′=1

γpk′ (3.44)

=
βNτH

4p
− 1

pC

N∏
k=1

∫ ∞
0

dγk γ
p
ke
−βτHγk/4

×
(

N∑
n=1

d

dγn

)
N∏

j>i=1

|γi − γj |β

=
βNτH

4p
, (3.45)

because (
N∑
n=1

d

dγn

)
N∏

j>i=1

|γi − γj |β = 0. (3.46)
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4 Effect of a tunnel barrier on
the scattering from a
Majorana bound state in an
Andreev billiard

4.1 Introduction

The quantum states of particle and anti-particle excitations in a supercon-
ductor (Bogoliubov quasiparticles) are related by a unitary transforma-
tion, which means that they can be represented by a real wave function.
In this so-called Majorana representation the N ×N scattering matrix
S at the Fermi level is real orthogonal rather than complex unitary1.
Since the orthogonal group O(N) is doubly connected, this immediately
implies a twofold distinction of scattering problems in a superconductor:
The subgroup O+(N) ≡ SO(N) of scattering matrices with determinant
+1, connected to the unit matrix, is called topologically trivial, while the
disconnected set O−(N) of scattering matrices with determinant −1 is
called topologically nontrivial. In mathematical terms, the experimental
search for Majorana bound states can be called a search for systems
that have DetS = −1. This search has been reviewed, from different
perspectives, in Refs. 2–6.

If the scattering is chaotic the scattering matrix becomes very sensitive
to microscopic details, and it is useful to develop a statistical description:
Rather than studying a particular S, one studies the probability distribu-
tion P (S) in an ensemble of chaotic scatterers. This is the framework of
random-matrix theory (RMT)7–9. The ensemble generated by drawing
S uniformly from the unitary group U(N), introduced by Dyson in the
context of nuclear scattering10, is called the circular unitary ensemble
(CUE). Superconductors need a new ensemble. A natural name would
have been the circular orthogonal ensemble (COE), but since that name
is already taken for the coset U(N)/O(N), the alternative name circular
real ensemble (CRE) is used when S is drawn uniformly from O(N). The
RMT of the CRE, and the physical applications to Majorana fermions
and topological superconductors, have been reviewed recently11.
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.1: Andreev billiard on the conducting surface of a three-dimensional topological
insulator. The billiard consists of a confined region (quantum dot, mean level spacing δ0)
with superconducting boundaries, connected to metal electrodes by a pair of point contacts
(supporting a total of N = N1 +N2 propagating modes). A magnetic insulator introduces
a tunnel barrier in each point contact (transmission probability Γ per mode). A magnetic
vortex may introduce a Majorana bound state in the quantum dot.

The uniformity of the distribution requires ideal coupling of the scatter-
ing channels to the continuum, which physically means that the discrete
spectrum of a quantum dot is coupled to metal electrodes by ballistic
point contacts. If the point contact contains a tunnel barrier, then P (S)
is no longer uniform but biased towards the reflection matrix rB of the
barrier. The modified distribution PPoisson(S) is known12–16, it goes by
the name “Poisson kernel” and equals

PPoisson(S) ∝ Det (1− r†BS)1−N (4.1)

in the CRE16.

In the present work we apply this result to the scattering (Andreev
reflection) in a superconducting quantum dot (Andreev billiard), see Fig.
4.1. We focus in particular on the effect of a bound state at the Fermi level
(E = 0) in the quantum dot, a so-called Majorana zero-mode or Majorana
bound state. In addition to the scattering matrix, which determines the
thermal and electrical conductance, we consider also the time-delay
matrix Q = −i~S†dS/dE. The eigenvalues of Q are positive numbers
with the dimension of time, that govern the low-frequency dynamics of
the system (admittance and charge relaxation17–19). Moreover, the trace
of Q gives the density of states and Q and S together determine the
thermopower20,21.

The joint distribution of S and Q is known for ballistic coupling22–24,
here we generalize that to tunnel coupling. The effect of a tunnel barrier
on the time-delay matrix has been studied for complex scattering matri-
ces25,26, but not yet for real matrices. One essential distinction is that
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4.2 Scattering formulation

the tunnel barrier has no effect on the density of states in the CUE and
COE, but it does in the CRE.

The outline of the chapter is as follows. The next two sections formulate
the scattering theory of the Andreev billiard and the appropriate random-
matrix theory. Our key technical result, the joint distribution P (S,Q),
is given in Sec. 4.4. We apply this to the simplest single-channel case
(N = 1) in Sec. 4.5, where obtain a remarkable scaling relation: For a high
tunnel barrier (transmission probability Γ� 1) the distribution P (ρ|Γ)
of the density of states at the Fermi level is described by a one-parameter
scaling function F (x):

P (ρ|Γ) ∝
{
F (Γρ/4) with a Majorana bound state,

F (4ρ/Γ) without a Majorana.
(4.2)

The average density of states in the multi-channel case is calculated
in Sec. 4.6. By relating the ensemble averages of Q and S we derive the
relation

〈ρ〉 = 〈ρ〉ballistic

(
1− 2

NΓ
Tr r†B[〈S〉 − rB]

)
, (4.3)

for a mode-independent tunnel probability Γ. In the CUE and COE the
average scattering matrix 〈S〉 is just equal to rB, so 〈ρ〉 remains equal to
its ballistic value 〈ρ〉ballistic, but the CRE is not so constrained.

Applications to the thermal conductance g and the electrical (Andreev)
conductance gA follow in Secs. 4.7 and 4.8. For ballistic coupling it
is known that P (g) is the same with or without the Majorana bound
state27. (This also holds for P (ρ)23.) In the presence of a tunnel barrier
this is no longer the case, but we find that the Majorana bound state
remains hidden if even a single scattering channel has Γ = 1. The
distribution of gA, in contrast, is sensitive to the presence or absence
of the Majorana bound state even for ballistic coupling28. The way in
which P (gA) changes as we tune the system through a topological phase
transition, at which a Majorana bound state emerges, is calculated in
Sec. 4.9. We conclude in Sec. 4.10.

In the main text we focus on the results and applications. Details of
the calculations are moved to the Appendices. These also contain more
general results for other RMT ensembles, with or without time-reversal
and/or spin-rotation symmetry. (Both symmetries are broken in the
CRE.)

4.2 Scattering formulation

Fig. 4.1 shows the scattering geometry, consisting of a superconducting
quantum dot (Andreev billiard) on the surface of a topological insulator,
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

connected to normal metal electrodes by point contacts. The Hamiltonian
H of the quantum dot is related to the energy-dependent scattering matrix
S(E) by the Mahaux-Weidenmüller formula29,

S(E) =
1− iπW †(E −H)−1W

1 + iπW †(E −H)−1W

= 1− 2πiW †(E −H + iπWW †)−1W.

(4.4)

The M ×N matrix W couples the M energy levels in the quantum dot
(mean level spacing δ0) to a total of N �M propagating modes in the
point contact.

We assume that degeneracies are broken by spin-orbit coupling in the
topological insulator in combination with a magnetic field (perpendicular
to the surface). All degrees of freedom are therefore counted separately
in N and M , as well as in δ0. The electron-hole degree of freedom
is also included in the count, but we leave open the possibility of an
unpaired Majorana fermion — a coherent superposition of electron and
hole quasiparticles that does not come with a distinct antiparticle. An
odd level number M indicates the presence of a Majorana bound state
in the quantum dot, produced when a magnetic vortex enters30. An
odd mode number N signals a propagating Majorana mode in the point
contact, allowed by a π-phase difference between the superconducting
boundaries31.

The N modes have an energy-independent transmission probability
Γn ∈ [0, 1] per mode. If we choose a basis such that the coupling matrix
W has only nonzero elements on the diagonal, it has the explicit form32

Wmn = wnδmn, 1 ≤ m ≤M, 1 ≤ n ≤ N,

|wn|2 =
Mδ0κn
π2

, κn =
1− rn
1 + rn

, r2
n = 1− Γn.

(4.5)

Notice that the tunnel probability Γn determines the reflection ampli-
tude rn ∈ [−1, 1] up to a sign. The conventional choice is to take rn ≥ 0,
when κn = κ+

n can be written as

κ+
n =

1

Γn
(2− Γn − 2

√
1− Γn). (4.6)

Alternatively, if rn ≤ 0 one has κn = κ−n given by

κ−n =
1

Γn
(2− Γn + 2

√
1− Γn) = 1/κ+

n . (4.7)

The two choices are equivalent for ballistic coupling, Γn = 1 = κ±n , but for
a high tunnel barrier Γn � 1 one has κ+

n → 0 while κ−n →∞. The sign
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4.2 Scattering formulation

change of rn is a topological phase transition33, which we will analyze in
Section 4.9. For now we take rn ≥ 0 for all n, so κn = κ+

n .
From the scattering matrix we can obtain transport properties, such as

the electrical and thermal conductance, and thermodynamic properties,
such as the density of states. If we restrict ourselves to properties at the
Fermi level, E = 0, we need the matrix S(0) ≡ S and the derivative

Q = −i~ lim
E→0

S†(E)
dS(E)

dE
. (4.8)

The unitarity of S(E) implies that Q is Hermitian, so it has real eigen-
values τn with the dimension of time. The τn’s are called (proper) delay
times and Q is called the Wigner-Smith time-delay matrix34–36. The
Fermi-level density of states ρ is obtained from Q via the Birman-Krein
formula37–39,

ρ =
1

2πi
lim
E→0

d

dE
ln DetS(E) =

1

2π~
TrQ. (4.9)

For the thermal conductance we partition the modes into two sets,
N = N1 +N2, each set connected to a different terminal, and decompose
the scattering matrix into reflection and transmission subblocks,

S =

(
r t′

t r′

)
. (4.10)

A small temperature difference δT between the two terminals, at aver-
age temperature T0, drives a heat current J = GthermalδT . The ther-
mal conductance Gthermal in the low-temperature linear-response limit
T0, δT/T0 → 0 is given by

g = Gthermal/G0 = Tr tt†, G0 =
π2k2

BT0

6h
. (4.11)

The quantum G0 is a factor-of-two smaller than in systems without
superconductivity41, due to our separate counting of electron and hole
degrees of freedom that allows to account for the possibility of propagation
via an unpaired Majorana mode.

If we keep the two terminals at the same temperature but instead apply
a voltage difference, we can drive an electrical current. We consider a
situation where both terminal 2 and the superconductor are grounded,
while terminal 1 is biased at voltage V . The current I from terminal 1
to ground is then given by the Andreev conductance

gA =
h

e2

dI

dV
= Tr (1− reer†ee + rher

†
he)

= 1
2 Tr (1− rτzr†τz),

(4.12)
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

in the zero-temperature, zero-voltage limit. In the last equality we used
the particle-hole symmetry relation t = τxt

∗τx at E = 0, where the τi
Pauli matrices act on the electron (e) and hole (h) degree of freedom.

4.3 Random-matrix formulation

For a statistical description we consider an ensemble of quantum dots,
each with its own random Hamiltonian H. The mean level spacing
δ0 and coupling matrix W are kept fixed. If the wave dynamics in
the quantum dot is chaotic, the ensemble is fully characterized by the
presence or absence of certain fundamental symmetries. This is the
universal framework of random-matrix theory.

Superconducting systems are characterized by particle-hole symmetry,

H = −τxH∗τx, W = τxW
∗τx,

⇒ S = τxS
∗τx, Q = τxQ

∗τx.
(4.13)

The Pauli matrices τx can be removed from the symmetry relation by a
unitary transformation

H 7→ ΩHΩ†, Ω =
√

1
2

(
1 1
i −i

)
, (4.14)

after which we simply have

H = −H∗, W = W ∗, S = S∗, Q = Q∗. (4.15)

In this so-called Majorana basis the Hamiltonian is real antisymmetric,
H = iA with Anm = A∗nm = −Amn.

If no other symmetries are imposed on the Hamiltonian we have the
class-D ensemble of random-matrix theory1,11, with Gaussian probability
distribution

P ({Anm}) ∝
∏
n>m

exp

(
−π

2A2
nm

2Mδ2
0

)
. (4.16)

The eigenvalues of the antisymmetric M ×M matrix H come in ±E
pairs, hence if M is odd there must be a nondegenerate eigenvalue E = 0
at the Fermi level, in the middle of the superconducting gap. This so-
called Majorana bound state is the hallmark of a topologically nontrivial
superconductor42,43. If M is even there is no level pinned to E = 0, and
the superconductor is called topologically trivial. It is helpful to encode
the distinction in a topological quantum number ν that counts the number
of Majorana bound states, so ν equals 0 or 1 if the superconductor is
topologically trivial or non-trivial, respectively.
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4.4 Joint distribution of scattering matrix and time-delay matrix

In the scattering matrix the presence of a Majorana bound state is
signaled by the sign of the determinant,

DetS = (−1)ν , ν ∈ {0, 1}. (4.17)

This can be seen directly from the definition (4.4) in the Majorana basis:
For M even the matrix H = iA is invertible, so we have

S =
1 + πWTA−1W

1− πWTA−1W
⇒ DetS = +1, (4.18)

since Det (1 + A) = Det (1 − A) if A = −AT. For M odd the bound
state contributes to the determinant a factor

lim
ε→0

Det (1 + ε−1vvT)

Det (1− ε−1vvT)
= −1,

for some vector v, so DetS = −1.
The class-D ensemble of scattering matrices thus consists of two disjunct

sets: The special orthogonal group SO(N) ≡ O+(N) of orthogonal
matrices with determinant +1 in the topologically trivial case, and the
complement O−(N) of orthogonal matrices with determinant −1 in the
topologically nontrivial case.

4.4 Joint distribution of scattering matrix
and time-delay matrix

For ballistic coupling (Γn = 1 for all n) the matrices S and Q are
statistically independent22, so they can be considered separately. The
class-D ballistic scattering matrix is uniformly distributed in O±(N) —
uniformity being defined with respect to the Haar measure1,11. This
is the Circular Real Ensemble (CRE), the analogue for real orthogonal
matrices of the Circular Unitary Ensemble (CUE) for complex unitary
matrices8–10.

The class-D ballistic time-delay matrix has probability distribution23,

Pballistic(Q) ∝ (DetQ)−3N/2Θ(Q) exp(− 1
2τH TrQ−1), (4.19)

where tH = 2π~/δ0 is the Heisenberg time and Θ(Q) restricts Q to positive
definite real symmetric matrices. This constraint can be implemented
more directly by defining

Q−1 = t−1
H KKT, K ∈ RN,2N−1, (4.20)
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

with Rn,m the set of n×m matrices with real elements. The distribution
(4.19) is then equivalent∗ to the Wishart distribution9

PWishart(K) ∝ exp(− 1
2 TrKKT). (4.21)

Remarkably, there is no dependence on the topological quantum number
for ballistic coupling: Q has the same distribution irrespective of the
presence or absence of a Majorana bound state.

Tunnel coupling is described by a reflection matrix rB (from outside
to outside) and transmission matrix tB (from outside to inside). In the
Majorana basis these are real matrices, parameterized by

rB = O1 diag (r1, r2, . . . rN )O2,

tB = O3 diag (Γ
1/2
1 ,Γ

1/2
2 , . . .Γ

1/2
N )O2,

O1, O2, O3 ∈ SO(N), Γn = 1− r2
n ∈ (0, 1].

(4.22)

As we derive in App. 4.11, the matrix product

Σ = (1− STrB)t−1
B (4.23)

determines the joint distribution

P (S,Q) ∝ (Det Σ)N (DetQ)−3N/2 Θ(Q)

× exp(− 1
2τH Tr ΣTQ−1Σ), (4.24a)

⇔ P (S,K) ∝ (Det Σ)N exp(− 1
2 Tr ΣTKKTΣ). (4.24b)

As a check, we can integrate out the time-delay matrix to obtain the
marginal distribution of the scattering matrix,

P (S) =

∫
dK P (S,K) ∝ (Det Σ)N

∣∣∣∣∣∣∣∣∂ΣTK

∂K

∣∣∣∣∣∣∣∣−1

. (4.25)

The Jacobian evaluates to44∣∣∣∣∣∣∣∣∂ΣTK

∂K

∣∣∣∣∣∣∣∣ = (Det Σ)2N−1 for K ∈ RN,2N−1, (4.26)

and we recover the class-D Poisson kernel† 16,

PPoisson(S) = (Det Σ)1−N =

( ∏
n

√
Γn

Det (1− rT
BS)

)N−1

. (4.27)

∗To transform from P (Q) to P (K) multiply by the Jacobians ||∂Q/∂Q−1|| ×
||∂KKT/∂K|| = (DetQ)N+1 × (DetK)2−N ∝ (DetQ)3N/2, for Q = QT ∈ RN,N

and K ∈ RN,2N−1.
†In most expressions for the probability distribution we write ∝ to indicate

an unspecified normalization constant. The Poisson kernel (4.27) is normalized,∫
PPoisson(S) dS =

∫
dS ≡ 1 with dS the Haar measure on O±(N), so we use =

instead of ∝.
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4.5 Single-channel delay-time statistics

The joint distribution (4.24) tells us that S and Q become correlated
in the presence of a tunnel barrier. However, S remains independent of
the matrix product

Q0 =
1

Σ
Q

1

ΣT
, (4.28)

so that the joint distribution of S and Q0 factorizes,

P (S,Q0) = PPoisson(S)× Pballistic(Q0). (4.29)

The transformation from Q to Q0 removes the effect of the tunnel barrier
on the time-delay matrix (see App. 4.11).

4.5 Single-channel delay-time statistics

For ballistic coupling the distribution (4.19) implies that the eigenvalues
γn ≡ 1/τn of Q−1 have the ν-independent distibution23

Pballistic({γn}) ∝
N∏
k=1

γ
−1+N/2
k exp(− 1

2 tHγk)θ(γk)

×
∏
i<j

|γi − γj |, ν ∈ {0, 1}.
(4.30)

The unit step function θ(x) ensures that γn > 0 for all n = 1, 2, . . . N .
In the single-channel case N = 1 we can use the joint distribution

(4.24) to immediately extend this result to arbitrary tunnel probability
Γ = 1− r2

B. The scalar S is pinned to (−1)ν , hence

Σ =

(
1− (−1)νrB

)√
1− r2

B

=

{√
κ for ν = 0,

1/
√
κ for ν = 1,

(4.31)

κ =
1

Γ
(2− Γ− 2

√
1− Γ). (4.32)

[This definition of κ corresponds to κ+ from Eq. (4.6).]
Since κ then appears only as a scale factor, we conclude that the single

eigenvalue γ1 ≡ γ of Q−1 for N = 1 and any κ ∈ (0, 1] has distribution

P (γ) =
θ(γ)tH√
2πtHγ

×
{
κ1/2 exp(− 1

2κ tHγ) for ν = 0,

κ−1/2 exp(− 1
2κ
−1tHγ) for ν = 1.

(4.33)

The single-parameter scaling P (γ|κ, ν) = κ1−2νF (κ1−2νγ) is tested nu-
merically in Fig. 4.2, by drawing random Hamiltonians from the Gaussian
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.2: Probability distribution of the inverse delay time γ for a single-channel
chaotic scatterer, without (ν = 0) or with (ν = 1) a Majorana bound state. The histograms
are numerical results obtained by generating random Hamiltonians (of size M = 40 + ν)
with distribution (4.16). The scattering matrix, and hence the delay time, then follows
from Eqs. (4.4) and (4.5). The different curves correspond to different transmission proba-

bility Γ of the tunnel barrier. Rescaling with a factor κ1−2ν , with κ defined in Eq. (4.32),
makes all histograms collapse onto a single curve, in agreement with the analytical result
(4.33).

class-D ensemble (4.16). The excellent agreement serves as a check on
our analytics.

With ρ = (2π~γ)−1 the distribution (4.33) gives the scaling form (4.2)
of the density of states distribution P (ρ|Γ) from the introduction, in the
tunneling regime Γ� 1 when κ = Γ/4.

4.6 Average density of states

For ballistic coupling, integration of ρ = (2π~)−1
∑
n γ
−1
n with distribu-

tion (4.30) gives the average density of states at the Fermi level23,

〈ρ〉ballistic = δ−1
0

N

N − 2
, δ0 = 2π~/τH, (4.34)

for N ≥ 3. The ensemble average diverges for N = 1, 2.
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4.6 Average density of states

To calculate the effect of a tunnel barrier we write

ρ = (2π~)−1 Tr (ΣQ0ΣT), (4.35)

see Eq. (4.28), and then use the fact that Q0 is independent of S and
hence independent of Σ. The average of Q0 with distribution Pballistic(Q0)
is proportional to the unit matrix,

〈Q0〉 = 1
2π~
N
〈ρ〉ballistic = 1

τH
N − 2

, (4.36)

so the average density of states (still for N ≥ 3) is given by

δ0〈ρ〉 =
1

N − 2
Tr 〈ΣΣT〉

=
1

N − 2

(∑
n

2− Γn
Γn

− 2 Tr
[
(tTBtB)−1rT

B〈S〉
])

. (4.37)

(This is Eq. (4.3) from the introduction.)
It remains to calculate the average of S with the Poisson kernel (4.27).

In the Wigner-Dyson symmetry classes this average is just rB, but as
pointed out in Ref. 16 this no longer holds in the Altland-Zirnbauer
class D. A simple result for 〈S〉 is possible for mode-independent tunnel
probabilities, Γn = Γ for all n, see App. 4.12:

〈S〉± = rB

(
1−N−1 ±N−1(1− Γ)N/2−1

)
, (4.38)

where again the + sign corresponds to ν = 0 (without a Majorana bound
state) and the − sign to ν = 1 (with a Majorana bound state).

We thus arrive at the average density of states,

δ0〈ρ〉± =
N

N − 2

(
1− 2

NΓ

[
Γ− 1± (1− Γ)N/2

])
, (4.39)

plotted in Fig. 4.3. In the ballistic limit Γ→ 1 the dependence on the
Majorana bound state drops out, while in the tunneling limit Γ→ 0 we
obtain

δ0〈ρ〉 =
2

N − 2
×
{
N − 1 +O(Γ) for ν = 0,

2/Γ− 1 +O(Γ) for ν = 1.
(4.40)

The 1/Γ divergence of the density of states for ν = 1 corresponds to
the delta-function contribution from the Majorana bound state in the
closed system. Without the Majorana bound state (ν = 0) the density
of states at the Fermi level remains finite in the Γ → 0 limit, but it
does remain above the normal-state value of 1/δ0. This midgap spectral
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.3: Ensemble averaged density of states as a function of mode-independent trans-
mission probability through the barrier, in the absence (ν = 0) or in the presence (ν = 1) of
a Majorana bound state. The curves are calculated from the analytical expression (4.39).

peak is characteristic for a class-D superconductor1,11,42,43,45. While in
a closed system the peak is simply a factor of two, in the weakly coupled
open system it is a larger factor 2(N − 1)/(N − 2), which only tends to 2
in the large-N limit. The fact that the ensemble of open systems does
not reduce to an ensemble of closed systems in the limit Γ→ 0 is due to
statistical fluctuations that remain important for small N .

4.7 Thermal conductance

We consider the thermal conductance in the simplest case N1 = N2 = 1
of a quantum dot with single-mode point contacts. These are Majorana
modes, carrying heat but no charge.

The scattering matrix S ∈ O±(2) is parameterized by

S± =

(
cos θ ∓ sin θ
sin θ ± cos θ

)
, S =

{
S+ if ν = 0,

S− if ν = 1.
(4.41)

The Haar measure equals

dµ = π−1dθ, 0 < θ < π, (4.42)
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4.7 Thermal conductance

the same for both O+ and O−.
For the tunnel barrier we take the reflection matrix rB = diag (r1, r2),

with rn =
√

1− Γn ≥ 0. The Poisson kernel (4.27) then has the explicit
form

P±(θ) =

√
Γ1Γ2

1± r1r2 − (r1 ± r2) cos θ
. (4.43)

The dimensionless thermal conductance (4.11) has distribution

P±(g) =
1

π

∫ π

0

dθ δ(g − sin2 θ)P±(θ)

= Pballistic(g)
(1± r1r2)

√
Γ1Γ2

(1± r1r2)2 − (1− g)(r1 ± r2)2
, (4.44)

where as before, P+ applies to ν = 0 and P− to ν = 1. The distribution

Pballistic(g) =
1

π
√
g(1− g)

, 0 < g < 1, (4.45)

is the result27 for ballistic coupling (Γn = 1, rn = 0).
For identical tunnel barriers, Γ1 = Γ2 = Γ, this reduces to

P (g) = Pballistic(g)×
{

Γ(2−Γ)
Γ2+4g(1−Γ) if ν = 0,

1 if ν = 1.
(4.46)

Quite remarkably, the distribution of the thermal conductance for two
identical single-mode point contacts is unaffected by the presence of a
tunnel barrier in the topologically nontrivial case. Fig. 4.4 is a numerical
check of this analytical result.

Notice that the distribution (4.11) becomes independent of ν if r1r2 = 0.
This is a special case of a more general result, valid for any N1, N2:

P+(g) = P−(g) if Det rB = 0, (4.47)

in words: The probability distribution of the thermal conductance be-
comes independent of the presence or absence of a Majorana bound state
if the quantum dot is coupled ballistically to at least one of the scattering
channels. In other words, ballistic coupling to a propagating Majorana
mode hides the Majorana bound state.

The proof is straightforward: If Γn0 = 1 for one of the indices n0 ∈
{1, 2, . . . N}, then the Poisson kernel (4.27) is unchanged if we multiply
S 7→ O1ΛOT

1 S, with Λnm = δnm(1− 2δnn0
). [The orthogonal matrix O1

is defined in Eq. (4.22).] The Haar measure remains unchanged as well,
and so does the thermal conductance (4.11). Since DetS = −Det (ΛS),
so O+ is mapped onto O−, we conclude that P+(g) = P−(g).
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.4: Probability distribution of the thermal conductance g = Gthermal/G0, see
Eq. (4.11), for a chaotic scatterer having two single-mode point contacts with identical
tunnel probabilities Γ. The data points are numerical results for a random Hamiltonian
(M = 46 + ν), the curves are the analytical result (4.46). In the presence of a Majorana
zero-mode (ν = 1) the distribution is independent of Γ.

This proof for the Poisson kernel extends to the entire joint distribution
(4.24) of S and Q: The transformation S 7→ O1ΛOT

1 S has no effect on
the matrices Q and Σ, so P (S,Q) remains unchanged. It follows that
the probability distribution of the density of states is the same with
or without a Majorana bound state if Γn = 1 for at least one of the
scattering channels.
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4.8 Electrical conductance

4.8 Electrical conductance

Because a Majorana mode is charge-neutral, no electrical current can
be driven for N1 = N2 = 1. A nonzero current I is possible for N1 = 2,
when terminal 1 biased at voltage V has a distinct electron and hole
mode. We investigate the effect of a tunnel barrier for N1 = 2, N2 = 1.
In the Majorana basis the expression (4.12) for the Andreev conductance
reads

gA = 1
2 Tr (1− rτyrTτy), (4.48)

with r a 2× 2 real matrix.
The scattering matrix S± ∈ O±(3) can be conveniently parameterized

using three Euler angles46,

S+ =

(
R(α) 0

0 1

)(
1 0
0 R(θ)

)(
R(α′) 0

0 1

)
,

S− = diag (1, 1,−1)S+,

(4.49)

where we have defined

R(α) =

(
cosα − sinα
sinα cosα

)
. (4.50)

The Haar measure on O±(3) is given by23

dµ =
sin θ

8π2
dθdαdα′, α, α′ ∈ (0, 2π), θ ∈ (0, π). (4.51)

Because R(α) commutes with τy, the dimensionless conductance (4.48)
depends only on the Euler angle θ,

gA = 1− cos θ. (4.52)

In point contact 1 we take a tunnel probability Γ1, the same for the
electron and hole mode, while in point contact 2 we have tunnel probability
Γ2 for the unpaired Majorana mode. Evaluation of the Poisson kernel
(4.27) with rB = diag (r1, r1, r2) gives the conductance distribution

P±(gA) =
1
2Γ

1/2
1 Γ2[(Γ1 − 2)(±r2 − 1) + (±r2 − 1 + Γ1)gA]

[(1± r2(gA − 1))2 − (gA − 1± r2)2(1− Γ1)]3/2
,

0 < gA < 2, r2 =
√

1− Γ2, (4.53)

plotted in Fig. 4.5 for ν = 0 (P+), ν = 1 (P−) and two values of
Γ1 = Γ2 ≡ Γ.
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Figure 4.5: Probability distribution of the Andreev conductance gA, see Eq. (4.12), for
N1 = 2, N2 = 1, Γ1 = Γ2 ≡ Γ. The data points are numerical results for a random
Hamiltonian (M = 46 + ν), the curves are the analytical result (4.53). For ballistic
coupling (Γ = 1) the distribution is the same with or without a Majorana bound state. In
the limit Γ→ 0 the distribution becomes sharply peaked at gA = 2ν.

In the limit r2 → 1, when terminal 2 is decoupled from the quantum
dot, we recover the result47

P (gA) =

{
δ(gA) if ν = 0,

δ(2− gA) if ν = 1,
(4.54)

independent of Γ1. The conductance in this case is uniquely determined
by the topological quantum number.

In the opposite limit r2 → 0 the distribution (4.53) becomes indepen-
dent of ν,

P (gA) =
1
2Γ

1/2
1 [2− Γ1 − (1− Γ1)gA]

[1− (1− Γ1)(gA − 1)2]3/2
, if r2 = 0. (4.55)

This is a special case of a more general result, for any N1, N2,

P+(gA) = P−(gA) if DetP2rB = 0, (4.56)

where P2 projects onto the modes coupled to terminal 2. Ballistic
coupling, even for a single mode, to terminal 2 therefore removes the
dependence on the topological quantum number.

The proof of Eq. (4.56) proceeds along the lines of the proof of Eq.
(4.47), with the difference that the transformation S 7→ O1ΛOT

1 S should

94



4.9 Majorana phase transition

Figure 4.6: Device to study the topological phase transition in a semiconductor nanowire
covered by a superconductor. When the Zeeman energy of a parallel magnetic field exceeds
the induced superconducting gap in the nanowire, a pair of Majorana bound states emerges
at the end points. One of these is coupled directly to electrode 2, while the other is coupled
to electrode 1 via a point contact.

leave the upper-left block r of S unaffected — otherwise the Andreev con-
ductance (4.48) would change. This also explains why the ν-dependence
of P (gA) remains for ballistic coupling to terminal 128.

4.9 Majorana phase transition

The appearance of a Majorana bound state is a topological phase tran-
sition. There is a search for this transition in a nanowire geometry, see
Fig. 4.6, where it has been predicted to occur when the Zeeman energy
of a magnetic field (parallel to the wire axis) exceeds the gap induced by
the proximity to a superconductor48,49.

Because the Majorana bound states emerge pairwise at the two ends of
the nanowire, the topological quantum number ν of the entire structure
remains 0 and the determinant DetS of the full scattering matrix remains
+1 through the transition. What changes is the sign of the determinant
Det r of the reflection submatrix. At the topological phase transition
Det r = 0, implying a perfectly transmitted mode and a quantized peak
in the thermal conductance33.

We study the effect of the phase transition on the statistics of the
electrical conductance, measured by contacting one end of the nanowire
(terminal 1) to a metal electrode at voltage V , while the superconductor
and the other end of the nanowire (terminal 2) are at ground. Terminal
1 is connected to the nanowire via a point contact, thus creating a
confined region (quantum dot) with chaotic scattering. The minimal
dimensionality of the scattering matrix S of the quantum dot is 3×3: One
electron and one hole mode connected to terminal 1 and one Majorana
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

mode connected to terminal 2.
To minimize the number of free parameters we assume ballistic coupling

through the point contact, so the matrix rB in the Poisson kernel (4.27)
is rB = diag (1, 1, r2). The reflection amplitude r2 at terminal 2 is tuned
through zero by some external control parameter ξ, typically magnetic
field or gate voltage. Near the transition (conveniently shifted to ξ ≡ 0)
this dependence can be conveniently parameterized by33

r2(ξ) = tanh(ξ/ξ0). (4.57)

(The width ξ0 of the transition is system dependent.) The corresponding
coupling constant κ2 in Eq. (4.5) then has an exponential ξ-dependence,

κ2 =
1− r2

1 + r2
= exp(−2ξ/ξ0). (4.58)

The probability distribution of the Andreev conductance (in units of
e2/h) follows from Eq. (4.53),

P (gA) = 1
2 (1− r2

2)[1 + (gA − 1)r2]−2

= 1
2 [cosh(ξ/ξ0) + (gA − 1) sinh(ξ/ξ0)]−2,

0 < gA < 2. (4.59)

The delta-function limits (4.54) are reached for ξ → ±∞ (keeping ν = 0,
because the entire system is topologically trivial). Right at the transition,
at ξ = 0, the distribution is uniform in the interval 0 < gA < 2. The
average conductance varies through the transition as

〈gA〉 = 1− 1

tanh(ξ/ξ0)
+

ξ/ξ0

sinh2(ξ/ξ0)
, (4.60)

see Fig. 4.7.

4.10 Conclusion

In conclusion, we have investigated a variety of observable consequences of
the fact that the scattering matrix of Majorana fermions is real orthogonal
rather than complex unitary. Of particular interest is the identification of
observables that can detect the sign of the determinant, since DetS = −1
signifies the presence of a Majorana bound state. The obvious signal
of such a zero-mode, a midgap peak in the density of states42,43, is
broadened by tunnel coupling to the continuum. We find that the peak
remains hidden if the coupling is ballistic (unit transmission) in even a
single scattering channel. The thermal conductance is likewise insensitive
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Figure 4.7: Variation of the ensemble-averaged Andreev conductance in the geometry of
Fig. 4.6, as the nanowire is driven through a topological phase transition (controlled by
a parameter ξ, which can be thought of as the deviation of the magnetic field from the
critical field strength). The curve is the result (4.60) for a single-channel ballistic point
contact.

to the presence or absence of a Majorana bound state, but the electrical
conductance retains this sensitivity when the coupling is ballistic.

These results for the effect of a tunnel barrier on the midgap spectral
peak are derived from the distribution P (S,Q) of scattering matrix
and time-delay matrix under the assumption of chaotic scattering, due
to disorder or due to irregularly shaped boundaries. The appropriate
ensemble in the absence of time-reversal and spin-rotation symmetry
has symmetry class D in the Altland-Zirnbauer classification1. Chiral
symmetry would change this to class BDI, in which multiple zero-modes
can overlap without splitting32. The effect of chiral symmetry on the
joint distribution P (S,Q) is known for ballistic coupling24 — but not yet
for tunnel coupling. This seems a worthwhile project for future research.

4.11 Appendix A. Joint distribution of
scattering matrix and time-delay
matrix

We calculate the joint distribution P (S,Q) of scattering matrix and
time-delay matrix in the presence of a tunnel barrier, starting from the
known distribution P (S0, Q0) without a barrier22,23. The application in
the main text concerns symmetry class D, but for the sake of generality
and for later reference we give results for all four Altland-Zirnbauer1
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

Altland-Zirnbauer Wigner-Dyson
D DIII C CI A AI AII

α −1 −1 2 1 0 0 0
β 1 2 4 2 2 1 4

t0/τH 1 1 1
2

1
2 1 1 1

degeneracy d 1 2 2 2 1 1 2

Table 4.1: Parameters that appear in the distribution of the scattering matrix and time-
delay matrix, for each of the Altland-Zirnbauer and Wigner-Dyson symmetry classes. No-
tice that a different set of indices α′, β′ govern the energy level statistics11. The degeneracy
factor d refers to the Kramers degeneracy of the scattering channels and the delay times,
ignoring uncoupled spin bands. (The energy levels may have a different degeneracy.)

symmetry classes D, DIII, C, CI, as well as for the three Wigner-Dyson7,50

symmetry classes A, AI, AII. The symmetry indices that distinguish the
ensembles are listed in Table 4.1, see Ref. 11 for an overview of this
classification.

The unitary matrix S and the Hermitian matrix Q are real in class D,
complex in class A, and quaternion in class C. We consider these three
symmetry classes without time-reversal symmetry first, and then include
the constraints of time-reversal symmetry in classes DIII, CI, AI, AII.∗

4.11.1 Broken time-reversal symmetry

Without the barrier S0 is independent of Q0 and uniformly distributed,

P (S0, Q0)dµ(S0)dµ(Q0) = P (Q0)dµ(S0)dµ(Q0). (4.61)

The differential dµ indicates the Haar measure for the unitary matrix S0

and the Euclidean measure for the Hermitian matrix Q0. The ballistic
time-delay matrix distribution is given by22,23

P (Q−1
0 ) ∝ (Det′Q−1

0 )α+Nβ/2

×Θ(Q0) exp(− 1
2βt0 Tr′Q−1

0 ), (4.62a)

⇔ P (Q0) ∝ (Det′Q0)−β(N−1)−2−α−Nβ/2

×Θ(Q0) exp(− 1
2βt0 Tr′Q−1

0 ). (4.62b)

Degenerate eigenvalues of Q0 are counted only once in Tr′ and Det′. In
terms of the degeneracy factor d from Table 4.1 this can be written as

Det′Q0 = (DetQ0)1/d, Tr′Q0 =
1

d
TrQ0. (4.63)

∗The seven symmetry classes in Table 4.1 do not exhaust the tenfold way classifi-
cation of random-matrix theory: There are three more chiral classes51 (labeled AIII,
BDI, CII) that require separate consideration24.
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D C A AI CI AII DIII

broken time-reversal symmetry preserved time-reversal symmetry

δS ≡ S†dS = −δS† δS ≡ Ũ†dSU† = −δS† = δS̃

Ũ ≡ UT Ũ ≡ UD ≡ σyUTσy
δSnm q0 q0σ0 + iq · σ a+ ib ia iaσx + ibσz iq0σ0 + q · σ aσx + bσz
(n 6= m) β = 1 β = 4 β = 2 β = 1 β = 2 β = 4 β = 2
δSnn 0 iq · σ ib ia iaσx + ibτz iq0σ0 0

α+ 1 = 0 α+ 1 = 3 α+ 1 = 1 α+ 1 = 1 α+ 1 = 2 α+ 1 = 1 α+ 1 = 0

Q ≡ −i~S†dS/dE = Q† Q ≡ −i~Ũ†(dS/dE)U† = Q† = Q̃
Qnm q0 q0σ0 + iq · σ a+ ib a aσ0 + ibσy q0σ0 + iq · σ aσ0 + ibσy
Qnn q0 q0σ0 a a aσ0 q0σ0 aσ0

Table 4.2: Characterization of the scattering matrix differential δS and of the time-delay
matrix Q. All coefficients qn, a, b are real, and σi is a Pauli matrix. The symmetry indices
β and α+ 1 count, respectively, the number of degrees of freedom of the off-diagonal and
diagonal components of the anti-Hermitian matrix δS. The off-diagonal elements of the
Hermitian matrix Q have β degrees of freedom, while the diagonal elements have one single
degree of freedom in each symmetry class.

The channel number N also does not include degeneracies, so the total
number of eigenvalues of Q0 is d×N . The characteristic time t0 differs
from the Heisenberg time tH by a numerical coefficient,∗ see Table 4.1.

Insertion of the barrier, with unitary scattering matrix

SB =

(
rB t′B
tB r′B

)
, (4.64)

transforms S0 into

S = rB + t′BS0(1− r′BS0)−1tB

⇔ S0 = t′B
−1
S(1− S†rB)(1− r†BS)−1t†B.

(4.65)

Variations of S and S0 are related by9

S†dS = Σ(S†0dS0)Σ†, Σ = (1− S†rB)t−1
B . (4.66)

The differentials

δS = S†dS, δS0 = S†0dS0, (4.67)

are anti-Hermitian matrices, δS† = −δS. The number of degrees of
freedom of the off-diagonal elements are given by β and the number of

∗We define tH = 2π~/δ0, with δ0 the mean spacing of nondegenerate levels. The
ratio t0/tH then equals the degeneracy of energy levels divided by the degeneracy of
delay times23. It is unity in all symmetry classes except C and CI, where the delay
times have a Kramers degeneracy that the energy levels lack11.
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degrees of freedom of the diagonal elements by 1 + α. As summarized in
Table 4.2, real matrices (class D) have α = −1, β = 1, complex matrices
(class A) have α = 0, β = 2, and quaternion matrices (class C) have
α = 2, β = 4. These parameters determine the Jacobian44

JS =
dµ(S)

dµ(S0)
=

∣∣∣∣∣∣∣∣ΣδS0Σ†

δS0

∣∣∣∣∣∣∣∣
= (Det′ ΣΣ†)(N−1)β/2+1+α. (4.68)

Eq. (4.66) also implies the relation between the time-delay matrices,

Q = ΣQ0Σ† ⇒ dQ = ΣdQ0Σ† +O(dS). (4.69)

The off-diagonal elements of the Hermitian matrix Q have β degrees of
freedom, the diagonal elements have one single degree of freedom in each
symmetry class. The Jacobian is then given by

JQ =
dµ(Q)

dµ(Q0)
=

∣∣∣∣∣∣∣∣ΣdQ0Σ†

dQ0

∣∣∣∣∣∣∣∣
= (Det′ΣΣ†)(N−1)β/2+1. (4.70)

The joint probability distribution P (S,Q) now follows upon division
of P (S0, Q0) by the product of Jacobians,

P (S,Q) =
P (Q0)

JSJQ

= P (Q0)(Det′ ΣΣ†)−βN+β−2−α. (4.71)

Substituting Q0 = Σ−1QΣ†
−1

into Eq. (4.62) we thus arrive at the joint
distribution

P (S,Q) ∝ (Det′ ΣΣ†)βN/2(Det′Q)−3βN/2+β−2−α

×Θ(Q) exp(− 1
2βt0 Tr′Σ†Q−1Σ). (4.72)

The class-D result (4.24) from the main text follows for α = −1, β = 1,
t0 = τH, d = 1, Σ† = ΣT.

4.11.2 Preserved time-reversal symmetry

Time-reversal symmetry equates the scattering matrix to its transpose
ST in class AI and CI and to its dual SD in class AII and DIII. (The dual
of a matrix is SD = σyS

Tσy.) We use a unified notation S = S̃, where
the tilde indicates the transpose or the dual, whichever is appropriate for
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that symmetry class. The symmetry S = S̃ allows for the “square root”
factorization

S = ŨU = S̃, (4.73)

with unitary U .
The time-delay matrix in these symmetry classes is constructed such

that it satisfies the same symmetry,

Q = −i~ lim
E→0

Ũ†
dS

dE
U† = Q̃. (4.74)

This redefinition of Q differs from Eq. (4.8) by a unitary transformation,
so the delay times are not affected.

The ballistic Q0 and S0 are again independent22,23, distributed ac-
cording to Eqs. (4.61) and (4.62) with the appropriate values of α and β
from Table 4.1. These numbers now count the diagonal and off-diagonal
degrees of freedom of the symmetrized differential

δS = Ũ†dSU†, (4.75)

constrained by δS = −δS†, δS̃ = δS. The matrix elements of δS are
imaginary in class AI (α = 0, β = 1), i times a quaternion∗ in class AII
(α = 0, β = 4), and of the form aσx + bσz with a, b imaginary in class CI
(α = 1, β = 2) and a, b real in class DIII (α = −1, β = 2).

The elements of the Hermitian matrix Q are real in class AI, quaternion
in class AII, and of the form aσ0 + ibσy with a, b real in both classes CI
and DIII. The off-diagonal elements of Q have the same number of β
degrees of freedom as δS, but the diagonal elements have only a single
degree of freedom irrespective of α. All of this is summarized in Table
4.2.

The symmetrization of the differential modifies the relation (4.66),
which now reads

δS = UΣU†0δS0U0Σ†U†, Σ = (1− U†Ũ†rB)t−1
B . (4.76)

The relation (4.69) between Q and Q0 is similarly modified by the sym-
metrization,

Q = UΣU†0Q0U0Σ†U†. (4.77)

Because the matrices U , U0 are unitary, the Jacobians (4.68) and (4.70)
are unchanged,

JS = (Det′ΣΣ†)(N−1)β/2+1+α, (4.78)

JQ = (Det′ΣΣ†)(N−1)β/2+1. (4.79)

∗A quaternion has the form a0σ0+ia1σx+ia2σy+ia3σz , with four real coefficiients
an. The matrix σ0 is the 2× 2 unit matrix.
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We thus obtain the joint distribution

P (S,Q) ∝ (Det′ ΣΣ†)βN/2(Det′Q)−3βN/2+β−2−α

×Θ(Q) exp(− 1
2βt0 Tr′Σ†U†Q−1UΣ). (4.80)

4.11.3 Poisson kernel

The marginal distribution of the scattering matrix resulting from the
Jacobians (4.68) and (4.78) is

P (S) =

∫
dQP (S,Q) = 1/JS

= (Det′ ΣΣ†)−(N−1)β/2−1−α

=

(
Det′(1− r†BrB)

|Det′ (1− r†BS)|2

)(N−1)β/2+1+α

, (4.81)

including the normalization constant. This formula combines the known
expressions for the Poisson kernel∗ in the Wigner-Dyson ensembles15 and
in the Altland-Zirnbauer ensembles16.

The present analysis confirms that Eq. (4.81) holds without modifi-
cation in the two symmetry classes D and DIII that support Majorana
zero-modes, depending on the sign of the determinant DetS = ±1 in
class D and the sign of the Pfaffian Pf (iσyS) = ±1 in class DIII52. As
a check, we can take N = 1, when S = ±1 in class D and S = ±σ0 in
class DIII. The ± sign determines the presence or absence of a Majorana
bound state (twofold degenerate in class DIII). Since there is only a single
element in the ensemble we should have P (S) = 1, which is indeed what
Eq. (4.81) gives for N = 1, α = −1.

4.12 Appendix B. Calculation of the
ensemble-averaged scattering matrix

4.12.1 Symmetry class D

According to Eq. (4.37), the effect of a tunnel barrier on the average
density of states follows directly once we know the average scattering
matrix. Simple expressions can be obtained if we assume that the tunnel
probabilities are mode-independent, Γn = Γ for n = 1, 2, . . . N .

∗The name “Poisson kernel” applies strictly speaking only to the Wigner-Dyson
ensembles, when rB =

∫
SP (S)dS. In the Altland-Zirnbauer ensembles the average

scattering matrix differs from rB, see Ref. 16 and App. 4.12.
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The scattering matrix of the barrier has the polar decomposition

SB =

(
O1 0
0 O3

)(√
1− Γ

√
Γ√

Γ −
√

1− Γ

)(
O2 0
0 O4

)
, (4.82)

with O1, O2, O3, O4 ∈ SO(N). The block structure corresponds to Eqs.
(4.22) and (4.64), in particular, rB =

√
1− ΓO1O2. From Eq. (4.65) we

obtain the scattering matrix S of the quantum dot,

S = O1

[√
1− Γ + ΓU(1 +

√
1− ΓU)−1

]
O2, (4.83)

in terms of a matrix U = O4S0O3 that is uniformly distributed in O±(N).

Because the average of Up for any power p = 1, 2, . . . is proportional
to the identity matrix, we may write the average of S in the form of a
power series,

〈S〉± = rB

(
1− Γ

1− Γ

∞∑
p=1

(−1)p(1− Γ)p/2
1

N
〈TrUp〉±

)
. (4.84)

If the average of U would be over the entire unitary group, then all terms
in the power series would vanish and we would simply have 〈S〉 = rB.
But averages over orthogonal matrices do not vanish, in the nontrivial
way calculated∗ by Rains53:

〈TrUp〉± =
1 + (−1)p

2
±
{

(−1)N+1 if p−N = 0, 2, 4, . . .

0 otherwise.
(4.85)

We substitute Eq. (4.85) into Eq. (4.84) and sum the geometric series,
to arrive at the average scattering matrix

〈S〉± = rB

(
1− 1

N
± 1

N
(1− Γ)−1+N/2

)
, (4.86)

used in Sec. 4.6 to obtain the average density of states in class D.

∗For the record, we note that Eq. (4.85) differs from the formula in Ref. 53 by a
minus sign (± instead of ∓).
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4 Effect of a tunnel barrier on the scattering from a Majorana bound state

4.12.2 Symmetry class C

In a similar way we can derive the average scattering matrix in other
symmetry classes. We give the result for class C. The matrix U then
varies over the unitary symplectic group Sp(2N). Ref. 53 gives the
required average:

〈TrUp〉C =

{
−1 if p ≤ 2N and even,

0 otherwise.
(4.87)

Eq. (4.84) still holds with the factor 1/N replaced by 1/2N . We thus
find the average scattering matrix in class C,

〈S〉C = rB

(
1 +

1

2N
[1− (1− Γ)N ]

)
. (4.88)

For N = 1 this gives 〈S〉C = (1 + Γ/2)rB, in agreement with Ref. 16.
The average density of states in class C follows from Eq. (4.3), where

we again account for the doubling of the dimensionality N 7→ 2N :

〈ρ〉C = 〈ρ〉ballistic

(
1− 1

NΓ
Tr r†B[〈S〉C − rB]

)
=

N

(N + 1)δ0

(
1− 1− Γ

NΓ
[1− (1− Γ)N ]

)
. (4.89)

In the second equation we have substituted the ballistic class-C result
from Ref. 23. The tunneling limit Γ → 0 gives a vanishing density of
states,

〈ρ〉C =
NΓ

(N + 1)δ0
+O(Γ2), (4.90)

consistent with the class-C result for a closed system42,43.
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5 General scheme for stable
single and multiatom
nanomagnets according to
symmetry selection rules

5.1 Introduction

In recent years, great effort has been made to scale down the dimension
of spintronic devices able to store classical bits of information. For
this purpose, current research is devoted to understand the physics of
single atoms and small clusters absorbed on non-magnetic metallic1–4

or insulating5–9 surfaces. The theoretical description of the dynamics of
such systems is challenging as it lies at the intersection of classical10–12

and quantum13 mechanics.

The low temperature dynamics of suitable adatoms, without applied
magnetic field, may be described by two degenerate low-energy states with
opposite magnetization. These states can be naturally regarded as the
bit constituents. Unfortunately, not all adatoms present this feature as it
relies on specific environmental conditions like the hybridization mech-
anism with the surface and the symmetry of the crystal field produced
by the substrate14,15. In particular, some systems exhibit no degenerate
groundstate and the two lowest-energy states have no magnetization at
all. This feature is referred to as groundstate splitting (GSS) and is due
to the coupling of the orbital degree of freedom of the adatom with the
crystal field.

To be suitable as memory storage16, an engineered bit is required to
retain its state over an extended time period17. Hyperfine interactions
inside the adatom18 and the contact with the substrate induce the atomic
state to have an incoherent dynamics. In particular, the scattering of
electrons and phonons off the adatom may be such that the stability of
its state is affected drastically due to frequent switching between the
groundstates.

With time the scientific community has started to recognize the role
played by the symmetries of the system3,17,19. Their implications are
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5 General scheme for stable single and multiatom nanomagnets

Figure 5.1: (a)-(d) Atoms deposited on different surfaces with Cχv symmetry. χ =
2, 3, 4, 6, respectively for the adatoms (a),(b),(c),(d). (bottom right) Sketch of a scanning
tunneling microscope current measurement to infer the total momentum of the adatom.
The tip of the microscope (in grey) exchanges electrons with the surface through the
adatom.

extremely relevant not only in determining whether the two low-energy
atomic states are magnetized but also in constraining their stochastic
dynamics. In particular, first order processes mediated by the substrate
electrons that make the adatom in one low-energy state to jump to
another one - usually called single-electron (SE) switching processes -
may be inhibited by symmetry selection rules20. However, symmetry
information alone is not always sufficient. According to models currently
in use13,21, it must be contrasted with the magnitude of the effective
total angular momentum of the adatom.

In this paper we present a general scheme to explain and predict excep-
tional long lifetimes of spin orientation in single and multi atomic systems.
Hereby we provide a complete and rigorous map of such combinations
of symmetries and total angular momentum magnitude, valid for small
transversal crystal field. The symmetries we consider are the spatial point
group Cχv of the surface (see Fig. 5.1) and time-reversal. We consider
the possibility that the time-reversal symmetry could be broken by a
finite magnetic field perpendicular to the surface. Our findings are in
agreement with existing experimental3,9 results and previous numerical19

and analytical22 studies. With the restriction to time reversal symmetry
a classification scheme23 was presented, which is related to a non-trivial
geometric phase. However, we noticed a difference in the prediction of
stable systems in the common case of zero magnetic field.
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5.2 Single atom nanomagnet

Further, we generalize our findings to multiatom clusters where adatoms
are coupled with each other via bipartite Heisenberg interactions. This
extension creates also a link between our work and classical research on
general properties of spin systems24,25.

5.2 Single atom nanomagnet

5.2.1 Model

The Hamiltonian we consider can be decomposed as summation of parts
related to the atom (A), to the electrons in the substrate (S) and their
mutual interaction

H = HA +HS +Ht. (5.1)

The atom is assumed to be described, at low temperature, by a magnetic
moment of magnitude J . For instance, this is the case of some rare-earth
atoms26, whose strong internal spin-orbit coupling is such that only one
multiplet of the total angular momentum plays a role in the low energy
physics, and transition metal ions27. The atom, affected by the substrate
crystal field and subject to an external magnetic field ~B, can be described
by the single-spin Hamiltonian

HA = H
(0)
A +H

(1)
A + ~B · ~J, H

(0)
A = −|D| J2

z (5.2)

where H
(0)
A represents the so-called uniaxial (longitudinal) anisotropy (at

second order) and H
(1)
A contains higher order uniaxial and transversal

anisotropy terms. The coefficient |D| has been found as big as 1.5meV
in Fe deposited on CuN28 and 0.1meV in Fe deposited on Cu(111)4. In
the rest of the paper we will refer to J as a spin degree of freedom for
brevity; however, the reader must intend that we mean total angular
momentum. The substrate Hamiltonian is that of a single-band metallic
Fermi liquid with no self-interactions:

HS =
∑
k,σ

εk c
†
k,σ ck,σ. (5.3)

Finally, we describe the effective interaction between metal and adatom
by the Appelbaum Hamiltonian29

Ht = κ ~J ·~j (5.4)

where κ is a momentum-independent coupling strength and~j = c†x=0~σcx=0 ∝∑
k,k′ c

†
k~σck′ is the effective spin degree of freedom of the metal electrons

coupled to the atom. Here and later σi are the Pauli matrices and ~ = 1.

111



5 General scheme for stable single and multiatom nanomagnets

We assume the temperature to be large enough, to justify a perturbative
master equation approach30 and neglect strong correlations with the bath,
such as the Kondo effect or energy renormalization31. On the other hand,
thermal excitations should be small enough to ensure only the ground
states to be occupied and resemble switching dynamics of a two level
system. According to the Boltzmann distribution, the temperature
should verify kBT . 0.1∆, where ∆ ∝ |D| is the energy gap between the
two lowest-energy levels and the other ones. We will not treat atomic
hyperfine interactions.

5.2.2 Operators

Three physical operations on the system are relevant for our analysis of
the stability of the atomic nanomagnet: rotation with discrete angles
with axis perpendicular to the surface, time reversal (TR) and mirror
across a certain mirror plane. We define here their representations in the
atomic spin space. In the next sections, we will regard these operations
as symmetries of the atomic system and analyze the consequences on the
stability of the groundstate.

Rotation generator. The rotational symmetry of the adatom within the
crystal field maps onto a rotational symmetry into the spin space. The
generator of the rotation group is represented by

Rz,2π/χ = exp{i2π
χ
Jz}. (5.5)

The rotation generator has the property Rχ = ±1 (we will omit the
subscript in Rz,2π/χ for the rest of the paper), where the plus refers to
integer spin systems and the minus to half-integer ones. This generator
has at most χ distinct unit eigenvalues, equal to rχ = exp{i 2πn/χ} with
n ∈ Z, for integer momentum systems, and n ∈ Z + 1/2, for a half-integer
ones.

Time reversal operator. Time reversal is represented by the antiunitary
operator

T = exp{iπ Jy}K, (5.6)

acting on the basis {|J, jz〉}, where K is the conjugation operator. In
the following we will shorten the notation of the basis states as {|jz〉}.
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5.2 Single atom nanomagnet

The action of T can be defined such that T |jz〉 = (−1)bjzc|−jz〉, where
b·c is the floor function. The square of the TR operator acting on a integer
or half-integer momentum Hilbert space gives 1 or −1, respectively32.

T commutes with R. Nonetheless its antiunitarity hinders the possibil-
ity to find a common eigenbasis. Indeed, suppose |ψ〉 is an eigenstate of
R with eigenvalue r, then TR |ψ〉 = T r |ψ〉 = r∗ T |ψ〉. At the same time
TR |ψ〉 = RT |ψ〉 and we conclude that T |ψ〉 is an eigenstate of R but
with eigenvalue r∗. Considering the quantity 〈Tψ|R|ψ〉 and applying R
in the bracket first to the left and then to the right state, one immediately
concludes that T |ψ〉 ⊥ |ψ〉 when r is non real. Only if r is real we can
find a |ψ〉 which is eigenstate of both T and R. We will use this feature
later, in section 5.2.4.

In other words, even though two commuting symmetries are present,
eigenstates cannot be in general labeled with two well defined quantum
numbers at the same time.

Mirror operator. Freedom in choosing the coordinate axes allows to set
one mirror plane along yz. We call M the operator that reflects across
this plane. Then, all other possible reflections with the other mirror
planes are constructed conjugating it with the elements of the rotation
group.

Since ~J is a pseudo-vector, M acts on the spin fundamental algebra
transforming Jy,z to (−Jy,z) while keeping Jx unchanged. To obtain the
explicit representation, we notice that this operator is equivalent to a π
rotation around x. Therefore,

M = eiπ Jx . (5.7)

Notice that M2 = ±1 (the plus refer to integer spins systems and the
minus for half-integer ones) and that M R = R†M .

5.2.3 Hamiltonian symmetry constraints and
Stevens operator expansion

Using all symmetries we can characterize the most general structure
that the Hamiltonian can have. In Ref. 26 a general tesseral harmonic
expansion of H compatible with a number of point symmetry groups
is discussed and relative constraints are found. Here, we stick to the
point group Cχ v symmetry and analyze the Stevens operator expansion
of the Hamiltonian HA in Eq. (5.1). We start considering the spatial
symmetries constraints, then we show the one due to the TR symmetry.
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5 General scheme for stable single and multiatom nanomagnets

A generic Stevens operator33 Oqp (with q < p) is expressed in a closed
form in Ref. 34. These operators are Hermitian by construction and,
after trivial manipulations, we can write them in the following form:

Oqp =
1

2

b(p−q)/2c∑
r=0

c(p, q, r)
{
Jq+ + Jq−, J

p−q−2r
z

}
,

O−qp =
i

2

b(p−q)/2c∑
r=0

c(p, q, r)
{
Jq+ − Jq−, Jp−q−2r

z

}
, (5.8)

where q and p are natural numbers and c(p, q, r) are real prefactors whose
magnitude is not relevant for our discussion.

Since the atomic system has spatial symmetry Cχv, the equations

[HA, R] = 0,

[HA,M ] = 0 (5.9)

must hold.
The first equation implies that all matrix elements of H between states

with different eigenvalue rχ must vanish. Moreover, we can expand HA

using the operators in Eq. (5.8). Each operator Oqp or O−qp , when applied
to the basis state |jz〉, transforms it to a superposition α|jz+q〉+β|jz−q〉.
The superposition retains the rotation eigenvalue of the latter state only
if rχ(Jz ± q) = rχ(Jz) i.e. if q = mχ,m ∈ N∗. Therefore, only terms
proportional to O±mχp , are allowed in the expansion.

Notice that rotational symmetry in our problem is analogous to trans-
lation symmetry in one dimensional periodic crystals. The Hamiltonian
eigenstates can be labeled with their eigenvalues r and the latter are
in one to one correspondence with a set of quasi -spin† defined in a one
dimensional Brillouin zone (BZ). Such a set is isomorphic to Zχ and
can be defined as {−bχ/2c+ 1,−bχ/2c+ 2, . . . , bχ/2c}, for systems with
integer J , and {−dχ/2e + 1/2,−dχ/2e + 3/2, . . . , dχ/2e − 1/2} for sys-
tems with half-integer J (notice the use of floor and ceiling functions
here). For instance, for half-integer spin systems with χ = 3 the BZ
is {−1/2, 1/2, 3/2}; for integer ones with χ = 4, the BZ is {−1, 0, 1, 2}.
Clearly, every spin state has a well defined quasi -spin in the above defined
BZs and this is equal to

J
(q)
Jz

:= ([Jz + (χ− 1)/2] mod χ) − (χ− 1)/2. (5.10)

∗In our convention, N includes the zero unless further specifications are present.
†Our definition of quasi-spin must not be confused with the one used in nuclear

physics. See B.H. Flowers, S. Szpikowski, Proc. Roy. Soc. 84 (1964) 193 for details.
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(a) (b)

=(r)

<(r)Ĵ+ Ĵ−
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Figure 5.2: (a) Periodic Brillouin Zones (BZs) for integer spin systems (top) and half-
integer ones (bottom). To better visualize the periodicity of the BZs, their elements (the
little circles) are placed at the complex eigenvalues of R and the number they contain
indicates the associated quasi-spin. Blue(red) arrows indicate SE transitions with transfer
of positive(negative) quasi-spin. (b) Typical spectrum of a three-fold rotation symmetric
system with small transversal anisotropy. On horizontal axis is the average magnetization
along z of the levels. The color code of the level indicates its quasi-spin according to the
top left case in (a). All figures are adapted from Ref. 22.

where we make use of the modulo operation (x mod y indicates the value
of x modulo y).

For instance, the spin state with Jz = −4 in a system with χ = 3 has
J (q) = −1. More “bands” are present as soon as J ≥ χ/2 i.e. when J
is such that at least two different spin states have the same quasi -spin.
Fig. 5.2(a) shows the periodic BZs for χ = 3, 6.

The mirror operator M acts with the transformations (Jz, J±) →
(−Jz, J∓). Eq. (5.9) implies [M,O±qp ] = 0 and the latter equation
constrains the difference p− q to be even(odd) when the superscript of O
is positive(negative). Hence, combining this constraint with the rotational
one, we see that only operators of the form Omχmχ+2n and O−mχmχ+2n+1 with
m,n ∈ N are allowed.

Finally, TR operator acts with the transformation (J±, Jz)→ −(J∓, Jz)
and i→ (−i). Consequently, TR symmetry, if present, implies the label
p to be even.

To be explicit, when all symmetries are present, the allowed Stevens

operators in the expansion of HA only O
(−1)mχmχ
2n , (m,n ∈ N). Notice

that the Hamiltonian would be always real (in the spin eigenbasis {|jz〉})
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5 General scheme for stable single and multiatom nanomagnets

for χ 6= 3, but is in general not real for χ = 3∗.

In the following, we will use the quasi-spins as quantum numbers
to label the atomic eigenstates. In some cases, the eigenvalues of the
mirror operator M could be added to the set of the quantum numbers.
However, its eigenstates present no magnetization along the z direction†

and are not suitable for the analysis of the next sections. Thus, the
rotational symmetry is a central ingredient in determining the stability
of the nanomagnet.

In the rest of the paper we will allow also for TR symmetry breaking
due to magnetic field. However, only the component Bz is allowed as is
the only one which preserves rotational symmetry. Per contra, the mirror
symmetry gets broken. Notice that the antiunitary product operator
TM would still represent a symmetry for the system. We have checked
the implications of this symmetry. It is antiunitary and surprisingly
allows for an additional quantum number for the Hamiltonian eigenstates.
However, since it does not provide strong selection rules for GSS or SE
switching processes, we limit ourselves to briefly mention them in App.
5.6.

5.2.4 Groundstate splitting at Ht = 0

We now turn our attention to the first goal: to show that, assuming
Ht = 0 and ~B = 0, it is possible to tell whether the groundstate of the
atom is degenerate or it is allowed not to be, only by knowledge of the
symmetries and the magnitude J of its spin.

First, switch off momentaneously H
(1)
A in H (with Ht = 0 and ~B = 0).

The two degenerate groundstates are |ψGS〉 := |jz = J〉 and |ψ̃GS〉 :=
T |ψGS〉 ∝ | − J〉 (we will omit ’jz =’ for the rest of the paper). Even

though H
(0)
A has symmetry C∞v, it is convenient to identify already their

eigenvalues under the action of the rotation generator Rz,2π/χ (where χ is

defined as the maximum value for which [H
(1)
A , Rz,2π/χ] = 0 holds). They

are rGS = (r
G̃S

)∗ = exp{i J 2π/χ} (r
G̃S

is the eigenvalue for |ψ̃GS〉) and
their quasi -spin are defined in Eq. (5.10).

∗The allowed Stevens operators depend, if χ = 3, on the choice of the mirror
axis as clarified in C. Rudowicz, Chem. Phys. 97, 43–50 (1985). Our convention
follows Ref. 26, other authors (for instance Ref. 3 and Y. M. Chang, T. H. Yeom, Y.
Y. Yeung, and C. Rudowicz, J. Phys. 5, 6221 (1993) ) follow a different convention
according to which the Hamiltonian is real.
†To see this, let |ψ〉 be an eigenstate of M . Its eigenvalue is a unit complex

number (see App. 5.6 for details). Considering that {Jz ,M} = 0, the magnetization
of the state along z satisfies 〈ψ|Jz |ψ〉 = −〈ψ|M†JzM |ψ〉 = −〈ψ|Jz |ψ〉. Thus, the
magnetization is vanishing.
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5.2 Single atom nanomagnet

Now, we switch on H
(1)
A adiabatically to its actual value. Energies and

eigenstates change along the process, but the quasi-spin of all eigen-

states are preserved since [H
(1)
A , R] = 0. At the end of the process the

groundstates of the system would have retained their initial quasi -spins
unless some state with different quasi -spin crossed the groundstates along

the process, becoming lower in energy. Since H
(1)
A is left generic in

our analysis, we can not have control on the final value of the ground-
state quasi-spin after such crossings. To prevent these inconvenience,

we assume H
(1)
A to be small enough (roughly speaking, H

(1)
A � H

(0)
A is

sufficient).

Using the properties of the TR operator illustrated Sec. 5.2.2, we claim
that eigenstates |ψ〉 of both HA and R with non-real r are degenerate in
presence of TR symmetry.

Clearly, this statement is non-trivial only for integer spin systems
because half-integer spin ones under TR symmetry always exhibit ground-
state degeneracy by Kramers theorem. To prove the claim, remind that
if r is non-real then |ψ̃〉 := T |ψ〉 ⊥ |ψ〉. Subsequently, [H,T ] = 0 implies
that, on one hand TH|ψ〉 = ε0T |ψ〉 = ε0|ψ̃〉 and on the other hand
TH|ψ〉 = HT |ψ〉 = H|ψ̃〉. Hence, joining together the two equations, we
get H |ψ̃〉 = ε0|ψ̃〉.

The statement above applies to the groundstate. We conclude that it
can get split by tranversal anisotropy terms only if rGS is real or, in other
words, if its associated quasi -spin is a TR invariant point of the Brillouin

zone (|J (q)
GS | = −|J

(q)
GS |+mχ,m ∈ N). Thus, the splitting happens when

∃m ∈ N : J =
mχ

2
. (5.11)

This constraint determines the columns GSS in the Tables 5.1 and 5.2.
When the system features GSS in presence of TR symmetry, the two
lower states are also non magnetic. They have to be eigenstates of the TR
operator, therefore, {Jz, T} = 0 implies 〈ψGS |Jz|ψGS〉 = 0. We stress
that the splitting may be also seen as a consequence of lowering the
symmetry from the C∞v subgroup of the free atom point group to the
Cχv subgroup of the atom within the crystal field.

5.2.5 Single-electron switching process at Ht 6= 0

Finally, we switch on the interaction with the metal, Ht 6= 0. When
the substrate gets coupled with the atom, the energy and quasi -spin of
the atomic state are not preserved anymore, because of scattering with
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5 General scheme for stable single and multiatom nanomagnets

the metal electrons. Since the metal has many degrees of freedom with
respect to the atom, it is usually assumed to thermalize quickly and its
Boltzmann distribution, being a classical one, leads the atom to have
also an associated classical distribution35. The approximated Markovian
law, that describes the dynamics of energy-defined states of the atom
(the pointer basis of the nanomagnet36), is well known in literature37,38.
However, there is an ambiguity in the definition of the pointer basis when
the atom presents pairs of degenerate states (which is the case when the
atom has no GSS and applied magnetic field). There are indications39

that the states of the pointer basis are those with maximum magnitude of
the average magnetization, as the dephasing due to the scattering is the
largest for these states. Thus, we are allowed to assume that the pointer
basis coincides with the atomic eigenstates considered in the previous
sections, with well defined quasi-spin.

It was shown31 that the GSS feature might be destroyed when the
Kondo coupling times the substrate electronic density of states gets large
via a mechanism of gap quenching. However, such a mechanism is not
effective in most of the experiments performed, therefore here we limit
the discussion to small Kondo couplings i.e. Ht � HA.

The rate of switching between two atomic eigenstates, say |ψa〉 and
|ψb〉, at lowest order in Ht, i.e. due to a SE scattering with the atom, is

Γab =
2πκ2

~
∑
µ,ν

|〈ψa, ν|Ht|ψb, µ〉|2 e−βEµδ(x)

=
2πκ2

~
∑
µ,ν

∣∣∣∣∣∣
∑

s∈{+,−,z}

〈ψa|Js|ψb〉 〈ν|js̄|µ〉

∣∣∣∣∣∣
2

e−βEµδ(x) (5.12)

where µ, ν are states in the substrate, the bar in js̄ indicates that the
subscript takes opposite sign if s = ± and x = Eν − Eµ + Ea − Eb. It is
clear that transitions are possible only when the states are connected by
an operators Js, with s = +,−, z.

We show that the rotational symmetry provides a selection rule on SE
switching processes. The commutation relations between Js and R are
RJs = eiϕsJsR, where ϕs = 0,±2π/χ respectively for s = z,±. Since
the states ψa,b are also eigenvalues of R, one gets:[

ei(ϕb−ϕa+ϕs) − 1
]
〈ψa|Js|ψb〉 = 0. (5.13)

Thus, given ψa,b, at most one value of s is such that ϕs = ϕa − ϕb. This
means that a SE transition produces a quasi -spin change equal to either
0, 1 or −1. When the quasi -spins of the states differ by more than one,
we are guaranteed that Γab = 0 and there is no SE transition between
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5.2 Single atom nanomagnet

the two states. For instance, systems with χ = 6 and J = 15/2 have
groundstates with J (q) = ±3/2 therefore at least three SE transitions
are needed for a groundstate switching. One could easily check it using
Fig. 5.2(a) (SE transitions from the eigenstates are shown with arrows).

A second selection rule comes from the TR symmetry. It protects
degenerate groundstates of integer spin systems from SE switching. Given
|ψGS〉 and |ψ̃GS〉 as the two time-reversal groundstate partners and
making use of {Jz, T} = 0 and J+ T = −T J− one finds3,20 for all
s ∈ {+,−, z}

〈ψGS |Js|ψ̃GS〉 = 0 for integer spin. (5.14)

Actually, this constraint is non-trivial only with χ = 3. In the other cases
the groundstates are either already split by transversal anisotropy or have
quasi -spin difference greater than one. For instance, in the experimental
set of Ref. 28 (Fe atoms on CuN substrate with J = 2, χ = 2) GSS
is present and SE transitions between the two lowest-energy states are
indeed observed even at B = 0.

Other weak constraints come from the mirror symmetry but they are
not enough to make SE switching to vanish. We leave this discussion to
App. 5.6.

As a final remark, we notice that also small spin systems with χ >
2J > 1 are protected against SE switching process. This happens because
there are no pairs of states with the same phase or, in other words, there
is only one “band” in the Brillouin zone. Only if J = 1/2, the system
groundstates can be connected by SE transitions.

5.2.6 Suppression of SE switching process at

Ht . H
(1)
A � H

(0)
A

As an application of the tools of analysis developed in the previous
sections, we describe here a feature related to the suppression of SE

switching rate in some systems, when the terms in H
(1)
A gets uniformly

small. We assume, therefore, that Ht . H
(1)
A � H

(0)
A , making the further

assumption that the different prefactors in front of each Jns (n ≥ 0; s =

+,−, z), in the expansion of H
(1)
A , have all the same order of magnitude

ε� 1. In this regime we can treat H
(1)
A as perturbation of the system

with Hamiltonian H
(0)
A .

Consider now ΓψGS ,ψ̃GS in Eq. (5.12), the transition rate of the SE
switching process between the true groundstates. The groundstates can
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5 General scheme for stable single and multiatom nanomagnets

be expressed as a perturbation series in ε:

|ψGS〉 = |J〉+ ε
∑
m

αm|J −mχ〉+O
(
ε2
)

|ψ̃GS〉 ∝ | − J〉+ ε
∑
n

α′n| − J + nχ〉+O
(
ε2
)

(5.15)

where m(n) is a natural number such that J −m(n)χ > −J and {αm(n)}
are expansion coefficients∗.

The quantity 〈ψGS |Js|ψ̃GS〉 in ΓψGS ,ψ̃GS gets contributions of different
perturbative orders, of the form ε α′n〈J−mχ|Js|−J〉 or ε αm〈J |Js|−J +
nχ〉 and ε2 αmα

′
n〈J −mχ|Js| − J + nχ〉. We notice that, inside the sets

of systems which exhibit SE switching, we can distinguish two subsets.
The systems in the first one presents the O(ε) contributions while the
systems in the second one not. The first subset contains systems in which
the unperturbed groundstate | − J〉, call it the left one, has the same
quasi -spin of either |J〉 (in the half-integer case only) or |J − 1〉. On the
contrary, systems of the second subset possess a left groundstate which
would have the same quasi -spin of the state |J + 1〉. Of course this state
is not allowed, thus, the O(ε) contributions are vanishing. A systems
falls in the second group when the difference between the quasi -spin of
|ψ̃GS〉 and |ψGS〉 (modulo χ) is equal to one. The magnitude of its spin,
then, must verify (we make use of Eq. (5.10))

(2J) mod χ = χ− 1. (5.16)

In this perturbative regime the SE switching rates are

ΓψGS ,ψ̃GS ∝
{
κ2(ε2 +O(ε3) ) for the first subset,

κ2(ε4 +O(ε5) ) for the second subset.
(5.17)

where κ . ε (the assumption H
(1)
A & Ht is to guarantee that the dominant

switching path for the second subset remains the SE one and not a
multiple-electrons one). From this expression is clear how systems in the
second subset have smaller SE switching rates in the perturbative limit.
They are listed in the column “Supp” in Tables 5.1 and 5.2.

5.2.7 Numerical simulations

We demonstrate the consequences of the symmetry considerations on
the switching rate of a single-atom nanomagnet when experimentally

∗To be precise, for the approximation to be valid, the second-order terms must
be smaller then the first order ones. This happen if ε verifies ε� 1/(2Jαmax), with
αmax = maxk αk.
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Figure 5.3: Bias-dependent switching rate of a spin with J = 13/2 . . . 17/2 in a six-fold

rotational symmetric crystal (χ = 6). Other parameters are κ2/D = 0.1, α6
6/D = 5 · 10−5,

kT/D = 0.01, P = 0.1 (P is the tip polarization) and ∆ is the first excitation energy of
the spin.

measured by spin-resolved scanning tunneling microscopy (STM). In
previous experiments, the stability of few-atoms clusters was investigated
by means of this technique4,6,17. In particular, the switching rate be-
tween groundstates has been observed in the telegraph noise. Such an
experimental setup can be described by adding the STM tip Hamiltonian
to Eq. (5.1) while accessible quantities like the bias voltage, tempera-
ture and external magnetic field are varied. For this purpose we solve
the master equation (see Refs. 4,19) for a six-fold rotational symmetric

system with small transversal anisotropy, H
(1)
A = α6

6O
6
6, and several

different spin magnitudes. As already mentioned before, we neglect the
small energy renormalization of the atomic levels due to the coupling
with the tip. All rates will be given in units of the direct tunneling rate
Γ0 = πv4

S(ρT↑ρS↑ + ρT↓ρS↓).

Fig. 5.3 shows the bias-dependent switching rate for several spin
magnitudes. We observe that in all cases an increasing switching rate
is observed for voltage higher than the spin excitation energy ∆ of the
magnet (∆ is the energy difference between the first excited state and
the groundstate of the system with B = 0). For the protected cases
J = 7, 15/2, 8, however, the switching rate becomes negligible for low
temperatures kT � ∆ in accordance to Tables 5.1 and 5.2. In contrast,
J = 13/2 and 17/2 show SE switching even at low bias voltages resulting
in a finite switching time τ = Γ−1.

Temperature-dependent switchings are investigated often by X-ray
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Figure 5.4: Zero-bias temperature dependence of the switching rate of a spin with J =
13/2 . . . 17/2 in a six-fold rotational symmetric crystal (χ = 6). Other parameter as in in
Fig. 5.3.

absorption spectroscopy and magnetic circular dichroism (XCMD) mea-
surements to infer the stability of an atom or cluster (Fig. 5.4). Similar
to the bias-dependent measurement, one can observe, in all cases, an
onset of the switching rate for temperatures high enough to excite the
spin. At low temperature, the switching rate becomes negligible for the
stable cases while remaining finite for unstable ones. In contrast to the
bias dependence where the switching sets in abruptly at eV = ∆ for
stable atom configurations, the onset of the switching with temperature
appears continuous and monotonously.

In a next step, we break TR symmetry by applying magnetic field
of strength B along the z axis (Fig. 5.5). For the chosen magnetic
field range, the cases J = 13/2 and J = 17/2 show SE switching as
they are not protected by symmetry. In particular, J = 13/2 shows a
Lorentzian-like peak at the magnetic field strength at which one of the
former groundstates gets degenerate with one of the former first excited
states. The specific shape has to be associated to the fact that the two
states have the same quasi-spin and hybridize. In contrast, J = 7 is
stable for low magnetic field. However, spin switching gets activated at
higher applied fields when the former groundstate is brought in resonance
with one excited state. In this case the curve profile is different since the
two states have different quasi -spins.
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Figure 5.5: Magnetic field dependence of the switching rate of a spin with J =
13/2, 7, 17/2 in a six-fold symmetric crystal (χ = 6) for eV/D = 6 and other parame-
ters as in Fig. 5.3.

5.2.8 Discussion

The results of our single-atom analysis are summarized in Tables 5.1 and
5.2.

From our considerations, we can conclude that the higher the symmetry
the more stable will be the bit encoded in the groundstates. To substan-
tiate this statement we bring to the attention of the reader the cases
of χ = 2 and χ = 6. The former case does not host good nanomagnets
as either their groundstates are split or present SE switching processes.
On the contrary, the latter case hosts nanomagnets with high stability
against both SE and single-phonons switching processes∗. Indeed, in
half-integer spin systems with J = 3

2 +3n, (n ∈ N) the difference between
the groundstates quasi -spins is maximal, equal to 3.

We remark the advantage in working with the quasi-spin formalism,
analog to the quasi-momentum formalism in crystal theory, in order
to get universal formula for the presence of GSS and other features.
The quasi-spin would also be a more natural horizontal axis in typical
spectrum plots encountered in literature, like the one in Fig. 5.2(b).

Notice that the mirror symmetry plays only a marginal role in our
qualitative discussion: it does not provide strong constraints to GSS or

∗About the phonon contribution to Γa,b (cf. Eq. (5.12)) the reader may consult
Refs. 13 and M. Mannini et al., Nature 468, 417–421 (2010). In first approximation,
single-phonon processes induce quasi-spin changes equal to |∆J(q)| = 1, 2. Moreover,

notice that they induce no groundstate switching if ~B = 0, as their density of state at
zero energy vanishes.
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χ GSS SES(T) SES(BT) Protected Supp

2 {n} {} {n} {} {}
3 {3n} {} {n} \{1} {1} {1 + 3n}
4 {2n} {} {2n} {1, 3, 5} {}
6 {3n} {} {3n} {1, 2, 4, 5} {}

Table 5.1: Sets of integer spin magnitudes {Jn}, with n ∈ N>0, which exhibit ground-
state splitting (GSS) or SE switching processes (SES), at given system symmetry Cχ v .
The etiquette “(T)” and “(BT)” differentiate on whether time reversal symmetry is, re-
spectively, present or broken. “{}” indicates the empty set and the notation “{a}\{b}”
stands for the set subtraction of {b} from {a}. The fourth column (Protected) shows
instances of magnitudes which are protected from both GSS and SES. The last column

(Supp) shows the sets with suppressed SE switching processes at very small H(1) and Ht,
as described in Sec. 5.2.6.

χ GSS SES(T,BT) Protected Supp

2 {} {n+1/2} {} {}
3 {} {n+1/2} \{ 3

2} { 3
2} { 5

2 +3n}
4 {} {n+1/2} \{ 3

2} { 3
2} { 3

2 +2n}
6 {} {n+1/2} \{ 5

2 ,
3
2 +3n} { 3

2 ,
5
2 ,

9
2 ,

15
2 } { 5

2 +3n}

Table 5.2: Same as in Table 5.1, but for half-integer spin magnitudes. Notice that TR
symmetry does not provide additional protection from SE switching processes as it does
in integer spin systems.

SE switching processes. However, its inclusion is relevant for quantitative
numerics where the correct (symmetry preserving) Stevens operators
must be taken into account.

We warn the reader that our results refer to “generic” Hamiltonians,
that is, within a non-zero measure subset of the set of all possible
symmetry preserving Hamiltonian. For example, a system with J = 9/2
and χ = 3 would not present SE switching processes (in contrast with

Table 5.2) if only the Stevens operator O3
4 is included in H

(1)
A . However,

inclusion of higher order Stevens operators like O6
6 would restore the

agreement with our theory.
The absence of SE switching processes in the case J = 3/2 and χ = 3

is explained at the end of App. 5.5.

As a final remark, we comment a few relevant, recent experiments.
One experiment is Ho on Pt(111) where the substrate has 3-fold

degeneracy. One experimental group3 found the adatom spin magnitude
to be J = 8 and measured low groundstates switching rate. According
to our theory, such system would be protected from both GSS and SE
switching if the transversal anisotropy is not too big (see Table 5.1).
The latter was actually computed by the authors by means of ab-initio
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calculations. The ratio between the uniaxial anisotropy term and the
biggest transversal anisotropy term was found to be approximately 0.1%.
Such value is compatible with the absence of level crossing and allows
the usage of our theory. However, another experimental group14 found a
strong fourth-order uniaxial term inducing a groundstate level crossing.
The system groundstate then does not occupy the spin state |Jz| = 8
anymore but rather it occupies the spin state |Jz| = 6. In this case we
can still use our theory in this way: the groundstate quasi-spin can be
inferred using Eq. (5.10) with Jz = 6 and not with Jz = 8. Table 5.1
can be used assuming the system as effective spin J = 6. However, the
suppression feature of Sec. 5.2.6 does not take place anymore. According
to our table, GSS had indeed to be expected.

Another experiment9 is Ho on MnO. Here, χ = 4 while spin magnitude
is found to be J = 8. Also in this case ab-initio calculations reveal the
presence of a groundstate level crossing. The ratio between the uniaxial
anisotropy term and the biggest transversal anisotropy term is found to
be as big as 5%. The latter term favours a groundstate occupation of
the spin state with |Jz| = 7, rather than |Jz| = 8. With the prescriptions
above indicated, Table 5.1 can still be exploited (using J = 7) and
protection from GSS and SE switching are found, in agreement with the
statements of the authors.

A similar situation happens in a third experiment. Dy atoms are
deposited on graphene40. Hence χ = 6 and J = 8. Again, a strong
uniaxial field leads to a groundstate occupation of the spin state |Jz| = 7.
The authors found protection from GSS and SE switching, which agrees
to the indication of Table 5.1 (using J = 7).

This comparison with real experiments shows that level crossing is
likely to happen. When this is case, the groundstate quasi-spin can
not be inferred from the spin magnitude (and χ) only. Nonetheless, as
shown above, our theory can still be applied, for a deep understanding
of the system properties, if additional independent informations, e.g.
from ab-initio calculations or direct measurements, give access to the
groundstate quasi-spin.

5.3 Multiatom cluster systems

Since not only single-atom nanomagnets but also multiatom clusters are
under the attention of researchers1,4,6,41, we generalize the single atom
results to non-frustrated multiatom configurations.
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5.3.1 Model

We assume that the atoms interact through Heisenberg-like couplings
due to e.g. direct ferromagnetic exchange or indirect Ruderman-Kittel-
Kasuya-Yosida interaction42,43. For simplicity, we do not include Dzyaloshinsky-
Moriya interactions44. As they might play a role when dealing with
rare-earth adatoms and in general with systems with broken inversion-
symmetry45, their inclusion is left to future investigations. Thus, the
total Hamiltonian

HA =
∑
i

[
H

(0)
A (i) +H

(1)
A (i) + ~Bi · ~J(i)

]
+
∑
i>j

Hint
A (i, j) (5.18)

includes the uniaxial anisotropy felt by the i−th atom

H
(0)
A (i) =− |Di| J2

z (i), (5.19)

further anisotropy terms H
(1)
A (i), and the multiatom Heisenberg interac-

tion

Hint
A (i, j) =Gij J(i) · J(j). (5.20)

The effective interaction between the electrons in the metallic surface
and the atoms is

Ht =
∑
l

κl J(l) · jxl (5.21)

where jxl = c†xlσcxl ∝
∑
k,k′ e

i (k−k′)·xlc†kσck′ is the effective spin degree
of freedom of the metal electrons coupled to the atom at position xl.

To avoid magnetically frustrated configurations, we restrict the discus-
sion to clusters where one can distinguish two groups of atoms, say A
and B, such that they have intragroup ferromagnetic coupling (Gij < 0
if the i− th and the j−th atoms are in the same group) and intergroup
antiferromagnetic couplings (Gij > 0 if the i− th and the j−th atoms
are in different groups). A part from this restriction, the clusters are not
required to have other additional properties like, for instance, a specific
symmetric spatial configuration of the adatoms that compose it.

5.3.2 Operators

Similarly to R in Eq. (5.5), the rotation generators for every atom may be
defined as R(l) = exp{i Jz(l) 2π/χ}. We define the operator associated
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to the rotation of all spins as

Rtot = ⊗lR(l) = exp{i Jz,tot 2π/χ} (5.22)

where Jz,tot =
∑
l Jz(l) is the projection along the z-axis of the total

spin.
The mirror operators M(l) at mirror planes by each atom may be

defined analogously.
The time-reversal operator is also trivially generalized to act on multiple

spins.

5.3.3 Groundstate splitting for Ht = 0

As a first step, we show that a quasi-spin can be associated to the
groundstates of the multiatom configuration.

With H
(1)
A (i) = H

(int)
A (i, j) = ~Bi = 0 (∀i, j), the non-interacting

groundstates of the system are products of the groundstates of every
independent atom. For instance, with only two atoms, the four ground-
states are | ± J1〉 | ± J2〉, Ji being the magnitude of the spin of the i-th
atom.

We now switch on adiabatically all the interactions Hint
A (i, j). These

terms have actually a higher symmetry than Cχ, namely they are isotropic,
and preserves Jz,tot. Since the non-interacting groundstate has high degen-
eracy, at first sight it is not clear a priori which states remain groundstate
of the system after the switching process. However, such clusters seam
to have the following, per se interesting, feature:

Conjecture. Given the Hamiltonian in Eq. (5.18) with vanishing

H
(1)
A (i), the groundstate is an eigenstate of Jz,tot, with eigenvalue in mod-

ulus equal to |JA − JB |, where JA(B) :=
∑
i∈A(B) J(i). By TR symmetry,

the groundstate is doubly degenerate if JA 6= JB.

Through the analysis of the spectrum of several HA and numerical
simulations (see Sec. 5.3.5), we got evidence that this conjecture46 holds
true. We are able to give a rigorous proof only in first order perturbation
theory in the intergroup couplings of the matrix G (the intragroup
couplings being allowed to have arbitrary magnitude). This regime is
enough to understand how the single-atom features, found in Sec. 5.2,
appear also in the multiatom case. Notice that purely ferromagnetic
configurations fall into the range of our proof (as either group A or B
is empty). Due to the technical character of the proof, we present it in
App. 5.7.

The Marshall theorem, in the generalized fashion by Lieb and Mattis24,

ensures that, at H
(0,1)
A = ~Bi = 0, for each l ≥ |JA − JB |, the lowest
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Hamiltonian eigenvalue with total spin magnitude Jtot equal to l is
a monotone increasing function of l while, for l ≤ |JA − JB |, it is
monotone decreasing. Lieb and Mattis have proven that a magnetic
field, proportional to Jzi , destroys this order. Our conjecture regards the
same kind of systems but with an additional finite and negative definite
TR symmetric term, the uniaxial anisotropy (also higher order negative
definite uniaxial terms may be added). The magnitude of the total spin
is not anymore a good quantum number and the ordering of levels is
destroyed. Still, according to our conjecture, the groundstates have the
property

|Jz,GS | = |JA − JB | (5.23)

and, crucially, we can associate them well defined quasi -spins. The latter
are inferred by their eigenvalue under Rtot (see Eq. (5.22)) and are
computed via Eq. (5.10) inserting Jz according to Eq. (5.23).

As a further step in the discussion upon the presence of GSS, we switch

on the H
(1)
A (i) terms. As in Sec. 5.2.4, if we assume these terms to

be small enough such that the initial groundstates are not crossed (in
energy) by other levels, then the groundstates quasi -spins are preserved.
At this point the discussion about the GSS is identical to one done for
the single-atom case: when the groundstates quasi -spins are integers and
are at the TR invariant points of the Brillouin Zone, then GSS takes
place. Notice that, according to the conjecture, equal-spin dimers have
zero Jz,tot (and quasi-spin) and their groundstate is generically non-
degenerate. We conclude that dimers present GSS even with vanishing

H
(1)
A (i) terms.

5.3.4 Single-electron switching process at Ht 6= 0

We now switch on the small interaction with the metal. Similarly as
before (cf. Eq. (5.12))

Γab =
2π

~
∑
µ,ν

|〈ψa, ν|Ht|ψb, µ〉|2 e−βEµδ(x)

=
2π

~
∑
µ,ν

∣∣∣∣∣∣∣∣〈ψa, ν|
∑
i

s∈{+,−,z}

κiJs(i) · jxis̄|ψb, µ〉

∣∣∣∣∣∣∣∣
2

e−βEµδ(x)

=
2π

~
∑
µ,ν

∣∣∣~κ · ~V ∣∣∣2 e−βEµδ(x) (5.24)
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where
(
~V
)
i

=
∑
s∈{+,−,z}〈ψa|J

(i)
s |ψb〉 〈ν|jxis̄|µ〉, (~κ)i = κi and x =

Eν − Eµ + Ea − Eb.
Γ = 0 only when ~V ·~κ = 0 for all possible µ, ν states i.e. when 〈ψa| J (i)

s |ψb〉
are vanishing for every i. Fortunately, an analog of Eqs. (5.13) and (5.14),

with Js replaced by J
(i)
s , does hold and, in particular we get again protec-

tion from SE switching process for integer spin system. The protection
here may be subtle. Consider, for instance, a system with χ = 6 made
up of two atoms with spins J = 7/2. If their coupling G is ferromagnetic,
the total spin is J = 7 and the system presents no SE switching process,
according to Eq. (5.24) and Table 5.1. In particular, this fact holds
true even when the atoms are set at big reciprocal distance. However,
in this situation the two atoms may be regarded as non-interacting and
present individually SE switching processes, according to Table 5.2. We
remark that there is no contradiction between the two viewpoints: the
full groundstate, being a product of the groundstates of the two atoms in
the non-interacting limit, needs two electrons to be fully switched. Even
though quantitatively, the dimer has a big rate of switching, qualitatively
it remains SE switching protected.

We warn the reader that switching transitions between degenerate
groundstates of integer spin systems can be observed. However, these
transitions must be attributed to 2n-electrons processes, with n integer,
(as one can see generalizing Eq. 5.14) and not to single-electron ones∗.

Finally, we notice that the suppression feature of Sec. 5.2.6 is not
present for the multiatom case. The difference with the single-atom case
lies in the fact that the state |1 + J〉 was a forbidden state there, while
here its analog, |1 + |JA − JB |〉 is, in general, allowed.

5.3.5 Numerical simulations

We perform numerical simulations similar to the ones shown in section
5.2.7, focusing only on the bias dependence of the switching rate. We
analyze the cases of two dimers with same quasi -spins when they are in a
ferromagnetic configuration but different when in a antiferromagnetic one
(see Figs. 5.6,5.7). Since we are interested only in the stability features,
we assume vanishing distance between the atoms.

When the coupling is ferromagnetic (G12 < 0), both dimers are pre-

dicted to be unstable, as in both cases |J (q)
GS | = 5/2. Both our simulations

∗An example of multiatom systems, in which the switching has been measured,
are antiferromagnetic chains with an even number of atoms (see Ref. 6). A special
mechanism sets in as the chains become longer for which the GSS disappears and a
degenerate groundstate is restored31. The effective groundstates of these chains are
the Néél (time reversal partner) states.
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5 General scheme for stable single and multiatom nanomagnets

confirm the expectation. The case G12 = −0.1 in Fig. 5.7 points to an
important feature of multiatom configurations: the rate (at zero voltage)
can be very small. Notice that, in order to get rates Γ comparable
with the single-atom case, we need to increase the transversal anisotropy
(α6

6/D) about two orders of magnitude.

When the coupling is antiferromagnetic (G12 > 0) the case in Fig. 5.6

is predicted to be stable, as |J (q)
GS | = 3/2, while the other one unstable,

as |J (q)
GS | = 1/2.

Notice that the cases G12 = ±0.1 in Fig. 5.7 present the first kink at
higher voltage than the one which corresponds to the first excitation
energy (∆). This interesting phenomenon is a prerogative of multiatom
systems (with χ = 6): the first excited states can be not SE-connected to
the groundstates. When it happens, the transition rates between these
states are suppressed and a new channel of switching opens only at higher
voltage when second excited states can get excited. This feature may be
exploited to increase the energy-window of stability (in units of ∆). For
instance, a dimer with J1 = 4 and J2 = 2 with the same parameter set as
in the figures and antiferromagnetic coupling G12 = −0.1 has groundstate

quasi-spin |J (q)
GS | = 2 while the first excited states have |J (q)

GS | = 0. The
groundstates are then SE-switching protected and the switching (at small
T ) activates only at eV ∼ 2∆ in correspondence with the second excited
states.

As a final remark, we see that our numerical simulations support the
conjecture in Sec. 5.3.3. Indeed, the cases with G12 = 1 fall outside the
range of validity of our proof (see App. 5.7), but the numerics confirms
our expectations in terms of the stability of the groundstates.

5.3.6 Discussion

Clusters seem to behave as single atoms as far as our analysis is concerned.
We can associate them a quasi-spin and they have analogous selection
rules for SE switching processes. A difference with the single-atom case
is that the magnitude of total spin of the groundstates is not well defined
anymore (a part in the ferromagnetic case). Nonetheless, this is of no
consequence since the unique quantum number needed to determine the
symmetry selection rules is the quasi -spin.

One other caveat is that the feature of missing SE switching process for
small spin systems (see Sec. 5.2.5) is not present here unless for all atoms,
that compose the cluster, χ > 2J > 1 holds. These systems do not follow
our tables but could be addressed separately as they are relatively simple
to be studied. Moreover, also the suppression feature of Sec. 5.2.6 is not
present.
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Figure 5.6: Bias-dependent switching rate of a dimer with spin magnitudes J1 and J2 in
a six-fold symmetric crystal (χ = 6), at different strength of the exchange coupling G12

(in unit of D). The tip is placed on top of the first atom i.e. κ2
1/D = 0.1 and κ2

2/D = 0.

Here, α6
6/D = 1 · 10−3, all other parameters are as in Fig. 5.3.

To conclude, we inform that Tables 5.1 and 5.2 can be used for the
multiatom case. However, the spin magnitude of the single atom has to
be replaced with an effective groundstate spin magnitude |JA − JB |+ χ,
where the “+χ” term is conveniently added to avoid those small spins
constraints, as illustrated above.

5.4 Summary and Outlook

We focused on the dynamic properties of generic nanomagnets made
of absorbed adatoms on metallic or insulating surfaces. We presented
a complete and comprehensive discussion on the implications of the
symmetries of the system on the stability of the magnetic states. In
particular, the symmetries of interest are the rotational, the mirror and
the time-reversal symmetry. All our results are summarized in Tables
5.1 and 5.2. Given the effective spin magnitude of the adatoms and the
symmetries of the system, our main results, the Tables 5.1, 5.2, indicate
whether a nanomagnet is stable by its desirable properties: absence of
groundstate splitting and single-electron switching processes. Further,
we discovered the interesting feature of suppression of single-electron
switching process in some systems with uniform and weak transversal
anisotropy.

Finally, we presented an extension of our symmetry considerations to
a rather generic class of multiatom clusters. The Tables 5.1, 5.2 can still
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Figure 5.7: Same as in Fig. 5.6 but for a dimer with different spin magnitudes.

be used if the effective spin magnitude of each adatoms composing the
cluster is known. Here, we limited our study to generic non-frustrated
configurations. Our analysis of the multiatom clusters could be in future
extended to many other symmetries (for example to systems where the
adatoms form chains or lattices).

All our results are supported by numerical simulations which show
the switching behavior of these nanomagnets and offer guidance for
experimental measurements, e.g. by scanning tunneling microscopy.

We notice that high rotational symmetry is desirable for the stability
of nanomagnets. Indeed, the Brillouin zone associated to the adatom or
cluster eigenstates has many elements and systems with a big difference
between the grounstates’ quasi -spin can be found.

We found that the mirror symmetry does not influence qualitative
results.

As one rules out the translation symmetry of the substrate, χ is
not restricted anymore by the crystallographic restriction theorem47.
However, our expressions, been generic, are still valid and applicable.
For instance, if a single adatom is put at the high symmetric point of
a pentagonal quasi-crystal, our expressions apply with χ = 5 and we
expect the system to have similar (but richer) properties compared to
a system with χ = 3. Moreover, the adatom could be put on top of an
high symmetric molecule with χ > 648. However, a quantitative analysis
that ensures that environmental crystal field (the one due to the support
of the molecule) is negligible must be attached to the study.

Future work may be done in this direction or to prove the conjecture
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in section 5.3.3 at arbitrary Heisenberg intergroup couplings.

5.5 Appendix A. Matrix representation of
the Hamiltonian in the single-atom case

Here, we analyze an explicit matrix representation of HA in the single-
atom case. This is an alternative to the most straightforward Stevens
operator expansion presented in the main text. It proves to be useful for
finding the weak constraints on SE switching due to the mirror symmetry
and for checking calculations done with other approaches. It may be used
for statistical analysis of the system with the tools of Random Matrix
Theory49,50.

As in Sec. 5.2.3, we start considering the spatial symmetry constraints,
then we show the one due to TR symmetry.

Rotational symmetry. The symmetry [R,H] = 0 imposes all matrix
element between different elements with different r to be zero. Clearly
the unspecified H can be represent in an hermitian block diagonal form
which has, in general, 3 kinds of blocks: blocks associated to R-eigenspaces
with real eigenvalue r and pairs of blocks associated to eigenspaces with
conjugated pairs of eigenvalues r. To simplify the discussion, assume one
real r block, call it Q, and one pair of blocks, call them X and Y, then:

H =

Q 0 0
0 X 0
0 0 Y

 (5.25)

Mirror symmetry. When acting on the spin eigenbasis {|jz〉}, the mirror
operator in Eq. (5.7) can be written as

M =

{
A for integer spin

iA for half integer spin
(5.26)

with A a matrix with antidiagonal filled with ones and zeros outside.
The Hamiltonian elements get the simple constraint:

〈jz|H|jz〉 = 〈−jz|H| − j′z〉. (5.27)

It is convenient, to order the elements of this basis in each block by
putting states with descending order in jz, for blocks Q and X , and
with ascending order for Y. For instance, with J = 3 and χ = 3 such

133



5 General scheme for stable single and multiatom nanomagnets

basis is {|jz〉} = {|3〉, |0〉, | − 3〉, |2〉, | − 1〉, | − 2〉, |1〉}. This choice will be
particularly useful when we will implement the TR symmetry.

We see clearly that the mirror symmetry creates a constraint between
the elements of block Q and implies that the block X must be equal to
the block Y.

Time reversal symmetry. We show the constraint due to TR symmetry
alone; spatial symmetries are not necessarily present. We order the states
of the spin eigenbasis such that TR-partners are grouped together. For
instance, with J = 3 and χ = 3 such basis is {|jz〉} = {|3〉, | − 3〉, |2〉, | −
2〉, |1〉, | − 1〉, |0〉}. In this basis the operator T is represented as

T = K ⊕Jj 6=0

[
σ(j)
x cos(π j) + iσ(j)

y sin(π j)
]

⊕
{

1(j=0) for integer spin

−− for half integer spin
(5.28)

where the superscript (j) indicates that the operator acts on the time
reversal pair {|j〉, |−j〉} (or on the singlet state when j = 0). For the sake
of the discussion, we discard the presence of the Jz = 0 state for integer
spin systems; we reintroduce it next paragraph. The TR symmetry
constraint reads

h̄lk =

{
(−1)l+kσx h̄

∗
lk σx for integer spin

(−1)l+k−1σy h̄
∗
lk σy for half integer spin

(5.29)

here all h̄lks are 2× 2 Hamiltonian submatrices acting on time reversal
pairs with |jz| = l, k.
We see that, for integer systems,

h̄lk =



(
a b

b∗ a∗

)
, for l + k even(

a b

−b∗ −a∗

)
, for l + k odd

(5.30)

For half-integer systems

h̄lk =



(
a b

b∗ −a∗

)
, for l + k even(

a b

−b∗ a∗

)
, for l + k odd

(5.31)
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General form with all symmetries. When TR symmetry is added to the
spatial symmetries, the Hamiltonian structure in Eq. (5.25) becomes

H =



P 0 0

0 S 0

0 0 S

 , for χ 6= 3

C†PC 0 0

0 C†SC 0

0 0 C†SC

 , for χ = 3

(5.32)

where P is a real matrix where the superdiagonals have components dis-
posed in a palindromic way∗; S is a symmetric matrix; C = diag{1, i, 1, i, . . . }
where the alternating pattern is limited by the dimension of the block.
Notice that block Q is not present for half-integer spin systems with
χ 6= 3 (hence P is null), since there are not TR invariant quasi -spins in
the BZ.

We remark that, for χ 6= 3, the eigenvectors can be chosen to be real,
since the Hamiltonian matrix is real and symmetric. For χ = 3, the
eigenvectors are complex but can be written in the form ~w = C†~v with ~v
a real vector. In Dirac notation, the eigenstates could be written as

|ψ〉 =

{∑
j∈block vj |j〉, for χ 6= 3∑
j∈block cjjvj |j〉 for χ = 3

(5.33)

Hermiticity constraints the diagonal elements of the half-integer cases
bringing to Kramers degeneracy. One relevant consequences of this fact
is that systems with J = 3/2 and χ = 3 are protected from SE switching
processes (as indicated in Table 5.2).

5.6 Appendix B. Weak constraints on the
SE switching processes

Here, we show the constraints to the quantity

〈ψGS |Js|ψ̃GS〉, (s = +,−, z) (5.34)

∗We define superdiagonal of order m, (m ∈ Z), the vector with component vi = Hij

with i−j = m. For palindromic vector we mean, for instance v = (4, 2,−1, 9,−1, 2, 4).
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coming from the mirror symmetry and the symmetry under the operator
TM , effective in a specific regime. The analysis is restricted to the single-
atom case. As these constraints appear to affect the SE switching rates
only quantitatively we call them “weak” as opposed to the constraints
due to time reversal and rotational symmetries. We do not generalize
them to the multiatom case as we expect, also for this case, similar weak
constraints.

Constraint from the mirror symmetry. Consider the quantity in the
expression (5.34) when the mirror symmetry is present. The Hamiltonian
eigenstates |ψ〉 can be chosen to be also eigenstates of R, since [H,R] =
0. The commutation relation RM = MR†, then, implies R (M |ψ〉) =
r∗M |ψ〉. This means that M |ψ〉 is an eigenstate of R but with different
quasi -spin if r is non real. On the other hand M |ψ〉 and |ψ〉 must have the
same energy since [H,M ] = 0. Therefore, when r is not real M |ψ〉 ⊥ |ψ〉
i.e. M |ψ〉 = a|ψ̃〉 := aT |ψ〉, with a a unit complex number. Applying M
to both sides of the previous equation and using M2 = ±1, after a trivial
manipulation one gets M |ψ̃〉 = ±a∗|ψ〉, where plus(minus) sign refers
to integer(half integer) spin systems. About a we only need to know
whether it is real or imaginary, as it will be clear in a moment. From Eq.
(5.28) and the specification of the form of |ψ〉 in Eq. (5.33), we see that
T maps the vector v, for χ 6= 3, in another real vector, and w = C†v,
for χ = 3, to the vector C†v′ (with v′ 6= v). Differently, M maps the
vectors to same-shape vectors but multiplied by the imaginary unit for
half-integer spins (see Eq. (5.26)). Therefore, a is real(imaginary) for
integer(half-integer) spin systems. We are now ready to obtain the SE
switching constraint:

〈ψGS |J±|ψ̃GS〉 =〈ψGS |M†J∓M |ψ̃GS〉
=± (a∗)2〈ψ̃GS |J∓|ψGS〉
=± (a∗)2〈ψGS |J±|ψ̃GS〉∗

=〈ψGS |J±|ψ̃GS〉∗ (5.35)

where the external plus(minus) sign refers to integer(half integer) spin
systems.

Finally, we conclude

Im〈ψGS |J±|ψ̃GS〉 = 0. (5.36)

When r is real, it is of interest to consider whether there is a constraint
on 〈ψGS |Jz|ψ̃GS〉, for half-integer spin systems (then with χ = 3). We
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show first that

〈ψ|M |ψ〉 = 0. (5.37)

Using Eq. (5.33), we can rewrite the the l.h.s of the previous equation
as the scalar product (w,Mw) =

(
C†v,MC†v

)
. Remember, now, that

M = iA and notice that the dimension of the block Q must be even,
therefore iAC† = CA holds. The quantity, then, simplifies to

(
v, C2Av

)
which vanishes since v is real and C2A antisymmetric. Similarly as when
r is non-real, we conclude that M |ψ〉 = b|ψ̃〉.
One could show that b, like a is real(imaginary) for integer(half-integer)
spin systems and, with similar passages as before, conclude

Re〈ψGS |Jz|ψ̃GS〉 = 0. (5.38)

Notice that the constraints (5.36) and (5.38) are not enough to make
SE switching processes vanish since, respectively, the real and imaginary
parts are left unconstrained and, unfortunately, they are different from
zero, given a generic systems.

Constraint from the TM symmetry operation. Here, we show the weak
constraint on the expression (5.34) coming from the symmetry operator
TM , relevant when the time reversal symmetry is broken by a (rotational
symmetry preserving) magnetic field along the z axis. In this situation,
the groundstate is non degenerate. However, for small enough Bz, the
two lower energy eigenstates retain the same quasi spins and eigenvalues
under the action of TM as the ones of the two groundstate at Bz = 0.
Calling (improperly) these two lower eigenstates |ψGS〉 and |ψ̃GS〉 one
can find: 

Im〈ψGS |Jz|ψ̃GS〉 = 0

Re〈ψGS |J±|ψ̃GS〉 = 0 for integer spin

Re〈ψGS |Jz|ψ̃GS〉 = 0

Im〈ψGS |J±|ψ̃GS〉 = 0 for half integer spin.

(5.39)

We limit ourselves to just show this result because its proof is lengthy
and the result is just weak constraints which are not enough to make SE
switching processes vanish. The reader may appreciate how, at Bz = 0,
these constraints plus the constraints in Eq. (5.36) and (5.38) imply the
time reversal one in Eq. (5.14).
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5.7 Appendix C. Prove of the conjecture in
Sec. 5.3.3 at small intragroup couplings

We show a proof of the conjecture that appears in Sec. 5.3.3, restricted
to the case when intragroup couplings of the matrix G are small in
comparison to all other energies in HA.

At zeroth order in the intergroup terms in Hint
A , without uniaxial

anisotropy and magnetic field but with finite intragroup terms, the ground-
states are (2JA + 1)× (2JB + 1) product states of the form Jm−,A|GSA〉 ⊗
Jn+,B |GSB〉 with m(n) = 0, . . . , 2JA(B), J±,X =

∑
i∈X J±(i) and |GSX〉

is the state with all spin aligned up, for X = A, and down, for X = B.
Clearly, once the uniaxial anisotropy is switched on, |GSA〉 ⊗ |GSB〉,
along with the other three states obtained by applying the TR operator
to the state in either to A, to B or to both, remains the unique ground-
state. Indeed, they are eigenstates with maximum eigenvalue of both∑
ij H

int
A (i, j) and

∑
iH

(0)
A (i). Then, we add small intergroup coupling

terms in Hint
A , small with respect to the other energies involved. It is

straightforward to see that configurations in which the spin of the two
groups are oppositely aligned i.e. |GSA〉 ⊗ |GSB〉 along with its TR
partner, gain a negative first-order perturbation energy. This energy is
equal to −∑i∈A,j∈B GijJ(i)J(j). On the contrary, the other two states
(aligned) gain the same term but with opposite sign. Since the intergroup
coupling preserves the value of Jz,tot of the perturbed states, the new
groundstates will have the same Jz,tot of |GSA〉 ⊗ |GSB〉 and its TR
partner, given by ±(JA − JB). Thus, the conjecture is proven for small
intergroup couplings as claimed in the main text.
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[19] C. Hübner, B. Baxevanis, A.A. Khajetoorians, and D. Pfannkuche,
Phys. Rev. B 90, 155134 (2014).

[20] J. von Delft, and C. L. Henley, Phys. Rev. Lett. 69, 3236 (1992).

[21] J. Bartolome, F. Luis, and J. F. Fernández, Molecular Magnets:
Physics and Applications (Springer, New York, 2014).
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Summary

The 2016 Nobel Prize in Physics was awarded for the theoretical discovery
in the 1970’s and 1980’s of topological states of matter. In the last decade,
experimental discoveries have placed topological insulators, semimetals,
and superconductors at the center of attention. Applications, in the area
of spintronics and quantum computing, are still in the future, but at
present these materials offer a wealth of fundamentally new effects to
explore.

In this thesis we focus on topological superconductors. The topology
manifests itself in the presence of gapless excitations bound to edges or
surfaces, which cannot be removed by disorder or other perturbations.
The excitations are so-called Majorana bound states, charge neutral
particles that are their own antiparticles. A pair of Majorana fermions
bound to two magnetic vortices can be used to store quantum information
in a way that is nonlocal, insensitive to decoherence. Because of this
potential application to quantum computing their properties are under
intense investigation. The approach taken in this thesis is to study
the universal, model-independent properties of Majorana fermions by
means of random-matrix theory: a statistical approach in which only
fundamental symmetries enter. The model system to which we apply
the theory is a superconducting quantum dot coupled to metal leads (a
so-called Andreev billiard).

Random-matrix theory was previously applied to condensed matter
systems that were governed by the presence or absence of time-reversal
symmetry, producing the three Wigner-Dyson symmetry classes. Chiral
symmetry, studied mostly in the context of particle physics, doubled this
to six symmetry classes. In a superconductor the particle-hole symmetry
gives rise to the four Altland-Zirnbauer symmetry classes, for a total
of 10 — the celebrated “tenfold way” of random-matrix theory. The
central objective of this thesis is to investigate how particle-hole symmetry
modifies the statistics of spectral properties and transport properties, in
particular in systems where there is an additional chiral symmetry.

In Chapter 2, we investigate how the coupling to metal leads broadens
the midgap spectral peak in a superconducting quantum dot. This peak
is a key signature of the presence of a Majorana bound state, observed
in conduction experiments as a peak in the differential conductance
around zero voltage. A surprising result of our calculation is that ballistic
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coupling, without a tunnel barrier, completely hides the Majorana peak in
the background density of states. The technical ingredient that enables us
to arrive at this result is the calculation of the eigenvalue statistic of the
so-called time-delay matrix, the energy derivative of the scattering matrix.
With that knowledge we can also access thermo-electric properties such
as the Seebeck coefficient, and we find that it is similarly insensitive to
the presence or absence of a Majorana bound state.

In Chapter 3 we include the effect of chiral symmetry, which is present
at the surface of a topological insulator with induced superconductivity.
Chiral symmetry stabilizes multiple Majorana bound states, by preventing
a splitting of the midgap states. In contrast to the situation without chiral
symmetry, we now find that the density of states and the thermo-electric
properties do become sensitive to the Majorana bound states. At the
technical level this chapter is more demanding than the previous one,
where we could directly apply a technique developed for the Wigner-Dyson
ensembles. With the chiral symmetry a new “trick” was needed.

In Chapter 4 we turn to an alternative way to restore the sensitivity to
the Majorana bound states in the density of states, which is to introduce
a tunnel barrier in the metal leads. While indeed the Majorana peak
returns when the ballistic coupling is removed, one needs tunnel coupling
in all leads attached to the quantum dot. The Majorana signature remains
hidden if only a single metal lead has a ballistic coupling.

Finally, the last chapter is devoted to a problem in a different field:
the search for adatomic nanomagnets with stable magnetization. These
systems provide a benchmark for studies of decoherence effects and may
provide the smallest-size logic unit possible in a condensed matter system.
Since a few years, it has been recognized that symmetries are important
to qualitatively characterize the stability of the magnetization. How-
ever, a complete study of the typical substrate symmetries (rotational
and mirror ones) combined with time-reversal symmetry was missing,
even for the single-adatom case. We have identified all combinations of
symmetry groups that allow for a magnetized doubly degenerate ground
state, robust under small crystal field-induced transversal anisotropies
and first-order scattering from the substrate electrons. We could gener-
alize the classification to arbitrary bipartite multiadatom nanomagnets
with Heisenberg couplings. Our results can be seen as an extension of
the celebrated Lieb-Mattis theorem on the ordering of energy levels in
magnetic systems.
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In 2016 is de Nobelprijs natuurkunde toegekend aan de theoretische
ontdekking van topologische fase van materie in de jaren ’70 en ’80 van de
vorige eeuw. De afgelopen tien jaar hebben experimentele ontdekkingen
zulke topologische fasen, isolatoren, half-metalen en supergeleiders, in
het middelpunt van de belangstelling geplaatst. Toepassingen op het
gebied van spintronica en quantumcomputers zijn nog toekomstmuziek,
maar nu al bieden deze materialen een weelde aan fundamentele nieuwe
effecten die we kunnen gaan verkennen.

In dit proefschrift richten we ons op de topologische supergeleiders.
Topologie toont zichzelf daar door de aanwezigheid van excitaties zonder
energie-gap, die gebonden zijn aan randen of oppervlakten van het ma-
teriaal, en die niet verwijderd kunnen worden door wanorde of andere
verstoringen. Deze excitaties zijn zogenaamde Majorana-toestanden,
ladingsneutrale fermiondeeltjes die hun eigen antideeltje zijn. Een paar
Majorana-fermionen gebonden aan twee magnetische vortices kan worden
gebruikt om quantuminformatie op te slaan op een manier die niet-lokaal
is, en daardoor ongevoelig voor decoherentie. Vanwege deze mogelijke toe-
passing in quantumcomputers worden de eigenschappen van Majorana’s
intensief onderzocht. De aanpak die we in dit proefschrift volgen is om de
universele, model-onafhankelijke eigenschappen van Majorana-fermionen
te onderzoeken door middel van de theorie van toevalsmatrices: dat is
een statistische aanpak waar enkel de fundamentele symmetrieën een
rol spelen. Het modelsysteem waar we de theorie op toepassen is een
supergeleidende “quantum dot” met metalen contacten (een zogenaamd
“Andreev biljart”).

Toevalsmatrix-theorie is in het verleden toegepast op systemen in de
gecondenseerde materie waar de aanwezigheid of afwezigheid van tijds-
omkeersymmetrie bepalend is. Zo ontstaan de drie symmetrieklassen
van Wigner en Dyson. Chirale symmetrie, afkomstig uit de elementaire
deeltjesfysica, verdubbelde dit tot een zestal symmetrieklassen. In een
supergeleider zorgt de deeltje-gat symmetrie ervoor dat er nog vier sym-
metrieklassen bijkomen, genoemd naar Altland en Zirnbauer. Het totaal
aan 10 symmetrieklassen staat bekend als de “tienvoudige weg” van de
toevalsmatrix-theorie. Het centrale doel van dit proefschrift is om te
onderzoeken hoe de deeltje-gat symmetrie de statistiek verandert van
spectrale eigenschappen en transporteigenschappen, in het bijzonder in
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systemen waar de chirale symmetrie ook een rol speelt.
In hoofdstuk 2 onderzoeken we hoe de koppeling aan metalen contacten

de spectrale piek in het midden van de energie-gap verbreedt. Deze piek
in de toestandsdichtheid is een karakteristiek kenmerk van een gebonden
Majorana-toestand, die in geleidingsexperimenten is waargenomen als
een piek rond spanning-nul in het geleidingsvermogen. Een verrassend
resultaat van onze berekening is dat de ballistische koppeling aan de
contacten, zonder tunnelbarrière, de Majorana-piek compleet doet op-
gaan in de achtergrond. De technische stap die het ons mogelijk maakt
om dit resultaat te bereiken is de berekening van de statistiek van de
eigenwaarden van de zogenaamde tijd-vertragingsmatrix, namelijk de
afgeleide van de verstrooiingsmatrix naar de energie. Met deze kennis
hebben we ook toegang tot thermo-elektrische eigenschappen zoals de
Seebeck-coëfficiënt, en we vinden dat deze ook ongevoelig is voor de
aanwezigheid of afwezigheid van de gebonden Majorana-toestand.

In hoofdstuk 3 nemen we het effect van chirale symmetrie in rekening,
die aanwezig is op het oppervlak van een topologische isolator waar
supergeleiding is gëınduceerd. Chirale symmetrie stabiliseert meerdere
gebonden Majorana-toestanden, door de opsplitsing van de toestanden
te voorkomen. In tegenstelling tot de situatie zonder chirale symmetrie,
vinden we nu dat de toestandsdichtheid en de thermo-elektrische eigen-
schappen wel degelijk gevoelig zijn voor de Majorana’s. Vanuit technisch
oogpunt is dit hoofdstuk lastiger dan het vorige, waar we direct gebruik
konden maken van bestaande technieken voor de Wigner-Dyson matrix-
ensembles. De chirale symmetrie benodigde een nieuwe “rekentruuk”.

In hoofdstuk 4 vervolgen we met een alternatieve manier om de gevoe-
ligheid voor de gebonden Majorana-toestanden te herstellen, namelijk het
toevoegen van een tunnelbarrière in de contacten. Zodra de ballistische
koppeling verwijderd wordt keert de Majoranapiek in de toestandsdicht-
heid terug, mits alle contacten een tunnelbarrière krijgen. De Major-
anapiek blijft in de achtergrond verborgen als er ook maar een enkel
ballistisch contact overblijft.

Het laatste hoofdstuk, ten slotte, is gewijd aan een probleem uit een
wat ander vakgebied: de zoektocht naar nanomagneten met een stabiele
magnetisatie. Zulke systemen kunnen gebruikt worden om decoherentie te
meten en vormen de kleinste logische rekeneenheid in de gecondenseerde
materie. Sinds enkele jaren onderkent men dat symmetrieën belang-
rijk zijn om de stabiliteit van de magnetisatie te karakteriseren. Een
volledige klassificatie van de symmetrieën van het substraat (rotatie-
symmetrie, spiegelsymmetrie) in samenspel met tijd-omkeersymmetrie
ontbrak, zelfs voor het geval van een enkele gëısoleerde nanomagneet.
In hoofdstuk 5 worden alle combinaties van symmetrieën gevonden die
een magnetisch tweevoudig ontaarde grondtoestand toestaan. Deze ont-
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aarding blijft bestaan in aanwezigheid van anisotropiën ten gevolge van
het kristalveld en verstrooiing aan geleidingselektronen. De klassificatie
is gegeneraliseerd naar willekeurige multi-atomaire nanomagneten met
Heisenberg-koppeling. Deze resultaten vormen een uitbreiding van de
beroemde stelling van Lieb en Mattis over de ordening van energieniveaux
in magnetische systemen.
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